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Abstract
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Although we now routinely sequence human genomes, we cannot yet confidently iden-

tify functional variants. Here a deep mutational scanning framework is developed that

combines random codon-mutagenesis and multiplexed functional variation assays with

computational imputation and regularization to yield exhaustive functional maps for hu-

man missense variants. The framework is applied to five proteins corresponding to seven

human genes: UBE2I (encoding SUMO E2 conjugase), SUMO1 (small ubiquitin-like

modifier), NCS1 (neuronal calcium sensor 1), TPK1 (thiamin pyrophosphokinase), and

CALM1/2/3 (three genes encoding the protein calmodulin). The resulting functional

impact scores correspond to known protein features, and serve to confidently identify

pathogenic variation.
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Chapter 1

Introduction

Given the constantly improving cost and speed of genome sequencing, it is reasonable to

expect that within the coming decades personal genomes will be known for a substantial

part of the global populace. Unfortunately, our limited ability to interpret the variation

within stands in stark contrast with this development. Even when only considering

mutations in coding regions of the genome, the effects of most missense variants are not

known. While a number of computational approaches exist to make predictions as to

the effects of coding variants, they are currently not reliable enough for clinical use. By

comparison, laboratory assays produce more trustworthy results, but until recently did

not scale to the space of all possible mutations. The development of Deep Mutational

Scanning [1–3] has now made this endeavour possible. In the following sections, each of

these issues will be discussed in more detail.

1.1 The Genotype-Phenotype Problem

Linking genotype to phenotype is a very difficult problem. The part of the human genome

we understand best are protein-coding genes, yet they only constitute a small fraction the

whole. Impacts of mutations in other functional elements such as splice sites, promoters,

or regulatory sequences are more difficult to assay, not to mention the vast stretches of

intergenic space. While one might expect the latter to not bear functional significance

a priori, a large number of loci identified as correlated with diseases in genome-wide as-

sociation studies (GWAS) are found within these regions [4]. While many of these cases

may simply be spurious findings due to linkage disequilibrium with variants in coding re-

gions [5], more functions yet unknown may lie hidden within this vast space. But even for

protein-coding sequences the problem is far from simple. Alleles with simple Mendelian

behaviour are the exception rather than the rule. Most phenotypes are complex, i.e.

1



Chapter 1. Introduction 2

they emerge through the interplay of many different genetic or environmental factors.

Conversely, many genes are also pleiotropic, i.e. they are involved more than one mech-

anism. As a result of this complexity, a mutation found in one person may not have the

same effect as in another—a phenomenon called incomplete penetrance. Similarly, two

different mutations within the same coding sequence will often not have the same effect

either. Depending on how the translated protein is affected (e.g. catastrophic folding

failure, alteration of a molecular interaction interface or active site, or a subtle change

on an unused surface) the effects may differ in severity or in rare cases may even result

in the emergence of new behaviours.

Given the much greater difficulty of interpreting non-coding regions, clinical appli-

cations have so far largely concentrated on protein-coding genes. Sequencing panels

for known disease-associated genes and even whole-exome sequencing (WES) are widely

commercially available. A number of different standards for classifying mutations with

respect to their potential health impacts have been proposed. Most prominently, the

American College of Medical Genetics and Genomics (ACMG) standard [6]. It defines

categories stretching from “pathogenic” via “variant of uncertain significance” (VUS) to

“benign”. Even though the mutational landscape for a handful of genes, such as BRCA1

are explored better than others due to their established relevance and potential for taking

clinical action [7], the vast majority of clinical variants are currently classified as VUS.

For example, in a recent study using gene panels assessing germline cancer risk loci [8],

over 98% of missense variants have been called VUS. Not only can these uncertainties

burden patients with unnecessary anxiety [7], they also call into question the value of

sequencing in the clinic if the majority of findings are not actionable. With increasing use

of WES over gene panels, this problem is only going to get worse. According to the 1000

Genomes Project data, every person carries 100-400 missense variants that are so rare

that they have likely never been seen before in the clinic [9]. In the absence of previous

observations they would automatically be added to the long list of VUS.

1.2 In silico approaches to variant function assess-

ment

A number of algorithms exist that offer predictions as to the deleteriousness of muta-

tions, the most prominent ones being PolyPhen-2 [10], SIFT [11] and PROVEAN [12].

PolyPhen-2 employs a machine learning method based on evolutionary conservation and

protein structural features. It uses a set of previously reported pathogenic alleles as a pos-
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itive training set and differences between human genes and their mammalian homologues

as a negative training set. By contrast, SIFT (Sorting Intolerant From Tolerant) only

uses evolutionary conservation. The tool uses multiple sequence alignments to calculate

position-specific score matrices for each gene which are then normalized and transformed

into probability values. PROVEAN (PROtein Variation Effect ANalyzer) similarly only

takes into account sequence alignments. However, rather than just computing a position-

specific score, PROVEAN calculates the difference in alignment quality between using

the wildtype or variant sequence against clusters of homologous sequences. The average

distance is then interpreted as indicative of the deleteriousness of the variant.

While the three tools succeed in making good predictions, their reliability is unfortu-

nately still not high enough to serve as a basis of clinical decision making. Song Sun and

other members of the Roth Lab recently performed an independent comparison of these

tools on a set of well established disease-causing variants as well as rare polymorphisms

with no known disease association [13]. A high precision (the fraction of correct classi-

fications out of all positive classifications) can be considered especially important when

considering taking clinical action based on a prediction. When compared at a minimum

precision level of 90%, PolyPhen-2 and PROVEAN only reach a sensitivity of 19% and

21%, respectively (where sensitivity is defined as the fraction of correct classifications out

of all real existing disease variants). SIFT was not capable of achieving 90% precision at

any score threshold. In concordance with these limitations, the ACMG currently consid-

ers only cases in which multiple methodologically orthogonal prediction algorithms agree

as weak evidence in a supporting role for VUS re-classification [6].

1.3 Laboratory approaches to variant function as-

sessment

An alternative to computational prediction for variant assessment is the use of laboratory

assays. Many different types of assays exist that can yield potential insight into the effects

of missense variants on protein function. However, most of them need to be performed

individually for each protein and are not easily scalable. Two particularly useful assays

in this respect are Yeast-2-Hybrid and functional complementation.

Yeast-2-Hybrid (Y2H) [14] is a binary protein interaction assay performed within the

yeast Saccharomyces cerevisiae (Figure 1.1A). The qualifier ‘binary’ refers to the fact

that it detects direct physical associations compared between two individual proteins as

opposed to often-indirect associations like co-localization or co-complex-membership. It
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Figure 1.1: Complementation and Yeast-2-Hybrid. A) Yeast-2-Hybrid: Strains carrying
fusion of ORF X to Gal4-DB and ORF Y to Gal4-AD are mated. A successful interac-
tion between X and Y in the diploid progeny results in reconstitution of Gal4 and thus
in the expression of the HIS3 reporter, allowing for auxotrophy selection. B) Comple-
mentation: Inactivation of gene X in yeast results in a fitness defect, that is rescued by
expression of X’s human orthologue. A damaging variant of human X results in loss of
complementation.
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is based on the reconstitution of two fragments of the transcription factor Gal4. The Gal4

protein is comprised of two domains: A DNA-binding (DB) domain and an activating

domain (AD). Both are required for it to successfully associate with its cognate promoter

region and induce expression of a reporter gene downstream of the promoter. When

two proteins X and Y are fused to the DB and AD domain respectively, a prospective

interaction between X and Y leads to the reconstitution of the transcription factor and

subsequently to reporter expression. In most cases, the reporter is an auxotrophy marker,

such as HIS3, thus linking the ability of the two proteins to interact with each other

to the ability of the yeast strain to grow on selective (e.g. histidine-deficient) media.

When comparing different variants of the same protein interacting with the same partner,

reporter expression has even been shown to be proportional to binding affinity [15]. This

proportional relationship allows for quantitative interpretation of Y2H results under these

specific circumstances. However, this cannot be generalized to compare different proteins.

Y2H does however suffer from a number of drawbacks. Due to the the transcription

factor needing to physically associate with DNA, any protein to be examined needs to be

able to enter the nucleus and function within. While the DB domain already contains a

nuclear localization sequence (NLS), the AD ORF is often the fused with an additional

NLS. However, this does not work for every protein [16]. A particular problem are

membrane proteins which generally cannot enter the nucleus at all [17]. A variant of Y2H,

MYTH (Membrane Yeast-Two-Hybrid) exists for these proteins [18, 19]. This system

relies on the reconstitution of a split ubiquitin through the interaction of membrane

proteins. A reconstitution of ubiquitin allows for recognition by deubiquitinases (DUBs),

which cleave off a fused transcription factor that activates a reporter gene.

In the past it has often been stated that Y2H results are unreliable and suffer from low

precision. One source for these claims goes back to a comparison between two early Y2H

screens of the S. cerevisiae interactome by Ito et al. [20] and Uetz et al. [21], whose maps

only overlapped by 19%. Yu et al. later showed that this low overlap was not due to low

specificity as previously thought, but rather low sensitivity. It has been estimated that

Y2H has an overall assay sensitivity of 20% [22]. That is, only one in five real existing

protein interactions can be detected by Y2H. These sensitivity levels are comparable to

most other binary interaction assays, such as Protein-fragment Complementation Assays

(PCA) [23] or the Mammalian Protein-Protein-Interaction Trap (MaPPIT) [24].

When considering Y2H as an assay for variant function assessment it is important to

consider that it does not measure all aspects of a protein’s functionality, but rather only

its ability to physically associate with a given interaction partner. Thus only variants

that result either in major failures in protein folding or in changes to the binding binding
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interface could be detected. However, in a recent examination of the Y2H performance

of common disease associated variants, we found that approximately two out of three

disease variants in proteins with detectable interactions manifest in such a way [25].

Nonetheless, an assay that can measure the overall functionality of a protein within

the cell would be preferable. Functional complementation in yeast [26,27] offers such an

option (Figure 1.1B). It based on the premise that some human genes can be used to

rescue the deletion of their orthologues in yeast. That is, a fitness defect resulting from

the inactivation of the yeast gene is alleviated by the artificial expression of the human

gene. Therefore, any relative changes in fitness upon expressing a variant of the human

gene can be interpreted as the variant’s effect on the protein’s overall ability to function.

Song Sun and other members of the Roth Lab have recently examined the applicability of

functional complementation in yeast to the assessment of disease variants [13]. They have

found an astonishing predictive capacity despite yeast and humans being diverged by ∼
1 billion years. Yeast complementation outperformed in silico methods like PolyPhen-

2 and PROVEAN in terms of disease variant prediction by a wide margin. At the

90% specificity threshold discussed in section 1.2, the complementation assay achieved

a sensitivity of over 60% (as compared to 19% and 21% for the two in silico methods,

respectively). It is consistent with these findings that the ACMG considers functional

assays among the strongest sources of evidence for variant classification [6].

The only major drawback of yeast complementation is that currently only ∼ 200

human genes have been found to be amenable to the assay [13]. However, in recent

years CRISPR screens have revealed many genes for which growth phenotypes exist

directly in human cell lines [28–30]; opening the possibility of performing functional

complementation directly in these cell lines.

1.4 Deep Mutational Scanning

Complementation and Y2H promise to be useful tools in the classification of variants of

uncertain significance. Yet applying them to retroactively test variants only once they

have been found in the clinic would be a slow process. Instead, a proactive approach could

prove to be more useful: Building an atlas of the functional effects of all possible variants

before they are observed in a patient. Indeed, given the size of the human population and

the frequency of de novo mutation [31], every missense variant that can possibly exist

(and is not fundamentally incompatible with life) can be expected to occur on average

in 46 individuals1. However, assaying all possible variants in known disease genes would

1Back-of-envelope calculation: 7.4bn humans×0.6 de-novo exome SNVs
30Mb exome×3 possible SNVs ≈ 46humans

bp
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require massive parallelization. Indeed such parallelization efforts have previously been

described, albeit not primarily for the reclassification of VUS. The winter semester of

2010/11 saw three papers by Fowler et al. [1], Ernst et al. [2] and Hietpas et al. [3] that

collectively pioneered a technology called Deep Mutational Scanning (DMS). DMS can

be thought of as a natural extension to Alanine Scanning [32], expanding it into the space

of all possible amino acid changes. These seminal papers have since inspired a growing

number of similar efforts by other groups [33–61]. Tables 1.1 and 1.2 list a selection

of these studies that showcase the breadth of methodologies that has since emerged.

Deep Mutational Scanning, as performed in these studies, can be broken down into a

number of experimental and computational components: (1) Mutagenesis; (2) Selection

of functional variants; (3) Sequencing of the selected and control populations; and (4)

Computational analysis. In the following sections we will review the different previous

implementations of these components in detail.
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1.4.1 Mutagenesis approaches

A fair number of saturation mutagenesis methods have previously been applied in DMS

studies; some more technically challenging than others. The simplest method is error-

prone PCR amplification [62, 63]. While this has the advantage of being an inexpensive

and facile procedure, it will only result in the generation of point mutations and as

such will not generate all possible amino acid replacements. One may argue that the

evaluation of VUS does not require insight into mutations outside of these variants, as

they are unlikely to occur in nature. Nonetheless, exploring all possible amino acid

changes offers the potential of valuable biochemical insights. Moreover, the preference

for transitions over transversions in these methods leads to uneven representations of

variants.

Another set of methods often employed are scaled-up versions of site-directed muta-

genesis approaches [64–66], with one popular example being Kunkel mutagenesis [67]. It

uses a strain of E. coli that has been modified to produce high levels of uridine and lacks

the ability to excise these bases from DNA. A phage vector carrying the desired template

sequence is transfected into the cells resulting in its replication with a high uracil incorpo-

ration rate. The thus uracilated template can be PCR amplified with primers containing

the mutations of interest and subsequently amplified in regular E. coli which will degrade

the uracilated template, thus enriching the mutant copies. A number of derivatives of

Kunkel mutagenesis have since been developed to bring its output to a scale supporting

saturated libraries, most notably Pfunkel [66]. To address the full spectrum of amino

acids at a given position, oligonucleotides carrying degeneracy codons [68] are often used.

Particularly popular is the use of NNK and NNS degeneracies, which have long been used

in biochemistry [69,70]. Here, S denotes either Guanine or Cytosine and K denotes either

Guanine or Thymine in the third position of the degenerate codon. Either of these op-

tions only enables 32 out of all 64 possible codons, but each covers all 20 possible amino

acids while avoiding two of the three possible stop codons (TGA and TAA). A more recent

development is the use of custom oligonucleotide arrays covering all possible (or desired)

options of codon changes explicitly rather than relying on degeneracy [56]. While this

option allows for the precise control of desired mutations, it is currently too expensive to

be applicable for more than a handful of genes at a time.

Another saturation mutagenesis method often applied in Deep Mutational Scanning

is EMPIRIC (“Extremely Methodical and Parallel Investigation of Randomized Individ-

ual Codons”) [3]. In this method, rather than using PCR amplification, oligonucleotide

cassettes carrying the variants of interest are directly ligated at the appropriate posi-

tions. This is achieved by designing the underlying vector such that it omits the cassette
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sequence. Instead, it carries a restriction site at the equivalent position, which can be

cut to create sticky ends. Pairs of oligos carrying the variants of interest can be synthe-

sized such that they can assemble into a fitting cassette that integrates with the vector.

EMPIRIC is one example of a mutagenesis method that was explicitly developed to be

used in Deep Mutational Scanning. Another example is PALS (“Programmed ALlelic

Series”) [56], which aims to limit the number of amino acid changes per library clone to

only one. Oligos carrying the variants of interest are annealed to uracilated templates

and linearly amplified with strand-displacing polymerase. In a second step, the template

is degraded using Uracil-DNA-Glycosylase and an antisense strand is generated in a sec-

ond linear amplification step. The product is denatured and yet again hybridized with

uracilated template allowing it to be extended towards the other end of the template.

Finally, the template is degraded again and the now full-length mutagenized strands are

amplified.

In addition to the various mutagenesis methods discussed here, it may be noted that

complete variant libraries are also recently becoming commercially available via gene

synthesis [71]. While this method is certainly the most convenient, it is by far the most

expensive option. However it is possible that with increased interest in gene synthesis

applications, these options may become more affordable in the future.

1.4.2 Selection approaches

The most central component of a Deep Mutation Scan is the selection process. In sec-

tion 1.3 two options were already discussed in detail: Y2H and functional complemen-

tation. There are a fair number of other options, even though many of them may not

be as useful in the context of identifying disease variants. The different assays used in

previous studies can be sorted into three broad categories: (i) In vitro display methods

(such as Phage Display or Ribodisplay); (ii) Competition-based methods that couple a

protein property under investigation (such as molecular interactions, toxicity, or over-

all functionality) to host cell fitness; and (iii) Cell sorting based on fluorescence labeled

reporters.

