
ZooKeeper: highly reliable distributed
coordination

Weborama Tech Day 2015

September 2015

1 ZooKeeper primer
Elevator pitch
History
Users

2 Demos
How to use it
Examples
Behind the scenes
Basic example: Group membership
Basic example: Leader election
Intermediate example: Shared locks
Advanced: Two-phased commits

3 End credits

Elevator pitch

Server and client library (C, Java) for enabling
communication in distributed applications.
Not a high level tool, more of a framework for writing
your own algorithms.
Not a message queue (though you can make one with it)

History

Originally a component of Hadoop (2005?)
Split off as a subproject (2008?)when it became apparent
that it would be useful on its own
Currently an Apache “top-level” project with its own
community

Users

HBase Distributed column-oriented data store based on
HDFS

Juju Canonical’s service deployment and orchestration
framework

Kafka Distributed pub/sub MQ
Mesos Cluster management platform for distributed

applications (Hadoop MR, Spark, ...)
Neo4j HA components Master/slave component for the graph

database
Solr Enterprise search engine

... many others

Users

eBay
Rackspace
TubeMogul
Yahoo!
Zynga
... many others

How to use it

Tree of nodes

Very basic usage: create nodes, write to them, read from
them, delete them.

Example

ZooKeeper zk =
new ZooKeeper("localhost:2181", ...);

zk.create("/foo", "a byte array", ...);
zk.create("/foo/bar",

"another byte array", ...);
zk.create("/foo/baz",

"a third byte array", ...);

On the server:
/

/foo.“a byte array”

/bar

“another...”

/baz “a third...”

... so how’s this better than NFS anyway?

Adding coordination: nodes

When creating nodes, you can optionally make them
ephemeral Ephemeral nodes live only as long as the client

does.
sequential Sequential nodes are guaranteed unique (a

monotonically increasing integer is appended)
both

neither

Adding coordination: watchers

Some operations will allow you to set a watcher callback:
when you do a read operation on a thing, you can (atomically)
notify the server that you’re interested in updates on that
thing.

Then you do another read operation to check how the thing
has changed.

With a watcher set, you can miss some updates, but you are
always notified that something happened.

Adding coordination: watchers

1 zk.exists(path, true, watcher);

2 zk.getData(path, true, watcher);

3 zk.getChildren(path, true, watcher);

Whenever the node at path is created (1, 2), deleted (1, 2), or
its contents are modified (1, 2), or a subnode is created (3) or
deleted (3), the watcher will be called.

Adding coordination: watchers

Other things that cause watchers to be called:
Indirectly when another client dies: all the ephemeral
nodes they created disappear (after max. $heartbeat
seconds), so all clients with watchers on these nodes will
be notified
Connection state changes (CONNECTED, CLOSED, etc.)
also trigger watchers set on the connection itself

Examples

Examples

Distributed
configuration
Naming service
Leader election,
group
membership
Synchronization

Example

ZooKeeper zk =
new ZooKeeper("localhost:2181", ...);

byte[] jsonString =
zk.getData("/fetcher", ...);

{ "throttling": {
"sandtrapDelay": 0,
"sandtrapMaxSize": 10000,
"tickPeriod": 0,
"logPeriod": 60 },

"urlCache": {
"expireAfter": 3600 } }

java-Weborama-Configuration for BigSea

document fetching

Example

byte[] protobufRecord =
zk.getData("/hbase/master", ...);

{ "start_code": 1441897359029,
"host_name": "betelgeuse",
"port": 60000 }

HBase advertising its “master” node

Example

List<String> kids =
zk.getChildren("/replicas", ...);

the current caliph
/replicas/member-0000000001
and his four viziers
/replicas/member-0000000002
/replicas/member-0000000003
/replicas/member-0000000004
/replicas/member-0000000005

basic group membership/leader election

algorithm

Example

List<String> kids =
zk.getChildren("/shared-locks", ...);

this guy has the lock
/shared-locks/write-0000000001
then it’ll be these two
/shared-locks/read-0000000002
/shared-locks/read-0000000003
then him
/shared-locks/write-0000000004
finally this one
/shared-locks/read-0000000005

globally synchronous shared locking

Behind the scenes

Guarantees provided

These are necessary for proper coordination:
causal ordering
total ordering of messages
reliable delivery
atomic delivery

Guaranteed

in english, please

If a client sees a message, and as a result sends another,
everybody will see the answer after the question (“causal
ordering”). Same even for messages that are not request-reply
(“total ordering”).

If any server delivers a message, then eventually every server
will deliver it (“reliable delivery”). There are no partially
successful operations; either they fail completely, or they
succeed completely (“atomic delivery”).

