高レイノルズ数磁気リコネクション シミュレーション

柴山拓也
名大，ISEE

Outline

- Introduction
- Classical steady models
- Single X-point and Multi X-point reconnection
- 2D-MHD simulation of large system with uniform resistivity
- Appearance of Petschek-type shocks
- 3D-MHD simulation of turbulent magnetic reconnection
- Growth of oblique tearing mode
- Interaction of 3D plasmoid structure
- Structure of diffusion region

Steady state reconnection models

Impossible in uniform resistivity

Non-steady Sweet-Parker reconnection model

(b) $\mathrm{S}_{\mathrm{L}}=6.28 \mathrm{e}, \mathrm{t}=6.00 . \mathrm{J} \quad$ Bhattacharjee et al. 2009

Realize fast reconnection with diffusion regions between plasmoids. They have shorter length and smaller local Lundquist number S.

Non-steady Petschek reconnection

Petschek-type diffusion region forms even with uniform resistivity in higher S .

Shibayama et al. 2015

$\mathrm{S}-\mathrm{P} \rightarrow$ Plasmoid \rightarrow Current bifurcation

- Reconnection rate goes up ~ 0.01
- Resistive 2D MHD with uniform resistivity
- Harris current sheet without forcing
- Lundquist number using current sheet length is $\mathrm{S} \sim 10^{6}$

Reconnection Rate

Repeated formation of bifurcated current

Reconnection is enhanced by plasmoid formation and bifurcated current structure.

Reconnection rate

Color : current density

Variation of

Similarity in Small-scale

Similar plasmoid motion and current concentration also occur in $S=10^{6}$. This may explain the weak dependence of reconnection rate on Lundquist number

$$
S_{0}=10^{4}
$$

$$
S_{0}=10^{6}
$$

Petschek type diffusion region with uniform resistivity

- Bifurcated current structure is identified as a pair of slow mode shocks.
- This suggests non linear evolution of plasmoids can help localization of diffusion region.

d. Slice along shock normal

b. Magnetic energy density [0, 0.4]
c. Gas pressure [0, 0.6]

Petschek-type forms spontaneously even with uniform resistivity.
\rightarrow Dynamical Petschek Reconnection
Petschek model
Slow mode MHD shock

What is the mechanism to form Petschek-type?

Isolated plasmoid is the simplest model of Petschek-type.
(cf. Murphy et al. 2010)

- X-point is initially put at $\mathrm{x}=20$.
- Left reflecting boundary fixes a plasmoid.
- Right and top boundaries are far.

Out flow is accelerated by magnetic tension force

Acceleration x component

Lorentz force x component

Pressure grad force x component

Acceleration to rightward is Petschek like, leftward is Sweet-Parker like

Why diffusion region is localized?

Steady state is almost satisfied

(e) $j z(t=550.00)$

Induction equation is almost in balance in the simulation.

$$
\frac{\partial B_{y}}{\partial t} \cong-\partial_{x}\left(V_{x} B_{y}\right)+\eta \partial_{x} J_{z} \sim 0
$$

In Kulsrud2001, Petschek RX is impossible in steady state

$$
\begin{aligned}
\frac{\partial B_{y}}{\partial t} & \approx \partial_{x}\left(V_{x} B_{y}\right)+\eta \partial_{x} J_{z} \\
& \sim-\frac{V_{A}}{L} B_{y}+\frac{V_{R}}{L} \frac{L^{2}}{L^{2}} B_{0}
\end{aligned}
$$

Profile of reconnecting Bx field is different from their assumption.

Self-similar-like expansion

- Re-normalize length scale so that X point is fixed.
- Self-similar-like evolution is observed when Petschek-type structure is formed.
- Nitta2007 discusses similar self-similar solution of MHD.

Our Scenario

Secondary or tertiary plasmoid evolve in asymmetry of outflow.

Diffusion region goes to steady self similar solution of dynamic Petschek RX.

This process is repeated and fast reconnection goes on. Independent on Lundquist number S because of similarity in diffusion scale.