Phage display [72] and ribodisplay [73] couple the genetic information of a given

variant to the physical protein itself and select according to the protein’s ability to bind

to a fixed interactor. In phage display this is achieved by the protein being displayed on

the surface of a phage that contains the corresponding gene; while ribodisplay stalls a

cluster of ribosomes on the variant mRNA with the corresponding protein still attached.

Variants that are unable to bind to the interactor-coated surface are washed away and
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thus depleted. This can be done in multiple rounds, as the associated genetic information

can be replicated again after selection (via viral propagation in bacteria for phage display

or via PCR in ribodisplay). Fowler and colleagues employed phage display in their

seminal DMS study with respect to the binding of the YAP65-WW domain to its cognate

peptide target [1]. However, since display methods are only feasible for small proteins or

fragments thereof, more recent studies have employed more scalable methods instead.

The most frequently applied selection mechanisms are fitness based. In these cases

a particular property of the variant protein is coupled to its host cell’s ability to thrive

in competitive growth. Yeast-2-Hybrid and functional complementation (as introduced

in section 1.3) are two examples of such methods. While Y2H couples fitness to the

ability of the protein to maintain a specific protein-protein interaction, complementation

does so for the proteins overall ability to perform its biological role. A popular condition-

dependent extension to complementation is selection according to drug resistance [39,48],

but other fitness-based selection methods have been used in DMS as well. For example,

Adkar and colleagues used the toxicity of CCDB in E. coli [34], while Kim and colleagues

select according to degron activity by fusing the degron to an auxotrophic marker [45].

Finally, a number of DMS studies have been performed on viral genes, by selecting for

virus propagation efficiency [52,53].

Finally, another selection mechanism is the use of fluorescence-activated cell sorting

(FACS) [74]. Here, surface markers whose abundance are proportional to the activity

of the studied protein are targeted with fluorescently labeled antibodies, such that cells

can be sorted accordingly, as has been performed by Schlinkmann et al. and Majithia

et al. [36, 61].

1.4.3 Sequencing strategies

The experimental step immediately following selection in a DMS experiment is sequenc-

ing. Next-generation sequencing technology can be considered the key technological

advance that made Deep Mutational Scanning possible. Many studies use a fairly simple

approach by performing deep shotgun sequencing of the library [2,3,33]. However, a ma-

jor problem with this approach is that without knowing which reads originate from which

DNA molecule, each read can only be considered by itself, making it difficult to distin-

guish real mutations from sequencing error. To address this problem, different solutions

have emerged. In cases where the amplicon is short enough, paired-end sequencing can

be exploited to use information for variant calling. In the simplest case this is achieved

by requiring both reads to agree on the base call in question, as in the case of White-
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head et al. [37]. A less stringent, but potentially more sensitive alternative as used by

Fowler and colleagues [1] is to perform Bayesian inference on the quality scores associated

with the base calls in each read pair. This way a variant may still be identified if one of

the two reads reported a wildtype base call with low confidence.

Where the length of the nucleotide sequence in question exceeds the read length

capabilities of short-read sequencing technologies, other strategies are required. A notable

borderline case can be found in Olson et al. 2014 [50] where only a partial overlap between

read pairs was achieved and variant calls outside of the overlap region were of lower

quality. Other studies resort to more involved approaches. A popular paradigm is the

association of molecular barcodes with each clone within the DMS library. While this

simplifies the readout of the experiment (as only the barcodes need to be sequenced and

counted), it adds the requirement of identifying which barcode belongs to which genotype.

In most cases this is addressed using “subassembly” [75], a high-throughput amplicon

sequencing approach based on attaching random tags to amplicons. The DNA is then

amplified, sheared and ligated to adapters, so that paired end sequencing can be used to

identify the random tag together with each read. This allows reads to be sorted according

to which original tagged molecule they belong to, which in terms enables assemblies for

each molecule to be computed. The resulting high-quality virtual reads are long enough

to cover both ORF and barcode locus.

Another barcode-based method, called EMPIRIC-BC was described by Mavor and

colleagues [60], where the amplicon in question was short enough not to require sub-

assembly. Here, a long read can cover the entire ORF, while a second, short read can

identify the barcode.

An alternative approach to covering longer stretches of DNA is to subdivide them

into smaller regions that can be sequenced separately from each other. For example,

Doud and colleagues [59] amplify each region with primers carrying random tags. This

way, if multiple reads contain the same tag, they are highly likely to originate from PCR

copies of the same original molecule and can be used to make more accurate variant calls.

While this approach has the advantage of being less labour-intensive than barcoding each

individual clone in the DMS library, it can only detect variants co-occurring within the

same region of the sequence. Thus the library must be designed in such a way that either

only a single mutation occurs within each clone or that it is large enough that effects of

many co-occurring variants are averaged out.
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1.4.4 Computational analysis

Most DMS studies use custom scripts to process the sequencing readout and calculate

the selection advantage for each variant. Nonetheless, a few published software packages

exist. The EMPIRIC mutagenesis and DMS method provides its own software package

for data processing [3], though it is not generally applicable to other DMS methods. The

dms tools package [76] offers the same services, but is tailored more towards methods

using regionally focused sequencing. Finally, Enrich [77] offers a generalized solution

applicable to most DMS frameworks. A second version that adds a more sophisticated

statistical analysis including the assessment of measurement confidence levels is currently

under review [78].

1.4.5 Conclusion

When considering previous DMS studies in the context of VUS classification, a number

issues become apparent. Many of these have primarily used DMS in the context of

biochemistry. The assays underlying different DMS studies are quite diverse and measure

different aspects of a protein’s behaviour. As a consequence, they cannot be easily

compared with each other. In addition, the achieved coverage of possible amino acid

changes varies from map to map. Finally, many maps to do not control the quality of

measurements. Therefore, the confidence levels underlying different parts of these maps

are often unknown. A generalized framework that would allow for the construction of

comparable, high-quality maps representing overall protein function would be of great

utility.

1.5 Background: The Sumoylation Pathway

In the following chapters, we will evaluate the performance of Deep Mutational Scan-

ning with respect to its ability to detect the effects of different variants on overall func-

tion. However, as mentioned in section 1.1, many genes perform multiple functions and

sub-functions and the proteins they encode engage in multiple interactions with other

molecules. Thus, beyond the amenability of the proteins to the employed assays, an ideal

testing ground would be comprised of a biological system that is both mechanistically

complex and has been well studied previously in terms of structure and mechanism. This

would allow for an examination of the assay’s capabilities of detecting if and how a variant

that damages an individual sub-function is reflected in its overall functional impact.

The Sumoylation life cycle does not only fulfill these criteria [79], but is also of great
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biological importance. Sumoylation is a protein modification in which a small ubiquitin-

like modifier (SUMO) is covalently attached to target proteins in order to modulate their

behaviour, especially in terms of localization and physical interactions [80]. Sumoylation

plays an important role in a large number of cellular processes [80]. It is therefore not

surprising that the core members of the pathway are essential genes [81].

Despite employing a distinct set of proteins compared to the ubiquitination machin-

ery, the sumoylation pathway bears many close mechanistic similarities. Analogously to

ubiquitin, a cascade of enzymes, E1, E2 and E3s, guide SUMO through its maturation,

activation, conjugation and ligation phase [80] (Figure 1.2). After expression, SUMO is

matured through cleavage of four amino acids from its C-terminus, exposing a diglycine

motif. In humans, this process is performed by two peptidases, SENP1 and SENP2 (short

for sentrin-specific peptidase, where sentrin is an alternative name for SUMO). Next, an

E1 activation complex (UBA2-SAE1) forms a thioester bond between the SUMO C-

terminal diglycine and a cysteine residue within the E1 protein under the consumption

of ATP. An E2 conjugase (UBE2I) binds to the complex, so that the activated SUMO

can be transfered to one of its own cysteine residues via transesterification.

The thus loaded E2 can recognize potential target proteins via an exposed motif of

four amino acids. The motif is generally described as ΨKxD/E, i.e. a large hydrophobic

residue, followed by a lysine, a spacer residue and an acidic residue [86]. The motif is often

found in an exposed loop extending from the protein or in a disordered region [80,87,88].

The central lysine within the motif enters the E2’s active site where it comes into contact

with the SUMO diglycine. There, a peptide bond is formed between the lysine ε-amino

group and the SUMO C-terminus [87]. This process can be made more efficient in the

presence of E3 proteins. It is interesting to note that while only a single SUMO E2

conjugase (UBE2I) is encoded by the human genome, there are a variety of different

SUMO E3 ligases. Some of these work by simply stabilizing the SUMO-E2 complex,

while others can outright force-feed non-canonical targets to the E2 [89].

Like ubiquitin, SUMO can also form chains (Figure 1.3). However, of the four SUMO

proteins encoded by the human genome, only SUMO2 and SUMO3 are capable of doing

so, as they contain a suitable lysine residue within a disordered N-terminal tail [91].

Capili and Lima previously observed that the E2 (UBE2I) and SUMO can interact in a

noncovalent manner via a distinct binding interface [92]. According to a model proposed

by Alontaga and colleagues [90] this interaction is a key mechanism in SUMO chain

formation. The interaction recruits a second, SUMO-loaded E2 that interacts with the

complex in such a manner that the lysine within the first SUMO’s N-terminal tail can find

its way into the active site of the second E2, where the second SUMO is concatenated.
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Figure 1.2: Steps in the sumoylation cascade. SENP protease matures a SUMO precursor
by cleaving off its four C-terminal residues. In the activation step, the E1 complex forms a
thioester bond between SUMO and one of its cysteine residues under ATP consumption.
It then transestereficates SUMO to a cysteine in the E2. The E2 recognizes potential
targets via their ΨKxE motif. With the help of an E3, SUMO is then ligated to the central
lysine within that motif. SENP proteases can reverse the process by hydrolysing this new
peptide bond. Images were generated using data from the following PDB structures:
2G4D [82], 3KYC [83], 4W5V [84], 3UIP [85]
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Sumoylated
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Sumoyl

E2 (UBE2I) Loaded E2

Figure 1.3: Steps in SUMO chain formation as proposed by Alontaga and colleagues [90].
An E2 noncovalently interacts with a SUMO modification of a target protein. A second
E2 carrying a covalently bound second SUMO binds the first E2-SUMO complex, allowing
for the first SUMO’s N-terminal tail to enter the active site, where a lysine within the
tail is forms a peptide bond with the second SUMO’s C-terminus. Finally, the complex
dissociates, leaving behind the newly formed SUMO chain. Images were generated using
data from the following PDB structures: 3UIP [85], 4Y1L [90]

While the role of polySUMO chains in humans are still unclear, it has been shown that

yeast deficient in SUMO chain formation are unable to perform meiosis [93].

Given the complexity of the Sumoylation system, especially surrounding the E2 com-

ponent, an examination of sequence-structure-function relationships becomes a multi-

faceted problem. Mutations could in principle affect any combination of the multiple

interaction interfaces which in turn contribute in complex ways to the overall cellular

phenotype. An alanine scan of the yeast SUMO E2 Ubc9 was previously performed and

succeeded in identifying functionally important sites within the protein [94]. Similarly, a

DMS scan of ubiquitin was previously completed [40]. While both of these projects pro-

vided great insight into the biochemistry of ubiquitin-like protein pathways, neither has

produced a complete map. That is, not all possible amino acid changes were measured

at high confidence levels. The Deep Mutational Scanning Framework we will discuss in

chapter 2 enabled us to not only recapitulate many of the known mechansims in SUMO

and its E2, but also to uncover new details about their biochemistry, as will be discussed

in chapter 3.



Chapter 2

A framework for comprehensive and

high-fidelity Deep Mutational

Scanning

The work described below represents a team effort including many members of the Roth

Lab. Wet lab elements of the work were performed by Atina Coté, Jennifer Knapp, Song

Sun and Marta Verby, while all computational and statistical aspects were developed and

implemented by myself, except where indicated otherwise.

2.1 Introduction

Deep Mutational Scanning (DMS) [1–3], a strategy for large-scale functional testing of

variants, yields functional maps describing a large fraction of substitutions for an often

substantial subset of residue positions. The assays used for DMS studies are diverse,

often measuring different aspects of a protein’s behaviour. Functional complementation

assays test a variant’s impact on overall protein function by testing the variant gene’s

ability to rescue the phenotype caused by reduced activity of the wild type gene (or its

ortholog in the case of trans-species complementation) [26,27]. In a previous paper, Song

Sun and other members of the Roth Lab have previously found cell-based functional

complementation assays to accurately identify disease variants across a diverse collection

of human disease genes [13].

There are many challenges to the DMS strategy. One challenge is establishment of

robust interpretable assays that measure each variant’s impact on the disease-relevant

functions of a gene. Another is that the fraction of possible amino acid changes that are

18
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measured varies from map to map. Finally, many maps do not control for the overall

quality of measurements, or estimate the quality of each measurement. The lack of

a comprehensively measured map of known-quality functional impact scores limits the

opportunity for confident use of DMS maps to evaluate specific variants.

Here, a modular DMS framework will be described to generate complete, high-fidelity

maps of variant function based on functional complementation. The framework employs

a novel mutagenesis strategy, two alternative sequencing-based selection screens, and a

machine learning strategy to impute otherwise missing parts of the map with surprising

accuracy, and uses regularization to correct less confidently measured data points. The

framework is evaluated with respect to its performance on the SUMO E2 conjugase

UBE2I.

2.2 Results

When carrying out deep mutational scans of protein sequences yielding comprehensive

atlases of sequence-function relationships, it is useful to describe the process in distinct

stages. The framework described in the following sections can be broken down into

six such stages (see Figure 2.1): 1) mutagenesis; 2) generation of a clone library; 3)

selection for clones encoding a functional protein; 4) read-out of the selection results

and analysis to produce an initial sequence-function map; 5) computational analysis to

impute missing values; and 6) computational analysis to refine measured values based on

imputation models. The framework incorporates previously-described deep mutational

scanning concepts as well as new experimental components (e.g. an imputation and

regularization strategy) and analytic methods. In particular, the last two stages enabling

a complete and accurate DMS map have not been applied in any published DMS study.

In the following sections, I will first describe a version of the framework called DMS-

BarSeq and apply it to the human SUMO conjugase UBE2I, exhaustively measuring the

ability of protein variants to function. DMS-BarSeq provides direct variant function mea-

surements and the ability to examine higher-order multi-mutant effects. An alternative

version of the framework, DMS-TileSeq, generally captures only single-variant effects,

but is less resource-intensive. After comparing DMS-TileSeq and DMS-BarSeq, the re-

sulting maps are combined, missing data points are computationally inferred and map

quality refined.
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No selection Selection

3. Selection:
Complementation

1. Mutagenesis:
POPCode/oxPCR

BarSeq

2. Library Generation:
en masse LR

TileSeq

BarSeq

TileSeq

4. Readout:
BarSeq / TileSeq

5. Imputation:
RandomForest

6. Regularization
RandomForest

??

Figure 2.1: An overview of the Deep Mutational Scanning Framework. Step 1: Using
mutagenesis via POPCode and oxidized nucleotide PCR, a pool of variant ORFs is
created. Step 2: A library is generated via en-masse gateway cloning. Depending on
the downstream sequencing procedure either plain or barcoded expression vectors are
used. Step 3: Clones compete with each other for growth under selective and control
conditions. Step 4: In case of BarSeq, barcodes are sequenced and counted. In case of
TileSeq, individual tiles within the ORF are amplified used in paired-end sequencing.
Step 5: Machine Learning methods are used to impute the effects of missing variants.
Step 6: Machine learning predictions are also used to support less confidently measured
variants. (Incl. illustrations by [95,96])

2.2.1 A barcode-based Deep Mutational Scanning strategy

As an initial test of the overall framework, we first aimed to generate a map of functional

missense variation for UBE2I. Our goals for this map were as follows: (i) High and

even coverage of the full spectrum of amino acid changes; (ii) Determination of mutant

effects on overall protein functionality; (iii) High fidelity of functional effect readouts.

We therefore designed the different stages of the framework accordingly.

For Stage 1 of the DMS-BarSeq framework—mutagenesis—to achieve a relatively
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even representation of all possible single amino acid substitutions, we wished to allow

multiple mutations per clone. This would not only allow for greater mutational coverage

for any given library size, but it would also offer an opportunity to discover intragenic

epistatic relationships between variants. To fulfill these requirements, we developed a

mutagenesis protocol (Precision Oligo-Pool based Code Alteration or POPCode) which

generates random codon replacements. At the second stage—library generation—we

wished to be able to track the fitness effects of each individual mutant clone rather than

just average effects of mutations across the population, as this could be expected to allow

for higher quality measurements. Thus, in Stage 2 of the framework, we opted to assign

molecular barcodes to each clone that could be identified by sequencing. To catalogue

the pairing of mutant genotypes with barcodes, we developed a novel multiplex amplicon

sequencing method called KiloSeq, in collaboration with Joseph Mellor at SeqWell Inc,

Boston. The selection process (Stage 3) was performed as a yeast complementation assay,

to allow for determination of overall functional effects of mutations. The assay would be

performed as a time series in triplicates, as this again promised to allow for higher quality

of readouts Finally, Stage 4, consists of barcode sequencing and statistical analysis. All

four stages will be described in further detail in the following subsections.

