Resolución de la ecuación de transporte mediante el método de las características en el código neutrónico milonga

Vignolo, R.<sup>1</sup> Theler, G.<sup>2</sup>



22 de Noviembre de 2016

XLIII Reunión Anual de la Asociación Argentina de Tecnología Nuclear

- ▶ Free software, both as in free speech and as in free beer;
- Wasora should be seen as a syntactically-sweetened way to ask a computer to perform a certain mathematical calculation:

 $\dot{x} = \sigma (y - x)$  $\dot{y} = x (r - z) - y$  $\dot{z} = xy - bz$ 

```
# lorenz ' seminal dynamical system solved with wasora
PHABE_SPACE x y z
end_time = 40

# parameters that lead to chaos
sigma = 10
r = 28
b = 8/3
# initial conditions
x.0 = -11
y.0 = -16
z.0 = 22.5
# the dynamical system (note the dots before the '=' sign)
x.dot := sigma*(y - x)
y.dot := x*y - b*z
# write the solution to the standard output
PRINT t x y z
```

- ▶ Free software, both as in free speech and as in free beer;
- Wasora should be seen as a syntactically-sweetened way to ask a computer to perform a certain mathematical calculation:

```
\dot{x} = \sigma (y - x)\dot{y} = x (r - z) - y\dot{z} = xy - bz
```

```
# lorenz ' seminal dynamical system solved with wasora
PRASE_SPACE x y z
end_time = 40
# parameters that lead to chaos
sigma = 10
r = 28
b = 8/3
# initial conditions
x_0 = -11
y_0 = -16
z_0 = 22.5
# the dynamical system (note the dots before the '=' sign,
x_dot .= sigma*(y - x)
y_dot .= x*y - b*z
# write the solution to the standard output
PRINT t x y z
```

- ▶ Free software, both as in free speech and as in free beer;
- Wasora should be seen as a syntactically-sweetened way to ask a computer to perform a certain mathematical calculation:

```
\dot{x} = \sigma (y - x)\dot{y} = x (r - z) - y\dot{z} = xy - bz
```

```
# lorenz' seminal dynamical system solved with wasora
PHASE SPACE x y z
end_time = 40
# parameters that lead to chaos
sigma = 10
r = 28
b = 8/3
# initial conditions
x_{-}0 = -11
v_{-}0 = -16
z = 225
# the dynamical system (note the dots before the '=' sign)
x_dot = sigma * (y - x)
y_{-}dot = x * (r - z) - y
z_dot = x * \dot{y} - b * \dot{z}
# write the solution to the standard output
PRINT t x v z
```

- ► Free software, both as in free speech and as in free beer;
- Wasora should be seen as a syntactically-sweetened way to ask a computer to perform a certain mathematical calculation:

$$\dot{x} = \sigma (y - x)$$
$$\dot{y} = x (r - z) - y$$
$$\dot{z} = xy - bz$$



The set of codes that comprise the wasora code plus its plugin is also known as *wasora suite*:

- wasora: the main code that solves general mathematical problems and loads one or more plugins
- ▶ skel: template to write a wasora plugin from scratch
- ▶ besssugo: a graphical visualization plugin for wasora
- milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids
- fino: plugin to solve general partial differential equations using the finite element method
- xdfrrpf: plugin it as wasora
- waspy: plu
- ▶ qdp: a she
- techgdoc

from the commandline

The set of codes that comprise the wasora code plus its plugin is also known as *wasora suite*:

- wasora: the main code that solves general mathematical problems and loads one or more plugins
- ► skel: template to write a wasora plugin from scratch
- besssugo: a graphical visualization plugin for wasora
- milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids
- fino: plugin to solve general partial differential equations using the finite element method
- xdfrrpf: plugi it as wasora
- waspy: plu
- ▶ qdp: a she
- techgdoc

The set of codes that comprise the wasora code plus its plugin is also known as *wasora suite*:

- wasora: the main code that solves general mathematical problems and loads one or more plugins
- ▶ skel: template to write a wasora plugin from scratch
- besssugo: a graphical visualization plugin for wasora
- milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids
- fino: plugin to solve general partial differential equations using the finite element method
- xdfrrpf: plugi it as wasora
- waspy: plu
- ▶ qdp: a she
- techgdoc

The set of codes that comprise the wasora code plus its plugin is also known as *wasora suite*:

- wasora: the main code that solves general mathematical problems and loads one or more plugins
- ▶ skel: template to write a wasora plugin from scratch
- besssugo: a graphical visualization plugin for wasora
- milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids
- fino: plugin to solve general partial differential equations using the finite element method
- xdfrrpf: plugi it as wasora
- waspy: plu
- ▶ qdp: a she
- techgdoc

