
Debugging Vampires
AKA: Where did the reflection go? 

Also some other stuff about 
building projects for Windows RT



WinRT - The Windows Runtime

● Striped down version of core microsoft libs; System.dll, 
mscorlib.dll etc.

● Unity does not compile against WinRT in the editor, only 
when building.
➢ Compiler will ignore code in /Plugins/

● Patching functions missing from WinRT is your main task 
when porting to Windows mobile.



Case Study: LitJson

● Uses reflection to convert Json<->Object

● Compiled DLL appears to work…
➢ But you will fail WACK (More on this later).

● Luckily we have the source (It’s public domain!).
➢ github.com/lbv/litjson

http://github.com/lbv/litjson
http://github.com/lbv/litjson


Case Study: LitJson

DLL’s in /plugins/ 
throw Method Not 
Found Exceptions if 
unsupported.



Case Study: LitJson



Case Study: LitJson

● Reflection paired down in WinRT, probably to enforce the 
app sandbox (Speculation).

● We can hardcode our changes by editing LitJson itself… 
but it’s bad practice.

● Use extension methods instead! Make direct edits only 
when necessary.



Case Study: LitJson

#if !UNITY_EDITOR && UNITY_METRO

namespace LitJson {

public static class WinRTPatch {

// Extension methods allow us to extend classes we may not

// have access to by using the ‘this’ keyword.

public static PropertyInfo[] GetProperties(this Type _type){

return _type.GetRuntimeProperties().ToArray();

}

}

}

#endif



Case Study: LitJson

Extension Methods:

● Modify classes non-destructively.

● Great for compatibility patches.

● Patch could be released as standalone fix.

● More on extensions:
wikipedia.org/wiki/Extension_method
MSDN/library/bb383977.aspx



Case Study: LitJson

● WP8 has entirely different libs, similar problems will occur 
(Use #directives!).

● Watch out for function overrides:

GetInterface(name) - Unsupported
GetInterface(name,ignoreCase) - Supported

● 4.3 compiler much better than in 4.2, will catch most 
problems at the Unity build step.



Building for WinRT

Building for WinRT is a 2 step process:

1. Unity generates Visual Studio project.
● Use ‘XAML C# Solution’ & 8.1 settings.
● 8.0 apps no longer supported by Microsoft.

2. Visual Studio Project edited and compiled.
● Add settings flyout/other required funcs.
● Localization for store info.
● Build .appx for testing or publishing.



Unity <-> WinRT interop

● In order to comply with Microsoft guidelines, we need to 
implement some Metro functionality.

● Settings Flyout, Privacy Policy, Window snap & resize.

● C# compiled by Unity can be directly accessed from 
Metro, makes integration fairly simple. But Unity is not 
thread safe! Watch out!



Unity <-> WinRT interop

// This class goes in the generated visual studio project!

public class AppSettings : SettingsFlyout

private void flyoutMute_Toggled(object sender, RoutedEventArgs e){

// Call functions with InvokeOnAppThread to avoid 

// threading crashes.

AppCallbacks.Instance.InvokeOnAppThread(() => {

// Use events if possible, extra guard against threading.

MySoundController.RaiseMuteToggleEvent();

}, false);

}

}



Unity <-> WinRT interop

● Windows App guidelines:
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx

● WinRT interop code included in our starter kit.

● Excellent projects & examples on the MSDN.

● Better Unity integration in the future?

http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx


Freemium API

● Microsoft has ‘Trial Period’ option that will disable access 
to your app after a period of time.

● Entirely managed by Microsoft! Lines of code I had to 
write: Zero -- Awesome!

● Lightweight API for querying trial time left, not required 
though.



Windows App Cert Kit - WACK

● Scans your app automatically and will highlight problem 
areas in code and in performance.

● Is the first step in the store cert process. Failing WACK 
means you will fail store cert, use it!

● Most common WACK failures: Unsupported API & long 
startup time.



Windows App Cert Kit - WACK

● Comes with VS2013 for 
Windows 8.

● Separate exe for WinRT 
devices. Test on both!

● Takes about 20-30 min, 
depending on app size.

xkcd.com / R. Munroe | CC BY-NC 2.5



Notes on Compiling

‘Compilation Overrides’ Unity PlayerSetting:

● ‘None’ - Don’t use this, seems like it solves all of your 
missing method problems… but you will fail WACK.

● ‘Use Net Core’ - Default, compiles for WinRT.

● ‘Use Net Core Partially’ - Allows C#<->JS/Boo interop. 
WACK compatible.



Notes on Compiling

Visual Studio Compile Modes:

● ‘Debug’ - Compile for debugging.

● ‘Release’ - ???, Leaves ‘Development Build’ watermark in 
build. Just don’t use it.

● ‘Master’ - Compile for release to the app store.



Notes on Compiling

Overwriting an existing VS project.

● Unity will only replace the /Data/ folder, everything else 
will be unchanged.

● DLLs added to the VS project by Unity will not be 
removed by Unity if you delete them from the Unity 
Project, you must manually delete them or create a fresh 
VS project.



Odds and Ends

● Unity runtime log: 
<USER>\AppData\Local\Packages\<Project Name>\TempState

● WP8 devs: check out ‘Windows Phone Power Tools’ for 
retrieving the runtime log.

● Powershell: .ps file generated with .appx, used to deploy 
test builds.



Odds and Ends

Navigating the MSDN: 

● Look for the briefcase icon.
● Check the Version Information.



Thanks!

● Project with all code discussed available on bitbucket:
bitbucket.org/Mervill/winrt-starter-kit
Format: Mercurial/7z
Licensed under MIT/Boost, use it to kickstart your WinRT 
project!

● riley@boximals.com
/in/rileygodard
@Mervill_

http://bitbucket.org/Mervill/win-starter-kit
http://bitbucket.org/Mervill/win-starter-kit
mailto:riley@boximals.com
mailto:riley@boximals.com