Summary of dynamical Petschek reconnection

- Petschek-type reconnection spontaneously realizes in uniform resistivity.
- Isolated plasmoid break symmetry of diffusion region.
- Reconnection rate is determined by self-similar like Petschek solution not by Sweet-Parker model
- Dynamical Petschek reconnection is new reconnection regime in higher Lundquist number.

Sweet-Parker \rightarrow Plasmoid MR \rightarrow Dynamical Petschek

$$
10^{4}<S<10^{6}
$$

$$
10^{6}<\mathrm{S}
$$

Dynamical Petschek Reconnection in the Phase diagram

Reconnection phase diagram (Ji \& Daughton, 2011)

2DでのSwirl Tensorに関して

－ベクトルポテンシャル（Flux function）の形状解析が微分的 にできる

- X点の検出
- 2Dではベクトルポテンシャルの鞍点
- リコネクションの強さの指標になるか
- 定常モデルでは90度で交わる磁力線はリコネクションしていない
- X点での電場を見る
- X点の＂向き＂（鞍点の谷方向）を判定してインフローを計る？

フラックスロープはどうやって できるのか？

- フラックスロープ 3 次元プラズモイド
- 2次元では出てこなかった不安定性
- キンク，斜めテアリング，乱流
- 観測では大規模なフラックスロープが見られる

McKenzie＋ 2013

SDO／AIA

Shibata et al． 1995

3D平均場構造 は 2D S－P構造 に類似

Huang et al． 2016
－乱流によりアウトフロー幅が拡張され平均場 は（電気抵抗の大きな）Sweet－Parkerリコネク ションに相当する。
－巨視的には電気抵抗を上げているとみなせる

2次元では．．．

- \ddagger が小さい時にJzが大きくなる理由を考えていた。
- プラズモイドやPetschek型で ${ }_{z}$ を大きくする。
- その結果巨視的なアウトフロー幅は大きくなる。
－3D 抵抗性 MHD 方程式
－HLLD＋Flux－CT
－$(\mathrm{Lx}, \mathrm{Ly}, \mathrm{Lz})=\left(600 \mathrm{~L}_{0}, 100 \mathrm{~L}_{0}, 100 \mathrm{~L}_{0}\right)$
－弱いガイド磁場（0．1 Bx）

－Lundquist数 $\sim 10^{5}$
Volume ：Vx（アウトフロー），磁力線の色：Bx

平均場電場

－斜め構造がZ方向に平均さ れるのでほとんど乱流電場 になってしまう

$$
\begin{aligned}
& E_{z}=-(\mathbf{V} \times \mathbf{B})_{z}+\eta J_{z} \\
& \bar{E}_{z}=-(\overline{\mathbf{V}} \times \overline{\mathbf{B}})_{z}-\overline{(\tilde{\mathbf{V}} \times \tilde{\mathbf{B}})_{z}}+\eta \bar{J}_{z}
\end{aligned}
$$

3次元では斜めテアリングモードが卓越

－2次元ではz方向に一様な構造しか現れ ない $(\partial / \partial \mathbf{z}=0)$ 。
－3次元では斜めテアリングモードがより大 きな成長率を持つことがある。
－斜めプラズモイドはその場の磁場に沿つ た構造を持ち，複数レイヤに形成する （k•B＝0）。

Baalrud et al． 2012

上下2レイヤで斜めプラズモイドが成長

－斜めプラズモイドが成長するこ とで初期中性面で衝突，相互作用する。
－斜めプラズモイドに沿ってアウト フローが形成

リコネクション領域と アウトフロ

2次元と3次元の本質的な違い

2次元の場合
Side view

Top view

3 次元の場合
Side view

- 2次元プラズモイドはリコネクションが終わった後の＂掃き溜め＂
- 3次元ではプラズモイド同士のリコネクションが本質的
- 2次元に比ベてフィリングファクターが下がる
- プラズモイドスケーリングも見直しが必要