The set of codes that comprise the wasora code plus its plugin is also known as *wasora suite*:

- wasora: the main code that solves general mathematical problems and loads one or more plugins
- **skel**: template to write a wasora plugin from scratch
- besssugo: a graphical visualization plugin for wasora
- milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids
- fino: plugin to solve general partial differential equations using the finite element method
- xdfrrpf: plugin it as wasora
  - waspy: plu
  - ▶ qdp: a she
  - techgdoc

The set of codes that comprise the wasora code plus its plugin is also known as *wasora suite*:

- wasora: the main code that solves general mathematical problems and loads one or more plugins
- ► skel: template to write a wasora plugin from scratch
- besssugo: a graphical visualization plugin for wasora
- milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids
- fino: plugin to solve general partial differential equations using the finite element method
- xdfrrpf: plugin to eXtract Data From Relap Restart-Plot Files and use it as wasora functions of time
- ▶ waspy: plu
- ▶ qdp: a sh
- techgdoc

The set of codes that comprise the wasora code plus its plugin is also known as *wasora suite*:

- wasora: the main code that solves general mathematical problems and loads one or more plugins
- ► skel: template to write a wasora plugin from scratch
- besssugo: a graphical visualization plugin for wasora
- milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids
- fino: plugin to solve general partial differential equations using the finite element method
- xdfrrpf: plugin to eXtract Data From Relap Restart-Plot Files and use it as wasora functions of time
- ▶ waspy: plugin to execute python code within wasora
- qdp: a she
- techgdoc

The set of codes that comprise the wasora code plus its plugin is also known as *wasora suite*:

- wasora: the main code that solves general mathematical problems and loads one or more plugins
- ► skel: template to write a wasora plugin from scratch
- besssugo: a graphical visualization plugin for wasora
- milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids
- fino: plugin to solve general partial differential equations using the finite element method
- xdfrrpf: plugin to eXtract Data From Relap Restart-Plot Files and use it as wasora functions of time
- ► waspy: plugin to execute python code within wasora
- qdp: a shell script to generate scientific plots from the commandline
   techgdog
   to create, modify and

The set of codes that comprise the wasora code plus its plugin is also known as *wasora suite*:

- wasora: the main code that solves general mathematical problems and loads one or more plugins
- ► skel: template to write a wasora plugin from scratch
- besssugo: a graphical visualization plugin for wasora
- milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids
- fino: plugin to solve general partial differential equations using the finite element method
- xdfrrpf: plugin to eXtract Data From Relap Restart-Plot Files and use it as wasora functions of time
- ▶ waspy: plugin to execute python code within wasora
- ▶ qdp: a shell script to generate scientific plots from the commandline
- techgdoc: a set of scripts and macros that help to create, modify and track technical documents

4/10

# Milonga

Milonga is a free core-level neutronic code that solves the steady-state multigroup neutron transport equation.



Formulations:

- ► Diffusion.
- Discrete ordinates  $(S_N)$ .
- ► Lattice(?):

We choose the Method of Characteristics.

# Method of Characteristics

#### Basics

Solves the characteristic form of the transport equation by following straight neutron paths.



# Method of Characteristics

#### Ray tracing

Milonga handles both structured and unstructured meshes.



## Method of Characteristics

Solver



$$q_{i,g,m} = q_{i,g} = \frac{1}{4\pi} \left( \sum_{g'=1}^{G} \Sigma_{i,g'\to g}^{s} \cdot \phi_{i,g'} + \frac{\chi_g}{k_{\text{eff}}} \sum_{g'=1}^{G} \nu \Sigma_{i,g'}^{f} \cdot \phi_{i,g'} \right)$$
$$\Delta \psi_{i,g,m,k} = \psi_{i,g,m,k}^{\text{in}} - \psi_{i,g,m,k}^{\text{out}} = \left( \psi_{i,g,m,k}^{\text{in}} - \frac{q_{i,g}}{\Sigma_{i,g}^{t}} \right) \left( 1 - e^{-\tau_{i,g,m,k}} \right)$$

$$\phi_{i,g} = \frac{4\pi}{\Sigma_{i,g}^{t}} \left[ q_{i,g} + \frac{1}{A_i} \sum_{m} \left( w_m \delta_m \sin \theta_p \sum_{k \in \mathcal{K}(i,m)} \Delta \psi_{i,g,m,k} \right) \right]$$

#### Milonga Benchmarking



#### Milonga Benchmarking



## The end

#### Thank you!

