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dro Montero, Mercedes Pérez Millán, Juan Pablo Puppo, Francisco Soulig-
nac, Juanjo Miranda y Pablo Factorovich; especialmente a estos dos últimos
por haberme ayudado en incontables ocasiones y servido de ejemplo a seguir
acerca de lo que significa el desarrollo en Investigación Operativa.

A Manas, mi lugar de trabajo en la industria desde hace más de tres años:
como empresa, por haberme brindado un espacio dentro de la misma para
el desarrollo de mi tesis; y más especialmente, como grupo humano, por ser
un lugar donde trabajar y compartir el d́ıa a d́ıa con excelentes profesionales
y aún mejores personas. Una mención especial para Caro Hadad, por la
paciencia para hacer de audiencia ante los ensayos de la defensa de este
trabajo.



A mis amigos que aún están a mi lado desde el colegio: Mariana Lavia,
Virginia Raschia, Gaby Revale, Pablo Cagnoni, Mauro Lampo, Ale Maggi,
Nicolás Muschirintello, Mart́ın Kalos, Leandro Paizal y Hernán Sánchez; con
quienes hemos compartido ya la mitad de lo que va de la vida, si no más
en algunos casos, y a quienes agradezco por su amistad durante todo este
tiempo.

A mis padres y a Mariano, mi hermano; por el apoyo incondicional siem-
pre, por haberme hecho la persona que soy, y por haberme permitido llegar
hasta esta etapa de mi vida.

A todos ellos, y a todos los que fueron una parte de esta larga carrera o
de los pasos para llegar hasta ella, muchas gracias!!



Resumen

El problema de coloreo particionado, pcp, es una generalización del clási-
co problema de coloreo de grafos. En esta variante el conjunto de nodos del
grafo de entrada se encuentra particionado, y el problema consiste en colorear
un solo nodo por partición utilizando la menor cantidad de colores posible,
manteniendo la restricción de que dos nodos adyacentes no pueden compartir
color.

Este problema fue propuesto por Li y Simha en el contexto del problema
de ruteo y asignación de longitudes de onda (RWA) en redes multiplexadas
por división de longitud de onda (WDM). Dichos autores proponen una re-
solución en dos etapas: una primera en la que se generan posibles caminos
como soluciones factibles para el problema de ruteo, y una segunda en la
que se determinan los caminos a usar y se les asignan longitudes de onda,
buscando minimizar la cantidad de longitudes de onda usadas. Esta última
etapa se corresponde con una instancia del pcp.

El pcp, al igual que coloreo tradicional de grafos, es un problema NP com-
pleto, con lo que no se conoce un algoritmo que pueda resolverlo en tiempo
polinomial. Por este motivo, la mayoŕıa de los enfoques para resolver este
problema se basan en técnicas heuŕısticas, dejando poco lugar a algoritmos
exactos para la resolución del mismo.

En este trabajo modelamos el pcp como un problema de programación
lineal entera, generalizando el modelo propuesto por Méndez-Dı́az y Zabala
para coloreo de grafos, lo que nos permite resolverlo mediante la técnica de
branch and cut. Para ello, desarrollamos una heuŕıstica inicial, una heuŕıstica
primal, estrategias de branching, y algoritmos de separación para distintas
familias de desigualdades válidas que caracterizamos para el poliedro. A par-
tir de estos componentes implementamos el algoritmo de branch and cut para
la resolución del pcp.



Abstract

The partitioned graph coloring problem, pcp, is a generalization of the
classic graph coloring problem. In this variant the set of the input graph’s
nodes is partitioned, and the problem relies in coloring exactly one node per
partition using the lowest possible number of different colors, maintaining
the constraint that two adjacent nodes may not use the same color.

This problem was first stated by Li and Simha in the context of the
routing and wavelength assignment (RWA) problem in wavelength division
multiplexed (WDM) networks. The authors propose a two-stage resolution:
a first stage in which possible lightpaths are generated, which are feasible
solutions to the routing problem, and a second stage where the lightpaths
to be used are selected and each of them is assigned a wavelength, looking
to minimize the number of different wavelengths. This last stage can be
modelled as an instance of the pcp.

The pcp, like traditional graph coloring, is an NP complete problem,
which means that there are no polynomial algorithms known for its reso-
lution. Therefore, most of the work on this problem in the literature is
targeted towards heuristic approaches, with only a few efforts for developing
exact algorithms.

In this work we modelled the pcp as an integer linear programming prob-
lem, generalizing the model proposed by Méndez-Dı́az and Zabala for graph
coloring, which can be solved via branch and cut algorithms. In order to
develop such an algorithm, we implemented an initial heuristic, a primal
heuristic, branching strategies and separation algorithms for the families of
valid inequalities we found; these components were the building blocks for
our branch and cut algorithm for solving the pcp.



Resumen Extendido

Una red óptica de tipo WDM (Wavelength Division Multiplexing, o mul-
ticanalización por división de longitud de onda) permite la transmisión si-
multánea de distintos paquetes de datos a través de una misma fibra utili-
zando distintas longitudes de onda dentro de la misma.

La conexión punto a punto entre dos nodos de la red se denomina, en estos
casos, lightpath (camino óptico). Si bien en estas redes existen tipos de nodos
más avanzados con la capacidad de modificar la longitud de onda usada por
un lightpath durante su recorrido, a efectos del problema nos concentraremos
en la versión más sencilla en la que el lightpath utiliza la misma longitud en
todo su recorrido, imponiendo lo que se denomina la wavelength continuity
constraint (restricción de continuidad de longitud de onda).

Dado un segmento de fibra, no puede ocurrir que dos lightpaths distintos
intenten transmitir en la misma longitud de onda, o habrá colisión entre
los datos enviados. Esto impone la denominada wavelength clash constraint
(restricción de conflicto de longitud de onda), lo que sumado a la anterior
lleva a que dos lightpaths distintos no pueden tener la misma longitud de
onda si comparten algún segmento de fibra óptica.

A partir de estas restricciones se genera el problema de RWA (Routing
and Wavelength Assignment, o ruteo y asignación de longitudes de onda),
que consiste en, dado un conjunto de conexiones a satisfacer, determinar los
enlaces a utilizar y longitud de onda para cada uno de los caminos ópticos.

Si bien existe una gran cantidad de soluciones para el problema anterior,
se busca alguna que sea óptima en un determinado criterio. En este caso nos
enfocamos en minimizar la cantidad de longitudes de onda requeridas para
satisfacer las conexiones, lo cual permite utilizar fibras de menor costo al
tener que soportar una menor cantidad de longitudes de onda distintas por
enlace. Este problema es el denominado min-RWA.

El RWA suele ser atacado bajo dos enfoques: o bien como un único pro-
blema en el que se busca resolver simultáneamente el ruteo y la asignación
de longitudes de onda, o bien como un problema de dos etapas en las que se
separan dichas fases. Es esta última opción en la que nos concentramos en
este trabajo.

En trabajos como [13] y [18] se buscan primero los caminos a utilizar para
el ruteo, utilizando criterios de camino mı́nimo o edge disjoint path respec-
tivamente, para luego resolver la asignación de longitudes de onda mediante
un problema de coloreo de grafos.

El problema de coloreo de grafos, extensamente estudiado en la literatura,
consiste en asignar un color a cada nodo de un grafo con la restricción de que



dos nodos adyacentes no tengan el mismo color, con el objetivo de utilizar
la menor cantidad de colores distintos como sea posible. Modelando cada
lightpath como un nodo, y conectando dos nodos si corresponden a lightpaths
que comparten al menos un segmento de fibra óptica, es posible resolver el
problema de asignación de manera óptima.

Li y Simha, por otra parte, proponen en [17] generar un conjunto de
caminos candidatos para cada conexión en la primera fase. Es decir, la etapa
de ruteo no genera un lightpath por cada pedido de conexión, sino varios,
todos ellos posibles candidatos. Esto implica que en la segunda etapa se
derive una instancia del problema de coloreo particionado, cuya resolución
es el principal objetivo de trabajo.

El problema de coloreo particionado toma un grafo en el que el conjunto
de nodos se encuentra particionado, y tiene por objetivo asignar un color a
un solo nodo de cada partición, de manera que se mantenga la restricción de
que dos nodos adyacentes tengan distinto color y se minimice la cantidad de
colores distintos usada. Es fácil notar que este problema es una generalización
del problema de coloreo de grafos tradicional, ya demostrado por Karp en
[14] que es NP-Completo, lo que implica que su resolución de manera exacta
requiere un tiempo de procesamiento exponencial en el tamaño del grafo de
entrada.

Considerando cada lightpath posible como un nodo, agrupados en una
misma partición si satisfacen el mismo pedido de conexión punto a punto, es
posible resolver el problema de asignación utilizando la menor cantidad de
longitudes de onda posibles para los candidatos propuestos. El manejar con-
juntos de lightpaths para la fase de asignación, en lugar de un solo lightpath
por conexión, permite llegar a una mejor solución para el problema.

Buena parte del trabajo sobre resolución del problema de coloreo par-
ticionado (PCP) es heuŕıstico. Solamente en [9], Frota et al presentan un
algoritmo de branch and cut para su resolución de manera exacta, basándose
en un modelo de programación lineal entera, generalizado a partir del modelo
de coloreo por representantes, desarrollado en [5] y [6].

La programación lineal entera es una técnica usada frecuentemente para
atacar la resolución exacta de problemas de optimización combinatoria, en
los que una exploración exhaustiva de las diferentes soluciones en busca del
óptimo se vuelve impracticable debido a la explosión exponencial ocurrida al
enumerar dichas soluciones. Se suelen utilizar algoritmos de planos de corte,
de branch and bound o una combinación de ambos, como ser cut and branch
o branch and cut.

En este trabajo fue desarrollado un algoritmo de branch and cut para
resolver el problema de forma exacta, utilizando un modelo de programación
lineal entera basado en el desarrollado para el problema de coloreo tradicional



por Méndez-Dı́az y Zabala en [21]. La elaboración de un algoritmo de branch
and cut espećıfico para un determinado problema requirió el desarrollo de los
siguientes componentes:

• La formulación de un modelo lineal entero para el problema. Distin-
tas variantes generalizadas a partir del modelo de coloreo tradicional,
incluyendo restricciones de eliminación de simetŕıa, entre otras, fueron
evaluadas sobre distintas instancias del problema hasta arribar a una
formulación definitiva.

• La búsqueda de desigualdades válidas para el modelo elegido. Una vez
determinado el modelo, se buscan desigualdades satisfechas por toda so-
lución entera del modelo pero no aśı por las fraccionarias. Esto permite
luego aplicar dichas desigualdades eliminando los puntos fraccionarios,
derivando en un algoritmo de planos de corte. Generalizando desde
las familias conocidas para coloreo tradicional, hallamos seis familias
distintas de desigualdades válidas.

• La implementación de heuŕısticas de separación para las desigualdades
válidas halladas. Dada una solución fraccionaria, se debe hallar una de-
sigualdad válida de alguna de las familias desarrolladas que sea violada
por dicha solución, de manera de agregarla al modelo de la relajación
y moverse a otra solución. Se implementaron heuŕısticas para cada una
de las familias encontradas.

• Una heuŕıstica inicial para obtener rápidamente una solución inicial
aceptable para el algoritmo de branch and cut. Esto permite reducir
notablemente el tamaño del modelo sobre el cual se trabaja. Como
heuŕıstica inicial se evaluaron distintas alternativas, hasta optar por
una variante para coloreo particionado del algoritmo DSATUR [4] que
desarrollamos. Este algoritmo es de enumeración impĺıcita, con lo que
genera una solución exacta dado el suficiente tiempo, pero tiene la par-
ticularidad de hallar buenas soluciones con poco tiempo de ejecución,
lo que lo hace un excelente candidato como heuŕıstica, interrumpiendo
su ejecución luego de determinado tiempo.

• Una heuŕıstica primal para derivar soluciones enteras intermedias a
partir de las soluciones de las relajaciones obtenidas a lo largo del árbol
de branching. Para esto reutilizamos la heuŕıstica inicial, modificándola
de manera tal que reaprovechase la información provista por la solución
de la relajación en su exploración del conjunto de soluciones.

• Una estrategia para generación del árbol de branching. En cada nodo,
debe determinarse cuántos nodos hijos se abren y con qué criterio. Si



bien se suele forzar una variable binaria con valor fraccionario a cero
y a uno en cada hijo, hay otras alternativas posibles. Luego de evaluar
distintas estrategias, optamos por una que fuerza no solo una determi-
nada variable sino todas las demás implicadas lógicamente; además de
establecer un criterio de selección de dicha variable en función de su
grado de saturación y valor fraccional.

• Una estrategia para el recorrido y poda del árbol. Evaluamos opciones
clásicas como DFS, BFS o best bound sobre distintas instancias hasta
determinar cuál se comportaba mejor dentro de nuestro esquema de
branch and cut dependiendo de la densidad del grafo. Asimismo efec-
tuamos una poda del árbol de enumeración una vez alcanzada altura
suficiente, ejecutando una corrida exhaustiva de DSATUR, la cual eje-
cuta a una mayor velocidad que el branch and cut una vez fijada la
suficiente cantidad de colores.

Todos estos componentes fueron implementados y sus distintas variantes
evaluadas sobre múltiples instancias. La implementación fue realizada en
Java utilizando como framework CPLEX 12.

La versión final del algoritmo fue evaluada contra los motor de mixed
integer programming search y dynamic search de CPLEX 12 sin realizar
modificaciones sobre la configuración original, y se verificó que el algoritmo
desarrollado para PCP obtiene mejores gaps y tiempos, con lo que los com-
ponentes desarrollados efectivamente favorecen la resolución del problema.
Asimismo evaluamos el rendimiento del algoritmo contra el reportado por el
branch and cut basado en el modelo de representantes [9].
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Chapter 1

Introduction

1.1 Coloring

Needless to say, graphs are widely used for modeling different scenarios in
multiple areas of expertise, as well as for solving problems on those scenarios
by translating them into well-known problems.

One of those problems is the graph coloring problem, which consists in
assigning a color to each node in a graph, with the constraint that two
adjacent nodes must not have the same color. The objective is to generate a
valid coloring using the minimum number of colors.

One of the most famous real life problems which led to the graph coloring
problem was the 4 colors problem. In 1852, the question of whether any
planar map could be colored using only four colors, in such a way that no two
regions sharing a border had the same color, was posed. Modeling neighbour
regions as adjacent nodes in a planar graph led to the planar graph coloring
problem, which was eventually generalized into coloring a generic graph.

Graph coloring is widely used in multiple applications, such as schedule
assignment to solve time incompatibilities, assignment of radio frequencies to
prevent interference between neighboring radios, or even assigning variables
to registers during the flow of a program.

The coloring of a graph is defined formally as a function that, given
an input graph G =< V,E >, being V the set of nodes and E the set
of undirected edges, assigns a natural number which represents a color to
each node v ∈ V , such that no two adjacent nodes have the same color. A
k-coloring is an assignment which uses exactly k different colors.

The chromatic number χ(G) of a graph is the minimum number of colors
that can be used to color the graph, this is, the minimum k such that a
valid k-coloring exists. The graph coloring problem, then, is defined as the
problem of finding both the minimum number of colors required to color a
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Figure 1.1: Sample 3-coloring of a diamond graph.

graph (χ(G)), and a valid χ(G)-coloring.
This problem has been proved to be NP-Complete, and has been widely

studied in the literature, being approached both by heuristic and exact meth-
ods for its resolution.

Previous Work

Simplest heuristic approaches consist in greedy algorithms, using different
criteria such as largest-first [30], smallest-last [19] or degree of saturation1 [4].
While the first two rely on a static ordering based on the degree of each node,
the last one uses a dynamic ordering based on the number of different colors
being used in the neighbourhood of each vertex.

These criteria may also be used in implicit enumeration techniques for
choosing the ordering of the nodes. These techniques enumerate all possible
colorings by constructing a decision tree: each node of the tree represents a
node of the original graph, and each decision consists in which color is to be
assigned to the current node. Using a good strategy for deciding the order
for picking the next node to be colored is vital for finding good solutions as
soon as possible, therefore pruning a great number of possible colorings. The
implicit decision tree may be traversed in a BFS, DFS or best bound fashion.
All of these algorithms eventually find the optimal solution for the problem.

The dsatur enumeration algorithm (proposed in [4]), which uses degree
of saturation criteria for picking the next node to be colored, has proven to
be one of the most efficient implicit enumeration methods for the coloring
problem; having several improvements such as [26].

More complex heuristic algorithms, using different metaheuristics, have
also been used for the coloring problem.

There is also extensive work using integer linear programming formula-
tions for the coloring problem by using different models:

• In [20] a column generation approach is used based on an independent
set formulation of the problem, in which a binary variable xS defines

1The degree of saturation of a node is defined as the number of different colors being
used to color its neighbourhood.
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whether the independent set S is given a color label or not; this formu-
lation requires a variable for each possible color class in the graph.

• An ILP model for acyclic orientations with path constraints is presented
in [8] and then applied to solve the vertex coloring problem.

• The representatives model presented in [6] and [5] uses xuv variables
which determine whether vertex v represents color u; having exactly
one node represent each color class allows easy symmetry breaking.

• In [21, 22] both branch-and-cut and cutting planes algorithms were
developed for a standard formulation of the problem, using xij variables
to specify whether node i used color j, and wj variables as witnesses
to whether color j was in use. Several symmetry breaking constraints
were added to the model to ensure a fast resolution.

Application to Frequency Assignment

As it has already been mentioned, the graph colouring problem has mul-
tiple applications, amongst which is the problem of assigning frequencies to a
given set of nodes in order to establish communications between them, con-
sidering availability of frequencies, interference, etc. This problem, called the
frequency assignment problem, has multiple variants, which lead to different
generalizations of the graph coloring problem.

In this work we will consider its application to routing and wavelength
assignment in WDM networks, which gives rise to the partitioned coloring
problem.