POPCode: A Precision Oligo Pool Codon alteration mutagenesis method

This method scales up a previously described method developed by Seyfang et al. [65].

To achieve complete wide coverage over the complete spectrum of possible amino acid

changes in a given gene, oligonucleotides are designed such that they centre on each

codon in the Open Reading Frame (ORF) and replace the target with an NNK degeneracy

code. As explained in chapter 1 section 1.4, this has been previously used to allow all

amino acid changes while reducing the chance of generating stop codons [68].

When designing a set of suitable oligonucleotide sequences, two important criteria

need to be considered: (i) The melting temperature across the complete set must be

as uniform as possible as this will ensure a more even mutation rate across the ORF

sequence; (ii) the degenerate codon sequence should be located as close to the centre of

the oligo as permissible given the first criterium. To simplify the process of choosing

an appropriate set of oligos based on these criteria, I developed a web tool that can

be used to calculate the optimal solution to the given problem. The tool requires the

sequence of the target ORF and flanking vector sequences, a desired average oligo length

and a maximum offset parameter. The offset parameter determines how many bases can

be maximally added or removed from each side of a given oligo to optimize its melting

temperature.
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In some cases, a moderate deviation from the average in melting temperature for

some oligos cannot be avoided. To alleviate these effects, the web tool also offers a

mutation rate prediction. This is based on observations from all the POPCode procedures

performed as part of this work in combination with linear regression. The prediction can

be used to preemptivly adjust concentrations of potentially troublesome oligos in the

POPCode protocol. An additional feature in the tool, also based on the mutation rate

prediction, is the automatic calculation of necessary library size to achieve a desired

mutational coverage. The webtool is available online1.

Mutant library

Transformation
+

Robot-assisted
colony picking

kiloSeq
+

re-array

uracil-doped ORF template

pool of codon-degenerate oligos

cleave uracil-doped templates
re-amp with att-sites

attB

attB

mutant ORF

Barcoded
Expression

Vector

barcode

non-strand-displacing
polymerase

BP+LR
cloning

Figure 2.2: POPCode mutagenesis and library generation. A pool of codon-denerate
oligos is hybridized to a uracil-doped template, gaps between oligos are closed via non-
strand-displacing polymerase, and the backbone sealed. Uracil-doped template is de-
graded to enrich for mutants. After mutagenesis, Gateway attB sites are added, followed
by BP+LR cloning into barcoded vectors and transformation into bacteria. Finally,
colonies are picked and arrayed. (Incl. illustration by [97])

Having designed and obtained suitable oligonucleotides, the ORF sequence is PCR

amplified in the presence of dUTP to generate uracil-doped template for the mutagenesis

1http://llama.mshri.on.ca/cgi/popcodeSuite/main

http://llama.mshri.on.ca/cgi/popcodeSuite/main
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reaction. Oligonucleotide pools are then hybridized with the template. Gaps between

hybridizations are filled with non-strand-displacing polymerase. Following cleanup, the

uracil-doped template is incapacitated using Uracil-DNA-Glycosylase (UDG). The muta-

genesis product is then amplified with primers that add attB sites to allow for Gateway

BP cloning into entry vectors.

To accomplish mutagenesis across the entire coding region of our gene of interest,

UBE2I, we designed a tiled collection of oligos using the web tool and applied POPCode

to generate a codon-mutagenized amplicon library. In parallel, we also carried out PCR

with oxidized nucleotides [63] to enable deeper representation of amino acid changes

achievable from single-nucleotide changes.

Library generation and highly multiplexed amplicon sequencing

For Stage 2 of the framework—generation of a clone library—we employed an en masse

recombinational cloning strategy to generate a Gateway Entry vector library of UBE2I

variants. This library was transferred via en masse recombinational subcloning into a

pool of randomly-barcoded plasmids enabling expression of UBE2I variants in yeast.

As sequencing is required to establish the full-length ORF sequence and barcode of each

clone, the complementation vector is designed such that the variant ORF and the barcode

locus are in close proximity to each other. Thus, only a relatively small segment of the

plasmid needs to be inspected to determine the pairing of genotype and barcode.

After bacterial transformation, we proceeded to robotically pick 19,968 colonies, which

were stored in 52 384-well plates. As sequencing needs to be performed to catalogue the

identities of nearly 20,000 individual samples, we used a novel sequencing method called

KiloSeq which combines plate-position-specific index sequences with Illumina sequencing

(Figure 2.3). KiloSeq was developed in collaboration with SeqWell Inc., Boston. First,

for each clone in the library, the region of interest is amplified with primers containing

well-specific tags, uniquely identifying each well coordinate. This step is dependent on the

use of a HydroCycler, which allows up to 4608 PCR reactions to be performed in parallel.

In the next step, wells for each plate can be pooled. Nextera tagmentation using Tn5

transposase is used to break the amplicons into random fragments and simultaneously

ligate them to Illumina sequencing linkers with plate-specific indices. Then the pool is

re-amplified with 3’-specific primers, to enrich for fragments that contain the well tags.

The resulting library is now ready for paired-end sequencing. In each pair of reads, one

read will contain the well tag and the barcode locus, whereas the other will contain a

fragment of the mutant ORF.

To process the results of a KiloSeq sequencing run, I developed a custom-built software
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ORF BCattatt

ORF BCattatt tag

ORF BCatt tag i7i5

ORF BCatt tag i7i5
read1

read2

add well-tag

tagmentation, 3' re-amp

paired-end seq

Figure 2.3: KiloSeq schema. 1) For each library well, amplicons containing the variant
ORF (gold) and Barcode locus (green) are amplified with primers adding a well-specific
tag. 2) Tn5 tagmentation fragments the DNA while simultaneously adding Illumina i5/i7
linkers. 3’ re-amplification enriches for fragments containing the well tags. 3) Each pair
of sequencing reads now contains a fragment of ORF sequence and the associated barcode
and well tag.

pipeline, which can be divided into three phases: demultiplexing; barcode clustering;

and alignment and variant calling. The first phase—demultiplexing—takes place on two

levels, corresponding to library plates and the wells within those plates. Demultiplexing

at plate level is performed by Illumina’s bcl2fastq software, which resolves i5-i7 index

combinations. The second phase is performed on a high performance computing cluster.

Sets of read pairs are distributed across computing nodes, where they are processed

by worker scripts. The well-tag within each R2 read is identified using a k-mer search

algorithm, and read-pairs are sorted accordingly into bins. Each bin corresponds to one

well in a given plate. At the same time, barcode sequences are extracted from the R2

reads in preparation for the next phase.

The second phase—barcode clustering—uses the extracted barcode sequences within

each bin and clusters them according to their Levenstein distance [98] (i.e. the number of

edit operations required to transform one into the other). This step is necessary in order

to resolve possible contamination across wells that occurred during library preparation.

Each barcode cluster corresponds to a different clone, and the different unique sequences

within each clusters correspond to different sequencing errors. The most frequently ob-

served sequence within each cluster is interpreted as the true barcode. Finally, read pairs

within each bin are again subdivided according to their respective barcode cluster.

The third phase—alignment and variant calling—is then executed for each barcode
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cluster within each well within each plate. The R1 reads are aligned to the template

sequence and variants are called. This is complicated by the fact that the KiloSeq library

preparation usually creates a certain amount of cross-contamination between wells. While

single or multi-nucleotide variants are still relatively unproblematic to identify, standard

tools were found to be unable to identify copy number variations (CNVs) due to these

problems. I thus developed a custom method for CNV calling, based on detecting sudden

changes in read depth across the alignments. First, the individual read depth track is

normalized to the average read depth across all wells the plate. Then a modified one-

dimensional Sobel operator [99] is used to detect sharp edges in the signal. An example

of this can be seen in Figure 2.4. Detection thresholds were optimized by comparison

with Sanger sequencing.
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Figure 2.4: Indel detection example. A duplication event in well A A02 is detected by
normalizing relative read depth by the mean depth across the plate and using a Sobel
operator to detect sudden changes.

After successful genotyping with kiloseq, I determined the subset of clones that (i)
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contained at least one missense mutation, (ii) did not contain any insertions or deletions,

(iii) did not contain mutations outside of the ORF, (iii) had unique barcodes, and (iv)

had sufficient read coverage during KiloSeq to allow for confident genotyping. Over half

of the clones in the library conformed to these criteria. The single largest reason for

exclusion was the occurrence of indels and CNVs (Figure 2.5A).

An analysis of the mutation signatures across clones generated by POPCode revealed

that two different mechanisms appear to underlie mutagenesis. When considering only

mutations that change more than one base in a given codon, there is an equal chance

for every possible base except in the third position, where almost no adenine or cytosine

was introduced. This is consistent with the NNK degeneracy code used in the POPCode

oligo design. By contrast, variants that change only a single base in a given codon

show a strong bias for transitions over transversions. These could be introduced due

to polymerase error (Figure 2.5B). This secondary source of variation is also reflected

in the relative share of single nucleotide variants, which make up 56% of mutations

(Figure 2.5C). As a consequence, when examining the mutation coverage across the

sequence of the ORF, it is clearly visible that the share of amino acids reachable with a

single nucleotide change from the respective wildtype codon is much closer to saturation

than the the set of all possible amino acid changes (Figure 2.5D). Additionally, some

hotspots are visible in which the mutation rate is higher, which is likely due to different

hybridization efficiencies of oligos across the ORF sequence.

Using a pinning robot, we re-arrayed the subset of usable clones into a condensed final

library of 40 plates. This final library comprised 6,553 UBE2I variants, covering different

combinations of 1,848 (61% of all possible) unique amino acid changes. In preparation

for the next stage, variant plasmids were pooled, together with barcoded empty vector

and wild type control plasmids.
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Complementation screen and Barcode sequencing

For Stage 3 of the DMS-BarSeq framework—the selection of clones encoding a functional

protein—we employed a previously described S. cerevisiae functional complementation

assay [26, 27]. This assay is based a yeast strain carrying a temperature sensitive (ts)

allele of the UBE2I orthologue UBC9. Expression of human UBE2I rescues growth

at an otherwise lethal elevated temperature. As such, the fitness observed for a clone

carrying a mutant allele of UBE2I can be interpreted as the overall ability of the variant

protein to function within its biological context [13]. The plasmid library from Stage 3

was introduced into the appropriate ts strain by en-masse transformation. Pools were

then grown in triplicates over a period of 48 hours at the permissive (25◦C) and selective

(37◦C) temperatures, respectively (see Methods) and evaluated at multiple time points

via high-throughput sequencing.

To facilitate the readout of the selection (Stage 4), I developed a sequence analy-

sis pipeline. The pipeline distributes sets of read pairs across across the nodes of a

high-performance computing cluster, where a k-mer search algorithm is used to identify

multiplexing tags that encode the temperature and time point and replicate number as-

sociated with the sample. The same algorithm is also used to identify the barcode itself.

The number of occurrences of each barcode in each sample is counted and aggregated

across the cluster nodes. The frequencies at which each barcode is observed corresponds

to the population size of the associated clone. This can then be used to reconstruct of

individual growth curves and quantify the normalized fitness for each of the 6,553 strains

(see Methods section for details). The fitness measurements are normalized to the wild-

type and null controls, such that a score of 1 is equivalent to the average wildtype fitness,

and 0 is equivalent to the average null control fitness.

Additional care needs to be taken to quantify the level of confidence for each fitness

measurement. While comparing the three technical replicates available for each clone

allows for a rough estimation of standard error, improvements can be made. Baldi and

Long previously published a Bayesian method allowing for the regularization of variance

estimations using prior data [100]. Two sources of prior information offer themselves:

(1) The number of sequencing reads observed at time 0 of the experiment, as a low

number indicates underrepresentation in the library, which is likely to result in a poor

frequency estimate; and (2) the fitness estimate itself, as variance can be expected to be

proportional to the mean. Indeed, when comparing both properties with the standard

deviation, a clear trend is visible (Figure 2.6). After obtaining a prior estimate via linear

regression, it can be used to regularize the empirical standard deviation.
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Figure 2.6: Comparison of fitness and initial barcode count against standard deviation.
Both properties can be used as prior information to improve confidence quantification.

A barcoded-based functional map of UBE2I

Before further refinement in Stages 5 and 6, I assessed the quality of complementa-

tion scores. I first examined reproducibility of scores between technical replicates (Fig-

ure 2.7A), and biological replicates (different clones carrying the same mutation; Fig-

ure 2.7B). In each case the scores were reproducible (Pearson’s R of 0.97 and 0.78,

respectively). We next carried out semi-quantitative manual complementation spotting

assays for a subset of mutants that spanned the range of fitness scores. Complementation

scores from deep mutational scanning correlated well with these small-scale tests. Indeed,

agreement between the large-scale and manual scores was about the same as agreement

between internal replicates of the large-scale scores (Figure 2.7B,C).

As a further sanity check, I next examined evolutionary conservation and common

predictors of deleteriousness, such as PolyPhen-2 [10] and PROVEAN [12]. Although

each of these measures is far from perfect in predicting the functionality of amino acid

changes, they should and did each correlate with functionality (Figure 2.7D,E,F). Finally,

I confirmed that, as expected, amino acid residues on the protein surface are more tolerant

to mutation than those in the protein core or within interaction interfaces (Figure 2.7G).

Taken together, these observations support the biological relevance of the DMS-BarSeq

approach.
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2.2.2 An alternative strategy for DMS via tiled regional se-

quencing

While the DMS-BarSeq approach has many advantages (see Discussion), its performance

comes at the cost of producing and maintaining an arrayed clone library, and of deter-

mining the full-length sequence of each coding region and barcode for each clone. We

therefore investigated an alternative approach called DMS-TileSeq: Instead of track-

ing the fitness of each individual clone, we carried out en masse measurements of the

frequency of each variant in the pool before and after selection, by deep sequencing. Se-

quencing was carried out for a set of short amplicon tiles that collectively encompass the

complete coding region. In this way, it is possible to discern the impact of each mutation

by observing the impact of selection on the abundance of clones carrying this mutation.

In terms of mutagenesis (Stage 1), DMS-TileSeq is identical to DMS-BarSeq. Given

the mutagenized amplicon library, the cloning step (Stage 2) was carried out by en masse

recombinational subcloning into complementation vectors (thus skipping the step of

arraying and sequencing individual clones). This plasmid pool was next transformed

en masse into the ubc9-ts strain appropriate for assessing the complementation ability

of UBE2I variants. As with DMS-BarSeq, DMS-TileSeq employs pooled strains grown

competitively (Stage 3) at the permissive and selective temperatures. However, instead

of using barcode sequencing to determine the fitness associated with individual stains, we

directly sequence the coding region from the clone population to determine the frequency

of each variant in each pool (before and after selection). To overcome the problem of dis-

tinguishing mutations from sequencing errors, we divide the coding region into tiles such

that each individual template molecule can be completely sequenced on both strands. By

requiring that each variant be seen on both strands, the incidence of base-calling errors

can be substantially reduced.

An important aspect of DMS-TileSeq is that it requires the library to be sufficiently

complex to ensure that the effect of a mutation is determined from enough clones and

averaged over enough genetic backgrounds to be reproducible. Therefore it was neces-

sary to first validate the reliability of DMS-TileSeq in comparison to DMS-BarSeq on

our established UBE2I map. Correlation between DMS-TileSeq and DMS-BarSeq was

comparable to the correlation observed between biological replicates of DMS-BarSeq (Fig-

ure 2.8A), suggesting that reproducibility of DMS-TileSeq is at least comparable to that

of DMS-BarSeq. DMS-TileSeq and DMS-BarSeq showed similar agreement with com-

plementation scores from manual assays (Figure 2.8B). Thus, DMS-TileSeq avoids the

substantial cost of arraying and sequencing thousands of individual clones, while perform-
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ing on par with DMS-BarSeq in terms of reliability of the functional complementation

scores it produces.
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Figure 2.8: Comparison of DMS-BarSeq to DMS-TileSeq scores. A) Scatterplot of func-
tional scores for variants in obtained from BarSeq and TileSeq (transformed to the same
scale), whisker bars show regularized standard error. B) Comparison of BarSeq (top)
and TileSeq (bottom) scores to manual complementation spotting assay scores (jittered
for visibility). Whisker bars show regularized standard error

2.2.3 A complete functional map of UBE2I

Having performed two independent deep mutational scans of UBE2I using functional

complementation assays, we wished to integrate both results into a single comprehensive

high-quality map. To accomplish this, I first combined the results of each screening

approach into a joint map. This required bringing the maps onto the same scale. Using

a regression-based transformation function, I transformed the DMS-TileSeq scores to the

more intuitive scale of DMS-BarSeq (where 0 corresponds to the typical score of a null

mutant and 1 corresponds to the typical score of a wildtype control). I then combined

scores from the two methods, giving greater weight to more confident measurements (see

methods section).
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Imputation and regularization of missing or less accurate data

As is the case for all previously published DMS maps, our combined map contained

some entries that were poorly measured or missing (e.g., because these substitutions

were underrepresented in the input clone library). To fill the gaps in the map (Stage 5

in the framework), I trained a Random Forest [101] regression model using the existing

measurements in the map. The features used for the model fall into four categories: in-

trinsic information; conservation information; chemicophysical properties; and structural

properties.