Basic example: Group membership

Group membership algorithm

Assume a well-known node path for the group, e.g.
/replicas.

1 Announce your membership to the group by creating an
ephemeral, sequential subnode of /replicas

/replicas/member-0000000001, ...

2 Get the list of members of the group + set a watcher on
the group membership list

3 When the watcher callback fires, do previous step again
4 When leaving the group, delete your own node

Features

Dead members
Group desertion (kill -9 [PID]) also causes the subnode to
disappear after the server notices the client’s heartbeat is gone.

New members
Existing members are notified through their watcher, so they
know to update the membership list.

Basic example: Leader election

Leader election algorithm

Like group membership, almost.
1 Announce your membership to the group
2 Get the list of members of the group
3 The lowest subnode is the leader.

Leader election algorithm

4 If you are not the leader, set a watcher on the subnode
immediately under yours

5 When the watcher fires, check again if you are the leader.

Features

Herd effect avoidance
Candidates are only notified if their immediate rival bows out.
This avoids a stampede when the leader exits (only one
candidate is notified).

Intermediate example: Shared locks

Shared locks algorithm

Like leader election, almost.
For read locks:

1 Ask for a read lock by creating an ephemeral, sequential
subnode at /group/read-

2 Get the list of children in /group
3 If there is no /group/write- node with a sequence

number lower than yours, you have a read lock.
4 Otherwise, call exists on that node and set a watcher on

it.
5 When the watcher fires, start again at step 2.

Shared locks algorithm

For write locks:
1 Ask for a write lock by creating an ephemeral, sequential

subnode at /group/write-
2 Get the list of children in /group
3 If there is no /group/write- or /group/read- node

with a sequence number lower than yours, you have a
write lock.

4 Otherwise, call exists on that node and set a watcher on
it.

5 When the watcher fires, start again at step 2.

Features

Globally synchronous
Meaning that at any given time, only one node thinks it has
the write lock.

Easy debugging
Just call getChildren on the group node to check how many
workers are waiting for a read/write lock.

Revocable locks
With consent: call getData on your own node and set a
watcher. If the node contents becomes “unlock”, release the
lock. Without consent: call delete on somebody’s node.

Advanced: Two-phased commits

Two-phased commit algorithm definition

What’s a two-phased commit?

A two-phased commit is when you’re trying to make a
transaction across an entire distributed system. All clients
must know if the transaction was successfully completed, or
aborted.

E.g. you want to store data in multiple replicas. For the
system to be in a consistent state, the data must be stored in
all (or at least N) or none.

Two-phased commit algorithm

The 2PC implementation we’re demoing here is simplified. It
uses a weak coordinator model.

1 Coordinator creates a transaction node and one subnode
per participating site

2 Each site reads each other sites’ nodes and sets a watcher
3 Once all site nodes have a defined value, each site knows

about the global transaction status

Features You really need to read up on Paxos

Weak points
Lots of messages going back and forth (“chatty”
protocol), but that’s 2PC for you (we didn’t even mention
acknowledgement messages)
Can fix some issues, like lack of detection of site failure...
by adding even more chatter
Coordinator is a SPOF. To decentralize, you can try
making the coordinator the site responsible for initiating
the transaction

Recommended reading

The full version of this presentation with runnable Perl
examples is available here: (CC-BY-NC)
https://bitbucket.org/fgabolde/tech-day-2015-09

https://bitbucket.org/fgabolde/tech-day-2015-09

Recommended reading

Consistency, availability, partition tolerance: pick two, one of which is partition
tolerance.
URL https://en.wikipedia.org/wiki/CAP_theorem.

Series of articles on aphyr.com demonstrating coordination issues in existing
distributed software.
URL https://aphyr.com/tags/Jepsen.

Paxos consensus protocol.
URL https://en.wikipedia.org/wiki/Paxos_(computer_science).

Zookeeper implementation details.
URL http://zookeeper.apache.org/doc/r3.3.2/zookeeperInternals.html.

End credits

Thanks for listening.

Questions?

https://en.wikipedia.org/wiki/CAP_theorem
https://aphyr.com/tags/Jepsen
https://en.wikipedia.org/wiki/Paxos_(computer_science)
http://zookeeper.apache.org/doc/r3.3.2/zookeeperInternals.html

	ZooKeeper primer
	Elevator pitch
	History
	Users

	Demos
	How to use it
	Examples
	Behind the scenes
	Basic example: Group membership
	Basic example: Leader election
	Intermediate example: Shared locks
	Advanced: Two-phased commits

	End credits