1.2 Routing and Wavelength Assignment in

WDM Networks

A Wavelength Division Multiplexed (WDM) optical network consists in
a network in which links are optical fibers capable of transmitting a specified
number of different wavelengths. The Routing and Wavelength Assignment
(RWA) problem consists in, given a desired set of connections between pairs
of nodes, establish routes between those nodes using the network’s links.

Every route is composed by a set of consecutive lightpaths. A lightpath
is defined as a point to point connection between two adjacent nodes in the
network using a certain wavelength. Although there are networks in which
the nodes are capable of transforming wavelengths within the same route,
we will assume that every route uses the same wavelength across all of its
lightpaths; this restriction is known as the wavelength continuity constraint.
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The second restriction to be satisfied is the wavelength clash constraint
which imposes that different lightpaths in the same physical link must have
different wavelengths. Together with the previous constraint, it is implied
that two different routes that share at least one physical link must use dif-
ferent wavelengths.

In the offline or static version of the RWA problem, the set of connections
to be established is known beforehand. The counterpart of this version is the
dynamic RWA in which connections must be satisfied as they are requested
in an online fashion. In this work we will take only the former version into
consideration.

The goal of the min-RWA is to minimize the number of different wave-
lengths required to establish all the routes desired. Note that there are
multiple criteria that can be used to evaluate the quality of a set of routes,
such as the number of lightpaths used for each route, or generating particu-
lar traffic patterns. In this work we will be focusing only in optimizing the
number of wavelengths.

Previous Work

Initial techniques to solve the min-RWA problem as a two-stage problem,
such as [13], pick a single route for every connection using shortest-path algo-
rithms and then use different heuristics to solve a standard coloring problem
in the assignment stage. In [18] the shortest-path routing solution is re-
placed by a maximum edge disjoint path solution in order to reduce conflicts
between routes.

Other approaches to the problem tackle the routing and wavelength as-
signment as a single problem, without decomposing it in two separate phases.
In [27], for example, bin packing heuristic algorithms are used to handle
the problem, whereas [24] embeds this heuristic into a genetic evolutionary
framework.

An exact approach using an integer programming formulation with col-
umn generation is used in [16], which solves both the routing and the wave-
length assignment problems in the same formulation.

Resolution of min-RWA using graph coloring

In [17], Li and Simha proposed a two-phase approach for solving the min-
RWA problem: a routing phase and an assignment phase. In the routing
phase, a set of candidate routes is generated for every pair of nodes to be
connected, mostly using shortest-path or edge-disjoint criteria.

The assignment phase, before actually asigning a wavelength to each
route, must pick a single route from the set of candidates for each connec-
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tion. Each selected route is then assigned a wavelength, ensuring that no two
routes sharing any physical link have the same wavelength assigned. These
two processes that compose the assignment phase can be solved simultane-
ously through the partitioned graph coloring problem (pcp).

1.3 Partitioned graph coloring problem

A partitioned graph is defined as a tuple G =< V,E, P > of n vertices,
m edges and q partitions respectively. The set P contains P1, . . . , Pq sets of
nodes which constitute a partition of V . Therefore, for every node v ∈ V ,
there is exactly one Pk ∈ P such that v ∈ Pk, and every Pi ∈ P is nonempty.

The partitioned coloring problem is defined as an assignment of colors to
the nodes of the graph G, with the restriction that no two adjacent nodes
may have the same color, but requiring only one node per partition to be
colored. Once again, the goal is to minimize the number of colors required.

P1

P2

Figure 1.2: Sample 1-coloring of a partitioned diamond graph.

In order to solve the min-RWA problem using pcp, a partitioned graph
G can be constructed in the following way:

• Every potential route generated in the routing phase is represented by
a node v ∈ V .

• Nodes belong to the same partition iff the routes they represent satisfy
the same connection request.

• An edge between two nodes u, v is created if the routes share any phys-
ical link.

Each wavelength is represented as a color. The problem then consists in
coloring a single node within each partition, this is, assigning a wavelength
to a single route from the set of candidates for each connection request. The
fact that two nodes may not be colored if they are adjacent guarantees that
no wavelength conflicts may occur between two different lightpaths in the
same link. An example of this is shown in figures 1.3, 1.4 and 1.5.

7



s1

t1

R1

R2

s2

t2

R3

R4

Figure 1.3: Sample network in which connections s1 → t1 and s2 → t2 are
to be implemented. Potential routes R1, R2 are proposed for the first, while
routes R3, R4 are proposed for the second one. The corresponding partitioned
graph is presented in figure 1.4.

In this work we will focus on finding an exact solution for the partitioned
coloring problem, using a branch and cut algorithm based on a generalization
of the coloring model proposed in [21, 22].

Complexity

It is easy to see that when |Pi| = 1 ∀Pi ∈ P , this is, there is a single node
per partition, the partitioned coloring problem is equivalent to the standard
graph coloring problem previously mentioned. In terms of complexity classes,
PCP belongs to the same class as the standard coloring problem.

Theorem 1. The decision version of PCP is NP-Complete.

Proof. We will prove NP-Completeness by proving both belonging to NP and
NP-Hard classes.

• NP: Given an input partitioned graph G =< V,E, P > and an assign-
ment of colors for a subset of nodes, checking that the number of colors
used is k is trivial, and a simple algorithm such as 1.1 can easily check
the validity of the coloring in polynomial time.

• NP-Hard: Any instance of standard graph k−coloring can be converted
to an instance of PCP by partitioning the initial graph G in such a way

8



s1 → t1

s2 → t2
R1

R2

R3

R4

Figure 1.4: Conflicts partitioned graph for network from figure 1.3. Routes
R1 and R2 satisfy the same connection request, as such, they are contained
in the same partition; same happens for R3 and R4. Since routes R2 and R3

share a physical link, the corresponding nodes are adjacent to prevent that
they are assigned the same frequency. A 1-coloring, which assigns the same
label to R1 and R4 is shown, and the corresponding lightpaths generated are
shown in figure 1.5.

that every partition contains a single node. The solution to the original
k−coloring problem is the same as the solution to the constructed pcp.
Since standard coloring is NP-Hard, this implies that PCP is NP-Hard
as well.

Algorithm 1.1 Polynomial time algorithm for checking validity of a parti-
tion coloring

for all partition p in P do
for all node v in p do

if v has a color j assigned then
mark p as colored
for all neighbour u to v do

if u has the same color assigned as v then
return false

if no node v in P was colored then
return false

Previous work

In [17], two groups of heuristics were developed for solving the pcp: one-
step and two-step. The former iteratively picks the easiest node in every
partition, and then picks the hardest one from that set using different criteria

9



s1

t1

R1

R2

s2

t2

R3

R4

Figure 1.5: Solution for the network presented in figure 1.3 using the coloring
obtained in 1.4. Since R1 and R4 were the colored nodes, using the same
label, then those are the routes established and lightpaths using that label
are created to satisfy the connection requests.

(largest-first, smallest-last, color-degree) in order to color it with the lowest-
label available color, and then proceeds to the next node; the latter makes an
initial pass picking the easiest nodes in every partition and inducing a non-
partitioned graph, onto which a standard heuristic is applied in a second
stage.

In [25] the one-step color-degree constructive heuristic is used in a tabu
search approach, TS-PCP. Routes are generated in an initial stage using a
k-EDR constructive procedure, based on the maximum edge disjoint path
heuristic by [15], and the resulting partitioned coloring problem is solved
with TS-PCP.

Due to the complexity of the problem, most of the work on PCP is com-
posed by heuristic approaches. However, in [9], a branch and cut algorithm is
devised, using an integer linear programming model based on the asymmetric
representatives formulation for the standard coloring problem, presented in
[6] and [5].

1.4 Objective of this work

A common approach for obtaining exact solutions to complex combina-
torial optimization problems is to model them as integer linear programming
problems, and solve them using branch and bound, cutting planes or branch
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and cut algorithms, among others.
Therefore, the objective of this work will be to develop a branch and cut

algorithm for solving the partitioned coloring problem, by modelling it as an
integer linear programming problem, with a generalization of the standard
coloring model presented in [21, 22].

We will be using cplex as a branch and cut framework and introduce cus-
tom initial heuristics, cutting planes, primal heuristics and branching strate-
gies, designed specifically for this problem, and evaluate their performance
against the default implementation provided by cplex.

This work is structured in seven chapters. In chapter 2 we present differ-
ent models for representing an instance of pcp, starting with a basic model
that captures all necessary restrictions, for later strengthening it by mod-
ifying the constraints with stronger ones or introducing new ones, such as
symmetry breaking constraints.

Chapter 3 dwelves deeper into the polyhedron defined in the previous
chapter by presenting valid inequalities derived for pcp. These inequalities
will be later applied as cutting planes in both cutting planes and branch and
cut algorithms.

Alternative algorithms for solving the problem are presented in chap-
ter 4. We present enumeration algorithms for solving the standard coloring
problem, and generalize them for partition coloring, focusing in the dsatur
algorithm [4] and its generalization. These algorithms will be adapted to be
used as initial and primal heuristics during the branch and cut process.

The implemented branch and cut algorithm is presented in chapter 5,
where we present the general structure for cutting plane, branch and bound
and branch and cut algorithms, as well as different components of a branch
and cut (separation heuristics, initial heuristics, primal heuristics, branch-
ing strategies, node selection strategies) and how we implemented them for
dealing with the pcp.

This implementation is then tested in chapter 6. Given a test suite of
binomial, powerlaw cluster and dimacs challange graphs, we first evaluated
multiple configurations for all of the different components, starting by choos-
ing a model to be used in the algorithm, and testing the effectiveness of the
different heuristics and strategies with different parameterizations. We then
test the performance of the algorithm, once we have all parameters fixed,
against a fresh test suite and report the obtained MIP gap.

Finally, in chapter 7, we sum up the work achieved, draw conclusions
from it and present possible future research lines.
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1.5 Definitions

In this section we will define all concepts and conventions to be used
throughout this work:

• Colors: The set of valid color labels C = {1, . . . , c}, where c may be
any upper bound to the chromatic number of the graph, such as n.

• Graph: Defined as tuple < V,E > where V is the set containing the
n nodes and E contains the m undirected edges.

• Partitioned Graph: Defined as tuple < V,E, P >, being V and E
the same sets as above, and P the set of P1, . . . , Pq partitions of V .

• Partition function: For every node v in a partitioned graph, p(v)
returns the partition that contains that node.

• Neighbourhood: N(v) is the set of nodes in V adjacent to node v.

• Partition Neighbourhood: NP (v) is the set of partitions that con-
tain at least one node adjacent to v.

• Degree: δ(v) is the cardinal of the neighbourhood of v.

• Partition Degree: δP (v) is the cardinal of the partition neighbour-
hood of v (see figure 1.6).

v0

Figure 1.6: Node v0 has partition degree δP (v0) = 2.

• Color Degree: Number of different colors used in N(v) for a node
v ∈ V ; also degree of saturation (see figure 1.7).

• Path: Subset P of V such that each node is adjacent only to the next
one in the path in the subgraph induced by V ′ in G; formally, being
P = {v1, . . . , vk}, P is a path if G[P ] has edges [vi, vi+1] for 1 ≤ i < k,
and no more edges between vertices of P (see figure 1.8).
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v0

Figure 1.7: Node v0 has degree of saturation 3.

Figure 1.8: Nodes highlighted in red form a path.

• Hole: Subset H of V such that each node is adjacent only to the next
one in the hole in the subgraph induced by V ′ in G, and the last node
is adjacent to the first; formally, being H = {v1, . . . , vk}, H is a hole if
G[H] has edges [v1, vk] and [vi, vi+1] for 1 ≤ i < k, and no more edges
between vertices of H (see figure 1.9).

Figure 1.9: Nodes highlighted in red form a hole.

• Component Independent Set: Subset of V such that for every
pair of nodes u, v, u is not adjacent to v and they belong to different
partitions (see figure 1.10).

• Component Path: Path P in G that verifies that every node in P
belongs to a different partition.

• Component Hole: Hole H in G that verifies that every node in H
belongs to a different partition.

• Component Clique: Clique K in G that verifies that every node in
K belongs to a different partition (see figure 1.11).
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Figure 1.10: Nodes highlighted in red form a component independent set.

Figure 1.11: Nodes highlighted in red form a component clique.

• Extended Clique: Subset of V such that for every pair of nodes [u, v],
either u is adjacent to v, or u and v are contained in the same partition
(see figure 1.12).

• Partition Graph: The partition graph G′ of a partitioned graph G
is a standard graph G′ =< V ′, E ′ > in which every node v′k ∈ V ′

corresponds to a partition Pk ∈ P , and two nodes v′i, v
′
j ∈ V ′ are

adjacent if and only if every node in Pi in G is adjacent to every node
in Pj (see figure 1.13).
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Figure 1.12: Example of an extended clique.

P1

P2P3

(a) Partitioned graph

vP1

vP2vP3

(b) Partition graph

Figure 1.13: Sample partitioned graph along with its partition graph.
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Chapter 2

Model

In this chapter we will present various binary integer programming formu-
lations for the pcp, generalized from the CP model presented in [22], which
will be used in the branch and cut algorithm.

2.1 Formulation

Let G =< V,E, P > a partitioned graph, being V the set of nodes num-
bered from 1 to n, E the set of m edges, and P the set of partitions numbered
from 1 to q; and let C be the set of color labels numbered from 1 to n.

The standard coloring problem formulation, SCP, uses the following (n+
1)c binary variables, where i ∈ V and j ∈ C:

• xij equals 1 if and only if the node i is colored with label j

• wj equals 1 if there is at least one node in the graph which uses color j

The goal is to minimize the total number of colors used, this is, the
number of wj variables set to 1.

minimize
∑
j∈C

wj

subject to
∑
j∈C

xij = 1 ∀i ∈ V (2.1)

xij + xkj ≤ wj ∀(i, k) ∈ E, ∀j ∈ C (2.2)

xij, wj ∈ {0, 1} ∀i ∈ V, ∀j ∈ C
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Equation 2.2 implies that two adjacent vertices may not use the same
color, and also ensures that any variable xij set to 1 will cause wj to be set
as well.

Restriction 2.1 requires that every node is assigned exactly one color.
Since the difference between standard coloring and partition coloring relies
solely in the fact that, in the latter, only one node per partition must be
colored, adjusting this last restriction provides a simple model for PCP.

minimize
∑
j∈C

wj (2.3)

subject to
∑
i∈Pk

∑
j∈C

xij = 1 ∀Pk ∈ P (2.4)

xij + xkj ≤ wj ∀(i, k) ∈ E, ∀j ∈ C (2.5)

xij, wj ∈ {0, 1} ∀i ∈ V, ∀j ∈ C

This model has (n + 1)c variables as well, q restrictions 2.4 and m.c 2.5
restrictions, plus all integrality constraints.

2.2 Variants

There are several variants for the previously presented model for pcp, all
of which provide valid partition colorings. We will explore different alter-
natives to the basic formulation composed by restrictions 2.3, 2.4 and 2.5,
presented in section 2.1.

2.2.1 Color a single node per partition

Restriction 2.4 can be relaxed by requiring that at least one node is
colored per partition, instead of requiring that exactly one node is colored.
Even more, we may also accept colorings in which a single node is assigned
more than one color. ∑

i∈Pk

∑
j∈C

xij ≥ 1 (2.6)

The minimization of the total number of colors used will ensure that no
additional colors will be used, and a valid coloring can be extracted from the
resulting solution by picking any color from any node on every partition, as
no color conflicts will occur since restriction 2.5 is still in place.
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2.2.2 Color conflicts

An alternative to restriction 2.5, for both preventing color conflicts and
set wj variables upon usage of color j, is to decouple this two concepts into
different restrictions. Therefore, instead of restricting xij+xkj ≤ wj for every
edge, we may require:

xij + xkj ≤ 1 ∀(i, k) ∈ E, ∀j ∈ C (2.7)

xij ≤ wj ∀i ∈ V, ∀j ∈ C (2.8)

This alternative, however, yields an even larger number of restrictions
than the original 2.5. Looking forward to reducing the number of equations
in the model, we propose the following alternative:∑

i∈Pk∩N(i0)

xij + xi0j ≤ wj ∀j ∈ C, ∀Pk ∈ P, ∀i0 ∈ V (2.9)

This equation establishes that either node i0 may use color j, or at most
one neighbor in every adjacent partition may use it (as no more than a single
node may be colored per partition). This formulation considerably reduces
the amount of restrictions when partition sizes are large; otherwise, it does
not report any benefits over the original version 2.5.

Another variant that further reduces the number of restrictions makes
heavy use of the maximum number of nodes that may use the same color
within a neighbourhood:∑

i∈N(i0)

xi0j + rxi0j ≤ rwj ∀j ∈ C, ∀i0 ∈ V (2.10)

A simple value for r could be the number of different partitions in the
neighbourhood of node i0. In that case, the restriction implies that either
node i0 uses color j, or at most r nodes in its neighbourhood may use it
simultaneously.

However, we may tighten the restriction by replacing r by the number of
components in an extended clique coverage of the node’s neighbourhood, as
this value provides an upper bound for the maximum number of colors that
can be used for a set of nodes. We use a simple greedy heuristic to generate
a standard clique cover of the partition graph induced by the neighbourhood
of i0 to obtain the value r.

This restriction generates a much lower number of equations in dense
graphs, as it requires just c restrictions per node instead of per edge.
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2.3 Breaking symmetry

One of the main issues with the model presented is that it allows for
multiple symmetric solutions; the same happens with the standard coloring
model SCP.

Since it does not matter which color labels are used in the coloring, any χ
colors can be used, resulting in P (c, k)1 different solutions for every equivalent
coloring; therefore, introducing additional constraints with the purpose of
removing symmetric solutions is expected to produce an improvement in the
algorithm, as it greatly limits the solution space. Once again, we adapted
some of the constraints presented in [22] for SCP to our model.

The easiest restriction to generate is to prevent color j + 1 from being
used unless color j is used in the coloring. This ensures that only colors
with labels 1 . . . k are used in a k-coloring, leaving always the last k + 1 . . . c
unused, thus reducing the number of symmetric solutions from P (c, k) to k!.

wj ≥ wj+1 ∀1 ≤ j < c (2.11)

A stricter requirement that can be imposed is to forbid having more
vertices colored with label j+1 than with label j. This removes all symmetric
solutions in the case that every color class has a different node count, which
is a vast improvement from the previous restriction.∑

i∈V

xij ≥
∑
i∈V

xij+1 ∀1 ≤ j < c (2.12)

However, this restriction allows symmetric solutions by exchanging labels
between color classes with same cardinal, which is likely to occur in regular
graphs.