The most important intrinsic feature consists of weighted positional averages in the

map. That is, for any given amino acid change, all other observed effects of variants at the

same amino acid position are weighted according to their measurement confidence and

are then used to form an average. A second intrinsic feature consists of the confidence-

weighted average effect of all variants containing the amino acid change in question.

Finally, as a third intrinsic feature I calculate the expected variant fitness predicted by a

multiplicative model often applied to detect genetic interactions [102,103]. In the absence

of interaction, the fitness of a double mutant fA,B is expected to follow the product of

the individual single mutant fitness levels fA,B ≈ fA · fB. Thus, in cases where a double

mutant (A,B) and a single mutant B is known, the fitness of A can be estimated to be

fA ≈ fA,B

fB
. The model is applied to all available double mutant fitness values carrying the

mutation in question in combination with available complementary single mutant fitness

values. As the latter two features rely on multi-mutant fitness measurements, they can

only be applied where DMS-BarSeq data is available.

The second category of features focuses on evolutionary conservation. For each amino

acid change in question, this encompasses the corresponding BLOSUM62 [104], SIFT [11]

and PROVEAN [12] scores, and the AMAS [105] conservation at the given position. The

third category of features comprises chemicophysical properties such as mass and hy-

drophobicity of the original and wildtype amino acids and the difference between the

two. The fourth and final category of features consists of structural properties of the af-

fected amino acid residues, such as solvent accessibility, engagement in polar interactions

and burial in interaction interfaces.



Chapter 2. A comprehensive high-fidelity DMS framework 34

re
al

 s
co

re

AA
 p

os
iti

on

AA residue

1
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

PCGQNTSEDKHRWYFMILVA

0≥1

prediction error

Yeast WT
WT

P32D
K101Y

C75I
K154L

I96C
M36A
K18L
P72Y

M62W
I109E

N124P
H83M
P69K

imputed score −0
.50.
0

0.
5

1.
0

spotting assay
dilutions

7531

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1020304050

Increase in MSE(%)

● ● ● ●

in
tr

in
si

c
co

ns
er

va
tio

n
p

hy
si

co
ch

em
ic

al
st

ru
ct

ur
al

posit
ional a

ve
ra

ge

m
ulti-

m
uta

nt a
ve

ra
ge

PRO
VEAN

SIF
T

wild
-ty

pe re
sid

ue

m
uta

nt r
esid

ue

m
ultip

lic
ativ

e m
odel

re
l. s

olve
nt a

cc
ess

ib
ilit

y

Δ 
iso

elect
ric

 p
oint

abs. 
so

lve
nt a

cc
ess

ib
ilit

y

AM
AS co

nse
rv

atio
n

buria
l in

 E
1 in

te
rfa

ce

Δp
K

a o
f a

m
ino te

rm
inal

Δ 
buria

l p
ro

babilit
y

buria
l in

 su
bstr

ate
 in

te
rfa

ce Δ 
m

ass

Δ 
ave

ra
ge so

lve
nt a

cc
ess

.

A
C

B

D

0
1

2

0.00.51.01.5
predicted score

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

R 
= 

0.
74

RM
SD

 =
 0

.3
3

N
/A

F
ig

u
re

2.
9:

E
va

lu
at

io
n

of
m

ac
h
in

e
le

ar
n
in

g
im

p
u
ta

ti
on

.
A

)
C

ro
ss

-v
al

id
at

io
n

co
rr

el
at

io
n

b
et

w
ee

n
m

ea
su

re
d

va
lu

es
an

d
m

ac
h
in

e
le

ar
n
in

g
p
re

d
ic

ti
on

s.
B

)
C

ro
ss

va
li
d
at

io
n

p
re

d
ic

ti
on

er
ro

r
la

n
d
sc

ap
e.

C
)

M
an

u
al

co
m

p
le

m
en

ta
ti

on
sp

ot
ti

n
g

as
sa

y
co

m
p
ar

ed
to

m
ac

h
in

e
le

ar
n
in

g
p
re

d
ic

ti
on

s
fo

r
an

in
d
ep

en
d
en

t
te

st
se

t
of

va
ri

an
ts

n
ot

p
re

se
n
t

in
th

e
tr

ai
n
in

g
d
at

a.
D

)
F

ea
tu

re
im

p
or

ta
n
ce

as
m

ea
su

re
d

b
y

av
er

ag
e

in
cr

ea
se

in
m

ea
n

sq
u
ar

ed
er

ro
r.



Chapter 2. A comprehensive high-fidelity DMS framework 35

I assessed the performance of the imputation model using cross-validation. Surpris-

ingly, I found the root-mean-squared deviation (RMSD) of imputed values to be on par

with measurement error in experimentally measured data (Figure 2.9A). An examina-

tion of the prediction performance by location showed increased error in positions with

lower mutation density and for variants with above-WT fitness levels (Figure 2.9B). As

an additional validation step, we performed manual complementation assays for a set

of UBE2I variants that were not present in the machine learning training data set and

compared the results against the predictions (Figure 2.9C), again finding a surprisingly

strong agreement. Notably, variants showing above wild-type level growth in the manual

assay were generally predicted to be deleterious. Although above-WT complementation

may indicate that a variant is adaptive in yeast, the imputation models suggested that

these variants would be deleterious in humans, a hypothesis that is explored further in

chapter 3.

An analysis of feature importance can be performed by comparing the increase in the

mean squared prediction error upon permuting the values of a feature in question. The

analysis revealed that intrinsic features were the most informative (Figure 2.9D), with

the weighed position-wise average and multi-mutant average seen to be the two single

most important features (49% and 40%, respectively), while the multiplicative model

contributed 14%. The second most important group was conservation information, with

PROVEAN and SIFT weighing in at 39% and 32%, respectively.

Finally, in stage 6 of the DMS framework, we wished to address cases in which exper-

imental measurements were available but less confident. I implemented a regularization

method, combining experimental measurements with machine-learning predicted values

after dynamically weighting them according to their respective confidence levels. That

means: the less confident a measurement, the stronger the regularization. Overall, most

values were only adjusted minimally through regularization, with 90% of values being al-

tered by less than 2.5% of the score difference between null and wt controls (Figure 2.10).

This reflects the fact that most values were already of high quality.

To evaluate the effect on the minority of variants that required stronger regulariza-

tion, I looked for cases that were of low quality in the DMS-TileSEQ dataset, but well

measured in the DMS-BarSeq experiment. This would allow me to treat the DMS-BarSeq

values as a gold-standard basis of comparison when performing the regularization proce-

dure only on the DMS-TileSeq dataset. I identified six cases that fulfilled these criteria.

In all six cases regularization of DMS-TileSeq resulted in improvement, i.e. adjusted

the corresponding values such that they more closely resembled the gold standard (Fig-

ure 2.10B). However, I found the changes to be still very conservative. More drastic
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weighting towards the machine learning prediction could have improved these cases even

more.

To evaluate the complete map, we once more applied manual complementation assays

to a set of variants that represented the full range of fitness scores. DMS fitness scores

corresponded closely with manual assays (Figure 2.10)C, with a Spearman correlation of

0.83 between the high-throughput and low-throughput values (a slight improvement of

0.06 compared to the raw, unregularized experimental data).

2.3 Discussion

Here I have demonstrated the capabilities of a new improved Deep Mutational Scanning

framework that uses functional complementation in yeast to map the impact of mutations

on the overall ability of a protein to function. I integrated a machine learning-based

imputation and regularization strategy into the deep mutational scanning process, to

create the first DMS map that is complete with respect to high-quality functional impact

scores over the full length of a protein.

The two versions of DMS described, DMS-BarSeq and DMS-TileSeq, each have advan-

tages and limitations. DMS-BarSeq permits study of the combined effects of mutations

located at any distance along the clone, and therefore can reveal intramolecular genetic

interactions (as will be explored further in the next chapter). Futhermore, mutant clones

produced for DMS-BarSeq are arrayed, sequenced and indexed which enables potential

follow up investigation of individual variants. DMS-BarSeq also allows for the direct

comparison of growth of any clone to null and wild type controls, resulting in an intuitive

scoring scheme. However, the cost of arraying and sequencing clones for DMS-BarSeq

renders it more costly and labour intensive, even given the efficient KiloSeq strategy. By

contrast, the regional sequencing strategy of DMS-TileSeq is substantially more efficient,

but can only analyze fitness of those double mutant combinations that fall within the

same tile.

The use of codon-replacement mutagenesis allows for the observation of a fuller reper-

toire of amino-acid substitutions than single-nucleotide mutagenesis would have allowed

(only ∼ 30% of all possible amino acid substitutions are accessible by single nucleotide

mutation). However, given that the majority of missense variants observed in individ-

ual genomes are single-nucleotide variants [106], one might reasonably wonder whether

codon mutagenesis is worth carrying out in addition to single-nucleotide mutagenesis.

There are three arguments for using codon-level mutagenesis to reveal the impact of

all 19 possible amino acid substitutions at each position: 1) a full picture of functional
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missense variation enables a clearer understanding of what biochemical properties are

required of each functionally important residue; 2) an analysis of over 60,000 unphased

human exomes [106] found that each individual human harbors approximately 23 codons

containing multiple nucleotide variants that collectively encode an amino acid not en-

coded by either single variant; 3) it seems likely that, going forward, the dominant cost

of DMS will be development and validation of the functional assay, so that carrying out

codon-level mutagenesis instead of (or in addition to) nucleotide-level mutagenesis has a

relatively small impact on overall cost.

2.4 Methods

2.4.1 Mutagenesis and library construction

Oxidized nucleotide PCR: Oxidized nucleotide PCR was performed by Jennifer

Knapp as previously described by Mohan and colleagues [63]. A 100µM dNTP mixture

was incubated at 37◦C with 5mM FeSO4 for 10 minutes. Addition of 0.5M Mannitol

was used to stop the reaction. Oxidized nucleotides were prepared fresh for every PCR

reaction. PCR in presence of oxidized nucleotides. PCR reaction containing: 1-5ng

template DNA, 1× Thermopol Buffer (Invitrogen), 1.5mM MgCl2, 0.2mM dNTP, 0.33µM

forward and reverse primers containing attB sites, 1U Taq polymerase was set up during

the nucleotide oxidation reaction. Oxidized nucleotides were the last component added

to the PCR reaction at a concentration of 0.1mM (half the amount of regular dNTP).

Thermal cycler program: 95◦C for 10 min, 30 cycles of 95◦C for 1 min, 50◦C for 1 min,

72◦C for 1 min, final extension at 72◦C for 10 min. Mutagenized PCR product was

visualised on a 1% agarose gel, and gel-extracted using a gel extraction kit (Qiagen).

The gel extracted PCR product is the pooled mutagenesis product carrying attB sites

that is carried through to the KiloSeq stage.

POPCode mutagenesis

Oligonucleotide design: POPCode oligos are generated using the POPCodeSuite

webtool I created. Given a target oligo length and a maximum length offset, the tool

calculates for every codon in the target gene the set of possible oligos conforming to

the length and offset parameters. Then, melting temperatures for the 5’ and 3’ halves of

each oligo are calculated. For each codon, the oligo that most closely matches the median

5’ and 3’ melting temperatures is chosen. Based on parameters derived from previous

observations, the expected mutation frequency is calculated for each oligo and used to
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simulate variant coverage rates at different library sizes. The source code is provided on

the attached storage media and can also be found online2.

The POPCode mutagenesis protocol was performed by Atina Coté, Jennifer Knapp

and Marta Verby in the following steps: (i) the uracil-containing wild type template

was generated by PCR-amplifying the ORF with dNTP/dUTP mix and HotTaq DNA

polymerase, (ii) the mixture of phosphorylated oligonucleotide pool and uracil-containing

template was denatured by heating it to 95◦C for 3 minutes and then cooled down to

4◦C to allow the oligos hybridize to the template, (iii) gaps between hybridized oligonu-

cleotides were filled with the non-strand-displacing Sulpholobus Polymerase IV (NEB)

and sealed with T4 DNA ligase (NEB), (iv) after degradation of the uracil-doped wild-

type strand using Uracil-DNA-Glycosylase (UDG) (NEB), the mutant strand was ampli-

fied with attB-sites-containing primers and subsequently transferred en masse to a donor

vector by Gateway BP reaction to generate a library of entry clones.

Synthesis of uracil-containing template: A 50µl PCR reaction contained the fol-

lowing: 1ng template DNA, 1× Taq buffer, 0.2mM dNTPs-dTTP, 0.2mM dUTP, 0.4µM

forward and reverse oligos, and 1U Hot Taq Polymerase. Thermal cycler conditions are

as follows: 98◦C for 30s, 25 cycles of 98◦C for 15s, 60◦C for 30s, and 72◦C for 1min. A

final extension was performed at 72◦C for 5 min. Uracilated amplicon was gel-purified

using the Minelute gel purification kit (Qiagen).

Phosphorylation of mutagenic oligos: Desalted oligos were purchased from Eu-

rofins and Thermo Scientific. The phosphorylation reaction is as follows: a 50µl reaction

containing 1× PNK buffer, 300 pmol oligos, 1mM ATP, and 10U Polynucleotide Ki-

nase (NEB) was incubated at 37◦C for 2 hours. The reaction was used directly in the

subsequent POPCode reaction.

POPCode oligo annealing and fill-in: A 20µl reaction containing 20ng uracilated

DNA, 0.15µM phosphorylated oligo pool, and 1.5µM 5’-oligo was incubated at 95◦C for 3

minutes followed by immediate cooling to 4◦C. A 30µl reaction containing 1× Taq DNA

Ligase buffer, 0.2mM dNTPs, 2U Sulfolobus DNA Polymerase IV (NEB), and 40U Taq

DNA Ligase (NEB) was added to the DNA and was incubated at 37◦C for 2 hours.

Degradation of wild-type template: 1µl fill-in reaction was added to a 20µl reaction

containing 1× UDG buffer and 5U Uracil DNA Glycosylase (NEB) and incubated at 37◦C

2http://dalai.mshri.on.ca/~jweile/projects/popcodeSuite/

http://dalai.mshri.on.ca/~jweile/projects/popcodeSuite/
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for 2 hours.

Amplification of mutagenized DNA: 1µl UDG reaction was added to a 50µl reac-

tion containing 1× Taq buffer, 0.2mM dNTPs, 0.4µM forward and reverse oligos, and 1U

Hot Taq Polymerase. Thermal cycler conditions are as follows: 98◦C for 30s, 25 cycles of

98◦C for 15s, 60◦C for 30s, and 72◦C for 1min. A final extension was performed at 72◦C

for 5 min.

Library construction

Library construction was performed by Atina Coté, Jennifer Knapp and Marta Verby

following the en masse LR cloning protocol previously described in Yachie et al. [107].

Generation of mutagenised pool of Entries: An en masse Gateway BP reac-

tion containing 150ng of pooled mutagenesis PCR product carrying attB sites, 150ng of

pDONR223, 1µL Gateway BP Clonase II Enzyme Mix (Invitrogen), 1× TE Buffer is pre-

pared. This reaction is incubated overnight at room temperature and then transformed

into E. coli aiming for the maximum number of transformants (at least 100,000 CFUs)

to keep complexity high. Several colonies are picked at this stage for a quality control

check by Sanger sequencing, and the rest are put through a pooled DNA extraction. The

result is a pool of mutagenised PCR product inserted into the entry vector pDONR223.

Generation of Barcoded Destination Pools: Barcoded destination plasmids were

generated as previously described in Yachie et al. [107], but instead of being arrayed were

maintained as pools with high complexity. Briefly, a linear PCR product containing two

random 25 nucleotide barcode regions along with common linker sequences for priming

was combined with a Gateway-compatible vector at a SacI restriction site through in

vitro DNA assembly [108]. This barcoded destination vector pool was transformed into

One Shot ccdB Survival T1R Competent Cells (Invitrogen). The transformations were

spread onto large round LB+ampicillin petri plates for increased selection capacity and

pool complexity was estimated from CFU counts. The plates were combined into a single

pool for plasmid DNA extraction by maxiprep.

