
A simple MVC framework

Radu Potop

Masterat TI An I



Table of Contents

Introduction.................................................................................................................................3

Concepts......................................................................................................................................3

Existing solutions........................................................................................................................4

Architecture.................................................................................................................................5

Framework design.......................................................................................................................5

Component design..................................................................................................................5

Class design............................................................................................................................6

Developing the framework..........................................................................................................9

Example application..................................................................................................................10

Conclusions...............................................................................................................................10

References.................................................................................................................................11

2



Introduction

In this project we will follow the creation of a framework for web applications.

It's called “A simple MVC framework” because it focuses mostly on implementing the Model–

View–Controller pattern, and not on including all possible features like bigger / production 

frameworks do. However, it does have a set of libraries which help us create web applications 

more easily.

Concepts

Neither frameworks nor MVC are new concepts. The first ones are (usually) massive 

sets of libraries, sometimes paired with IDEs, that try to ease our work with developing 

applications of all kinds. The latter was invented by Trygve Reenskaug in 1979 at Xerox 

PARC [1], as a method to separate the user interface (view) from business logic (controller) 

and from data storage (model). In the figure below we have the relations between these 

components:

In a nutshell, the controller interrogates the model for data, does processing on it, then 

passes it to the view, where it is displayed to the user. When the user alters data in the view, 

3

Fig 1: MVC

Controller

View Model



the view emits events that are listened to by the controller.

The controller then fetches this data, processes it, and submits it back to the model for storage. 

Optionally the View can talk to the Model, but we won't use this feature in our framework.

The solid lines represent a direct association, while the dashed lines represent an 

indirect association via an observer [2][3].

Existing solutions

Framework driven web application development flourished after Ruby-on-Rails (RoR) 

was introduced in 2004 [4]. Even though frameworks for desktop applications were common-

place, with web development the situation was much more different. Most web applications 

were made using in-house tools that varied in quality, often lacking any design or good code 

practices. Spaghetti code was used to describe this situation, where HTML code was mixed 

with programming language code and with SQL queries.

After Ruby-on-Rails, other frameworks surfaced such as Django for Python or Zend 

Framework for PHP. Because Zend Framework is quite a heavy-weight application, a lot of 

lighter frameworks emerged for the PHP language, some of the most popular being 

CodeIgniter and CakePHP. All these frameworks implement MVC as a fundamental part.

Our framework is somewhat inspired by CakePHP, but without sharing any code. 

Despite being considered light, CakePHP  still has a hefty 160000 LOC. Our framework is 

much smaller than that at about 500 LOC. Even though it's written in PHP which is notorious 

for procedural coding and the bad practices it induced in its programmers, our framework uses 

entirely an object-oriented design, and tries to implement MVC cleanly.

4



Architecture

The architecture needed to run this framework is basically a classic LAMP (Linux, 

Apache, MySQL, PHP) setup. The versions of Linux, Apache and MySQL don't really matter, 

only PHP has to be version 5.

Framework design

Component and class design are two major steps when engineering an application.

Component design

When building any application (in our case a framework), preliminary design must be 

done before starting to write the code. A UML component schema can help us outline the 

main components of our framework, like in Fig 2.

5

Fig 2: Components

ControllerInit

Conf

Model

View



Basically we have an Init (from initialization) component that starts the framework. 

Other frameworks call this Bootstrap. The Init component handles URLs, and based on the 

requested URL it dispatches the Controller.

The Controller is the central node of our framework, that does all the work. First it 

loads the Conf component that contains all the configuration details necessary for the 

framework and application. After the Conf is loaded, it loads the Model, that connects to the 

database and allows us to work with it. Finally the View component is loaded, that handles the 

User Interface.

After all this, we can start working with the Controller, Model and View to effectively 

write our application on top of the framework.

Class design

The object-oriented design scheme provides us with a deeper understanding of the 

framework's internal workings. This is also a UML scheme, but specifically for classes (Fig 3)

Init is the first component called when the framework is started. The autoload function 

is responsible for dynamically loading any class that the application or the framework uses. 

The init function parses the URL and based on the URL it instantiates the corresponding 

controller and calls an action (method) from it. If for example, the URL is 

http://example.org/blog/add/ then the controller will be blog, and the action will be add. In our 

schema BlogController is instantiated as an example. If no controller is called then 

MainController is instantiated. If no action is called then main( ) is called by default. This 

controller is where the application business logic happens.

BlogController extends the Controller class and inherits its properties and methods. In 

the Controller's constructor, the Conf, Model and View classes are instantiated and the objects 

are attributed to their corresponding properties ($Conf, $Model, $View). The Controller's 

properties are all protected so they can be referenced only from an inherited object. Note that 

the $controller and $action properties are lowercase. This is because the values they hold are 

strings (the name of the controller, and the action called) as opposed to $Conf, $Model and 

$View which hold objects.

6



7

Fig 3: Class diagram

In
it

+
 _

_a
ut

ol
oa

d(
)

+
 in

it
()

B
lo

gC
on

tr
ol

le
r

+
 m

ai
n(

)
+

 c
om

m
on

()
+

 d
el

et
e(

)
+

 e
di

t(
)

+
 a

dd
()

C
on

tr
ol

le
r

#
 $

C
on

f
#

 $
M

od
el

#
 $

V
ie

w
#

 $
co

nt
ro

lle
r

#
 $

ac
ti
on

+
 _

_c
on

st
ru

ct
()

+
 _

_d
es

tr
uc

t(
)

C
on

f

+
 $

db
+

 $
ap

p

+
 _

_c
on

st
ru

ct
()

C
on

fig
 f
ile

M
od

el

+
 $

qu
er

yC
ou

nt
#

 $
db

#
 $

co
nn

#
 $

ta
bl

e

+
 _

_c
on

st
ru

ct
()

+
 _

_d
es

tr
uc

t(
)

+
 e

sc
()

+
 p

k(
)

+
 q

ue
ry

()
+

 s
el

ec
t(

)
+

 in
se

rt
()

+
 u

pd
at

e(
)

+
 d

el
et

e(
)

V
ie

w

+
 $

co
nt

ro
lle

r
+

 $
ac

ti
on

+
 $

ap
p

+
 $

va
rs

+
 _

_c
on

st
ru

ct
()

+
 s

et
()

+
 r

en
de

r(
)

H
ea

de
r 

fil
e

B
od

y 
fil

e

Fo
ot

er
 f
ile

B
lo

gM
od

el

. .