In order to further remove symmetric solutions, it is possible to enforce
the following restriction, which implies that among all possible assignments
to the set of partitions defined by color classes, only the one that assigns the
lowest possible color label to the partition with the lowest index is used:

xij = 0 ∀j > p(i) + 1 (2.13)

xij ≤
k−1∑
l=j−1

∑
u∈Pl

xuj−1 ∀1 < k ≤ q, ∀i ∈ Pk, ∀1 < j ≤ k (2.14)

Equation 2.13 establishes that color with label j may not be used for a
partition with index greater than j; whereas equation 2.14 imposes that color

1Number of different ordered subsets of size k from a set of size c, equals to c!/(c− k)!
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j cannot be used for a partition unless color j − 1 was used in a previous
partition.

As an example, suppose a graph such that P = {P1, . . . , Pq} and Pk =
{x2k−1, x2k}, this is, every partition has two nodes. The first instantiations
of restriction 2.14 would be:

k = 2, i = 3, j = 2 x3,2 ≤
∑
u∈P1

xu,1 = x1,1 + x2,1

k = 2, i = 4, j = 2 x4,2 ≤
∑
u∈P1

xu,1 = x1,1 + x2,1

k = 3, i = 5, j = 2 x5,2 ≤
∑
u∈P1

xu,1 +
∑
u∈P2

xu,1 = x1,1 + x2,1 + x3,1 + x4,1

k = 3, i = 6, j = 2 x6,2 ≤
∑
u∈P1

xu,1 +
∑
u∈P2

xu,1 = x1,1 + x2,1 + x3,1 + x4,1

k = 3, i = 5, j = 3 x5,3 ≤
∑
u∈P2

xu,2 = x3,2 + x4,2

k = 3, i = 6, j = 3 x6,3 ≤
∑
u∈P2

xu,2 = x3,2 + x4,2

...
...

2.4 Objective function

Another way of reducing the number of symmetric solutions is to prefer
lower-label colors in the objective function, therefore choosing the lowest
labels possible in each coloring. To achieve this, we simply multiply wj
variables with a lower index j by a lower coefficient in the objective function;
since we are minimizing, the variables multiplied by the lowest factors should
be chosen first.

minimize
∑
j∈C

jwj (2.15)

However, early tests showed that this objective function offers poor com-
putational results, so it was early discarded from the set of possible formu-
lations.
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2.5 Strengthening the model

There are other inequalities, besides the already mentioned symmetry
breaking ones, that are not necessary for the formulation of a valid coloring,
yet they strengthen the model relaxation, helping during the branch and cut
process. These inequalities are entirely optional in the formulation, their
inclusion depends strictly in the tradeoff between building a more complex
model that takes more time to solve and strengthening its relaxation so the
algorithm’s overall performance is increased.

A simple restriction, which is already implied by the objective function,
consists in preventing a wj variable from being set unless there is a node
painted with color j:

wj ≤
∑
i∈V

xij ∀j ∈ C (2.16)

The usage of this restriction will become clear when we present the
branching strategies in 5.7, in which we directly enforce bounds on the wj
variables based on additional information on the coloring problem.

Another equation, which improved the obtained results in [21], avoids the
generation of fractional solutions such as xij = 1/c:∑

j∈C

wj ≥
∑
j∈C

jxij ∀i ∈ V (2.17)

The rationale behind that restriction is that only one xij may be set per
node, therefore the right hand side of the inequality is the label of the color
assigned to node i, which cannot be greater than the total of colors used.

This restriction can be further strengthened by extending the sum of the
xij variables over partitions instead of nodes:∑

j∈C

wj ≥
∑
j∈C

∑
i∈Pk

jxij ∀Pk ∈ P (2.18)
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Chapter 3

Valid inequalities

In the previous chapter, we defined the basic pcp polyhedron as the set of
points that satisfy the inequalities presented in 2.1 (2.3, 2.4 and 2.5), along
with a number of variants of that model, which span alternative polyhedra.

In this chapter we will derive valid inequalities for the basic pcp polyhe-
dron, which will be used as cutting planes in the branch-and-cut algorithm.
It is important to note that the inequalities derived are valid for both the
basic polyhedron and for all its presented alternatives; therefore, they can
be used as cuts in the branch and cut algorithm regardless of which model
is implemented.

3.1 Extended clique inequalities

A classical inequality for the standard coloring problem is the clique in-
equality, which establishes that within a clique K, at most one node can be
colored with a label j. ∑

i∈K

xij ≤ wj ∀j ∈ C

Combining this inequality with the fact that in pcp at most one node
per partition can be colored with a label j, we define the extended clique
inequality for PCP. Recall from 1.5 that an extended clique is a maximal
subset KP of V such that every pair of nodes is either adjacent or belong to
the same partition. These inequalities specify that among all nodes in KP

at most one of them may use color j.∑
i∈KP

xij ≤ wj ∀j ∈ C (3.1)
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Similar inequalities were developed by [9], based on the asymmetric rep-
resentatives formulation, but applied only on component cliques1. Extended
cliques have the added benefit of covering a larger set of nodes, being stronger
than their component-based counterparts, and maintain their effectiveness
regardless of the partition size used.

3.2 Component independent set inequalities

As was defined in 1.5, a component independent set IP is a standard in-
dependent set with the added restriction that every node must belong to a
different partition, and αP (G) is the size of the largest component indepen-
dent set of a graph. These definitions allow us to adapt the independent set
inequality directly from the standard coloring problem in [22]:∑

i∈W

xij ≤ αP (W )wj ∀j ∈ C (3.2)

The restriction is applied to a subgraph of G induced by the nodes W ⊆
V . Since the cardinal of the maximum component independent set of the
subgraph, αP (W ), is not easy to calculate, as it is as difficult as the coloring
problem itself, this inequality is applied to particular subsets of the graph
with an αP easy to determine: component holes and component paths.

Note that even though all component cliques have αP = 1 and can be used
to generate component independent set inequalities2, these are superseded
by the already described extended clique inequalities, as the latter apply
over a larger set of nodes; this occurs because every component clique is
an extended clique, but not the other way around. Therefore, component
clique inequalities will not be considered in this work..

3.2.1 Component hole inequalities

A simple instantiation of the previous inequality can be done by picking
a subset W that induces a component hole H3 in the partitioned graph. As
in a standard hole, it holds that αP (H) =

⌊
n
2

⌋
, where n is the length of the

hole, therefore the only effort required lies in finding a component hole in the
graph.

1Clique in which every node belongs to a different partition.
2In this case, component clique inequalities, which force every vertex in a component

clique to have a different color.
3A component hole is a chordless cycle in which every node belongs to a different

partition.
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Therefore, given a component hole H in the partitioned graph, the com-
ponent hole inequality is:∑

i∈H

xij ≤
⌊n

2

⌋
wj ∀j ∈ C (3.3)

3.2.2 Component path inequalities

Similar to the previous case, the component independent set can be in-
stantiated with a component path P , which is a standard path where every
node belongs to a different partition. In this case, it holds that for every
component path of length n, α(P ) =

⌈
n
2

⌉
, and the inequality results:∑

i∈P

xij ≤
⌈n

2

⌉
wj ∀j ∈ C (3.4)

3.2.3 Strengthening by breaking symmetry

Component independent set inequalities can be strengthened by taking
into consideration symmetry breaking constraints, which forbid using a color
unless all of the previous colors are used (2.11 being the weakest). This
means that the following inequalities will only be valid for models which
include symmetry breaking constraints.

In case a component independent of size αP set is colored with label
j∗ ≤ q − αP , then it is possible to ensure that the colors with the highest
αP + 1 labels, jq−αP+2 . . ., will be left unused, since there are αP nodes using
the same color j∗.

Being W the component independent set, in the worst case, in which all
nodes in V \W use different colors, an assignment as the one shown in table
3.2.3.1 will occur. This coloring uses only the first q − αP + 1 colors, and
leaves all colors with a greater label unused.

This assignment may happen only if every node in V \W uses a different
color; if there is any node repeating color then label q − αP + 1 is unused as
well. Therefore, at most one node may be colored using q − αP + 1, while
colors with a greater label will never be used, so the following inequality
holds:

c∑
j=jt+1

∑
i∈V

xij ≤ wjt+1 jt = q − αP (W ) (3.5)

Combining this inequality with 3.2, results in the following component in-
dependent set inequality, which becomes strengthened via symmetry break-
ing:
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color label partitions count
j1 1
j2 1
...

...
j∗ αP
...

...
jq−αP

1
jq−αP+1 1
jq−αP+2 0

...
...

jq 0

Table 3.2.3.1: Worst-case color assignment when a component independent
set of size αP is found in the partitioned graph.

∑
i∈W

xij0+
c∑

j=jt+1

∑
i∈V

xij ≤ αP (W )wj0+wjt+1 ∀j0 ≤ jt, jt = q−αP (W ) (3.6)

Both component hole (3.3) and component path inequalities (3.4) can be
strengthened using this argument.

3.3 Partition graph inequalities

Let G′ =< V ′, E ′ > be the partition graph4 of G. Most bounds found for
coloring G′ can be reused in the original G by extending the constraint over
every node represented by each p ∈ V ′.

A clear example are independent set inequalities. Let W ′ ⊆ V ′ a subset of
nodes inducing a subgraph in G′, then the independent set inequality holds:∑

i∈W ′
xij ≤ α(W ′)wj ∀j ∈ C (3.7)

As in inequalities 3.6, these inequalities can be strengthened considering
symmetry breaking constraints:

4The partition graph G′ of a partitioned graph G is a standard graph G′ =< V ′, E′ >
in which every node v′k ∈ V ′ corresponds to a partition Pk ∈ P , and two nodes v′i, v

′
j ∈ V ′

are adjacent if and only if every node in Pi in G is adjacent to every node in Pj .
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∑
i∈W ′

xij0 +
c∑

j=jt+1

∑
i∈V ′

xij ≤ α(W ′)wj0 +wjt+1 ∀j0 ≤ jt, jt = q−α(W ′) (3.8)

These constraints over G′ can be converted to constraints G by replacing
every node p ∈ V ′ with the sum over the nodes v ∈ Pp. Let W ⊆ P be the
set of partitions represented by the nodes in W ′ ∈ V ′ in G′, then:

∑
Pk∈W

∑
i∈Pk

xij0 +
c∑

j=jt+1

∑
i∈V

xij ≤ α(W ′)wj0 + wjt+1 ∀j0 ≤ jt, jt = q − α(W ′)

(3.9)
Once again, since the size α of the maximum independent set of a graph

is NP-hard to calculate, the subgraph induced by W ′ is chosen in such a way
that this number is trivial to obtain. This inequality is then specialized with
W ′ inducing either a path or a hole in G′, having α(W ) equal to d|W |/2e and
b|W |/2c, yielding partition graph path inequalities and partition graph hole
inequalities, respectively. These kind of inequalities are easy to work with,
as they have been extensively studied for the standard coloring problem, and
they have not been applied to this problem in any previous work (such as
[9]).

Partition graph clique inequalities predicate over a set of nodes which are
all adjacent to each other or belong to the same partition, which is the very
definition of an extended clique. Since partition graph clique inequalities are
more restrictive than the extended clique ones, as they require that every
node in every partition involved is part of the clique, the former will not be
considered and we will be applying only the latter.

Note that partition graph independent set inequalities are less frequent
than component independent set ones, since G′ tends to be less dense as
partition sizes increase; however, the former are much stronger as they impose
restrictions over all the nodes in the partitions covered, instead of over a single
node per partition.

3.4 Block color inequalities

Block color inequalities arise from the symmetry breaking constraints 2.11
wj ≥ wj+1. Given a partition Pk and a color j0, every coloring of partition
Pk using label j > j0 requires color j0 to be already used in the graph, since
2.11 implies that a color cannot be used unless all previous ones had ben
used.

26



As only a single xij is set in every partition, or equivalently, exactly one
node is painted in each partition, the following inequality holds:∑

j≥j0

∑
i∈Pk

xij ≤ wj0 ∀Pk ∈ P, j0 ∈ C (3.10)

These c.q inequalities are extremely easy to generate and, as will be ana-
lyzed further in this work, have proven to greatly improve the cutting planes
scheme.
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Chapter 4

Enumeration algorithms

Implicit enumeration algorithms walk through all possible colorings for
the graph, restricting the solution set as much as possible and pruning non-
optimal solutions using known bounds. In this chapter we will review implicit
enumeration techniques for the classical coloring problem and discuss differ-
ent generalizations for pcp.

4.1 Classical scheme

A classical scheme for enumeration algorithms is presented in 4.1.
The algorithm picks a node to be colored in each recursive call, attempting

to color it with one of the already used labels if possible; it also assigns a
fresh color to the node, in order to explore all possible colorings for the graph.
Note that several symmetric colorings are left out of the exploration.

At every iteration, the partial solution is pruned if the coloring is using as
many labels as the best coloring found by the algorithm, as this implies that
the best solution cannot be improved using the current one. The algorithm
runs until all possible colorings have been explored, therefore it effectively
returns a minimum coloring of the graph.

The strategy used for picking the node to be colored in each recursive
call gives place to different algorithms. A very simple strategy is to use the
degree of the node, coloring nodes with highest degree first, based on the
assumption that difficult nodes should be handled early.

Another algorithm, which is one of the most widely used for the coloring
problem, is dsatur[4]. This algorithm always picks the node with the high-
est degree of saturation1, using different strategies for tie-breaking, such as
picking the node with the largest number of uncolored neighbours[26]. It has
proved to be one of the best enumeration algorithms available.

1Number of different colors used in N(v) for a node v ∈ V .
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Algorithm 4.1 Classical coloring implicit enumeration scheme for simple
graphs G =< V,E >

call color(0,1)
procedure color(painted, label)

if current coloring is no better than best coloring then
prune current solutions subtree

else if painted equals to |V | then
update best coloring with current coloring

else
call paintnext(painted,label)

procedure paintnext(painted, label)
pick next uncolored node to color
for j = 1 to label do

if can paint node with color j then
assign color j to node
call color(painted+1, label)
uncolor node

{try coloring node with a new label}
assign color label + 1 to node
call color(painted+1, label+1)
uncolor node
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For an implementation of the dsatur algorithm, we used the code pro-
vided by Trick in [28], which we ported to Java and adapted for partitioned
coloring as described in 4.2.

4.2 Enumerating partitioned colorings

The previous scheme must be modified in order to generate valid par-
titioned colorings. A simple modification would be to simply pick a new
partition instead of a new node on each recursive call, and iterate over all
nodes in the partition using all candidate labels. This modification is pre-
sented in algorithm 4.2.

Algorithm 4.2 Modification of enumeration scheme for partitioned graphs
G =< V,E, P >, picking partitions on every call

[...]
procedure paintnext(painted, label)

pick next uncolored partition to color
for all node in partition do

for j = 1 to label do
if can paint node with color j then

assign color j to node
call color(painted+1, label)
uncolor node

{try coloring node with a new label}
assign color label + 1 to node
call color(painted+1, label+1)
uncolor node

However, this modification imposes that all the nodes within the same
partition are explored together in the enumeration, regardless of the crite-
ria being used to choose each candidate. For example, if a largest-degree
criteria is used, and the remaining partitions (with their nodes’ degrees)
are P1{v1(10), v2(1)} and P2{v3(5)}, algorithm 4.2 would enumerate nodes
v1, v2, v3 instead of v1, v3, v2. This severely hurts the efectiveness of the strat-
egy being used.

Therefore, we propose another modification, presented in algorithm 4.3.
In this case we use the original enumeration scheme, picking a node from an
unpainted partition on every call, but before returning from the procedure
we create another branch in which we do not color the chosen node, so that
the partition can be later colored using another node.
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Algorithm 4.3 Partitioned coloring implicit enumeration scheme for parti-
tioned graphs G =< V,E, P >

call color(0,1)
procedure color(painted, label)

if current coloring is greater than or equal best coloring then
prune current solutions subtree

else if painted equals to |P | then
update best coloring with current coloring

else
call paintnext(painted, label)

procedure paintnext(painted, label)
pick next uncolored node to color from all uncolored partitions
for j = 1 to label do

if can paint node with color j then
assign color j to node
call color(painted+1, label)
uncolor node

{try coloring node with a new label}
assign color label + 1 to node
call color(painted+1, label+1)
uncolor node
{leave node unpainted}
if there are other nodes left in the partition then

mark node as unavailable
call color(painted, label)
mark node as available again
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It is within this scheme that we embedded our two different strategies
based on degree of saturation for partition coloring.

4.3 Partitioned DSatur

Classical dsatur picks the node with the highest color degree on each
iteration, based on the assumption that nodes difficult to color should be
handled first, which usually works well for most heuristics. In the case of
partition coloring, as suggested in [17], nodes with lower degree are easier to
color and should be preferred within a partition; also, it is better to color
larger partitions first in order to reduce the problem size as early as possible.

Based on these assumptions, we generalized two different versions for
partitioned dsatur: easiest node and hardest partition.

4.3.1 Easiest node

The easiest node variant is based on the onestepCD heuristic proposed
in [17]. In order to pick the node to color, the easiest node is chosen from
every uncolored partition, where easiest is defined in terms of lowest color
degree, with tie breaking on lowest number of uncolored neighbours. From
the resulting set, the node with the highest color degree is chosen, as in
classic dsatur.

In other words, this algorithm picks the hardest node from the set of
the easiest nodes on each uncolored partition. Note that if every partition
contains a single node, this algorithm behaves exactly as classic dsatur.

Also, in an attempt to explore different solutions earlier to obtain better
upper bounds, we also implemented a randomized version of the algorithm.
From the set of the easiest nodes in every partition, only half of the time
the hardest node is chosen, the other half another candidate is chosen with
probability decreasing as its color degree decreases.