En masse Gateway LR reaction: An en masse Gateway LR reaction was used to

transfer the mutagenised pool of entries into the barcoded destination pool. This reaction

takes place over five days. On Day 1, a 5µL reaction containing 150ng of mutagenised

ORF pool in pDONR223 backbone, 150ng barcoded pHYC expression vector pool, 1µL
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LR ClonaseII Enzyme Mix, 1× TE buffer is prepared. The reaction is incubated at

room temperature overnight. On each of days 2-5, add in a 5µL volume consisting of

150ng barcoded pHYC expression vector, 1µL LR ClonaseII Enzyme Mix, 1× TE Buffer,

incubating at room temperature overnight each day. On day 5, the final volume is 25µL.

Transformations and colony picking: LR reactions were transformed into E. coli

and plated to achieve a density of 400-600 individual colonies per plate. A Biomatrix

robot (Biomatrix BM5-BC robot, S&P Robotics) was then used to automatically pick

and array 384 colonies per plate for a total of ∼20,000 clones in ∼52 plates per ORF of

interest. Each colony at this stage should contain a pHYC expression vector harbouring

a variant of the ORF of interest and a unique barcode.

2.4.2 KiloSeq and library condensation

Experimental procedures: KiloSeq library preparation was performed by Atina Coté,

Jennifer Knapp and Marta Verby. The first step is to PCR-amplify a segment of the plas-

mid containing both ORF and barcode locus. PCRs were carried out using the Hydrocy-

cler 16 (LGC Group, Ltd.), using primers with well-specific index sequences. Amplicons

from each plate were pooled, and subjected to Nextera tagmentation using Tn5 trans-

posase to generate a library of amplicons with random breaks to which the adapters have

been ligated. The fragments are then re-amplified to generate a library of amplicons such

that one end of each amplicon bears the well-specific tag and the other (ladder) end bears

the Nextera adapter. These libraries can be re-amplified to introduce Illumina TruSeq

adaptors, allowing multiple plates of amplicons to be sequenced together. Paired-end

sequencing was carried out using Illumina NextSEQ 500. In each pair of reads, one read

will reveal the well tag and the barcode locus, whereas the other will contain a fragment

of the mutant ORF, and these fragments can be assembled into a contiguous sequence.

Computational procedures: I developed a sequence analysis pipeline to process all

KiloSeq data. The pipeline runs on a high-performance computing cluster (Figure 2.11).

In the first step, Illumina bcl2fastq is used to demultiplex the reads at the plate level

using the custom Nextera indices. The resulting FASTQ files are then further demulti-

plexed using the well-tags in a highly parallel fashion. This results in a folder structure

containing tens of thousands of individual FASTQ files sorted by plate and well location.

These are then further processed in parallel to identify barcodes. Wells can sometimes

contain more than one clone (e.g., due to incomplete washing in the robotic pinning

process). Thus barcode sequences are extracted from each read and then clustered by
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edit distance [98] to determine the set of barcodes in each well. The associated paired

reads for each barcodes are then further split by barcode. Each barcode-specific set of

ORF reads can then be analyzed with respect to mutations. Bowtie2 [109] is used to

align reads to the ORF template, PCR duplicates are removed and nucleotide variants

called using samtools pileup [110]. Given limited read lengths, identification of longer

indels is not straightforward. A solution was found by extracting depth of coverage tracks

for each clone and normalizing them with respect to average positional coverage across

each 384-well plate, applying an edge-detection algorithm [99] to find sudden increases

or decreases within normalized coverage, indicating the presence under-covered regions

that can arise as a result of insertions or deletions. The source code is provided on the

attached storage media and can also be found online3.

After successful genotyping with KiloSeq, I determined the subset of clones that (i)

contained a minimum of one missense mutation, (ii) did not contain any insertions or

deletions, (iii) did not contain mutations outside of the ORF, (iii) had unique barcodes,

(iv) had sufficient read coverage during KiloSeq to allow for confident genotyping. We re-

arrayed this filtered subset of clones (using the Biomatrix BM5-BC robot, S&P Robotics)

3http://dalai.mshri.on.ca/~jweile/projects/kiloseq/

http://dalai.mshri.on.ca/~jweile/projects/kiloseq/
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into a condensed final library of 40 plates containing 6,548 clones. I created a custom

software library to automatically program the Biomatrix robot’s picking protocol. The

software is provided on the attached storage media and can also be found online4.

2.4.3 DMS-BarSeq

Complementation competition experiment: Complementation experiments were

performed by Jennifer Knapp, Song Sun and Marta Verby. Plasmids extracted from

the pool of 6,548 barcoded and KiloSeq-validated mutant clones, together with barcoded

null and wildtype controls, were transformed into a S. cerevisiae strain carrying the

temperature-sensitive (ts) ubc9-2 allele which can be functionally complemented by the

corresponding wild-type human gene [13, 79]. Complexity for this transformation was

100,000 CFU. For the time series BarSeq screen, the pools were grown separately at both

non-selective (25◦C) and selective (38◦C) temperatures in triplicates to be examined at

5 different timepoints (0h, 6h, 12h, 24h, 48h) yielding 30 samples. At their respective

time points, plates were scraped, OD quantified, and their barcode loci amplified with

primers carrying sample-specific tags. The amplified product is then sequenced on an

Illumina NextSeq 500.

Sequence analysis: I created a custom sequence analysis pipeline, which was used to

identify and count individual sample tags and barcode combinations within each read.

The pipeline uses a k-mer search algorithm in a highly parallelized fashion on a SunGri-

dEngine HPC cluster. Barcodes are counted and the counts aggregated across cluster

nodes. The pipeline source code is provided on the attached storage media and can also

be found online5.

Scoring: I developed a custom software to perform scoring and statistical analysis.

First, the relative population size for each clone is calculated by dividing each clone’s

barcode count by the total number of barcodes in each condition. Then the estimated

absolute population size for each clone is calculated by multiplying the relative population

size with the estimated total number of cells on the respective plate at the corresponding

time point (obtained from OD measurements). I then treat the amount of growth between

each individual time point compared to the pool average as an individual estimate of

fitness, all of which act cumulatively. This is calculated as follows: Let cτi,tk be the

4http://dalai.mshri.on.ca/~jweile/projects/biomatrix/
5http://dalai.mshri.on.ca/~jweile/projects/screen_pipeline/

http://dalai.mshri.on.ca/~jweile/projects/biomatrix/
http://dalai.mshri.on.ca/~jweile/projects/screen_pipeline/
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barcode count for clone i, time point tk at temperature τ , then ∀i ∈ {1 ≤ i ≤ N |i ∈ N},
∀k ∈ {1 ≤ k ≤ 5|k ∈ N}, ∀τ ∈ {25◦, 37◦}

r
(τ)
i,tk

=
c

(τ)
i,tk∑
j c

(τ)
j,tk

P
(τ)
i,tk

= r
(τ)
i,tk
· P (τ)
∗,tk

ρ
(τ)
i,tk

=
(tk−tk−1)

√√√√ P
(τ)
i,tk

P
(τ)
i,tk−1

φ
(τ)
i,tk

=
ρ

(τ)
i,tk

ρ
(τ)
∗,tk

φ′i,tk =
φ

(37◦)
i,tk

φ
(25◦)
∗,tk

si =
∏
k

φ′i,tk

s′i =
si − snull

swt − snull

,

where r
(τ)
i,tk

is the relative population size for clone i and time point tk at temperature

τ , P
(τ)
i,tk

is the absolute population size for clone i, time point tk at temperature τ , ρ
(τ)
i,tk

is

the measured hourly growth rate for clone i, time point tk at temperature τ , φ
(τ)
i,tk

is the

fitness advantage relative to the pool growth for clone i, time point tk at temperature

τ , φ′i,tk is the normalized relative fitness advantage for clone i at time point tk, and si is

the cumulative normalized relative fitness advantage for clone i. Finally, s′i is the fitness

score relative to the internal null and wild type controls. This results in null-like mutants

receiving a score of zero and wild type-like mutants receiving a score of one.

The scoring software is part of a larger DMS analysis package provided on the attached

storage media. It is also available online6.

Error regularization: I regularized the standard error measurements for each clone

using a Bayesian method published by Baldi and Long [100]. A prior estimate for each

measurement was obtained via linear regression over permissive read counts and fitness

values. The prior is combined with the empirical standard deviation obtained from

6http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc

http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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technical replication using Baldi and Long’s original formula

σ2 =
vnσ

2
n

vn − 2
=
v0σ

2
0 + (n− 1)s2

v0 + n− 2
,

where v0 represents the degrees of freedom assigned to the prior estimate, σ0 is the prior

estimate, n represents the degrees of freedom for the empirical data (i.e. the number of

replicates) and s is the empirical standard deviation.

The error regularization procedure is part of a larger DMS analysis package provided

on the attached storage media. It is also available online7.

2.4.4 DMS-TileSeq

Complementation competition experiment The TileSEQ experiment was per-

formed by Song Sun and Marta Verby. Plasmids extracted from a pool of ∼ 105 PopCode-

generated clones were transformed into the S. cerevisiae ubc9-2 ts strain yielding around

106 total transformants. Plasmids were prepared from two replicates of each 10 ODU

of cells and used as templates for the downstream tiling PCR. These serve as the two

replicates in the non-selective condition. A further two replicates of 40 ODU of cells

were inoculated into 200ml medium and grown under continuous shaking to full den-

sity at 36◦C. Plasmids were extracted from 10 ODU of each culture and were used as

templates for the downstream tiling PCR. These serve as the two replicates in the se-

lective condition. Finally, plasmid expressing the wild-type ORF was transformed into

the S. cerevisiae ubc9-2 ts strain and grown to full density under selection. Plasmids

were extracted from two replicates of 10 ODU of cells and used as templates for the

downstream tiling PCR. These serve as the two replicates of wild-type control. For each

plasmid library, a tiling PCR was performed in two steps: (i) the targeted region of the

ORF was amplified with primers carrying a binding site for Illumina sequencing adaptors,

(ii) each amplicon was indexed with an Illumina sequencing adaptor. Finally, paired end

sequencing is performed on the tiled regions across the ORF using an Illumina NextSeq

500.

TileSeq Analysis pipeline: Sequencing data is demultiplexed using Illumina bcl2fastq.

Reads are the aligned to the UBE2I template using Bowtie2 [109] and variants called

where both reads in each pair agree. Variants are counted and aggregated for each con-

dition and replicate. Counts in each condition are normalized to sequencing depth at

7http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc

http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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the respective position. Then, wildtype control counts are subtracted from the selective

and permissive condition counts. Finally, the log ratio between adjusted selective and

permissive counts is calculated. Error regularization was performed the same way as in

DMS-BarSeq using the Baldi and Long method [100]. The scoring procedure is imple-

mented as part of a larger DMS analysis package provided on the attached storage media.

It is also available online8.

2.4.5 Joining of maps, imputation and regularization

While DMS-TileSeq produces only one fitness score per variant, DMS-BarSeq in many

cases contains multiple biological replicates of the same variant associated with different

barcodes. To provide summary fitness values on a per-variant basis, I combined scores

from biological replicates using weighted means, where the weight is inversely propor-

tional to the Bayesian regularized standard error. The standard error associated with

the joint score is also adjusted to account for differences in input fitness measurements

and increased sample size.

The results from the barcoded and regional sequencing screens do not scale linearly

with each other. I used regression to find a monotonic transformation function

f(x) = a · ex + b · x+ c

between the two screens’ respective scales. The standard deviation is transformed ac-

cordingly using a Taylor series-based approximation.

σ′ = σ · (a · eµ + b)

After both datasets have been brought to the same scale I can join corresponding data

points using weighted means, where the weight is again inversely proportional to the

Bayesian regularized standard error. Output standard error was adjusted again to ac-

8http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc

http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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count for differences in input fitness values and increased sample size.
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where µ0 is the DMS-BarSeq value, σ0 the associated standard deviation, σ
(0)
x̄ the as-

sociated standard error, df0 the associated degrees of freedom, µ1 is the DMS-TileSeq

value, σ1 the associated standard deviation, σ
(1)
x̄ the associated standard error, and df1

the associated degrees of freedom.

Imputation of missing values was performed using RandomForest Regression [101].

The following intrinsic features were generated: the confidence-weighted average fitness

across mutations at the same position; the average fitness of multi-mutant clones that

contain the mutation of interest; and the estimated fitness according to a multiplica-

tive model to infer mutant fitness A using a double mutant AB and single mutant B.

A second set of features was computed from differences between various chemical prop-

erties of the wildtype and mutant amino acids. These properties include size, volume,

polarity, charge, and hydropathy. A third set of features is derived from the struc-

tural context of each amino acid position. These include secondary structure, solvent

accessibility, burial in interfaces with different interaction partners, and involvement in

hydrogen bonds or salt bridges with interaction partners. Secondary structures were

calculated using Stride [111]. Solvent accessibility and interface burial were calculated

using the GETAREA tool [112] on the following PDB entries: 3UIP [85]; 4W5V [84]; 3KYD [83];

2UYZ [113]; 4Y1L [90]. Hydrogen bonds and salt bridges candidates were predicted using

OpenPyMol [114] and evaluated for validity by manual inspection. Additional features

used are the PROVEAN [12] and BLOSUM [104] scores for a given amino acid change

and the evolutionary conservation of the amino acid position. Conservation was ob-

tained by generating a multiple alignment of direct functional orthologues across many

eukaryotic species using CLUSTAL [115], which was used as input for AMAS [105].

The machine learning predictions generated above were also used to regularize ex-

perimental measurements of lower confidence. To this end, the corrected standard error

associated with each data point can be used to determine the weight assigned to the

measurement, as follows:
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w0 =
1

1 + σ
(0)
x̄

σ
(1)
x̄

; w1 =
1

1 + σ
(1)
x̄

σ
(0)
x̄

µjoint = w0 · µ0 + w1 · µ1

σ2
joint = w0 · (σ2

0 + µ2
0) + w1 · (σ2

1 + µ2
1)− µ2

joint

σ
(joint)
x̄ =

σjoint√
df0 + df1

where µ0 is the measured value, σ0 the associated standard deviation, σ
(0)
x̄ the associated

standard error, df0 the associated degrees of freedom, µ1 is the RandomForest predicted

value, σ1 the associated standard deviation as approximated by cross-validation RMSD,

σ
(1)
x̄ the associated standard error, and df1 the associated virtual degrees of freedom.

The joining, imputation, and regularization procedures are implemented as part of a

larger DMS analysis package provided on the attached storage media, and also available

online9.

2.4.6 Complementation spotting assays

To validate the reliability of the fitness scores obtained during the screen, I selected three

subsets of clones from our original UBE2I variant library: (1) A set of clones carrying

variants with functional scores representing the full spectrum in the screen; (2) A set

of clones carrying hypercomplementing variants in the screen; and (3) A set of clones

carrying variants not present in the imputation training data set. Jennifer Knapp and I

performed genotype verification using Sanger sequencing. The spotting assay was then

performed by Jennifer Knapp as follows. Each verified variant was transferred to the yeast

expression plasmid pHYCDest by Gateway cloning and individually transformed into the

S. cerevisiae ubc9-2 ts strain. Cells were grown to saturation in 96-well cell culture plates

at room temperature. Each culture was then adjusted to an OD600 of 1.0 and serially

diluted to 5−1, 5−2, 5−3, 5−4, and 5−5. These cultures (5µl of each) were then spotted on

SC-Leucine plates as appropriate to maintain the plasmid and incubated at either the

permissive (25◦C) or non-permissive (37◦C) temperatures for two days. Each variant was

assayed alongside negative and positive controls for loss of complementation (expression

of either the wild type human protein or a GFP control). Results were interpreted by

comparing the growth difference between the yeast strains expressing human genes and

the corresponding control strain expressing the GFP gene.

9http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc

http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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I developed a custom software, PlateOrganizer, to organize and analyze image data

from spotting assays. It is provided on the attached storage media and can also be found

online10.

10http://dalai.mshri.on.ca/~jweile/projects/PlateOrganizer/

http://dalai.mshri.on.ca/~jweile/projects/PlateOrganizer/


Chapter 3

Expanding the atlas of variant

effects in human disease genes

As in the previous chapter, the work described here is the result of a team effort including

multiple members of the Roth Lab as well as other collaborators. Wet lab procedures

were executed by Marta Verby, Song Sun, Atina Coté and Jennifer Knapp, while com-

putational aspects of the work were developed and implemented by myself, except where

indicated otherwise.