The Conf class in instantiated in the Controller. The Conf class reads a config.php file 

and transposes its contents into a object with properties. From the Controller, parts of Conf 

are passed to the Model and the View. Conf is also accessible from the BlogController at any 

time.

The BlogModel class is also instantiated in the Controller. In our example, BlogModel 

is empty because the Model abstracts the database sufficiently, so we won't build another 

abstraction on top of that. We will use the methods from the Model directly in the 

BlogController. The model name is also the table name on which we make SQL operations. 

For example if we have BlogController, the table used will be blog. 

BlogModel extends the Model, which in turn works with the database.

The Model connects to the database in the constructor and disconnects in the 

destructor. The Model is an abstraction layer on top of the database. It has functions such as 

select, insert, delete or update that follow the SQL command names closely, but builds on top 

of them and creates a library that eases the developer's work. For example, the insert method 

from our Model can be given an array as input, which simplifies inserting data from the 

programming language. Also the select method will output an array, which again eases the 

work with the database significantly.

The Model also features an esc( ) method - used by select, insert, update and delete to 

escape values before feeding them to the database, and a queryCount property, which is a 

SQL query counter.

The View is the class which handles the User Interface. It is instanced in the 

Controller, so we can access the View's set( ) method from the BlogController. Using this 

method we can send data to the View, to be displayed. However, the User Interface itself is 

rendered last, when Controller object is destroyed. When the render( ) method is called, the 

View takes the header, the footer and the body corresponding to the current controller's action 

and assembles the page. The View can emit events using GET and POST HTTP requests, 

which are captured by the BlogController.

After the interface is rendered no more processing takes place and the application 

exits, until another URL is requested.

8



Developing the framework

During the development stage the code itself is written and files organized.

Conventionally, file names are also class names. The following directory structure was 

chosen for the framework:

/ holds the index and the config file. The index redirects to the Init 

component.

library/ holds all the base classes: Controller, Model, View and also the 

Conf class and Init.

controllers/ holds application controllers, such as BlogController or 

MainController. They extend the base Controller.

models/ holds application models, such as BlogModel or MainModel. 

They extend the base Model.

views/ holds the interface files. These are not classes, just HTML files 

with a minimal amount of PHP in them. For each controller there 

must be a directory with its name (such as blog, or main). Each 

directory stores the interface files separately (separate files for: 

add, edit, delete, etc.). The views directory also includes the 

header and footer files, that are common for all views.

Also note that the code was commented using the JavaDoc [5] syntax, which ensures a 

clean and standard method of commenting code (with the possibility to auto-generate 

documentation if desired).

Mercurial (a distributed version control system) [6] was used for tracking versions.

The source for the framework can be found here: http://bitbucket.org/wooptoo/simplemvc/

9

http://bitbucket.org/wooptoo/simplemvc/


Example application

The best way to demonstrate how the framework works is by building an example 

application on top of it. We chose to build a simple blog. A working demo can be found at: 

http://wooptoo.com/demo/ The blog application can be accessed by clicking on blog.

The controller for the blog is controllers/blogcontroller.php. This is basically a class – 

BlogController that extends the base Controller class. The main( ) method selects all blog 

entries by default and sends the results to the View to be displayed. The common( ) method is 

called every time the Controller is instantiated, regardless of what other methods are called. 

This provides a way to set View header and footer data, and a common method between 

different actions of the same controller.

The other methods handle blog entries manipulation. For example, the edit( ) method 

opens a View where an entry is editable. After the entry is edited by the user, the edit( ) 

method receives data sent by the View using HTTP POST and updates the corresponding 

database entry. If we want to edit a inexistent entry then a 404 HTTP header will be sent by 

the controller, and the View will display “Not found”.

Likewise, the delete( ) method deletes a blog entry. It knows which entry to delete 

based on the HTTP GET request that it received from the View.

Views for the blog are stored in views/blog/. Each view is in a separate file which 

correspond to the BlogController methods. The header and footer are common across all 

views.

Conclusions

This web applications framework was developed mostly for educational purposes and 

for a deeper understanding how MVC works in today's production frameworks. However, it 

can be used as a skeleton to further develop the framework into a more powerful one, that has 

all features requested by today's developers.

10

http://wooptoo.com/demo/


References

[1] http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[2] http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

[3] http://en.wikipedia.org/wiki/Observer_pattern

[4] http://en.wikipedia.org/wiki/Ruby_on_rails

[5] http://en.wikipedia.org/wiki/Javadoc

[6] http://mercurial.selenic.com/

References as available on 27 January 2010.

11

http://mercurial.selenic.com/
http://en.wikipedia.org/wiki/Javadoc
http://en.wikipedia.org/wiki/Ruby_on_rails
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

	Introduction
	Concepts
	Existing solutions
	Architecture
	Framework design
	Component design
	Class design

	Developing the framework
	Example application
	Conclusions
	References