4.3.2 Hardest partition

Instead of choosing the easiest node from each partition and then picking
the hardest one to color, this algorithm first chooses the hardest partition
to handle, and then picks the easiest node from that partition. While the
easiest node is picked using the usual color degree criteria, choosing the
hardest partition requires a new strategy.

Therefore, in order to determine the hardest partition to color, we exper-
imented with combinations of the following metrics:
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• Color degree of the partition, defined as the number of different colors
adjacent to all of the nodes in the partition; considering that a larger
color degree implies a harder partition to color

• Size of the partition, as a larger partition being colored earlier helps
reducing the problem size, therefore, the larger the partition the earlier
it should be handled

• Number of uncolored partitions adjacent to the partition, equivalent to
the tie breaking criteria used for classic dsatur

Note that using the color degree of the easiest node in the partition as a
criteria, under the premise that a partition can be considered to be as hard
as its easiest node, yields the easiest node algorithm.

Different combinations of these criteria, as well as the different variants
of the algorithm, will be compared in chapter 6.2.

4.3.3 Ad-hoc modifications

As it will be presented in chapter 5, bounded versions of this algorithm
will be used during the branch and cut algorithm as an initial heuristic,
primal heuristic and subtree pruning. As such, certain adaptations were
made to the algorithm.

Since the preprocessing step identifies a large clique before any coloring is
performed, the algorithm supports forcing a set of partitions to be assigned
a specific set of colors; therefore all partitions PK1 , . . . , PKω contained in
the initial clique are colored with labels 1, . . . , ω. Since we still have to
determine which node to color in each partition, we have to try every possible
way of picking a single node from each partition to be colored. Therefore,
the algorithm colors PK1 , . . . , PKω first, trying all possible

∏ω
i=1 |PKi

| node
combinations, before proceeding with the partitioned dsatur on the rest of
the graph.

Also, since the algorithm is used as a primal heuristic within the branch
and cut tree (see 5.8), it supports forcing the coloring of certain nodes, keep-
ing those assignments fixed during the enumeration process. In case certain
node-color combinations are forbidden due to the restrictions imposed dur-
ing branching, solutions assigning those combinations are not explored in the
algorithm.

In case symmetry breaking constraints 2.12 or 2.14 are used, the color
classes obtained by the algorithm are sorted based on node count or mini-
mum partition index respectively, so the obtained solution can be successfully
injected into the branch and cut scheme.
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Chapter 5

Branch and Cut

In this chapter we will present the implemented branch-and-cut algo-
rithm, including all the components that compose the branch and cut struc-
ture, such as initial heuristic, branching strategies, separation algorithms and
primal heuristics.

5.1 Algorithm structure

The structure of a branch and cut algorithm can be considered a combi-
nation of cutting planes and branch and bound schemes, which we describe
below.

5.1.1 Cutting planes

Cutting planes algorithms rely solely on valid inequalities for solving the
problem. Given a solution of the model’s linear relaxation 1, cutting planes
are added to the formulation in order to remove the fractional solution ob-
tained.

Recall that valid inequalities have the property of being satisfied by all
integer solutions of the model, but not necessarily by all fractional solutions
in the relaxation; therefore, given a fractional solution x∗, there is a cutting
plane generated by a linear inequality that holds for all integral solution but
is not satisfied by x∗.

The algorithm consists in repeating this process, re-solving the relaxation
with all added cuts in each iteration, until an integer-feasible solution is
obtained, no more violated inequalities can be found or any defined stopping
criteria is achieved.

1The linear relaxation of an integer linear programming consists in removing all inte-
grality constraints on the variables.
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Algorithm 5.1 General scheme for a cutting planes algorithm

loop
calculate solution of the linear relaxation
if solution is integer then

return obtained solution
else if can generate inequalities to cut off the fractional solution then

add the cutting planes to the model
else

return failure

The algorithm depends on having an adequate set of cutting planes fam-
ilies, along with good separation heuristics, in order to find valid inequalities
that cut off the relaxation’s fractional solution on every iteration. Excessive
generation of cutting planes may have the drawback that the relaxation be-
comes larger and larger on every iteration, requiring a greater computational
effort to solve. Even worse, the cutting planes families chosen may be such
that the algorithm requires an infinite number of iterations to converge to
the integer solution, which forces the addition of an algorithm stopping con-
dition based on elapsed time, number of iterations or relative improvement
in the solution, among others.

Note that, besides the valid inequalities specific to each problem, such as
the ones we have presented for pcp in chapter 3, there are generic families
of cutting planes that can be applied to any problem, like Gomory cuts [10],
disjunctive cuts [3], clique cuts, cover cuts, etc. However, problem-specific
cuts usually have better performance than generic ones.

5.1.2 Branch and bound

The branch and bound scheme explores different solutions by setting
bounds on fractional variables on every partial solution. The algorithm starts
by solving the relaxation, like cutting planes, but instead of removing the
fractional solution by adding a valid inequality, it creates two subproblems,
usually by fixing a particular variable with a fractional value to either zero or
one, in the case of binary integer programming problems in which variables
are restricted to these two possible values.

Each subproblem is then solved using the same strategy until the re-
laxation’s solution is integer feasible, in which case that branch is closed;
note that eventually all variables are fixed to an integer value, so an integer
solution is always found. The algorithm runs until all nodes are explored.

Besides the branching behaviour of the algorithm, both upper and lower
bounds for each node are considered. A global upper bound (in case of a
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minimization problem) is updated whenever a new integer feasible solution
is found, keeping the one with the lowest objective value. This upper bound is
compared with each node’s lower bound provided by the relaxation’s solution.
Since the integer solution will always be greater than the relaxation’s, when
the lower bound of the node is larger than the global upper bound, the node
can be fathomed.

Algorithm 5.2 General scheme for a branch and bound algorithm

initialize tree with the problem’s formulation

while there are open nodes in the tree do
pick an open node from the tree
calculate solution x∗ of the linear relaxation of the node
if the linear relaxation is infeasible then

close the node as the branch is infeasible
else if solution x∗ is integer feasible then

update best integer solution xM with x∗ if f(x∗) < f(xM)
close the node as an integer solution was found

else if f(x∗) > f(xM) then
close the node as best solution cannot be improved

else
generate new subproblem nodes by branching

return best integer solution xM

The branch and bound scheme does not specify which node to select on
each iteration, or how to generate the subproblems on each node. The node
selection strategy and the branching strategy are chosen depending on the
problem to solve.

5.1.3 Cut and branch

The cut and branch scheme is simply an execution of the cutting plane
algorithm until a certain threshold is reached (expressed in running time,
number of cuts iterations or mip gap). Then the generation of cutting planes
is stopped and a branch and bound algorithm is executed, using the initial
formulation augmented with all the generated cutting planes.

This algorithm usually yields better results than the previous ones, as a
cutting plane one may not find inequalities that lead to an optimal solution
in a finite number of steps, and a pure branch and bound one usually takes
too long to solve as the enumeration may be too large. However, since
the cutting planes may cause that the relaxations in the branch and bound
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become tougher to solve, a good balance between the two phases is extremely
important for a good overall performance.

It is worth noting that, since the cut and branch algorithm is ultimately
reduced to a branch and bound scheme, this scheme always arrives to an
optimal solution, unlike a pure cutting planes algorithm which may fail to
obtain an integer solution.

5.1.4 Branch and cut

While the cut and branch algorithm applies cutting planes only at the root
of the branch and bound tree, the branch and cut version uses cutting planes
throughout the whole tree. Although cuts are applied more aggressively at
the root, on certain internal nodes more iterations of cuts are executed.

Note that these generated cuts can use local information, exploiting the
variables fixed in the node due to the branching process. In this case, cuts
generated on the node are only valid on the node and its subtree; otherwise,
cuts generated on an internal node may be reused globally.

An improvement to this scheme consists in deriving integral solutions from
node relaxations, obtaining global upper bounds earlier during the traversal,
which allow to prune branches earlier. The generation of these solutions is
done via primal heuristics.

As with all previously mentioned algorithms, branch and cut schemes
have a number of parameters and strategies to determine. To begin with,
all the separation heuristics for cutting planes iterations must be chosen
adequately to quickly find a reasonable number of cuts; on the branch and
bound side, node selection and branching strategies must also be determined.
Also, the number of cut iterations to perform on the root and on internal
nodes must be set, as well as choosing on which nodes cutting planes and
primal heuristics should be executed.

Throughout this section we will go over all these missing pieces in the
branch and cut structure, and point out how we filled them in the context of
the partitioned coloring problem.

5.2 Preprocessing

The first step in solving a pcp instance consists in preprocessing the
graph, applying all the following rules until no more modifications are made
to the graph:

1. As an initial step, every edge with both ends within the same partition
is removed. Since only one node is colored per partition, there can be
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P1

v1 v2

Figure 5.1: Neighbourhood inclusion example: node v1 will be removed from
the graph as its neighbourhood completely contains N(v2).

no color conflicts between nodes of the same partition, and all edges
connecting them can be removed, in order to greatly reduce the size of
the graph and the number of adjacency restrictions generated.

2. Partitions containing isolated nodes can be completely removed from
the graph, as any isolated node can be trivially colored using the lowest
possible label, and coloring a single node within a partition marks the
whole partition as colored, therefore allowing us to completely remove
it.

3. Neighbourhood inclusion criteria is applied within a single partition in
order to remove higher-order nodes. Let u, v be two different nodes in
a partition Pk, if N(u) ⊆ N(v), then we can remove node v from the
graph. Since only one node per partition needs to be colored, any valid
coloring that assigns color j0 to node v can be modified to assign color
j0 to node u instead, still satisfying all color constraints. Intuitively,
we are removing difficult nodes from a partition when we find an easier
one to substitute it. See figure 5.1 for an example.

4. A lower bound for the chromatic number of the graph is obtained by
finding a maximal clique in the partition graph G′. Finding a clique
of size ω in G′ implies that at least ω different colors are needed for
coloring the partition graph, and the same lower bound clearly holds
for G. All partitions in the clique will have their colors fixed to 1, . . . , ω
in order to reduce the number of possible colorings, since each of them
must be painted using a different color.

5. As in step 2, partitions that contain at least one node with degree less
than the lower bound found in the previous step are removed. A node
with strictly less than ω neighbours can be assigned a color among
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1, . . . , ω, knowing that no color conflicts will occur; and since there are
already ω colors required, the chromatic number is not increased by
that assignment, and therefore the node can be discarded.

Last 3 steps are performed until no more changes are made to the graph.
The resulting largest clique found is used to fix the colors of the partitions
included in it.

Every step is processed by brute force, since their running time is polyno-
mial in the size of the graph, except for step 4 for which we use the algorithm
presented below.

5.2.1 Partition graph clique detection

To find the maximum clique in the partition graph we use a simple back-
tracking algorithm. Since the running time of this algorithm can be excessive
for a preprocessing step, we bound the running time of this algorithm to five
seconds; however, the algorithm usually ends much sooner, as the partition
graph is not only smaller but also much less dense than the original graph.

In case the time bound is reached, the best solution found so far is re-
turned. As the backtracking uses DFS to explore all possible solutions, a
reasonably good solution is generated early in the algorithm, therefore a
valid result is obtained regardless its interruption.

Starting with an initial node, the algorithm keeps a list of valid candidates
for the clique, which is updated on each iteration by removing all nodes that
are not adjacent to the clique. Keeping both the candidates list and all
adjacency lists sorted by degree makes computing the intersection between
these lists faster, and produces better initial solutions that can be used to
prune other solutions later.

5.3 Initial heuristic

A good initial heuristic solution gives an upper bound on the solution,
eliminates a large number of variables and restrictions in the model, and can
be used as an initial incumbent solution for the branch and cut algorithm.

In order to generate this solution, we use the modification of the dsatur
algorithm for partitioned graphs presented in 4. Since the algorithm gener-
ates an implicit enumeration of all possible colorings, which might take too
long to compute, its running time is bounded to five seconds. The coloring
of the partitions in the clique K is fixed to labels 1, . . . , ω in order to reduce
the solutions set.
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Algorithm 5.3 Finding a maximum clique in a simple graph G =< V,E >

sort all nodes and adjacency lists descendingly by degree
for all initial node v in V do

initialize clique with node v
initialize candidates with N(v)
call clique

procedure clique
if candidates is empty then

update best solution if current clique is better
else if clique.size + candidates.size ≤ best.size then

prune current tree
else

pop node u from candidates and add it to clique
intersect candidates with N(u) and store removed nodes
call clique
remove node u from clique
add removed nodes back to candidates
call clique

5.4 Initialization

Using the initial solution as an upper bound χ̂ for the chromatic number,
it is possible to eliminate all xij and wj variables with j > χ̂, thus greatly
reducing the number of involved variables and restrictions in the model.

Another optimization is to fix the colors for all partitions involved in the
clique K found during the preprocessing stage. Since it is not possible to
determine which node within the partition is to be colored, we simply set
to zero all xij variables for nodes within the partitions that use a different
color than the one assigned. Formally, let K = {PK1 , . . . , PKω} be the initial
clique, then:

xij = 0 ∀i ∈ K[l], ∀1 ≤ l ≤ ω, ∀j 6= l

wj = 1 ∀1 ≤ j ≤ ω

Also, in case the partition being fixed to a color jk has a single node in
it, then variable xij0 , where i is the single node in the partition, is fixed to 1.

Another bound based on nodes degree is imposed. A node v of partition
degree δP (v) can always be colored with a label jk such that 1 ≤ jk ≤
δP (v)+1, since it will be neighbour to at most δP (v) different colors, therefore
any set of δP (v) + 1 colors contains at least one valid label that does not
generate color conflicts.

xij = 0 ∀i ∈ V, ∀j > δP (v) + 1
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Finally, in case minimum partition index breaking symmetry restrictions
(2.14) are being used, this is, the color with the lowest label is assigned to
the color class containing the partition with the lowest index, another bound
can be imposed on xij variables. Since in the worst case all partitions will
have a different color, then a partition with index k will never be colored
with label greater than k. Therefore, the following bound is imposed:

xij = 0 ∀Pk ∈ P, ∀i ∈ Pk, ∀j > k

5.5 Cuts separation

For each family of valid inequalities listed in 3, an heuristic is implemented
to find a set of valid inequalities being violated by a solution of the linear
relaxation of the model. Note that finding a violated inequality in a solution
is NP-Complete2, so heuristic procedures must be applied.

Since these algorithms are applied frequently during the branch and cut
tree, it is imperative that their running time is as fast as possible, in order
to minimize the added overhead to the whole algorithm.

5.5.1 Extended clique cuts

Separation of extended clique cuts (3.1) is done using a very similar al-
gorithm to 5.3, adapted to partitioned graphs and without backtracking, so
running time is acceptable for a separation algorithm. This algorithm is ex-
ecuted once for each color, and nodes are sorted based not on their degree
but on their xij value in the current solution.

For each initial node, a clique is constructed until the corresponding in-
equality is broken, and extended to up to κ maximal cliques using backtrack-
ing, making use of the candidates collection (note that in this case, candidates
is initialized with not only the initial node’s neighbours, but also with all the
nodes in its partition). In case no clique breaking the inequality is found,
the next initial node is picked.

In order to avoid exploring the same solution space multiple times for
different initial nodes, restrictions on how many times a node or an edge can
be visited are applied. The resulting algorithm is presented in 5.4.

2Grötschel, Lovász and Schrijver [11] related the complexity of the optimization prob-
lem being solved to the complexity of the separation problem: the former is polynomial if
and only if the latter is also polynomial.
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Algorithm 5.4 Separation algorithm for extended clique cuts

for all color j such that wj ≥ µ do
sort all nodes and adjacency lists descendingly by xij value
for all initial node v in V do

initialize clique with node v
initialize candidates with N(v) ∪ P (v)
while candidates is not empty do

if current clique breaks inequality then
for all maximal cliques K containing clique up to κ do

add extended clique cut using K and color j
continue with next initial node

else if next candidate u can be used then
add u to clique and remove it from candidates
remove nodes not adjacent to u from candidates

else
remove u from candidates

5.5.2 Component independent set inequalities

Component hole 3.3 and component path 3.4 inequalities are separated
within the same procedure using a greedy heuristic. In a similar fashion to
algorithm 5.4, for every color the graph is sorted according to xij values, and
for each initial node a component path or hole is greedily constructed. Once
again, bounds for a maximum number of visits on each node are imposed,
thus rejecting nodes with a certain number of visits or belonging to a partition
already in the path, since this would violate the component property.

On every iteration the most promising node is added to the path being
built. In case this node is adjacent to a node already in the path (thus
generating a hole), it is added only if it violates the corresponding inequality,
otherwise, the next candidate is picked, and so forth. Algorithm 5.5 resumes
this process.

As an alternative to the previous algorithm, we also implemented the
hole detection algorithm presented in [23]. We adapted the algorithm pre-
sented in the paper to reject a node if it belongs to a partition already in
the path, therefore exploring only component holes; testing this implementa-
tion against the previous one showed that our custom algorithm performed
slightly better, and generated path as well as hole inequalities.

5.5.3 Partition graph independent set inequalities

For both path and hole inequalities (3.7) over the partition graph G′,
algorithms equivalent to the ones used for component independent sets are
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Algorithm 5.5 Separation algorithm for component independent set cuts

for all color j such that wj ≥ µ do
sort all nodes and adjacency lists descendingly by xij value
for all initial node v in V do

initialize path with node v
loop

for all valid node u adjacent to last node in the path do
if u is adjacent to a previous node w in the path then

if hole H = [u, . . . , w] violates inequality 3.3 then
add component hole inequality with hole H and color j
continue with next initial node

else
add node u to path
if current path breaks inequality 3.4 then

add component path inequality with path and color j
continue with next initial node

applied as separation heuristics.
Graph G′ is constructed once at the beginning of the branch and cut and

is then used as input for these heuristics. Since there are no xij variables to
use for sorting the nodes of the graph, the value

∑
i∈Pk

xij is used for each
partition Pk, this is, the sum of the values of the partition’s nodes.