3.1 Introduction

Within coming decades, millions of people will have their genome sequenced. Unfortu-

nately, we have limited ability to interpret personal genomes, each carrying 100-400 rare

missense variants [9] of which many must currently be classified as Variants of Uncertain

Significance (VUS). For example, gene panel sequencing aimed at identifying germline

cancer risk variants in families yielded VUS for the majority of missense variants [8].

While functional variants can be predicted via computational tools such as PolyPhen-

2 [10] and PROVEAN [12], these methods can confidently detect only one third as many

disease variants as are detectable by experimental assays [13]. Unfortunately, experi-

mental assays are either unavailable or economically inviable for most human disease

genes.

Recent DMS studies have provided individual maps for the critical RING domain of

BRCA1 [57] associated with breast cancer risk, and the PPARγ protein associated with

Mendelian lipodystrophy and increased risk of type 2 diabetes [61]. Such maps can not

only identify functionality of a clinical variant accurately, but also potentially do so in

advance of that variant’s first clinical presentation.

50
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In the previous chapter, a framework for comprehensive high-quality screening of

functional effects across all possible missense mutations in human genes was established.

The functional complementation assay used in the assay allows for the generation of maps

that not only represent the overall functional consequences of mutations, but also serves

as a common basis to make maps more directly comparable. In addition, the statistical

analysis and machine learning component introduced allows for high overall map quality

and completeness. Using this framework a complete functional map for the SUMO E2

conjugase UBE2I was created. Here I describe the creation of a map of a second member

of the Sumoylation pathway, SUMO1. I examine both map in detail before discussing

the interpretation of yeast complementation phenotypes in terms of humans.

To demonstrate the value of the DMS framework in terms of clinical interpretation

of variants, a diverse set of six new disease gene maps was added to the atlas: TPK1

encoding Thiamin Pyrophosphokinase 1, NCS1 encoding Neuronal Calcium Sensor 1, as

well as the paralogues CALM1, CALM2 and CALM3, which each encode the protein

Calmodulin. The maps are evaluated in terms of pathogenicity prediction and VUS

reclassification.

3.2 Results

3.2.1 A functional map of SUMO E2 recapitulates known biol-

ogy and poses new questions

The DMS map of UBE2I produced in the previous chapter paints a comprehensive picture

of variant effects on protein function. The complete, refined functional map of UBE2I

after imputation and regularization can be seen in Figure 3.1. For comparison, additional

tracks showing position-specific evolutionary conservation, secondary structure, relative

solvent accessibility and burial in protein-protein interaction interfaces are also shown.

Based on the map, several observations can be made. Consistent with the results of

smaller-scale biochemical studies of the SUMO E2 conjugase [87, 94], the areas most

sensitive to mutation are those proximal to the active site (particularly residues 81-88, 90,

92-96, and 127-130), and the N-terminal α-helix which mediates four protein interactions

including the critical interaction with the E1 SUMO-activating complex. Within the

active site, particularly strong sensitivity to mutation can be observed at the cysteine

residue at position 93. This is consistent with its central role in E2 function, as it forms

a thioester bond with the SUMO C-terminus [87].
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An interesting feature of the map is the alternating tendency towards damaging and

benign substitutions across positions 55-65. A comparison with solvent accessibility

reveals this to be caused by alternating externally and internally-oriented residues, with

the latter positions constrained to be hydrophobic. This alternating tendency is also

reflected in evolutionary conservation across these positions.

All protein-protein interaction interfaces previously captured in co-crystal structures

show increased sensitivity to mutation when compared to other surface residues (Fig-

ure 3.2). When comparing individual protein interaction interfaces, the most substantial

fitness defects are observed in those for the E1 activating complex binding interface and

the covalent and non-covalent SUMO binding interfaces (Figure 3.2A). While the ho-

modimerization interface also shows significant sensitivity (Wilcoxon P = 6.87 · 10−21),

the effects are not as severe as those at the E1 interface (Wilcoxon P = 4.28 · 10−8)

(Figure 3.2B). This is consistent with the Alontaga and colleagues’ hypothesis regarding

its involvement in SUMO chaining [90], as in yeast SUMO chain formation has so far only

been observed to be involved in meiosis [93], which is not a mechanism vital to fitness in a

complementation assay. Alontaga et al. also postulate however, that non-covalent SUMO

binding is necessary for SUMO chain formation. In contrast to the homodimerization

interface, the non-covalent SUMO binding interface shows a much stronger sensitivity to

mutation (Wilcoxon P = 4.73 ·10−8). This may be due to two different reasons: (i) there

is a 27% overlap between the interface for non-covalent SUMO binding interface and the

interface for E1-E2 binding, which is among the most sensitive surfaces of UBE2I; and

(ii) non-covalent SUMO binding also plays an important role as an adapter for many E3

proteins [116].

Another interesting observation can be made with respect to a known phosphoryla-

tion site on the surface of UBE2I. Su and colleagues previously discovered that phos-

phorylation of Serine 71 via the Cyclin-dependent Kinase CDK1 results in sumoylation

hyperactivity [117]. The map shows that substitutions with phosphomimetic residues at

this position lead to hyperactive complementation, consistent with Su et al.’s observa-

tions. Furthermore, other residues amenable to phosphorylation are also tolerated, while

hydrophobic replacements are generally deleterious (Figure 3.3).

Substrate specificity shifts and E2 hyperactivity

Intriguingly, many sites show fitness that is better than wildtype (e.g., positions 74, 76,

88, 89, 91 and 98). Manual functional complementation spotting assays confirmed that

complementation with these mutants allows greater growth than does the wild type hu-

man protein, but resemble more closely the growth at the permissive temperature for
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Figure 3.2: Complementation fitness of mutations at interaction interfaces. A) Median
mutant fitness mapped to the crystal structure of UBE2I. The ΨKxE substrate recog-
nition motif is shown as green stick model, covalently and non-covalently bound SUMO
are shown as crimson and brown cartoon model, respectively. B) Mutant fitness scores
distributions for residues at different interaction interfaces (and non-interface surfaces as
control). P-values from one-sided Wilcoxon tests. Bold bars represent medians, thin bars
indicate 25% and 75% quartiles.

the ubc9-ts strain (Figure 3.4A). One might be tempted to interpret these cases as re-

versions to residues present in the yeast protein. However, a comparison of fitness score

distributions between changes to S. cerevisiae residues and those occurring in the distant

species Dictyostelium discoideum (amoeba) or Drosophila melanogaster (fly) showed no

significant difference (Figure 3.4B). Recognizing that in this assay, human UBE2I must
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Figure 3.3: Phosphorylation site of UBE2I shows hyperactive complementation when
mutated to phosphomimetic residues.

function with the yeast versions of other sumoylation pathway members, it stands to

reason that some substitutions could be adaptive by improving compatibility with yeast

interaction partners. A comparison with co-crystal structure data [85] shows that many

of the hypercomplementing residues are located on the surface facing the general direc-

tion of the substrate, with some being in direct contact with the substrate’s sumoylation

motif (Figure 3.4C). This suggests a possible adaptation via improved recognition of

substrates for which sumoylation is most important for yeast growth. Indeed, in vitro

sumoylation assays performed previously for a small number of UBE2I mutants revealed

increased sumoylation for some substrates [87]. Comparing the map with these sumoyla-

tion assay results, I observed many cases of substrate specificity shift (Figure 3.4D). Of

the three cases tested in the sumoylation assay that showed hyperactive behaviour in the

map (E98A, T91A and K74A), one displayed hyperactive sumoylation of P53, while two

displayed decreased sumoylation of P53 and IκBα. However, similar behaviour was seen

for 3 other variants (D100, P128A and S89A), which scored as wildtype-like in the map.

Most cases for which P53 saw wild-type level sumoylation showed either wildtype-like

or slightly below complementation in the map. Finally, the four cases that disrupted

sumoylation of all substrates were strongly deleterious in the map. In conclusion, vari-

ants that either positively or negatively or negatively affect P53 sumoylation levels in

vitro appear show either wildtype-like or hyperactive complementation in yeast. This
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may indicate that differential sumoylation of one or more yeast proteins with a P53-like

interface positively affects yeast growth.
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Figure 3.4: Hyperactive complementation in UBE2I. A) Variants scoring higher than
the wildtype controls show stronger growth in manual complementation spotting assays
and resemble the WT yeast. B) Distribution of scores for changes to residues naturally
occurring in yeast, amoeba and fly are not significantly different from each other. C)
Maximum mutant score mapped to amino acid positions on UBE2I structure. Hyper-
active mutations are clustered at the substrate recognition site. Structure data from
PDB:3UIP [85] D) In vitro sumoylation assay data from Bernier-Villamor et al. [87] in
comparison to the complementation fitness scores.

As Figure 3.4D shows, substrate specificity does not paint a complete picture of

the mechanisms potentially underlying hyperactive complementation. A particularly

interesting exception can be observed at residues A15 and T108. Both residues harbor

hyperactive mutations but do not face towards the substrate. Instead, they form part of

the interface with the E3 SUMO ligase RanBP2, and flank a small cavity on UBE2I’s

surface into which RanBP2 inserts a phenylalanine residue upon binding [85]. Changing

either A15 or T108 into aromatic residues results in a large fitness increase (Figure 3.5).

This may be the result from the emergence of a π-stack interaction that strengthens
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E2-E3 binding.
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Figure 3.5: Potential de-novo pi-stack interaction between UBE2I and the E3 RanBP2.
Structure data from PDB:3UIP [85]

It is unclear how to interpret the effect of mutations that enhance growth in the yeast

complementation assay. If fitness measured in the assay is directly proportional to fit-

ness in the real biological context, then these enhancing mutations would be beneficial.

However one can also imagine an alternative scenario in which activity-enhancing mu-

tations are deleterious in the real biological context. To objectively distinguish between

these possibilities, we collaborated with Jesse Bloom to employ a method he recently

published that leverages likelihood-based phylogenetics to quantitatively compare how

well different experimental measurements represent actual evolutionary constraints in

nature [52,118]. We compared three models relating the experimental fitness to the evo-

lutionary preference for a mutated amino-acid sequence: (a) the evolutionary preference

was directly proportional to the untransformed experimental fitness; (b) the preference

had a ceiling at the wildtype experimental fitness (values greater than 1 were set to 1);

or (c) the preference was set to the reciprocal of fitness for mutations with greater-than-

wildtype scores, corresponding to a deleterious effect of enhancing mutations. Dr. Bloom

kindly provided the phydms software [118] to test which of these three approaches best

described the evolutionary constraint on a set of naturally occurring UBE2I homologs.

The analysis was performed using fitness scores that excluded conservation features from

the regularization process, to avoid the circularity of using natural sequence data when

deriving the scores. As shown in Table 3.1, the best fit is achieved using the model
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that assumes that enhancing mutations are deleterious. This result provides objective

support for the idea that mutations that enhance activity above wildtype levels in the

complementation assay are actually deleterious in a real biological context.

Based on these observations I reinterpreted cases of hyperactive complementation in

the map as deleterious. I repeated the imputation and regularization procedure on the

transformed map, which resulted in substantially improved cross-validation performance

(Root-Mean-Squared-Deviation, RMSD, decreased from 0.33 to 0.24).

Table 3.1: Comparison of different models for the effects of hyperactivating mutations.
AIC: Akaike Information Criterion

Model ∆AIC relative
to best model

Hyperactive mutations as deleterious 0
Hyperactive mutations as WT 27.7
Hyperactive mutations as beneficial 60.6

Intragenic epistasis and compensatory mutations

Full-length UBE2I clones generated for DMS-BarSeq analysis often encoded more than

one amino acid change. Multi-mutant clones offer the opportunity to search for intra-

genic genetic interactions. Genetic interaction is defined as the case of a combination

of mutations that yields an unexpected phenotypic effect. Therefore, identifying genetic

interactions requires modeling the phenotype that is expected from a combination of mu-

tations, given the single-mutant effects. Here I used a previously-described multiplicative

model [102, 103] in which genetic interaction is measured as εij = fi · fj − fij, where fi

and fj represent single mutant fitness and fij represents double mutant fitness scores.

Most double mutants (71%) did not show a significant deviation from εij = 0 under this

model, while 328 position pairs did show significant genetic interaction (Figure 3.6).

Of particular interest are compensatory interactions, i.e. cases where a double mu-

tation is more fit than either of the component single mutations. Where compensatory

residues are proximal in the protein structure, the combination of two mutant residues

may be able to re-establish a physical interaction that was lost in each of the single

mutants. Although the majority of genetically interacting sites were not proximal in the

structure (Figure 3.6B), there were interesting exceptions. For example, the I4T-P69S

double mutant appears to exhibit compensatory behaviour: In the wild type structure,

the van-der-Waals radii of the two residues are in direct contact (Figure 3.6C). Either

mutation alone would be expected to destabilize the hydrophobic interaction between
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isoleucine and proline. However, in the double mutant, hydroxyl groups on the two

residues could adopt a hydrogen bond that re-establishes interaction and re-stabilizes

the fold (Figure 3.6D).
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3.2.2 A comparison of complementation and Y2H reveals a in-

teraction interface

An important factor behind the choice of UBE2I as a testing ground for the DMS frame-

work was the mechanistic complexity of the Sumoylation pathway, in which the central

component UBE2I engages in many different protein-protein interactions. Having exam-

ined the relative importance of its known interaction interfaces we wished to evaluate the

possibility of detecting new interfaces. To this end, we adapted the DMS framework to

use a Y2H assay in the selection step.

We explored the set of previously identified Y2H interactions of UBE2I and found

its interaction with the Special AT-rich sequence Binding protein SATB1, a sumoylation

target [119], to be the strongest interaction signal. We used DMS-BarSeq to map the

effects of UBE2I variants on the UBE2I-SATB1 interaction and compared the results to

those of the complementation assay. Although too few variants in the Y2H screen were

measured with high enough confidence to perform reliable imputation, I was able to iden-

tify 15 variants that specifically disrupted the UBE2I-SATB1 binding without affecting

its overall function as measured by the complementation assay. Interestingly, three amino

acid positions (V25, C75 and F155) were represented with multiple variants in this list,

highlighting their importance. Figure 3.7 marks the affected residues on the surface of

UBE2I, which may determine the specificity of the UBE2I-SATB1 interaction. Consis-

tent with SATB1’s known role as a sumoylation target [119], the residues are clustered

near the known substrate recognition and binding surface. Intriguingly, I also found a

number of residues within UBE2I’s hydrophobic core, that upon mutation to alternative

hydrophobic residues resulted in a disruption of UBE2I-SATB1 binding (Figure 3.7).

The fact that these residues are physically close to the locations of surface residues with

similar behaviour may indicate that mutations at these positions could result in subtle

shifts of UBE2I’s fold that disrupt the SATB1 binding interface without affecting other

functions.

3.2.3 A functional map for SUMO1

Using the DMS-TileSeq version of the framework established in the previous chapter

we also created a complete functional map for SUMO1 (Figure 3.8A). Out of the 1919

possible amino acid changes, fitness effects for 1700 (89%) were measured directly in the

complementation competition experiment. The remaining 11% were obtained through

imputation, which achieved a cross-validation RMSD of 0.25, a performance very similar

to that of the UBE2I map.
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Figure 3.7: Potential interfacial residues for UBE2I’s interaction with SATB1. High-
lighted residues disrupt Y2H interaction without disrupting overall function as measured
by complementation. The dotted frame in the left panel indicates the plane across which
the structure was cut to produce the panel on the right.

The most immediately apparent feature of the SUMO1 map was the strong enrichment

for neutral substitutions within the first 20 amino acid positions, which is consistent both

with the low level of evolutionary conservation for this region and its annotation as a

disordered region. The last four amino acid positions appeared similarly insensitive to

mutation, consistent with the cleavage of this region by SENP proteases during SUMO

maturation. By contrast, other residue positions were strongly sensitive to mutation,

including many inward-facing residues that are apparently constrained to be hydrophobic.

As expected, the C-terminal diglycine, directly preceding the last four cleaved residues,

is also very sensitive to mutation, as it is required for the covalent binding of SUMO

to the E1, the E2 and to the sumoylation target protein. Interestingly, except for the

C-terminal diglycine, the residues that directly touch the E2 during covalent binding are

not as sensitive (Figure 3.8B). This may be due to SUMO being force-fed to the E2 by

the E1 activating complex and the thioester bond it forms with the E2’s cysteine 93 being

sufficient to maintain the complex. By contrast, residues in the interface for non-covalent

E2 binding are much more sensitive (Figure 3.8C), especially leucine 80 and methionine

82.

