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Outline
•  Introduction 

–  Classical steady models 
–  Single X-point and Multi X-point reconnection 

•  2D-MHD simulation of large system with uniform resistivity  
–  Appearance of Petschek-type shocks 

•  3D-MHD simulation of turbulent magnetic reconnection 
–  Growth of oblique tearing mode 
–  Interaction of 3D plasmoid structure 
–  Structure of diffusion region 



Steady state reconnection models 
(Sweet 1958, Parker 1957) (Petschek 1964) 

Sweet-Parker model Petschek model 

Slow in coronal plasma Impossible in uniform resistivity 

Samtaney et al. 2009 
Non-steady Sweet-Parker reconnection model 

Realize fast reconnection with diffusion regions 
between plasmoids. They have shorter length 
and smaller local Lundquist number S. 

Bhattacharjee et al. 2009 

Petschek-type diffusion 
region forms even with 
uniform resistivity in 
higher S. 

Shibayama et al. 2015 

Non-steady Petschek reconnection 

Figures from Comisso et al. 2014 
See Kulsrud 2001 



S-P → Plasmoid → Current bifurcation 

•  Reconnection rate goes up ~ 0.01 
•  Resistive 2D MHD with uniform resistivity 
•  Harris current sheet without forcing 
•  Lundquist number using current sheet length 

is S ~ 106 
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Repeated formation of bifurcated current 

Reconnection is enhanced 
by  plasmoid formation and  
bifurcated current structure. 
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Varia.on	of	
Reconnec.on	rate Out	flow	pushes	plasmoid	

->	Plasmoid	is	ejected	

->	Current	sheet	
	elonga.on		

->	MR	slows	down
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Similarity	in	Small-scale

S0=10
4

Similar	plasmoid	mo.on	and	current	concentra.on	also	
occur	in	S=106.	This	may	explain	the	weak	dependence	of	
reconnec.on	rate	on	Lundquist	number



Petschek type diffusion region with uniform resistivity

Slow mode MHD shockPetschek model

•  Bifurcated current structure is 
identified as a pair of slow mode 
shocks. 
•  This suggests non linear evolution 

of plasmoids can help localization 
of diffusion region. 

Petschek-type forms spontaneously even 
with uniform resistivity.   
→Dynamical Petschek Reconnection 
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What is the mechanism to form Petschek-type?
Isolated plasmoid is the simplest model of Petschek-type.  

            (cf. Murphy et al. 2010) 

•  X-point is initially put at x = 20. 
•  Left reflecting boundary fixes a plasmoid.  
•  Right and top boundaries are far. 



Out flow is accelerated by magnetic tension force

Vx

Lorentz force 
x component

Acceleration 
x component 

Pressure grad force 
x component

Y

Y

Y

Y

Acceleration to rightward is Petschek like, leftward is Sweet-Parker like



Why diffusion region is localized ?

Plasmoid breaks symmetry 
and X and stagnation point 
decouple. 
X point is in the down flow 
of 0.5VA

Stagnation point

X point
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∂By
∂t

≅ −∂x (VxBy )+η∂x Jz ~ 0

Steady state is almost satisfied

Induction equation is almost in 
balance in the simulation. 

−∂x (VxBy )

η∂x Jz

Each term of induction eq. at y=0 

In Kulsrud2001, Petschek RX 
is impossible in steady state 
  

  

  

Profile of reconnecting Bx 
field is different from their 
assumption. 

∂By
∂t

≅ ∂x (VxBy )+η∂x Jz

 
∼ −
VA
L'
By +

VR
L'
L'2
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Self-similar-like expansion 

X

•  Re-normalize length 
scale so that X point is 
fixed. 

•  Self-similar-like 
evolution is observed 
when Petschek-type 
structure is formed. 

•  Nitta2007 discusses 
similar self-similar 
solution of MHD. 

Y



Our Scenario 
Secondary or tertiary 
plasmoid evolve in 
asymmetry of outflow. 

Diffusion region goes to 
steady self similar solution 
of dynamic Petschek RX. 

This process is repeated 
and fast reconnection 
goes on. Independent on 
Lundquist number S 
because of similarity in 
diffusion scale. 

X
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Summary of dynamical Petschek reconnection

•  Petschek-type reconnection spontaneously realizes in uniform 
resistivity  

•  Isolated plasmoid break symmetry of diffusion region. 

•  Reconnection rate is determined by self-similar like Petschek 
solution not by Sweet-Parker model 

•  Dynamical Petschek reconnection is new reconnection regime in 
higher Lundquist number. 

Sweet-Parker → Plasmoid MR → Dynamical Petschek  
S < 104 104 < S < 106 106 < S



Dynamical Petschek Reconnection in 
the Phase diagram

•  Dynamical Petschek 
reconnection is in the red 
triangle (just speculation). 

•  Our mechanism cannot 
fully explain the fast 
reconnection in the solar 
corona. 

Reconnection phase diagram (Ji & Daughton, 2011)



2D Swirl	Tensor

•  (Flux	func.on)
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Priest,	MHD	of	the	Sun
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Nishida+2013 Shibata et al. 1995

McKenzie+ 2013

SDO/AIA
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( )Sweet-Parker

 
•   

3D 2D S-P
Huang et al. 2016
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@t
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:	

•  η Jz  
•  Petschek Jz  
•   
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3D 

Ly	=	100	L0
Lx	=	600	L0

Lz	=	100	L0
•  3D  MHD  
•  HLLD + Flux-CT 
•  (Lx, Ly, Lz) = (600L0, 100L0, 100L0) 
•  (0.1 Bx) 
•  Lundquist  ~ 105 

Volume	:	Vx( ),	 Bx

Thermal

Kine.c

Magne.c

	
	:	2D,	 	:	3D
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Ēz = �(V̄ ⇥ B̄)z � (Ṽ ⇥ B̃)z + ⌘J̄z

Ēz = �(V̄ ⇥ B̄)z � (Ṽ ⇥ B̃)z + ⌘J̄z
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Ēz = �(V̄ ⇥ B̄)z � (Ṽ ⇥ B̃)z + ⌘J̄z
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Ez = �(V ⇥B)z + ⌘Jz
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•  2 z 	
(∂/∂z = 0)  
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 (k B=0)  

Baalrud et al. 2012
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