5.5.4 Block color inequalities

Block color inequalities (3.10) are explored using brute force, since there
are no more than c.q of them, and checking whether they are violated or not
can be performed fast enough.

Alternatively, they can be added initially to the cut pool provided by the
branch and cut framework, instead of manually checking them at each cuts
iteration.

5.6 Node selection strategies

On each iteration of the branch and cut algorithm, an unprocessed node
must be chosen to be solved. Determining which node will be handled next
is known as the node selection strategy.

There are different standard node selection strategies, all of them imple-
mented by the branch-and-cut framework we used. In chapter 6 we experi-
ment with the behaviour of the algorithm under different strategies:
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• DFS: Depth-first search, picks the last node opened, attempting to
generate an integral solution by diving to the bottom of the tree as fast
as possible. This strategy has low memory consumption as relatively
few nodes are left unprocessed on every iteration.

• BFS: Breadth-first search, picks the first node opened; this strategy
solves every open node at the same depth before proceeding to the
following depth level. It usually has memory issues, as a large number
of nodes tend to be left open, thus making this a poor choice in most
cases.

• BestBound: Best-bound, picks the open node with best objective
function available, which tends to be near the root of the branch and
bound tree. This strategy usually reports the best results.

• BestEstimate: Best-estimate uses an estimate of a given node’s progress
toward integer feasibility relative to its degradation of the objective func-
tion[29]; it improves the chance of finding feasible solutions when they
are difficult to generate.

5.7 Branching strategies

After each node in the branch and cut tree is processed, new child nodes
are created by subdividing the problem into two easier subproblems; this is
usually done by branching on a certain variable. Usually, in the case of binary
variables, a variable x with a fractional value in the relaxation is chosen, and
the two subproblems are created by fixing x = 0 and x = 1 and re-processing.
Alternatively, bounds on expressions, instead of on variables, can be set.

xij = 0 xij = 1

Whichever method of branching is chosen, it requires that the solutions
represented by the union of all subproblems cover all integral solutions rep-
resented by the parent node; otherwise, feasible solutions may be left unex-
plored.

Choosing which variable to branch on, and what bounds are implied
within each branch, is part of what is called the branching strategy.
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5.7.1 Static priorities

The simplest way to choose which variable to branch on is to assign a
priority to each xij, which will be used to pick the branching variable when
necessary: the integer infeasible variable with the highest priority is picked
on every branching.

We experimented in section 6.3 with different criteria for selecting variable
xi∗j∗ . We first pick the node vi∗ based on either the number of partitions ad-
jacent to it or the size of the partition it belongs to, or a combination of both.
Once the node is chosen, we choose from the set of variables xi∗j0 . . . xi∗jC
the one with the lowest j such that its value in the relaxation is greater than
zero (as we choose only integer infeasible variables for branching).

Using this criteria has the huge drawback that no information regarding
the actual value of the xij variable is used, so these priorities work best as a
tie-breaker for another strategy.

5.7.2 Fractional values

A common practice is to pick the most fractional variable to branch on.
We determine such variable as:

min
xij
{|xij − 0.5|}

In case of a tie, we use the static priority set for the variables to determine
which one use to branch on. We also experimented in section 6.3 with the
opposite criteria, this is, branching on the less fractional value (excluding
those variables with already integral values).

This is a common branching technique, but does not exploit any particular
feature of the problem being studied, unlike the one described below.

5.7.3 Degree of saturation

A branching strategy specifically related to the partitioned coloring prob-
lem is to branch on a node with the highest degree of saturation. Since these
nodes are usually the most difficult ones to handle, it is reasonable to fix
their values as early as possible in the branch and cut tree.

This criteria for picking the branching variable requires first to compute
an approximate degree of saturation for every node and choosing the one
with the largest value, i∗, in order to obtain a set of candidate variables
xi∗j0 , xi∗j1 , . . . , xi∗jc (once again, ties between nodes are broken using the
already defined priorities).

Since the only available values are those of the fractional solution, we
color one node in each partition using the largest value within the partition
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and neighbours: this is, for every node i and color j combination, if the value
xij is larger than all of its neighbours and nodes in the same partition, as
well as larger than an arbitrary lower bound (0.7)3, we assign color j to node
i. Note that some partitions might be left uncolored, in this case they will
not contribute to the degree of saturation of their neighbours.

vi ← j if xij > 0.7 ∧ xij > xkj ∀k ∈ N(i) ∪ P (i) (5.1)

Having chosen a node vi for branching, we must choose which variable
xi∗j∗ from the set of candidate xi∗j0 , xi∗j1 , . . . , xi∗jc will be branched on. We
have implemented two different strategies for this:

• DSatur-2: Choose the variable xi∗j∗ with the highest value from the
set, and branch on xi∗j∗ = 0 and xi∗j∗ = 1; this results in a classic 0−1
branching on the variable corresponding to the most saturated node
with its most likely color.

• DSatur-(C+1): Create up to C+1 subproblems, one for each possible
coloring of the node, branching on xi∗j0 = 1, . . . , xi∗jc = 1, plus another
child which sets all xi∗j0 variables to zero, in case the node is not colored
within its partition; this idea was first defined in [4], revisited in [26],
and used in [21].

5.7.4 Implied bounds

When manually specifying the branching variable and creating the sub-
problems, it is also possible to fix more variables that would be affected by
the value assigned to the first one.

Regardless of the branching variable, it is possible to fix all color variables
wj to 1 for j = 1, . . . , dze, where z is the value of the objective function of
the current node’s relaxation. For example, if the sum of all wj variables is
5.3, which is a lower bound on the chromatic number, we can be sure that
at least 6 different colors are needed to color the graph, and therefore all
w1, . . . , w6 can be set to 1.

When branching down on the selected variable4, there are no more logical
implications than the previous one that can be used to bound more variables.
This is easy to see since setting an xij variable to zero implies that a certain

3Note that if the classic constraints are being used, 2.4 and 2.5, by specifying a lower
bound higher than 0.5 it is not necessary to verify that the node has the highest value
among its neighbours or within the partition, as it will be assured by the restrictions; the
check is required in case alternative restrictions are used, such as allowing more than one
node to be colored or grouping multiple color conflicts into single constraints.

4Fixing the branch variable’s value to 0.
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color will not be used for a certain node, but does not grant any information
on which node on the partition will be colored and with which color.

Branching up, on the other hand, provides much more information. When-
ever a variable xi∗j∗ is set to 1, this is, node i∗ in partition P (i∗) is assigned
color j∗, we may specify the following conditions for that branch:

• Every other color-node combination in partition P (i∗) can be set to
zero, as only one node must be assigned a color in the partition.

xij = 0 ∀i ∈ P (i∗), ∀j ∈ C, i 6= i∗ ∨ j 6= j∗

• Every node adjacent to i∗ cannot use color j∗ in order to avoid color
conflicts.

xij∗ = 0 ∀i ∈ N(i∗)

5.8 Primal heuristic

The algorithm used to create an integer feasible solution from the re-
laxation’s solution is called the primal heuristic. A typical primal heuristic
consists in rounding the values of every fractional variable to the nearest
integer value, as long as this process satisfies all the restrictions imposed by
the model.

For pcp we implemented a primal heuristic based on the dsatur algo-
rithm. Given a fractional solution x∗, for every variable xij with a large
enough value, we fix that node-color combination. The criteria used for de-
termining when a variable is fixed is the same as the one depicted in 5.1.

Also, for every variable xij with an upper bound set to 0 as a product of
the branching in the branch and cut tree, we forbid that node-color combi-
nation.

Having all these values fixed, an extremely short run of dsatur is exe-
cuted, bounded to 200 milliseconds. The algorithm works reasonably fast as
more and more variables are fixed, and bounds for the optimal coloring can
be inferred from the branch and cut tree, further shortening the exploration
of possible solutions.

• Value
⌈∑

j∈C wj

⌉
of the node’s relaxation is a lower bound to the inte-

ger solution, so in case dsatur finds a solution using that number of
colors, it can be assured that it is the local optimum.

• The solution of the primal heuristic will be used as the global upper
bound, replacing the current incumbent solution, only if it uses less
colors. Therefore, dsatur is bounded to exploring solutions that use
strictly less colors than the incumbent.
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The best coloring obtained by the algorithm is then used as an incumbent
solution for the node. In case certain symmetry breaking restrictions are in
place, a reordering of the labels assigned to each color class might have to be
performed.

5.9 Implicit enumeration

Early experimentation with the branch and cut algorithm and with the
dsatur algorithm has shown that, for relatively small instances, the latter
explores all possible solutions much faster than the former, since it does
not have all the overhead imposed by the different artifacts present in a full
branch and cut.

Therefore, when we have reduced the problem size to a relatively small
one by fixing node-color assignments during the branching process, instead
of proceeding with the traditional branch and cut algorithm, we execute a
full run of dsatur. Since most partitions are already colored, the number
of possible solutions is reasonably small to be fully explored.

In chapter 6 we experiment with different values for the number of un-
colored partitions in the branch and cut tree to be used as the threshold
for stopping the branch and cut and starting an unbounded execution of
dsatur.

5.10 Implementation details

The branch and cut algorithm was implemented in Java 1.6 using CPLEX
version 12.1 both as a branch-and-cut framework and a linear programming
solver for relaxations.

We made use of branch, heuristic and cut callbacks provided by the
CPLEX API to manage the branching strategy, inject primal solutions and
apply custom cuts on both the root and internal nodes.

• The branch callback is invoked once the processing of a certain node has
been completed in order to determine how to create the child subprob-
lems; inside this callback we implement the different dynamic branching
strategies described in 5.7. Static priorities are fixed during the initial-
ization of the problem. This callback is also used to prune the branch
and cut tree once a certain number of partitions have been fixed in
order to proceed with the implicit enumeration from 5.9.

• The heuristic callback is invoked after the linear relaxation of a node
has been solved, and provides the fractional values from the relaxation’s
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solution to derive an integral feasible solution, using the color degree
strategy explained in 5.8. We make use of this callback to inject the
integral solution derived from implicit enumeration (5.9).

• The cut callback is invoked after the linear relaxation is solved; every
certain number of nodes the separation heuristics are invoked in an
attempt to add planes to cut off the current linear solution. After the
cuts are added, the relaxation is solved again, and more iterations of
cutting planes may be optionally executed; while few iterations are
performed in the internal nodes, a larger number is executed in the
root.

The framework was configured to use standard branch and cut search,
instead of dynamic search, to correctly determine the performance of the
developed strategies. Multi-core processing was also disabled.
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Chapter 6

Computational results

This chapter contains all the results obtained from the computational
experiments executed. We devised a test suite for each algorithm or strategy
to parametrize, and picked the configuration with the best results for each
subsequent test. Tested components include the model formulation, dsatur
strategy, branch criteria, primal heuristic, separation algorithms, etc.

6.0.1 Testing environment

We executed all tests on an Intel Core 2 Duo E7400 (2.80GHz each) with
3.5 GB RAM, running Windows XP SP3, with a JVM version 1.6.0 update
16. In most experiments execution was confined to a single core, in order to
eliminate distortions in measures caused by parallelization.

We used IBM Ilog Cplex version 12.1 as a branch and cut framework,
using its Java libraries for programming custom routines.

6.0.2 Graphs instances

We used different types of instances on each test depending on the focus
of the test itself. Overall, we used mostly random graphs, as well as certain
dimacs challenge instances[1] for our last tests. In the case of random graphs,
we used multiple instances (between three and five, depending on running
times) for each different value of number of nodes, density and partition size;
and reported the average results.

Random graphs were built according to two different schemes:

• Erdos-Rényi: Also known as binomial graphs[7], each of the pos-
sible edges between the set of n nodes is chosen to be included with
probability p; this parameter determines the density of the graph. This
procedure generates graphs with an equal distribution of degrees among
its nodes.
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Figure 6.1: Sample random binomial graph with 10 nodes and a 40% prob-
ability to create an edge between each pair of nodes.

• Holme-Kim: Also known as powerlaw cluster graphs[12], the graph
is constructed iteratively by attaching each new node to a number m
of already existing nodes using preferential attachment based on the
degree of existing nodes. Also, after the addition of each edge, there is
a probability p that a triangle will be created by adding an additional
edge. These graphs are controlled by two parameters: node count n
and probabilty p, with 0 ≤ p ≤ 1; value m is inferred as the product
between p and n.

Since both of the previous procedures generate unpartitioned graphs, they
are partitioned after their generation by grouping nodes with consecutive
indices in partitions of a certain size. For most instances we used a fixed
partition size of 2, although in some cases we used random sizes varying
from 1 to 4.

These random graphs were generated using the NetworkX python package[2],
version 1.1.
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Figure 6.2: Sample random powerlaw cluster graph with 10 nodes, note how
certain nodes have a much higher degree than the others.
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6.1 Model comparison

We executed a test suite for determining which inequalities to use in the
formulation of the problem. Recall from section 2 that there are several
restrictions that can be applied to define the model, as well as additional
ones that may strengthen the model or reduce the number of symmetrical
solutions.

In order to test the effectiveness of the different formulations, we applied
a fixed number of cutting planes iterations, using all implemented cuts with
a slightly aggressive configuration, and reported the resulting MIP gap and
running time (in seconds), as well as how many rounds of cutting planes
were executed. It is worth noting that in some cases fewer iterations than
total were applied as the separation heuristics were not able to find any more
violated inequalities.

For these tests we used binomial graphs with a fixed size of 100 nodes
with exactly 2 nodes per partition and densities from 20% to 80%, and pow-
erlaw cluster graphs with the same size with different values of p and m.
Five instances for each density for each random family were used, and the
reported values are always the average of the ones obtained. All graphs were
preprocessed beforehand.

6.1.1 Adjacency constraints

We first tested the four different adjacency (or color conflict) constraints
we had proposed, using arbitrarily chosen constraints 2.4, 2.11 and 2.16 to
complete the model:

∑
i∈Pk

∑
j∈C

xij = 1 ∀Pk ∈ P (2.4)

wj ≥ wj+1 ∀1 ≤ j < c (2.11)

wj ≤
∑
i∈V

xij ∀j ∈ C (2.16)

The different adjacency constraints being tested in this experiment are
the following:
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xij + xkj ≤ wj ∀(i, k) ∈ E, ∀j ∈ C (2.5)

xij + xkj ≤ 1 ∀(i, k) ∈ E, ∀j ∈ C (2.7)∑
i∈N(i0)

xi0j + rxi0j ≤ rwj ∀j ∈ C, ∀i0 ∈ V (2.10)

∑
i∈Pk∩N(i0)

xij + xi0j ≤ wj ∀j ∈ C, ∀Pk ∈ P, ∀i0 ∈ V (2.9)

Results are displayed on table 6.1.1.1. Differences between gaps are al-
most non existent, whereas time required changes greatly between graphs
with different densities. On higher density graphs, constraints 2.10 using a
clique coverage of the neighbourhood report a better running time than the
others; while on lower density 2.7 works better than 2.5, even though the
former uses n.c additional constraints 2.8.

Graphics 6.3 show the evolution of the gap for four particular represen-
tative instances, one for each of the evaluated densities in binomial graphs.
Gap evolution is very similar among different configurations, except for 2.10
which is remarkably slower to achieve the same gap in low density graphs.
At 40% and 60% densities, 2.7 not only works better than 2.5 as reported in
table 6.1.1.1, but also achieves the same gap slightly faster.

6.1.2 Colored nodes per partition

A quick test we also ran in parallel was to determine whether to paint
exactly one node per partition (2.4), or to relax this constraint and allow for
painting more than a single node (2.6).

Results on table 6.1.2.1 confirm our expectations: while the former has a
slightly larger running time, it also reports a slightly lower gap than the latter
in some cases. The simplicity provided by 2.4 when extracting solutions from
the model (when constructing the the partial solutions to be processed during
the primal heuristic, or during the branching process) makes us choose this
option in our formulation.

6.1.3 Model strengthening

We also compared applying only constraint 2.16, which ensures that vari-
able wj is set only if a node uses color j (regardless of the objective function),
to adding restrictions 2.17 and 2.18:
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(a) EW 100 Nodes 20% Density (b) EW 100 Nodes 40% Density

(c) EW 100 Nodes 60% Density (d) EW 100 Nodes 80% Density

Figure 6.3: Comparison of the inclusion of different color conflict constraints
in the model, visualizing evolution of the gap during time in a cutting planes
algorithm. Compared constraints are: adjacent nodes sum bounded by wj
(2.5), adjacent nodes sum bounded by 1 (2.7), adjacencies grouped by parti-
tion (2.9) and using clique coverage of the neighbourhood (2.10).
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Id At least 1 Exactly 1
gap time gap time

EW 20% 46.0% 5.472 45.8% 7.915
EW 40% 46.6% 17.324 46.6% 17.884
EW 60% 42.0% 93.578 42.0% 87.575
EW 80% 29.4% 354.612 29.2% 349.557

HK P=0.1 20.0% 0.112 20.0% 0.106
HK P=0.2 20.0% 0.136 20.0% 0.181
HK P=0.3 0% 0.434 0% 0.489
HK P=0.4 7.6% 0.398 4.8% 0.416

Table 6.1.2.1: Comparison of constraints specifying whether exactly one node
must be assigned one color in the partition, or at least one node should be
painted with at least one color.

∑
j∈C

wj ≥
∑
j∈C

jxij ∀i ∈ V (2.17)∑
j∈C

wj ≥
∑
j∈C

∑
i∈Pk

jxij ∀Pk ∈ P (2.18)

Results on table 6.1.3.1 show that there is very little difference between
the three variants. Overall, the simplest one, 2.16, seems to be the fastest
one to execute, although taking slightly more cuts iterations in non-medium
density graphs.

The graphics 6.4 present, as before, the evolution of the gap for these
different configurations on a representative binomial instance for each tested
density. Configuration 2.16 is shown to be not only the one returning the
best gap (even for very little difference with the others), but also the fastest
one.