Other strongly constrained residues are core members of interaction interfaces. These
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include the central phenylalanine 36 in the SUMO recognition motif (SRM) interface;

glycine 68, which forms the apex of a tight turn within the interface with de-sumoylation

enzymes, as well as the E1 and E2 proteins; and leucine 80, which is part of the interface

with non-covalently bound E2.
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Figure 3.8: Functional map of SUMO1. A) From top to bottom: Position-wise evolu-
tionary conservation; Secondary structure; Relative solvent accessibility; Relative burial
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shown in golden cartoon representation, ΨKxE substrate recognition motif shown in
green stick representation C) Colors as in B, but partial structure of UBE2I is shown in
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The proximity and orientation of aspartate 73 and lysine 48 suggests that they are
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able to form a salt bridge with one another. The importance of each residue according

to the DMS map supports a model in which this salt bridge is important for SUMO

folding and/or stability. Interestingly, substituting aspartate for methionine 59, which

points towards lysine 48 from an angle similar to that of aspartate 73, enhances the

complementation fitness of SUMO1 beyond wild type levels. This further underlines the

potential importance of a polar interaction involving lysine 48 (Figure 3.9).
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Figure 3.9: A salt bridge within SUMO1 between Asp73 and Lys38 appears important
for stability. Met59Asp may increase stability even further.

3.2.4 Functional maps of three human disease genes

Having established and evaluated the Deep Mutational Scanning framework on two mem-

bers of the sumoylation pathway, we aimed to create maps for a diverse set of genes that

have been associated with disease with varying degrees of confidence. While heterozy-

gous null mutations in SUMO1 have previously been associated with cleft palate [120],

we wished to create maps that could be tested in the context of variant classification in

terms of disease. Based on the availability of robust complementation assays, we applied

DMS-TileSeq to the following protein targets: Thiamine Pyrophosphokinase 1 (TPK1),

associated with vitamin B1 metabolism dysfunction [121]; Neuronal Calcium Sensor 1

(NCS1), which has been implicated in autism based on a single de novo mutation [122];

and CALM1, CALM2 and CALM3 associated with the heart conditions long-QT syn-

drome [123] and catecholaminergic polymorphic ventricular tachycardia [124]. Although
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Table 3.2: Map quality comparison. RMSD: Root-Mean-Squared-Deviation in 10×
cross validation. max(σx̄): maximal standard error across non-imputed values in the map.

Gene Possible
AA changes

Achieved
AA changes

Imputation
RMSD

Experimental
max(σx̄)

Regularized
max(σx̄)

UBE2I 3021 2563 (85%) 0.24 0.36 0.25
SUMO1 1919 1700 (89%) 0.25 0.19 0.17
TPK1 4617 3181 (69%) 0.34 0.49 0.37
CALM1 2831 1813 (64%) 0.29 0.28 0.22
NCS1 3610 2542 (70%) 0.63 1.84 0.97

the three calmodulin genes differ in nucleotide sequence, each encodes the same polypep-

tide sequence. Thus, we performed a deep mutational scan only for CALM1, which

enabled us to also map missense variant effects in CALM2 and CALM3. In each case, we

used the TileSeq approach coupled with complementation to generate a map of missense

variant functions.

As was shown above for UBE2I, phylogenetic analysis of SUMO1 similarly showed

that variants with ability to complement yeast better than wild-type are likely deleteri-

ous in humans. I therefore transformed fitness scores so that such hypercomplementing

mutations are considered to be deleterious (see Methods). The transformed disease gene

maps can be seen in Figures 3.10 and 3.12. However, since hypercomplementing substi-

tutions may provide interesting clues about differences between yeast and human cellular

contexts, I also provide untransformed versions of each map (see Appendix A).

A thiamine pyrophosphokinase map reflects a recessive phenotype

Thiamine pyrophosphokinase (TPK1) is a protein that forms a dimer to perform its

biochemical function. Its substrate, thiamine diphosphate, is bound within two active

sites formed by the dimerization interface [125]. That is, each monomer contributes half

of the residues making up each of the two active sites. Each monomer in turn is made up

of an N-terminal globular domain and a C-terminal β-sandwich domain (Figure 3.11A).

The residues most sensitive to mutation in the protein make up the hydrophobic cores

of the two domains: L21, V22, W36, G48, Y53, P65, G70, Y83, L108, I122, T124, and

G127 for the N-terminal domain; and L161, G168, G199, L200, V227, V229, L236, and

W237 for the C-terminal domain (Figure 3.11B).
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A

B C

K103

D100

G70
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Thiamine diphosphate

Thiamine diphosphate
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V229
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V227

W237

L236
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Figure 3.11: Thiamine pyrophosphokinase 1 coloured by median complementation score.
A) TPK1 homodimer structure showing one monomer as surface model, the other
monomer as cartoon model. B) Hydrophobic residues facing the inside of the C-terminal
β-sandwich domain are sensitive to mutation. C) Active site residues in contact with the
substrate are sensitive to mutation. Structure data from PDB:3S4Y [125]

As might have been expected, mutation-sensitive residues include those closely in-

volved in forming the active sites: D46, G70, D71, D73, D100, and K103 in the N-terminal

half of the active site, contacting the diphosphate portion of the substrate (Figure 3.11C).

In the C-terminal half of the active site, K203, L209, G212, L214, S216, T217, and N219

show similar sensitivity. Interestingly, the tryptophan residue at position 202 appears to
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be insensitive to mutation despite its close and extensive contact with the thiamine lig-

and. By contrast, a neighbouring lysine at position 201 is surprisingly sensitive suggesting

potential importance in coordinating the ligand. The remainder of the dimerization in-

terface also features a number of sensitive residues, such as M136, G184, V188, G189 and

G211. Finally, residues 1-12, which form a β-strand anchoring the N-terminal domain

back to the C-terminal domain were also found to be sensitive.

The two calcium sensors NCS1 and Calmodulin show different profiles

Calmodulin (CALM1/2/3) and the Neuronal Calcium Sensor protein (NCS1) are ho-

mologs (E-value 4 ·10−5 when searched against the human proteome [126,127]) with 24%

sequence identity and 48.5% similarity [128]. However, they display different impact

patterns despite their similar domain structure and similar molecular roles as calcium

sensing proteins. Both are comprised of four Calcium-binding EF-hands, with NCS1 con-

taining additional sequences upstream and downstream of the four hands. A comparison

of previously published NMR structures reveals that the overall folds of the two proteins

differ substantially [129, 130]. In its active (Ca2+-bound) form, Calmodulin features a

long central helix that separates two globular domains, called the N-lobe and the C-lobe,

each comprised of two EF hands. Two hydrophobic pockets serving as a binding interface

for interacting proteins are formed within the lobes. By contrast, NCS1’s active form

takes a single shell-like shape, centered around a large hydrophobic crevice. This crevice

acts as a binding interface for interacting proteins. Thus, the divergent DMS profiles

observed for CALM1/2/3 and NCS1 are not surprising given these substantial structural

differences.

The Neuronal Calcium Sensor NCS1 displays the greatest sensitivity to mutation

within the N-terminal region containing the myristoylation site. This myristoylation

site is essential for anchoring NCS1 into the plasma membrane. One other residue that

stands out is the tryptophan at position 30, which results in complete loss of function

when replaced with any other amino acid. Like most other sensitive residues W30 is found

among those contributing to the hydrophobic crevice acting as an interaction interface.

Other cases include F55, F56, A104, M121, I152, and A182. An interesting observation

can be made with respect to the two helices that separate the two N-terminal EF hands

from the two C-terminal EF hands. A kink between the two helices brings them into an

angle that allows the globular shape of the overall protein to form. Without this kink it

is conceivable that NCS1’s fold would much more resemble that of active Calmodulin. A

glycine residue (G95) is likely responsible for forming that kink due to its helix breaking

properties. This residue is also found to be quite sensitive to mutation.
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Within Calmodulin, the regions most sensitive to mutation are: 1) the hydrophobic

cores of the two globular domains; 2) interfacial residues for protein-protein interactions,

and 3) a subset of the negatively charged residues in EF hands that contact Ca2+ ions.

Within the hydrophobic cores of the two lobes, five mutually interacting phenylalanine

residues at positions 17, 69, 90, 93, and 142 stand out in particular, as all of them are

found in the top 9 most sensitive residues on the map. Within the interaction interface,

the residues D85, A89, F93, M100, L106, V109, L113, G114, L117, M125, V137, F142,

M145, M146 are the most strongly sensitive to mutation. Regarding the four Calcium-

binding EF-hand loops, it was interesting to find that only a subset of the negatively-

charged residues contacting Ca2+ are even moderately sensitive. Within EF1, only D25

appears to be important, in EF2 only N61, in EF3 only D94 and D96, and in EF4 only

D130 and D134. Overall, the EF3/4 in the C-lobe also appear to be more important

than their N-lobe counterparts. This is in agreement with previous observations made

by Sarhan and colleagues [129], who described the C-lobe as displaying a higher Ca2+

affinity. A number of unexplained sensitivities exist as well: Arginines at positions 54

and 91 show strong phenotypes despite extending from seemingly unused surfaces of

the protein, offering the possibility that these residues are functionally relevant sites of

interaction or modification.

3.2.5 Functional maps recapitulate known disease cases

To validate the utility of the maps in the context of human disease, I extracted known

disease-associated variants from ClinVar [131], as well as rare and common polymor-

phisms observed independent of disease from GnomAD [106], and somatic variants pre-

viously observed in tumors from COSMIC [132].

For TPK1, a large number of very rare variants (minor allele frequency or MAF <

10−6) is known from GnomAD. At first look, it appears the majority of these variants

are shown to be deleterious (Figure 3.13). This seems unlikely, given that Thiamine

Metabolism Dysfunction Syndrome, reported to be caused by mutations in this gene,

is a very severe disease to which patients succumb in childhood [121], and given that

GnomAD attempts to filter out subjects with severe pediatric disease. However, the

disease is also known to follow a recessive inheritance pattern, with only homozygous

or compound heterozygous individuals being affected. I thus used phased sequence data

from the 1000 Genomes Project [9] to determine the diploid genotypes in the TPK1

locus for all listed individuals. Using these diploid phenotypes, I based the phenotype

predictions on the maximum fitness score of either (i.e. paternal and maternal) allele.
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This improved prediction performance markedly, leading to complete separation between

disease and non-disease genotypes. However, both PROVEAN and PolyPhen-2 were also

able to perfectly separate the two groups when using diploid genotypes (Figure 3.13B).

Additional compound heterozygotes with known disease status will be required to deter-

mine whether this DMS map is more useful than computational methods for classifying

pathogenic TPK1 variants.
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Figure 3.13: Variant classificationin TPK1. A) Distribution of functional scores for rare
polymorphisms (GnomAD) (green) and pathogenic and benign variants (ClinVar) (red,
blue) in TPK1 overlaid on a histogram of functional scores for all missense variant. Top
panel: Haploid scores considering the phenotype based only on a single allele. Bottom
panel: Diploid scores, considering the phenotype based on both alleles in each individual.
B) Precision-Recall curve for disease variant classification using diploid scores from the
atlas presented here, PROVEAN and PolyPhen-2, based on the data from (A).

Evaluating the utility of the NCS1 map was similarly difficult. NCS1 does not have

any entries in ClinVar. However, a previous publication identified the variant R102Q

as a de novo variant in a single patient with autism spectrum disorder [122]. While the

variant did not affect overall protein folding and localization, the authors did observe that

the dynamics of cytosol-membrane cycling were altered. The complementation map did

not show any functional impact for this variant. As is the case for TPK1, the emergence

of more patient data in the future may enable a more useful evaluation of this map.

While no disease-associated missense alleles are recorded for UBE2I and SUMO1 in

ClinVar, a number of somatic mutations for these genes have been observed in cancer

according to COSMIC. While these can be expected to be passenger mutations, one

may still hypothesize that somatic variants are likely not subject to the same selection

pressures as germline variants, as interference with developmental processes is not neces-

sarily detrimental to a tumour. I thus tested whether germline polymorphisms in these

three genes were enriched for being functional compared to their somatic counterparts

in the maps. Indeed, I observed a significant difference between the two sets (Wilcoxon



Chapter 3. Expanding the atlas of human disease variants 71

P = 2.6 · 10−5) (Figure 3.14A).

Finally, I examined the functional map of Calmodulin. Here a sufficient number of

disease-associated alleles were recorded in ClinVar. I found that the map was able to

distinguish the disease variants from non-disease variants visibly well (Figure 3.14B). In

contrast to TPK1, the Calmodulin map did not need to be corrected for diploid genotypes,

as previously reported disease variants have been described as following a dominant

inheritance pattern [123]. A precision-recall (PRC) plot reveals a superior performance

(AUC = 0.74) compared to PROVEAN (AUC = 0.47) and PolyPhen-2 (AUC = 0.47)

(Figure 3.14C). Remarkably, at 100% precision, the DMS map still achieves a recall of

50%, while PROVEAN and PolyPhen-2 only reach 20% and 15%, respectively.
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To further put the Calmodulin map to the test in a clinical scenario, we inquired
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with Invitae, a company offering gene panel sequencing services for Long QT syndrome,

including CALM1/2/3. In a blind test, we requested a list of Calmodulin variants they

observed in patients but were unable to classify. After calibrating the map with respect to

the above ClinVar and GnomAD datasets, I classified these 10 new variants (Table 3.3).

Two were classified as damaging, six as benign, and two were too close to the threshold to

be called either. In the next phase, Invitae revealed the associated patient cardiovascular

phenotypes. Five out of the six patients with benign predictions were revealed to be

unrelated to cardiovascular phenotypes, while both patients with damaging predictions

did show a positive phenotype. The two uncertain cases were revealed to be affected as

well. A Wilcoxon test showed these results to be statistically significant (P = 0.008).

Table 3.3: Re-classification attempt for variants of uncertain significance found in
Invitae gene panel sequencing. MAF: Minor allele frequency in GnomAD, if known;
sd/rmsd: standard error or RMSD of observation in map. imp/reg: imputed or degree of
regularization; DMS score pre-regularization; DMS score post-regularization; DMS call:
Classification according to DMS score; Indication: Type of sequencing panel ordered.

Variant MAF sd/ rmsd imp/ reg pre-reg DMS DMS call indication
D94A NA 0.26 imputed NA 0.46 likely damaging Cardio
D96H NA 0.26 imputed NA 0.72 likely damaging Cardio
I28V 1 · 10− 5 0.05 mild 0.88 0.88 uncertain Cardio
N98S NA 0.05 mild 0.89 0.89 uncertain Cardio
T35I 4 · 10− 6 0.04 mild 0.93 0.93 likely benign Non-Cardio
E48G NA 0.05 mild 0.93 0.93 likely benign Cardio
G26D NA 0.06 mild 0.94 0.94 likely benign Non-Cardio
T27S 3 · 10− 5 0.05 mild 0.96 0.96 likely benign Non-Cardio
V122A NA 0.05 mild 0.98 0.98 likely benign Non-Cardio
A104G NA 0.08 mild 1.00 1.00 likely benign Non-Cardio

3.3 Discussion

In total, this study has produced five maps with functional impacts for 15,998 possible

missense variants. The functional maps generated for sumoylation pathway members

UBE2I and SUMO1 and disease-implicated genes NCS1, CALM1/2/3 and TPK1 using

the DMS framework were consistent with biochemical expectations while providing new

hypotheses. DMS maps based on functional complementation were highly predictive

of disease causing mutations, outperforming computational prediction methods such as

PolyPhen-2 or PROVEAN. The imputation method I employed allows me to generate
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complete functional maps while maintaining the reliability on par with the experimental

results.

Given the prospect of personalized and precision medicine, genome sequencing is ex-

pected to become increasingly common in everyday medical practice. Current estimates

suggest that every human carries an average of 200-300 rare missense mutations that

have never before been seen in the clinic [9]. This creates a need for fast, reliable inter-

pretation of variant effects. Instead of generating clones and functionally testing variants

of unknown significance after they are first observed, DMS technology offers to gener-

ate exhaustive maps of functional variation that enable interpretation immediately upon

clinical presentation, even for rare and personal variation.

A key requirement for DMS mapping is an en masse functional assay that can be

applied at the scale of 104 − 105 variant clones, such as complementation in yeast. How-

ever, among ∼ 4000 disease genes, examination of four systematic screens and curated

literature suggests that only ∼ 5% of human disease genes have a yeast complementation

assay [13,133,134]. Complementation assays can also be carried out in human cells [48],

and en masse transfection is achievable at the required scale [29]. Based on only three

large-scale CRISPR studies [28–30], cellular growth phenotypes have already been ob-

served in at least one cell line for 29% of human disease genes. Beyond complementation,

sub-functional assays, e.g. of protein interaction, can not only reveal variation that

impacts the specifically assayed sub-function but also folding/stability mutations that

ablate overall function. In a recent study, approximately two thirds of disease-causing

variants were found to impact at least one protein interaction [25]. Although only a

minority of human protein interactions have been mapped [135], already 40% of human

genes have at least one interaction partner detectable by yeast two-hybrid assay in a

recent screen [135]. Taking the union of available assays, one may estimate that 57%

of known disease-associated genes already have an assay potentially amenable to DMS.