6.1.4 Symmetry breaking

Results obtained from comparing no symmetry breaking constraints what-
soever with color label (2.11), node count (2.12) and minimum node label
(2.13,2.14) ordering restrictions are shown on table 6.1.4.1. The evolution of
the obtained gap in time for different densities is shown in figure 6.5.
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(a) EW 100 Nodes 20% Density (b) EW 100 Nodes 40% Density

(c) EW 100 Nodes 60% Density (d) EW 100 Nodes 80% Density

Figure 6.4: Comparison of the inclusion of model strengthening constraints
in the model, visualizing evolution of the gap during time in a cutting planes
algorithm. Compared constraints are: (2.16) which ensures that variable
wj is set only if a node uses color j, and (2.17) and (2.18) which eliminate
certain fractional constraints, adding over all colors of node and of a partition,
respectively.
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Id 2.16 2.17 2.18
gap niters time gap niters time gap niters time

EW 20% 45.8% 20.4 7.915 45.8% 15.8 7.318 45.8% 15.4 7.286
EW 40% 46.6% 32.6 17.884 46.6% 37.6 19.464 46.6% 32.0 17.748
EW 60% 42.0% 72.6 87.575 42.0% 84.2 91.272 42.0% 79.4 89.03
EW 80% 29.2% 192.4 349.557 29.4% 170.0 355.518 29.4% 180.6 378.936

HK P=0.1 20.0% 0.8 0.106 20.0% 0.8 0.108 20.0% 0.8 0.112
HK P=0.2 20.0% 1.0 0.181 20.0% 1.0 0.198 20.0% 1.0 0.184
HK P=0.3 0% 3.2 0.489 0% 3.2 0.552 0% 3.2 0.51
HK P=0.4 4.8% 5.2 0.416 4.8% 4.0 0.398 4.8% 5.2 0.438

Table 6.1.3.1: Comparison of different model strengthening constraints:
(2.16) which ensures that variable wj is set only if a node uses color j, and
(2.17) and (2.18) which eliminate certain fractional constraints, adding over
all colors of node and of a partition, respectively.

wj ≥ wj+1 ∀1 ≤ j < c (2.11)∑
i∈V

xij ≥
∑
i∈V

xij+1 ∀1 ≤ j < c (2.12)

xij = 0 ∀j > p(i) + 1 (2.13)

xij ≤
k−1∑
l=j−1

∑
u∈Pl

xuj−1 ∀1 < k ≤ q, ∀i ∈ Pk, ∀1 < j ≤ k (2.14)

It is with these constraints that significative changes in solution gaps are
found. While there is little difference between applying or not the simplest
restrictions 2.11 (although they are required for the validity of other inequal-
ities and bounds), stricter restrictions that further eliminate symmetrical
solutions report much lower gaps, in some cases even reaching optimality at
this stage.

Minimum partition index constraints (2.13,2.14) have the best gaps, re-
quire fewer cutting planes iterations, and run within acceptable times (in
some cases even faster than its counterparts). The graphics in 6.5 support
this, showing that 2.14 either reaches a better gap faster than the others,
or simply returns a better gap when solving the first relaxation (without
obtaining a big improvement when applying cutting planes).
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(a) EW 100 Nodes 20% Density (b) EW 100 Nodes 40% Density

(c) EW 100 Nodes 60% Density (d) EW 100 Nodes 80% Density

Figure 6.5: Comparison of the inclusion of different symmetry breaking con-
straints in the model, visualizing evolution of the gap during time in a cutting
planes algorithm. Compared constraints are: assigning the lowest color label
to the color class with the lowest node index (2.14), applying no constraint
whatsoever, forcing lower labels to be used first (2.11) and assigning the
lowest color label to the color class with the greatest number of nodes (2.12).
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6.1.5 Chosen formulation from cutting planes

Taking into account all previous results in a cutting planes algorithm,
the set of constraints that we will use in the pcp formulation for subsequent
computational experiments will be the following:

∑
i∈Pk

∑
j∈C

xij = 1 ∀Pk ∈ P (2.4)∑
i∈N(i0)

xi0j + rxi0j ≤ rwj ∀j ∈ C, ∀i0 ∈ V (2.10)

wj ≤
∑
i∈V

xij ∀j ∈ C (2.16)

xij ≤
k−1∑
l=j−1

∑
u∈Pl

xuj−1 ∀1 < k ≤ q, ∀i ∈ Pk, ∀1 < j ≤ k (2.14)

xij, wj ∈ {0, 1} ∀i ∈ V, ∀j ∈ C

First two constraints define the problem itself, by specifying that a node
must be colored in each partition and no color conflicts must occur; con-
straints 2.16 simply strengthen the linear relaxation; and 2.14 eliminate sym-
metrical solutions. Last set of constraints are the binary restrictions.

Note that while adjacency restrictions 2.7 reported better results than the
chosen ones (2.10) in most cases, the latter worked better in dense graphs,
which are the ones that, due to a larger problem size, take longer to solve
their linear relaxation. Therefore, we opt for improving the resolution of the
hardest graphs instead of getting slightly better results in the rest.

6.1.6 Branch and bound testing

While the previous formulation was chosen for working on a cutting planes
algorithm, we are also interested in the behaviour of different models in
standard branch and bound algorithms.

We tested many variations to the chosen model in a branch and bound
algorithm, bound to 1800 seconds, with graphs with 90 nodes, partition size
2 and different densities. The branch and bound uses default cplex settings,
no custom callbacks were yet applied.

We present in table 6.1.6.2 the following configurations, chosen based on
their results:

• C1: Chosen model from cutting planes experimentation phase.
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Id C1 C2 C3 C4 C5 C6 C7
EW 20 N=90 0% 0% 25.0% 0% 43.0% 25.0% 25.0%
EW 40 N=90 33.0% 22.0% 33.0% 33.0% 33.0% 28.0% 35.0%
EW 60 N=90 39.0% 37.0% 41.0% 37.0% 48.0% 15.0% 38.0%
EW 80 N=90 38.0% 43.0% 31.0% 39.0% 41.0% 10.0% 38.0%

Table 6.1.6.1: Gap obtained in a standard branch and bound algorithm for
different models.

• C2: Relaxes that exactly one node must be painted per partition (2.4)
by replacing it with at least one painted per partition (2.6).

• C3: Uses simple color conflict constraints, requiring that two adjacent
nodes cannot use the same color (2.7).

• C4: Strengthens the model using not only 2.16 restrictions but also
applying 2.18.

• C5: Uses no symmetry breaking constraints whatsoever.

• C6: Bases symmetry breaking on the number of nodes of each color
class (2.12).

• C7: Applies constraints 2.9 for color conflict.

Results were most interesting. The formulation chosen for the cutting
planes algorithm yielded good results only for lowest density graphs. In
other cases, using different models returned better results:

• In graphs with 40% density, relaxing the 2.4 constraint on painting one
node per partition greatly reduces the obtained gap, as can be seen in
the results for C2.

• In the most dense graphs, varying the strategy for symmetry breaking
to use constraint 2.12 yields much better results.

Considering the results returned by using constraint 2.12, we re-tested all
of the previous configurations changing the default symmetry breaking strat-
egy from 2.14 to 2.12, except for C1 which kept the original settings. This
time, we executed a branch and bound algorithm on much smaller graphs
(60 nodes), restricting ourselves to 10-minute runs and not providing the
algorithm with any initial solution, in order to obtain zero gap and compare
running times.
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Strategy 40% 60%
C1 17.41 151.12
C2 15.42 55.51
C4 4.47 30.30
C3 0.37 30.06
C6 4.48 30.50
C5 0.78 56.68
C7 51.47 15.22

Table 6.1.6.2: Running time until resolution obtained in a standard branch
and bound algorithm for different models, in binomial graphs with 60 nodes,
without providing an initial heuristic solution.

The most interesting results are found in 40% and 60% density graphs,
and are displayed in table 6.1.6.2. It is also worth noting that C7 was the
only one to solve all 80% density graphs to optimality.

This time, using a simpler model, both regarding color conflict and sym-
metry breaking, yielded very good results in low density graphs. In higher
densities, applying constraints 2.9 for color conflicts produces excellent re-
sults, which is surprising as the efectiveness of these constraints was highly
related to partition sizes, not densities.

Throughout this chapter we have tested a significant number of different
models, which were obtained by combining different constraints, and tested
them in different scenarios by using different algorithms. Results changed
greatly between those scenarios.

We arrived to a formulation in 6.1.5 based in data reported by a cutting
planes algorithm, which will be used throughout the following sections when
testing other components of the algorithm.

However, experimentation in 6.1.6 with branch and bound algorithms
showed that that formulation may not be the best choice for all scenarios.
Although we will stick to the 6.1.5 formulation for the following sections,
all the data obtained in this last subsection will be used to know which
alternative models should be tested under the branch and cut algorithm,
once primal heuristic, separation heuristics and branching strategies have
been properly set.
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6.2 Partitioned dsatur

Considering we had three different partitioned dsatur implementations
(see section 4.3), we ran quick tests on multiple graphs to determine how
they performed when executed for short periods of time. For each instance,
we executed the different algorithms for one minute, and report the lowest
bound for the chromatic number obtained, as well as how fast was this bound
obtained. Since we will be using dsatur mostly as an heuristic, it is of our
interest that good solutions are found as quickly as possible.

6.2.1 Hardest partition parametrization

Before comparing the three different algorithms, we had to fix the criteria
used to pick the hardest partition on each call in this variant of the algorithm1.
As we had already mentioned, the criteria used is a combination of:

• Color degree of the partition, defined as the number of different colors
adjacent to all of the nodes in the partition; considering that a larger
color degree implies a harder partition to color

• Size of the partition, as a larger partition being colored earlier helps
reducing the problem size, therefore the larger the partition the earlier
it should be handled

• Number of uncolored partitions adjacent to the partition, equivalent to
the tie breaking criteria used for classic dsatur

We generated six different configurations, based on all different possible
orderings of these items. For example, for the first configuration, we first
compared by the number of adjacent uncolored partitions, then by the degree
of saturation, and finally by the size of the partition. The following are the
configurations we established:

• C1: Uncolored, saturation, size

• C2: Saturation, uncolored, size

• C3: Uncolored, size, saturation

• C4: Saturation, size, uncolored

• C5: Size, uncolored, saturation

1Recall that this strategy picked the hardest partition on each call, and then the easiest
node from it.
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• C6: Size, saturation, uncolored

Results in table 6.2.1.1 show little difference for most instances in which
partition size is constant (fixed to two nodes). Whereas in some cases, mostly
those with lower density, configurations C1, C3 and C5 (those who choose the
hardest partition by number of uncolored neighbour partitions before than
by saturation degree) find the solution earlier, in other cases configurations
C2, C4 and C6 report better times. All of them find always nearly the same
values for the chromatic number.

Differences arise, however, when we have different partition sizes. Config-
urations C1 and C3, those who pick the partition on uncolored neighbours,
obtain better bounds in less time than the others. Surprisingly, configura-
tions based on partition sizes offer the worst results for these cases.

For graphs with partition sizes fixed to 2, which are the graphs with which
we will be working mostly, we will not take into consideration configurations
that use partition size as a criteria; also, as graphs with higher density have
been taking the longest time to process, we will prefer a configuration that
best deals with these cases, such as C2.

6.2.2 Strategies comparison

After fixing the hardest partition strategy to C2, we will compare its
performance with both the easiest node and the randomized easiest node
variants. We ran the same tests as before, and present the results on table
6.2.2.1.

Regardless of the configuration chosen for the hardest partition variant,
both easiest node strategies find much better bounds within the one-minute
running time. Within those two, the deterministic one offers slightly better
results, so it is chosen as the algorithm that we will be using for the following
experimentations.

As for the randomized version, we speculate that it might perform better
in larger graphs for lengthier running periods, since it has a chance to find a
different solution than the deterministic and obtain a sudden improvement
on the bound, whereas the deterministic may spend several iterations try-
ing similar assignments. However, in very short runs, like these ones, the
deterministic version is clearly preferred.
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Graphs easiest node randomized node hardest partition
chi found chi found chi found

EW 20 N=140 5.0 0.003 (5) 5.0 0.016 (1) 5.8 1.513 (0)
EW 40 N=140 8.0 4.172 (5) 8.2 27.334 (0) 9.6 16.875 (0)
EW 60 N=140 12.4 10.062 (3) 12.4 4.656 (2) 14.4 16.210 (0)
EW 80 N=140 18.6 25.522 (2) 18.4 10.769 (3) 21.8 8.137 (0)
EW 50 N=60 5.0 0.019 (5) 5.0 0.097 (3) 5.0 2.972 (0)
EW 50 N=80 6.0 2.584 (5) 6.4 0.778 (0) 7.0 0.659 (0)
EW 50 N=100 7.2 1.647 (5) 7.2 15.728 (1) 8.0 10.009 (0)
EW 50 N=120 9.0 0.041 (5) 9.0 1.619 (1) 10.0 1.578 (0)
EW 50 N=140 10.2 1.594 (4) 10.0 33.262 (1) 11.8 3.831 (0)
EW 50 N=160 11.2 5.134 (4) 11.8 2.575 (1) 13.4 6.353
EW 50 N=180 12.6 10.241 (5) 13.0 4.819 (1) 14.0 6.960 (0)
EW 50 N=200 13.6 14.634 (4) 14.0 0.966 (1) 15.4 0.766 (0)

EW 50 N=140 P=(1..2) 13.6 4.353 (3) 13.8 2.347 (2) 16.0 5.231 (0)
EW 50 N=140 P=(1..3) 9.6 31.634 (1) 9.8 8.309 (4) 11.4 11.575 (0)
EW 50 N=140 P=(1..4) 8.0 6.466 (5) 8.8 9.797 (0) 9.4 10.544 (0)
EW 50 N=140 P=(2..3) 7.4 11.172 (5) 8.0 0.047 (2) 8.8 0.488 (0)
EW 50 N=140 P=(2..4) 6.8 0.703 (5) 7.0 1.225 (0) 7.2 16.606 (0)
EW 50 N=140 P=(3..4) 5.8 1.497 (5) 6.0 0.650 (1) 6.6 4.122 (0)

HK P=0.1 N=140 4.0 0.016 (5) 4.0 0.044 (3) 6.4 0.019 (0)
HK P=0.2 N=140 6.0 0.016 (5) 6.0 0.166 (3) 9.0 9.803 (0)
HK P=0.3 N=140 8.0 0.009 (5) 8.0 0.119 (1) 11.8 20.744 (0)
HK P=0.4 N=140 9.8 0.003 (5) 9.8 0.006 (4) 14.2 6.800 (0)

Table 6.2.2.1: Best value obtained for the chromatic number and time at
which this value was obtained in one-minute runs for the hardest partition,
easiest node and randomized easiest node versions of dsatur. Value between
parentheses indicates for how many of the five instances that strategy was
considered the winner.
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6.3 Branching strategies

We evaluated the different branching strategies described in section 5.7
on regular graphs with fixed size and different density, in order to determine
which reports the best results. We used a simple branch and bound algorithm
bounded to 15 minutes of running time.

6.3.1 Priorities

The first test we implemented applied only priorities on the variables
during the problem’s initialization. Priorities were assigned according to the
following formula:

prio(xij) = αδP (vi) + βj

We tested with different values for α and β, both positive and negative,
to generate different priorities. Although we found hardly any differences
in higher density graphs, the ones with the lowest densities (20%) did have
significative differences.

In table 6.3.1.1 we report those (α, β) values which gave results better or
near the ones obtained when not using priorities, this is, allowing cplex to
choose automatically which variable to branch on.

Priorities Time Gap
α = 10, β = −1 232.57 0%
α = 10, β = 1 523.10 0%

cplex 570.72 0%

Table 6.3.1.1: Gap and running time for branch and bound executions on
20% density graphs with different priorities on the branching variables.

Clearly giving the highest priority to nodes with the highest δP (vi) value,
tie-breaking in favor of higher color labels, is the best static branching pri-
ority.

6.3.2 Dynamic strategies

Having fixed the priorities to set on the variables, we use them as tie
breaking strategies for the two devised strategies which depend on the vari-
able’s value (5.7.2 and 5.7.3).

We set up a suite of graphs of different size and density to test most
and less fractional strategies, as well as both degree of saturation strategies:
branching on a particular xij variable or creating one subproblem for each
possible color for a particular node vi. Results are displayed in table 6.3.2.1;

69



we report the resulting MIP gap, on which node that gap was obtained, and
how many nodes were explored during the 15 minutes of execution.

Within fractional strategies, branching on the most fractional variable
generates the best results, although there is little difference with the less
fractional criteria. There is a significative difference, mostly in low-density
graphs, between fractional and degree of saturation strategies. Whereas the
former requires less computational time to execute and allows the algorithm
to explore a larger number of nodes, the latter obtains a much smaller gap
much earlier in the exploration.

We will be using degree of saturation criteria, and test its both alterna-
tives in conjunction with a custom primal heuristic to determine the best
branching and primal configuration for the problem.

However, the obtained gaps were better using fixed priorities on the vari-
ables than using either dynamic strategy. We may infer that the overhead
generated by overriding the engine’s default behavior, and the computational
effort required iterating all the variables, cause the custom strategies to be-
have poorer than the fixed priorities. We will compare them again once we
add the custom primal heuristic in section 6.4.

6.3.3 Implied bounds

As explained in section 5.7.4, whenever we fix a variable xi∗j∗ to 1 when
branching, we have the possibility of fixing the value of other variables due
to logical implications:

• Fix all other variables in the partition to zero, as only one node must
be painted within the partition.

xij = 0 ∀i ∈ P (i∗), ∀j ∈ C, i 6= i∗ ∨ j 6= j∗

• Fix all variables corresponding to adjacent nodes with same color to
zero, due to color conflict restrictions.

xij∗ = 0 ∀i ∈ N(i∗)

• Fix all color variables wj to 1 for all labels less or equal than the current
lower bound χLB on the chromatic number.

wj = 1 ∀j ≤ dχLBe

We re-ran the previous test with the dsatur-2 configuration, with and
without these bounds, to check if the overhead generated by forcing multiple
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xij bounds wj bounds gap
On On 32.25%
On Off 42.25%
Off On 42.25%
Off Off 42.25%

Table 6.3.3.1: Gaps on branch-and-bound executions for different bounds set
during branching, using dsatur-2 branching strategy.

bounds on each branching is compensated by the reduction in the branch-
and-bound tree. Table 6.3.3.1 reflects the average gaps for different bounds
set.

Applying all bounds during the process clearly reports the best results.
The total number of nodes generated during the process was similar between
all the configurations, so the implied bounds do not generate a noticeable
overhead.

Therefore, we will be applying all bounds for both xij and wj variables
for all upcoming tests.
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6.4 Primal Heuristic

In this section we evaluate the effectiveness of the devised primal heuristic,
in comparison with the default heuristic provided by the cplex engine, in
the context of a branch and bound algorithm. We used the same test suite
as in section 6.3.

6.4.1 Using priorities branching

We first tested the primal heuristic using the simple priorities branching
scheme, which offered a good performance according to the results presented
in table 6.3.1.1. We ran our branch and bound using cplex’s default heuris-
tic, our custom degree-of-saturation primal heuristic, and a combination of
both. Executions were bounded to 30 minutes each, and we executed three
instances of each graph kind. Results are presented in table 6.4.1.1; for these
tests we evaluated not only the resulting gap, but also the improvement in
the upper bound from the initial solution (obtained by the initial heuristic)
to the final solution returned by the algorithm.

Graph cplex Priorities Priorities+cplex
Initial (impr) Gap Initial (impr) Gap Initial (impr) Gap

EW 20 N=90 4.0 (0/3) - 4.0 (0/3) - 4.0 (0/3) -
EW 40 N=100 6.0 (0/3) 44.8% 6.0 (0/3) 45.6% 6.0 (0/3) 45.6%
EW 60 N=80 8.0 (0/3) 38.7% 8.0 (0/3) 39.3% 8.0 (0/3) 39.3%
EW 80 N=100 14.3 (0/3) 45.9% 14.3 (2/3) 43.8% 14.3 (2/3) 43.7%

Table 6.4.1.1: Number of colors obtained in the initial heuristic, number of
instances in which this upper bound was improved by the primal heuristic
and resulting gap, for different primal heuristics in a branch and bound using
priorities branching.

These results show that the solution obtained initally is very difficult to
be improved during the branch and bound process, as it is very close to (or
effectively is) the optimal solution. Only in the most dense graphs a coloring
better than the initial one was found, and it occured in two of three instances,
and in both cases the difference was just a single color. It is worth noting
that it is the dsatur heuristic that improves the initial solution, whereas
the default one provided by cplex does not.

However, in graphs other than the 80%-density ones, the resulting gap
is better when the custom dsatur primal heuristic is turned off. This is
because the time spent executing the heuristic is invested in walking the
branch and bound tree, this improving the lower bound and reducing the
gap.
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It is important to note thet we also tried alternative configurations, in
which the primal heuristic was applied much more aggressively, or for a
longer period of time each time it was invoked, obtaining exactly the same
improvements in the upper bound as the ones just presented.

6.4.2 Using dsatur-(C+1) branching

Next, we used the dsatur-(C+1) branching criteria instead of the prior-
ities branching strategy. We analyze the same results as before for the same
three settings: using only cplex default primal heuristic, using only our
custom dsatur primal heuristic, and using both at the same time. Results
are presented in table 6.4.2.1.

Graph cplex dsatur dsatur+cplex
Initial (impr) Gap Initial (impr) Gap Initial (impr) Gap

EW 20 N=90 4.0 (0/3) 16.7% 4.0 (0/3) 16.7% 4.0 (0/3) 16.7%
EW 40 N=100 6.0 (0/3) 33.3% 6.0 (0/3) 33.3% 6.0 (0/3) 33.3%
EW 60 N=80 8.0 (0/3) 37.2% 8.0 (0/3) 37.5% 8.0 (0/3) 37.5%
EW 80 N=100 14.3 (0/3) 41.4% 14.3 (2/3) 40.3% 14.3 (2/3) 38.9%

Table 6.4.2.1: Number of colors obtained in the initial heuristic, number of
instances in which this upper bound was improved by the primal heuristic
and resulting gap, for different primal heuristics in a branch and bound using
dsatur-(C+1) branching.

The conclusions that can be drawn from these results are the same as the
ones from the previous set, only that in this case the increase in the gap when
the primal heuristic is turned on, is much smaller in 40% and 60% density
graphs. The custom dsatur primal heuristic does find a better integral
solution in the same two graphs, and cplex still does not.

What is worth noting is that there is a considerable reduction in the re-
sulting gap when the default primal heuristic is used along with the custom
one. Even though the upper bounds obtained in both cases is exactly the
same, the gap becomes actually smaller when more effort is put into the pri-
mal heuristic, as the lower bound is increased when cplex’s primal heuristic
is used. We could not find a sensible explanation for this situation, and
cplex not disclosing its internal behaviour regarding to default procedures
was certainly not helpful.

6.4.3 Comparison

Even though the priorities branching scheme by itself generated better
results than the degree of saturation branching strategy, when adding a pri-
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mal heuristic the results changed. Except for low-density graphs, in which
the overhead generated by the branching strategy seems counter-productive,
dsatur-(C+1) branching performed better than its counterpart.

Regarding the primal heuristic itself, as long as the initial heuristic pro-
duces solutions very close to the optimum, any primal heuristic will not be
able to improve the upper bound, and will end up reducing the time available
for exploring the tree without producing any useful results. This seems to
be the case for most graphs, except for the ones with the highest density.
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6.5 Cuts

Given the different cutting planes families we had implemented, we tested
their effectiveness in a cutting planes algorithm. The algorithm was executed
until no further planes could be generated, which took no more than a few
hundred rounds. We used binomial graphs with fixed size and partitions of
exactly two nodes, with different densities.

The tests we executed were aimed at determining the performance of each
family, as well as the engine’s default generic separation algorithms. We first
measured the resulting gap and required time after all the cutting planes
rounds that could be executed; these values are shown in table 6.5.1.1.

We were also interested in how many cuts of each family were generated by
our algorithm, in order to know with how many inequalities each algorithm
was contributing to the cutting planes scheme. These data, for the same
graphs and families combination, with and without cplex’s cuts enabled, is
presented in table 6.5.1.2.

6.5.1 Results

The first clear conclusion, drawn from the first table, is that extended
clique and block color cuts alone produce a great improvement in the obtained
gap, with respect to cplex’s generic cuts, which is easy to explain as they are
cuts created particularly for this problem. Since denser graphs have larger
cliques, it is also understandable that in those cases the gap improvement is
even larger.

As for the addition of the other cuts families, there is little difference with
respect to the results obtained using only clique and block color cuts, not
only in gap but also in total running time, which implies that the running
time of their separation algorithms is rather low. The addition of cplex’s
generic cuts reports a small benefit in low-density graphs, in which clique
cuts cannot be exploited much.

It is worth noting from table 6.5.1.2 that there is a huge difference between
the number of clique cuts generated and the other families. Even in low-
density graphs, extended clique cuts are an order of magnitude greater than
component hole or path cuts.

As for partitions graph independent set cuts, they are considerably dif-
ficult to generate, as partitions graphs tend to have a very high number of
unconnected nodes. Only a few of these cuts are generated in some medium-
density graphs, which explains the lack of change in gap or rounds when
adding these cuts to the cutting planes algorithm.

Given these observations, our strategy for the branch and cut algorithm
will be to aggressively apply block color and extended clique cuts until no
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more than a number K is generated in a round, in which case we also enable
component independent set cuts in an attempt to remove the fractional so-
lution. Therefore, most of the computational effort will be centered around
cliques, which are the ones that provide the best cuts, and only fall back to
the rest when these family fails to find a valid cut.
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6.6 Branch and cut

Last but not least, in determining the best configuration for the different
components of a branch and cut algorithm, we evaluated the algorithm’s
performance with different settings relative to the whole branch and cut
process. We evaluated different criteria for running the exhaustive implicit
enumeration in subtrees, as described in 5.9, and also different MIP relative
parameters in the underlying cplex framework we used.

6.6.1 Exhaustive implicit enumeration

Our first test, once most parameters in the branch and cut algorithm
were fixed, was to determine the threshold to run a full dsatur on a node
once enough partitions’ colors had been fixed during the branching process.
Since the algorithm considered only non-fixed partitions for its execution, we
experimented with values within acceptable ranges for an exhaustive enu-
meration: we chose 20, 40 and 60 as the number of remaining partitions to
color which triggered the enumeration.

We used graphs of 100 nodes with 2 nodes per partition and different
densities, in branch and cut executions of 30 minutes, to check the behaviours
of these strategies.

Results were not encouraging, as shown in table 6.6.1.1. Setting a low
number of unfixed partitions as the threshold to start the exact algorithm
caused the algorithm to be never invoked, as the branch and cut itself could
prune the whole subtree after very few partitions were colored in the branch
process.

On the other hand, making the exact dsatur start earlier caused the
algorithm to consume much more time than the available, surpassing the 1800
seconds bound for high-density graphs, or simply left less time to explore a
larger number of nodes, in both cases greatly hurting the obtained gap.

As a result of these experiments, we will be enabling exhaustive implicit
enumeration only for very low thresholds (20 partitions pending) in order to
avoid any problems caused by running the exact algorithm for long periods.
Although this setting may cause the algorithm to never be triggered, in other
cases such as larger graphs with a greater time bound there is a possibility
for this algorithm to actually be effective.

6.6.2 Probing

An available setting in the cplex framework is the probing level. This
controls how much processing is invested in a preprocessing stage to derive
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Graph 20 40 60
# times nodes gap # times nodes gap # times nodes gap

EW 20% 0.00 11833 25% 0.00 11834 25% 115.33 11877 25%
EW 40% 0.00 2341 22% 0.00 2341 22% 192.33 2368 30%
EW 60% 0.00 1226 22% 0.00 1226 22% 345.00 1050 29%
EW 80% 0.00 308 19% 2.00 314 19% 28.00 119 21% (*)

Table 6.6.1.1: Average number of times the enumeration was triggered, num-
ber of nodes in the tree and resulting gap, for different number of uncolored
partitions for triggering the exhaustive enumeration; on graphs with 100
nodes and 2 nodes per partition. The execution marked with a (*) indi-
cate that the execution of the enumeration algorithm took an unacceptable
amount of time for the imposed bounds.

logical implications from setting binary variables to a fixed value. As cplex’s
manual [29] explains:

Probing is a technique that looks at the logical implications of
fxing each binary variable to 0 (zero) or 1 (one). It is per-
formed after preprocessing and before the solution of the root
relaxation. Probing can be expensive, so this parameter should
be used selectively. On models that are in some sense easy, the
extra time spent probing may not reduce the overall time enough
to be worthwhile. On diffcult models, probing may incur very
large runtime costs at the beginning and yet pay off with shorter
overall runtime.

We experimented with binomial graphs of fixed size and different densi-
ties, as usual, with different probing levels set. Results are shown in table
6.6.2.1, and differ greatly between different densities.

For low densities, a moderate level of probing seems to be the best option,
as it managed to explore a greater amount of nodes in the tree during the
imposed 1800 seconds.

On the other hand, greater densities seems to benefit more from disabling
probing whatsoever, as the custom bounds implied during the branch process
(see 5.7.4) benefit largely from higher-degree nodes, making the engine’s
probing unnecesary and yielding a better gap.

Therefore, we will be using moderate probing settings for low density
graphs, and disabling probing altogether for higher densities.
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Graph disabled moderate aggressive very aggressive
nnodes gap nnodes gap nnodes gap nnodes gap

EW 20% 11319.00 25% 23284.33 25% 24523.67 25% 24517.67 25%
EW 40% 2366.67 22% 5396.67 22% 2348.00 22% 2345.33 22%
EW 60% 1227.67 22% 1227.33 22% 1171.67 22% 1171.33 22%
EW 80% 347.00 15% 346.00 19% 308.33 19% 309.00 19%

Table 6.6.2.1: Average number of nodes in the tree and resulting gap, for
different MIP probing levels; on graphs with 100 nodes and 2 nodes per
partition.

6.6.3 Emphasizing feasibility and optimality

Arriving to an optimal solution in a branch and cut algorithm requires
both (1) obtaining integral feasible solutions of decreasing objective value,
and (2) generate a proof that the best integral solution obtained is actually
an optimum. The emphasis the framework puts on these two parts of the
algorithm is controlled by a MIP emphasis parameter, which can be given
the following values:

• Balanced: Have a reasonable balance between feasibility and optimal-
ity, which is the default behaviour.

• Emphasize feasibility: Focus on feasibility instead of optimality,
which produces better solutions earlier and works better under tight
time constraints when an optimality proof is not necessary.

• Emphasize optimality: Focus on the proof of optimality by attempt-
ing to raise the best bound2 faster.

• Emphasize best bound: Focus even more in the proof of optimality
by attempting solely to move the best bound; this causes intermediate
optimal solutions to be rarely found as it cares exclusively to arrive to
a final optimal solution.

• Hidden feasibility: Attempts to find high quality feasible solutions
that are considered hidden, this is, difficult to obtain through the
branch and cut process; this causes the proof of optimality to take
longer than with other settings.

We evaluated these different configurations in the usual set of binomial
graphs, reporting both gaps and number of nodes explored in the tree; results

2The best bound is the lowest possible value that an integer feasible solution could
have.
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are shown in table 6.6.3.1. All of them arrived to the same gap values, but
there were observable differences between the number of nodes explored in
the tree.

For low density graphs, emphasizing the best bound yielded the high-
est number of nodes explored within the same time frame, while in higher
density graphs a balanced approach managed to explore more nodes. These
configurations will be used for further experimentation, depending on the
processed graph’s density.

Graph balanced feasibility optimality best bound hidden
nodes gap nodes gap nodes gap nodes gap nodes gap

EW 20% N=100 11840 25% 11705 25% 18266 25% 20810 25% 11841 25%
EW 40% N=100 2343 22% 2186 22% 3055 17% 3707 17% 2342 22%
EW 60% N=100 1226 22% 1219 22% 820 22% 675 22% 1225 22%
EW 80% N=100 308 19% 305 19% 188 19% 104 19% 308 19%

Table 6.6.3.1: Average number of nodes in the tree and resulting gap, for
different MIP emphasis settings.
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Graph S1 S2 S3
gap time nodes gap time nodes gap time nodes

EW 20% N=90 16.7% 5295 56954 16.7% 4412 46356 0.0% 3014 32668
EW 40% N=90 16.7% 5400 17160 16.7% 5400 17237 16.7% 5400 27439

Table 6.6.4.1: Average solution gap, running time and number of nodes in
the tree, for different model strategies for low density binomial graphs. For
each tested graph, all strategies obtained the same number of colors in the
solution.

6.6.4 Alternative models

After fixing all of the parameters involved in the different components
of the branch and cut algorithm, we decided to revisit the first step and
re-evaluate alternative model formulations, this time using the full branch
and cut algorithm for comparing the different configurations in executions
bounded to 90 minutes.

Most strategies tested are variations of the model chosen originally in
section 6.1.5, usually motivated by the results obtained in 6.1.6. Neverthe-
less, some of them include certain modifications to other artifacts such as
primal heuristic, branching strategies or probing; the rationale being evalu-
ating already obtained results in the context of the complete branch and cut
algorithm.

We tested separately low-density and high-density binomial graphs, with
a fixed number of 90 nodes and 2 nodes per partition.

Low density graphs

For graphs with 20% and 40% density, the following strategies were pro-
posed:

• Strategy 1: Relax symmetry breaking constraints, using simple 2.11
instead of 2.14 and 2.13; also disables cplex probing feature.

• Strategy 2: Relax the restriction that every partition must have ex-
actly one node colored, and allow for more than a single node to have
a single color; this is, replace restrictions 2.4 for restrictions 2.6.

• Strategy 3: Model being executed in previous tests, as described in
section 6.1.5.
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High density graphs

As for higher density graphs, 60% and 80%, we tested the following five
different strategies:

• Strategy 1: Uses 2.7 and 2.8 equations for color conflicts, this is,
requires that the sum of two adjacent vertices for the same color is at
most 1, which are far more simple than the 2.10 constraints used in
previous experiments. Also simplifies symmetry breaking by relying
solely in using labels with a lower index first (2.11).

• Strategy 2: Model being executed in previous tests, as described in
section 6.1.5.

• Strategy 3: Color conflicts are handled with constraints 2.9, and uses
symmetry breaking constraints 2.11 as strategy 1.

• Strategy 4: Uses number of vertices in each color class as symmetry
breaking constraint, this is, replaces constraints 2.14 with 2.12; and
further strengthens the model by applying contraints 2.18 instead of
2.16, which predicate over whole partitions instead of individual nodes.

• Strategy 5: Same as the previous one, but color conflicts are handled
with constraints 2.9 as in strategy 3.

Graph S1 S2 S3 S4 S5

EW 60% N=90
Gap % 23.1% 23.1% 23.1% 23.1% 23.1%

Solutions [8,9,9] [8,9,9] [8,9,9] [8,9,9] [8,9,9]

EW 80% N=90
Gap % 15.8% 15.4% 11.1% 15.8% 11.1%

Solutions [12,13,13] [13,13,13] [12,12,12] [12,13,13] [12,12,12]

Table 6.6.4.2: Average resulting gap and number of colors in the obtained
solutions, for different model strategies for high density binomial graphs.
Running time is not reported as all runs hit the 5400 seconds time bound.

Results

Results for both low-density and high-density tests are presented in tables
6.6.4.1 and 6.6.4.2. Even though graphs with 40% and 60% density exhibited
little to no differences among the strategies (the only exception being the
higher number of nodes explored in the branch and cut tree by strategy 3 on
40%-density graphs), there were remarkable differences in the most sparse
and dense graphs.
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All graphs with 20% density were solved to optimality when using the
model exhibited in section 6.1.5, which was the original formulation derived
from cutting planes experiments.

80%-density graphs, on the other hand, obtained better solutions on
strategies 3 and 5, which are the ones that use 2.9 constraints for color con-
flicts. Recall from section 2.2.2 that this family is simpler than 2.10, which
relied on an extended clique coverage of each vertex’s neighbourhood; also,
in graphs with large partitions or high density, it spans less inequalities than
the standard 2.5 constraints.

6.6.5 Primal heuristic and DSatur branching

We also wanted to test the impact of disabling dynamic branching strate-
gies and custom primal heuristic in low density graphs, as these artifacts had
proven to have a negative impact in branch and bound algorithms for graphs
with very low density (see 6.3 and 6.4).

DSatur Branch Primal Heuristic EW 20% N=90 EW 40% N=90
Enabled Enabled 16.7% 16.7%
Disabled Enabled 25.0% 27.8%
Disabled Disabled 25.0% 27.8%

Table 6.6.5.1: Average gap obtained in low density graphs for Strategy 1 when
disabling dsatur dynamic branching strategy and custom primal heuristic
on a branch and cut algorithm.

However, in a branch and cut algorithm, the aforementioned results are
reverted, as can be seen in table 6.6.5.1

6.6.6 Cuts Iterations

We also wanted to evaluate the effect of changing how cuts are applied
throughout the branch and cut tree. In section 6.5 we tested how the addition
of different cuts families improved the obtained results; now we check how
varying the number of cuts rounds in each node affected the results.

Results in 6.6.6.1 show that the configuration used so far (100 cut itera-
tions in the root node, 1 iteration per internal node, and local cuts) yields
the best results for all densities. As usual, the most noticeable differences
appear in graphs with very low or high density.
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Cuts settings Graph density
iters root / inner locality max depth 20% 40% 60% 80%

100/1 local unbounded 0.0% 16.7% 23.1% 11.1%
100/20 global 10 16.7% 16.7% 25.8% 16.9%
100/20 local 10 0.0% 16.7% 23.1% 13.4%
100/5 local 15 0.0% 16.7% 23.1% 13.4%
500/1 local unbounded 0.0% 16.7% 23.1% 11.1%

Table 6.6.6.1: Average gap obtained for different cuts settings, varying the
number of iterations in the root node and in internal nodes, whether cuts
are applied globally to the whole branch and cut tree or only to the local
subtree, and maximum tree depth at which cuts are still applied. All graphs
are binomial with 90 nodes and 2 nodes per partition, and only density is
changed.
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6.7 Final Results

Having fixed the best configurations of the algorithm for binomial random
graphs in the previous sections, such as models, initial heuristic, branching
strategies, primal heuristic and cuts, we now compare our branch and cut
algorithm for pcp against other solutions.

6.7.1 Comparison with CPLEX

The first evaluation to perform is to analyze the improvement introduced
by the custom modifications we made on top of the cplex engine, by com-
paring our results to those returned by an unmodified execution of cplex3.

We used binomial random graphs with 90 nodes, 2 nodes per partition,
and picked 2 instances for each node-density pair; with running time of 2
hours.

First, we compared our algorithm to cplex’s default branch and cut, both
with and without fixing an initial clique and performing other simplifications
to the model (described in section 5). In all cases we provided the same
initial solution χ0, which considerably reduced the number of variables in
the model by eliminating those xij and wj with j > χ0.

Then, we performed the same tests, but this time using cplex dynamic
search algorithm, instead of the traditional branch and cut we were using.
This algorithm, introduced in version 11 of cplex and improved in version
12, uses the same building blocks as traditional branch and cut, but does not
allow for user customization via callbacks, therefore working as a black box
solver, often yielding better results than its counterpart.

Graph Cplex branch and cut Cplex branch and cut Custom pcp
w/o initial clique with initial clique branch and cut

gap time gap time gap time
EW 20% N=90 0.0% 1.49 0.0% 1.48 0.0% 0.141
EW 40% N=90 16.7% 7200 16.7% 7200 16.7% 7200
EW 60% N=90 33.3% 7200 36.7% 7200 22.2% 7200
EW 80% N=90 26.7% 7200 23.3% 7200 11.3% 7200

Table 6.7.1.1: Average gap and running time in seconds for graphs with
different densities, comparing our custom pcp branch and cut algorithm with
cplex’s default branch and cut, with and without fixing an initial clique for
the resolution.

3All tests were performed against version 12.1 of cplex.
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Graph Cplex Dynamic Search Cplex Dynamic Search Custom pcp
w/o initial clique with initial clique branch and cut

gap time gap time gap time
EW 20% N=90 0.0% 0.758 0.0% 0.758 0.0% 0.141
EW 40% N=90 16.7% 7200 16.7% 7200 16.7% 7200
EW 60% N=90 22.2% 7200 22.2% 7200 22.2% 7200
EW 80% N=90 11.8% 7200 12.0% 7200 11.3% 7200

Table 6.7.1.2: Average gap and running time in seconds for graphs with
different densities, comparing our custom pcp branch and cut algorithm
with cplex’s dynamic search, with and without fixing an initial clique for
the resolution.

The obtained results showed that the customizations oriented towards
solving the pcp did produce an improvement in the solution. The difference
with CPLEX’s traditional branch and cut algorithm is remarkable, requiring
10% of the time to solve to optimality in sparse instances, and achieving more
than a 10% improvement in graphs with a high density.

As for CPLEX dynamic search, it is clear that it performs much better
than its branch and cut, but there are still improvements attained by our
algorithm in graphs with very low and high density, in terms of time and gap
respectively.

Something interesting to notice is that fixing the initial clique does not
always report a benefit when running CPLEX algorithms, even though it
did report a significative improvement on our customized algorithm.

6.7.2 Alternative partition sizes

Since we used 2 as the de facto partition size for most of our tests, it was
pending to analyze how the algorithm performed when varying the size of the
partitions. Using binomial random graphs, with 90 nodes, 60% density and
partition sizes ranging from 1 to 6, we executed our branch and cut algorithm,
as well as CPLEX’s branch and cut, and reported gap and running time.

Results in table 6.7.2.1 show that the most difficult graphs to solve are
those with partition sizes equal to 1, 2 and 3, regardless of which algorithm
is being used. In all those cases, the implemented branch and cut algorithm
performed better (or same as) CPLEX’s branch and cut. Note that a parti-
tion size equal to 1 makes this problem equivalent to standard graph coloring,
which is known to be difficult to solve.

Larger partition sizes, such as 4, and specially 5 and 6, are much easier to
solve. All instances were solved to optimality by all the algorithms, although
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Graph Cplex branch and cut Cplex branch and cut Custom pcp
w/o initial clique with initial clique branch and cut

gap time gap time gap time
EW P=1 37.1% 7200 19.8% 7200 17.6% 7200
EW P=2 45.2% 7200 24.0% 7200 18.8% 7200
EW P=3 26.7% 7200 26.7% 7200 26.7% 7200
EW P=4 - 2880 - 2878 - 5119
EW P=5 - 16 - 16 - 86
EW P=6 - 20 - 20 - 255

Table 6.7.2.1: Average gap and running time in seconds for graphs with
different partition sizes, comparing our custom pcp branch and cut algorithm
with cplex’s branch and cut, with and without fixing an initial clique for
the resolution. All graphs are random binomial graphs, have 60% density
and 90 nodes.

our branch and cut required slightly more time than CPLEX’s. This was an
expected result, as we fine-tuned all the parameters of our algorithm in order
to excel at dealing with small partition sizes (which are the most difficult to
handle); therefore, in other scenarios for which we did not customize it, it
can be outperformed by generic solvers.

6.7.3 DIMACS instances

To check the performance of our algorithm on particularly difficult graphs,
we chose a few graphs from the dimacs [1] graph coloring challenge, and
arbitrarily partitioned them in partitions of 2 nodes. We once again compared
our algorithm to CPLEX’s branch and cut, and reported running time and
solution gap.

The results in table 6.7.3.1 report only one value for CPLEX’s branch
and cut, even though we executed it with and without fixing the values for
an initial clique. The reason for this is that fixing those values did not report
any modification on the obtained results; this could be due to the particular
nature of the graphs being tested, since some of them, such as Mycielski’s,
can have relatively large chromatic numbers while keeping a comparatively
very low clique number.

The obtained gaps show there is no winner between both algorithms:
depending on the structure of the graph, the custom branch and cut algo-
rithm implemented for pcp performs better than CPLEX’s, or vice-versa.
The former works better than the latter in medium and high density ran-
dom graphs (DSJC), as most of the developed artifacts were oriented to-

90



Graph Cplex B&C Custom pcp
time gap time gap

dimacs1-FullIns 5 7200 16.7% 7200 31.7%
dimacs1-Insertions 5 7200 33.3% 7200 33.3%
dimacs1-Insertions 6 7200 67.0% 7200 57.1%

dimacs2-FullIns 4 452 0.0% 7200 16.7%
dimacs2-FullIns 5 7200 28.6% 7200 39.3%

dimacs2-Insertions 5 7200 50.0% 7200 56.7%
dimacs3-FullIns 4 7200 14.3% 7200 14.3%

dimacs3-Insertions 4 7200 40.0% 7200 40.0%
dimacs4-FullIns 4 7200 12.5% 7200 12.5%

dimacs4-Insertions 3 3084 0.0% 774 0.0%
dimacs4-Insertions 4 7200 40.0% 7200 40.0%

dimacsDSJC125 7200 32.8% 7200 22.9%
dimacsDSJC250 7200 N/A 7200 49.4%
dimacsmyciel6 7200 28.6% 7200 26.8%
dimacsmyciel7 7200 50.0% 7200 49.7%

Table 6.7.3.1: Average gap and running time in seconds for certain dimacs
challenge graphs, with arbitrary partitions of size 2, comparing our custom
pcp branch and cut algorithm with cplex’s branch and cut.

wards these cases; whereas small or sparse graphs derived from Mycielski’s
(FullIns-5, Insertions-5) are better handled by CPLEX, the only exception
being Insertions-6, with 3% density and 600 nodes.

In most cases, obtained gaps were large for both algorithms, showing
the difficult nature of this graphs for the coloring problem, which is clearly
extended to partitioned coloring.

6.7.4 Comparison with Asymmetric Representatives
Branch and Cut

We also compared our algorithm to the other branch and cut algorithm
designed specifically for the pcp we found in the literature: the one devised
by Frota, Maculan, Noronha and Ribeiro in [9], based on the asymmetric
representatives formulation for traditional coloring, ([6],[5]).

It is worth noting that both implementations and execution environ-
ments differ considerably. While the aforementioned algorithm was run under
Linux, implemented in C++ and using XPRESS to solve linear relaxations,
our algorithm was executed in Windows, implemented in Java and built on
top of the CPLEX engine using its Java API. This makes both algorithms
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difficult to compare using the reported results of their respective implemen-
tations; nevertheless, we will be presenting this comparison as an informative
result.

Even though multiple results are presented in [9], we focused in the num-
ber of instances reported to have been solved to optimality in random graphs
with 90 nodes and 2 nodes per partition, with different edge densities (which
is also the kind of graphs in which we focused our testing in these last sec-
tions).

For each density, we executed our algorithm in five instances of binomial
(Erdos-Rényi) graphs and five instances of powerlaw-cluster4 (Holme-Kim)
graphs. Every graph instance was ran until the optimal solution was found,
or for up to two hours.

Graph B&C B&C Frota et al.
Density Binomial Holme-Kim

20% 100% (5/5) 100% (5/5) 20% 3/15
40% 0% (0/5) 100% (5/5) 7% 1/15
60% 0% (0/5) 60% (3/5) 80% 12/15
80% 0% (0/5) 0% (0/5) 100% 15/15

Table 6.7.4.1: Fraction of the tested instances that were solved to optimality
using the implemented branch and cut algorithm on both binomial and pow-
erlaw cluster graphs of different densities, and fraction solved to optimality
as reported by Frota et al. in [9].

The obtained results (presented in table 6.7.4.1) are most interesting.
Whereas our algorithm outperforms [9] in low density graphs, the latter wins
in high density graphs. It is also worth noting that our algorithm handles
clustered graphs much better than binomial ones, most probably because of
the high level of symmetry usually found in binomial graphs.

Also, both algorithms have a tight bound on the difference between the
lower bound and the solution found in most cases: for algorithm by Frota
et al. this difference is never greater than one color, and in our algorithm
it reaches its maximum difference of two colors only in a few high-density
binomial graphs.

4As described in 6.0.2, these graphs are generated by three parameters: node count n,
number of nodes m to which each new node is attached, and probability p to add an extra
edge generating a triangle when a new node is added. These graphs are constructed with
an initial empty graph of size m. In order to attain densities higher than 50% with this
kind of graphs, we modified the algorithm to start with a binomial graph of size m, and
iteratively expand it to the desired node count n using the original procedure.
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These results show that different models and different algorithms can
tackle the same problem efficiently in different cases. While our algorithm
easily solved low density instances, the branch and cut based on the asym-
metric representatives model for the pcp performs clearly better in high
density graphs. Instances with medium density are still the most difficult to
solve, as also happens in standard coloring problems.
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Chapter 7

Conclusions

The graph coloring problem is one of the most vastly studied problems
on graphs. In this work, we studied one of its many variants: the partitioned
graph coloring problem, or pcp, which is closely related to the min-RWA
problem in WDM networks. Our main objective was to solve this problem
efficiently using binary integer programming techniques, eventually leading
to a branch and cut algorithm.

7.1 Recapitulation

We built our initial model of the problem by generalizing the one proposed
by Méndez-Dı́az and Zabala in [22] for standard coloring, and experimented
with multiple alternatives for expressing the constraints that shape the pcp,
as well as with different symmetry breaking constraints adapted from stan-
dard coloring. It soon became clear that the symmetry of solutions was one
of the most difficult parts of this problem, as happens with standard coloring.

A partial analysis of the polyhedron defined by our proposed model was
made, in order to obtain valid inequalities to be used as cuts in the algorithm.
We found out that most of the cuts present in [22] could be generalized to
partitioned coloring, converting clique cuts into extended clique cuts, as well
as independent set cuts into component independent set cuts. We also defined
the concept of partition graph for a partitioned graph, and defined how to
migrate certain families of inequalities found in the former into the latter.

Having done an analysis of the polyhedron, we focused in developing a
strong heuristic for the problem, which would later be used not only as an
initial heuristic to provide a starting integer solution for the algorithm, but
also as a primal heuristic and as a component of the branching strategy. The
chosen heuristic was actually an exact method, dsatur, which is an implicit
enumeration algorithm, but produces solutions of very high quality very early

94



in its exploration, thus executing it under a strict time bound makes it an
excellent heuristic. Since dsatur is an algorithm for standard coloring, we
tested different generalizations of it, eventually choosing the one proposed in
[17], and introduced certain optimizations for our particular algorithm.

Armed with several families of valid inequalities and an heuristic algo-
rithm for our problem, we used them as building blocks for our branch
and cut algorithm. Starting with a generic B&C scheme provided by the
cplex engine, we implemented a custom initial heuristic, primal heuristic,
and branching strategy, as well as our set of cutting planes along with their
separation procedures. A strong preprocessing stage allowed for larger in-
stances to be handled by our algorithm.

We made extensive testing of all of these custom artifacts, evaluating
different configurations for each of them under different circumstances, and
eventually fine-tuned our algorithm for it to handle different instances of the
pcp.

7.2 Results obtained

We obtained several results from the experimentation. First of all, we
found out that our heuristic procedure quickly generated solutions very close
to the optimum, and the most difficult part in the branch and cut algorithm
was to improve the lower bound to prove the optimality of the solution. This
made cutting planes play a critical part in our work.

In the analysis we made of the polyhedron, making heavy use of porta
for identifying the facets of particular instances of our model, we discovered
that several families of the standard coloring problem were also found in our
models, albeit with slight variations. Since the standard coloring problem can
be considered a particular case of the pcp, it is reasonable to deduce that a
partial characterization of the latter can be derived from one of the former;
this is the method we used to obtain valid inequalities for our problem.

We also found certain restrictions without an equivalent in the standard
coloring polytope: this could have been either because they relate to a yet
non-discovered facet of standard coloring, or because the addition of parti-
tions to the problem introduces whole new families, pending to be studied.

Regarding performance in comparison with cplex’s default MIP engine,
our algorithm showed that the development of custom artifacts for the pcp
did generate a difference in the quality of the obtained solutions.

Also, it was most interesting to find out that, compared to the other
integer linear programming model existing in the literature ([9]), the model
we used performs much better in graphs with low density, whereas this trend
is exactly reversed in high density graphs. This proves that certain models
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may be more adequate than others for dealing with certain families of graphs.
Consequently, it is critical to identify for which families a particular model

(and therefore, a particular algorithm) is more suitable than other, in order
to find the correct tool for each particular problem. Discovering which prop-
erties of each graph family are being exploited by each model would also
provide valuable insight for further optimizing the algorithms being devel-
oped.

7.3 Future work

There are several paths for continuing this work. The first of them is to
dwelve deeper into the characterization of the pcp polyhedron defined by the
propsed model. Even though we presented certain inequalities in this work,
there are yet many remaining to provide a complete description. This task
has not been even accomplished for the standard coloring problem; neverthe-
less, there are certain inequalities found for coloring which we have not yet
generalized into pcp, such as multicolor inequalities, which could provide
more cutting planes to work towards a more effective proof of optimality
for the obtained solutions in the branch and cut. Since improving the lower
bound was the most difficult task for our algorithm, implementing more fam-
ilies of cutting planes might yield some interesting improvements in terms of
obtained gaps.

Further analysis of the heuristic procedures developed is also a pending
subject. In this work we evaluated the heuristic methods only with respect to
their usefulness in the context of a branch and cut algorithm; however, these
procedures have proved to obtain very good solutions by themselves, and an
analysis of their performance as stand-alone long-running algorithms would
be most interesting. To illustrate this point, for small graphs, the implicit
enumeration done by partitioned dsatur actually proved the optimality of
the solution it produced, much faster than its branch and cut counterpart.

Testing the branch and cut algorithm under other scenarios is also an-
other possibility for further development of this work. Throughout our ex-
perimentation, we evaluated our algorithm mostly in random graphs with
two particular structures (binomial and clustered) with bounded partition
sizes. Implementing an edge-disjoint heuristic to generate graphs from ac-
tual WDM networks would provide the means to test our algorithm under
real-world scenarios for the min-RWA problem.
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