Emerging protein interaction data and CRISPR screens suggests that the proportion of

DMS-accessible disease genes will continue to rise.

3.4 Methods

3.4.1 DMS-TileSeq

The DMS-TileSeq experiment for SUMO1, TPK1, NCS1, and CALM1 was performed

by Song Sun and Marta Verby as described in chapter 2. The mutant alleles for the

yeast temperature sensitive strains used were smt3-331, thi80-ph, frq1-1 and cmd1-1.
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The downstream sequencing data analysis, scoring, imputation and regularization was

performed by me as described in chapter 2.

3.4.2 DMS-BarSeq Y2H

The DMS-BarSeq Y2H experiment was performed by Jennifer Knapp as described in

chapter 2, except for the following differences: (1) The en masse LR cloning of the UBE2I

variant library was targeted into barcoded Y2H AD vectors; (2) Following KiloSeq and

re-arraying, the library was pooled and transformed into haploid MATa yeast strains and

mated with MATα strains carrying SATB1-DB plasmids. Following diploid selection,

the pool was grown for 48h in triplicates on Histidine-supplemented (permissive) and

Histidine-deficient (selective) media, respectively. Plates were scraped and barcode loci

amplified for BarSEQ.

Downstream sequencing data analysis and scoring was performed by me. Barcode

counts were divided by the overall number of barcodes reads in each condition to obtain

relative barcode frequency. Barcode frequencies in the -HIS condition were divided by

frequencies in +HIS condition. Scores were then scaled to the null and WT controls,

such that 0 corresponds to the average fitness of null controls and 1 to the average fitness

of WT controls. Standard deviation based on technical replicates were regularized using

the Baldi & Long method as described in chapter 2. The underlying code is part of a

larger DMS analysis package provided on the attached storage media, and also available

online1.

3.4.3 UBE2I-SATB1 analysis

I integrated the complementation and Y2H data and filtered out low-quality measure-

ments (s.d. > 0.3). To find interface candidates, I then selected the set of variants for

which (i) the complementation score was greater than 0.5, (ii) the Y2H score was less

than 0.5, and (iii) the Y2H score is at least 0.5 units below the complementation score.

I then mapped the resulting variants on the UBE2I crystal structure.

3.4.4 UBE2I interface analysis

Co-crystal structure data for UBE2I was obtained from the PDB (Entries: 3UIP [85];

4W5V [84]; 3KYD [83]; 2UYZ [113]; 4Y1L [90]). A custom script was developed to obtain

solvent accessibility using GETAREA [112] for monomers and complexes, allowing for the

1http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc

http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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calculation of relative burial of interfacial residues. Complementation fitness distribu-

tions for each interaction’s interfacial residues were tallied and tested for statistically

significant differences using Wilcoxon tests. Distributions were plotted using the R pack-

age beeswarm [136]. The methods were implemented as part of a larger DMS analysis

package provided on the attached storage media, and also available online2.

3.4.5 Structure coloration

A custom script was developed to calculate median and maximum complementation fit-

ness values for each residue and autogenerate coloration commands for OpenPyMol [114].

The methods were implemented as part of a larger DMS analysis package provided on

the attached storage media, and also available online3.

3.4.6 Complementation spotting assays

Complementation spotting assays were performed by Jennifer Knapp as described in

chapter 2. Image data was processed using PlateOrganizer and integrated and compared

to the high-throughput results using custom scripts.

3.4.7 Hypercomplementing mutation analysis

Hypercomplementation and reversion to yeast residues: To examine whether

changing amino acid residues into those residues naturally occur in yeast were more likely

to show hyperactive complementation I compared these cases to changes into residues

occurring in other species. The UBE2I amino acid sequence was aligned to that of its

orthologues in S. cerevisiae, D. discoideum and D. melanogaster using CLUSTAL [115].

A custom script was used to extract inter-species amino acid changes and lookup the

corresponding complementation fitness values in the UBE2I map. Distributions were

plotted using the R package beeswarm [136]. Wilcoxon tests revealed no significant

differences between the distributions. The methods were implemented as part of a larger

DMS analysis package provided on the attached storage media, and also available online4.

In vitro sumoylation comparison Images from in vitro sumoylation assays per-

formed for UBE2I variants by Bernier-Villamor et al. [87] were scored by visual inspec-

tion while blinded to the underlying variant information. Scores were then represented

2http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
3http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
4http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc

http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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as a heatmap and compared complementation scores from the UBE2I map. The methods

were implemented as part of a larger DMS analysis package provided on the attached

storage media, and also available online5.

Phylogenetic comparison of different models for hyperactive mutations Jesse

Bloom at the Fred Hutchinson Research Center in Seattle kindly provided the phydms

software package [118] and applied it to test three different models relating the effect of

activity-enhancing mutations in SUMO1 and UBE2I to the actual evolutionary preference

for that amino acid in a real biological context. Specifically, using the substitution models

described in [118], three different ways of relating the evolutionary preference πr,a for

amino-acid a at site r to the fitness score fr,a for a given mutation were tested.

In the first model,

πr,a = fr,a.

In the second model,

πr,a = min(fr,a, fr,wt),

where fr,wt is the fitness score for the wildtype amino-acid at site r.

Finally, in the third model,

πr,a =

fr,a if fr,a ≤ fr,wt

1
fr,a

otherwise
.

Each of these models were fit to the set of Ensembl homologues with at least 75%

sequence identity to the human protein.

3.4.8 Transformation of maps for human phenotypes

Having established the third substitution model to provide the best fit for evolutionary

preference (see above), I applied the corresponding transformation function underlying

the model to the complementation data for each tested gene and repeated the imputation

and regularization steps described in the previous chapter on the transformed data.

3.4.9 Intragenic epistasis analysis

Genetic interactions were determined based on a previously described multiplicative

model [102,103], that expects double mutant fitness to conform to the product of single

5http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc

http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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mutant fitness effects in the absence of interaction between the two. Under this model,

the strength of genetic interaction is defined as

εij = fi · fj − fij,

where fi and fj represent single mutant fitness and fij represents double mutant fitness

scores. To test for deviation from this model, all cases where double mutant and both

corresponding single mutants were known in the data were extracted. The standard

deviation for the expected double mutant fitness fi · fj was estimated using

V(XY ) = E(X2Y 2)− (E(XY ))2 = V(X)V(Y ) + V(X)(E(Y ))2 + V(Y )(E(X))2

Using these estimates, Student t-tests were performed between the measured and ex-

pected double mutant fitnesses and corrected for multiple hypothesis testing using the

Benjamini-Hochberg [137] method at a 5% FDR threshold.

To detect potential direct compensatory relationships, the genetic interactions were

compared with physical distance in the protein’s 3D structure. The Euclidean distance

between the Cα atoms in of each pair of residues was calculated using a custom script

using structural data from the PDB (3UIP [85]). The methods were implemented as

part of a larger DMS analysis package provided on the attached storage media, and also

available online6.

3.4.10 Structural analysis of disease gene maps

Co-crystal and NMR structure data for SUMO1, TPK1, NCS1 and CALM1 was obtained

from the PDB (Entries: 2G4D [82]; 2IO2 [138]; 3KYD [83]; 3UIP [85]; 2ASQ [139]; 4WJO [140];

4WJQ [140]; 1WYW [141]; 2L2E (Ames et al. unpublished); 4GUK (Chengpeng et al. unpub-

lished); 5AFP [142]; 3G43 [143]; 4DJC [129]; 3S4Y [125]; ). Structures were colorized using

the same method described above for UBE2I and analyzed using OpenPyMol [114].

3.4.11 Disease variant analysis

Missense variant tables for UBE2I, SUMO1, TPK1, NCS1, CALM1, CALM2 and CALM3

were integrated ClinVar, COSMIC, and GnomAD and compared with complementation

scores. To calculate diploid scores for TPK1, phased variant call files (VCF) for the

TPK1 gene obtained from the 1000 genomes project database to identify homozygous,

6http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc

http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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heterozygous and compound heterozygous cases for all present variants using a custom

script. For each case, the diploid score was calculated as sdiploid = max(s1, s2), where s1

and s2 are the variant scores for the paternal and maternal allele. The methods were

implemented as part of a larger DMS analysis package provided on the attached storage

media, and also available online7.

7http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc

http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc


Chapter 4

Conclusion

4.1 Summary

Here we have presented a complete framework for the construction of comprehensive,

high-fidelity functional maps. We have demonstrated two versions of this framework:

DMS-BarSeq, a barcode-based approach that allows for high-confidence measurement of

individual clones including double- and higher-order multi-mutants; and DMS-TileSeq,

a fast and efficient framework that generalizes fitness effects over many different clones

sharing variants of interest. Both versions use a new mutagenesis protocol, POPCode,

which thanks to its accompanying webtool makes it easer than before to generate variant

libraries covering the complete space of amino acid changes. At its core, the framework

relies on a functional complementation assay in yeast, which can measure the overall

effect of variants on protein function and has been shown to be highly predictive of

variant pathogenicity in humans, outperforming common in silico methods, despite the

∼ 1 billion year divergence between the two organisms. The DMS analysis software

developed here introduces novel advances to deep mutational scanning: (i) The degree

of confidence behind each measurement is carefully assessed and recorded in order to

help variant classification; and (ii) variants that were missing in the complementation

library or measured with low confidence were supplemented using a RandomForest-based

machine learning method, yielding predictions that were found to be surprisingly reliable.

We have evaluated the technical features of the framework on the two sumoylation

pathway members UBE2I and SUMO1. We found that the functional maps generated

with our method were able to successfully recapitulate known features of the proteins’

biology and biochemistry and even hint at novel features that warrant further investi-

gation. We found a large number of genetic interactions between variants in UBE2I,

some of which may be due to direct compensatory relationships of amino acid replace-

79
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ments. Most interactions however were found to involve residue pairs separated by larger

physical distances.

Having validated the framework, we demonstrated its power to detect pathogenic vari-

ants in the disease genes TPK1, NCS1, CALM1, CALM2, and CALM3. We found that

our Calmodulin map excelled at distinguishing disease-associated variants from benign

polymorphisms and greatly outperformed the common prediction algorithms PolyPhen-2

and PROVEAN. We subsequently applied our functional map for CALM1, CALM2, and

CALM3 to classify VUS observed in patients during gene panel sequencing and found

our predictions to correlate significantly with patient indications.

Limitations of the DMS framework

Despite these successes, there are a number of limitations to the current form of our DMS

framework. A fairly simple problem is the current restriction to scan relatively short

genes. This is due to three reasons: (1) Longer genes would require a re-formulation

of the mutagenesis protocol, as the number of mutations introduced per clone can be

expected to increase linearly with gene length. This would need to be addressed by vary-

ing the concentration of mutant oligos in the amplification step. This solution could be

tested systematically for templates of different lengths to determine the exact relation-

ship between the factors involved. The results can then be added to the POPCode oligo

design web tool to automatically report the most suitable protocol for each case to the

experimenter. (2) Variant clone pools for longer genes must be kept at larger population

sizes at all times to avoid bottlenecking the complexity of the pools. (3) Finally, larger

libraries also require more sequencing reads to cover all variants at adequate depth. Thus

they either require the use of higher-throughput instruments or would have to be pro-

cessed in batches. A possible solution to all three problems would be to mutagenize only

sections of longer genes that would be scanned separately from each other, although this

would be more time consuming and costly.

A more difficult problem is that currently, the number of genes amenable to functional

complementation in yeast is very limited. Song Sun and other members of the Roth

lab have previously determined that only ∼ 200 human disease genes can currently be

examined using this assay [13]. In addition, we found that some of these genes suffer from

mapping quality issues. We observed this in the NCS1 map, which was of lower quality

compared to other genes due to its relatively weak wildtype complementation fitness

resulting in a less favourable signal-to-noise ratio. However it is possible that these

assays might be improved by using different yeast strains with different backgrounds or

by using different growth selection conditions. Moreover, as mentioned in section 3.3 of
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the previous chapter, we have determined that 57% of disease genes could potentially

be assayed using DMS variants based on Y2H or human cell lines instead, as will be

discussed in further detail in the next section.

4.2 Outlook

4.2.1 Using DMS data in a clinical context

As introduced in chapter 1, a major motivating factor behind the development of our

framework is to address the growing problem of variants of uncertain significance ob-

served in the clinic. While our results show that functional maps as produced by our

framework can be helpful in the effort of VUS reclassification, a single line of evidence

is not usually sufficient. Even though the ACMG considers functional assays among the

strongest classification criteria, they require at least one additional criterium of moder-

ate strength, such as enrichment in cases over controls, or negligible allele frequency in

the general population [6]. While most of the data informing the required criteria can-

not be generated en masse, other information, such as allele frequencies in the general

population are available from the 1000 genomes project [9] and the genome and exome

aggregation database (GnomAD) [106]. Thus an important goal for the future would be

the construction of a public database with an underlying automatic data integration and

classification system that obtains information from available sources and automatically

applies the ACMG’s recommended decision-making process towards variant classifica-

tion. Classification results should be presented transparently, revealing the individual

underlying evidence, confidence levels, and reasoning structure. Alternatively, it is con-

ceivable that future iterations of DMS maps can be validated to be sufficiently rigorous

to allow for a change in ACMG guidelines.

Another factor to consider with respect of the presentation of DMS maps for clinical

use is the reporting of imputation and regularization. Even though this work has shown

that imputed values are equivalent in quality to their experimental counterparts and that

regularization leads to improved performance, a sociological bias against computational

predictions may lead to users dismissing these data. While full disclosure of data prove-

nance is necessary, it may also lead to the misinterpretation of data if its presentation is

not handled carefully.

The commitment towards the construction of a resource is only warranted if its pri-

mary source of information, functional maps generated using Deep Mutational Scanning,

can continue to be provided. The Roth lab is planning to continue building functional
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maps of disease genes and to expand the list of genes amenable to deep mutational scan-

ning. A shortlist of ∼100 genes is planned to be addressed in the coming years. However,

this undertaking is a costly one. Per 500 amino acid positions scanned, approximately

$5500 need to be spent on consumables, primarily for sequencing and oligos for POPCode

mutagenesis. Assuming six genes being scanned in parallel, approximately 45 full-time

employee hours need to be invested per gene. Ultimately, this undertaking cannot be

shouldered by one lab alone and will require outreach to other groups. As shown in

chapter 1 section 1.4, a fair number of groups are already performing deep mutational

scans and may be interested in collaboration. As a first step, the Roth and Fowler labs

are already collaborating with respect to mapping a number of heart disease associated

genes.

4.2.2 Adaptation and extentions to DMS technology

DMS in human cell lines

As mentioned above, an important future direction is the adaptation of the deep mu-

tational scanning framework toward directly using human cell lines in competition as-

says. Recent genome-wide CRISPR screens have revealed a sizable number of genes with

growth phenotypes in different human cell lines [28–30]. While a number of DMS efforts

have already been performed using human cells [47,48,55,61], the underlying assays were

not generalizable, for example, the most recent effort by Majithia and colleagues [61] for

PPARγ was only possible due to the fortuitous circumstances of having found a surface

marker whose expression level directly reflects PPARGγ activity. Atina Cote in the Roth

Lab is currently working on establishing a generalizable growth-based complementation

assay using CRISPR in human cell lines.

Screening of other functional elements

Another important future direction is to expand the capability of Deep Mutational Scan-

ning to enable assaying variants outside of protein-coding regions of the genome. How-

ever, since the space of the human genome is simply too large to be tested in its entirety

the logical choice is to concentrate on elements most likely to be functionally relevant,

such as splice sites, promoters, or transcription factor binding sites. Hanane Ennajdaoui

in the Roth Lab is currently working on adapting our DMS framework to scan intronic

regions (shortened to exclude medial sequences).
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4.2.3 Other uses of DMS functional map data

Screening for viral suppressors

Deep Mutational Scanning has many other potential uses beyond disease variant classi-

fication. As we have demonstrated in chapter 3 for UBE2I, the method helps shed light

on the biophysical mechanisms underlying the function of a gene. We have also shown

that using a combination of Y2H and complementation, DMS can point to potential new

protein interaction interfaces.

UBE2I is known to be directly targeted by many viruses, such as HIV and EBV,

through specific protein-protein interactions to subvert host defenses [144]. Using Y2H

as the selection assay in our DMS framework and using our existing functional map of

UBE2I as a reference, it would be possible to scan for variants that specifically disrupt

interactions with viral proteins while not affecting overall UBE2I function. At the same

time, this approach could help finding the specific interface for the interactions in question

and could inform future drug development.
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on mutation profile similarity
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Advances in computational prediction of disease variants

As the number of functional maps produced via DMS grows, so does their value as train-

ing data for in silico prediction methods. Currently the number of genes scanned is not

yet representative enough to cover the functional diversity of the proteome. However,

Yingzhou Wu in the Roth Lab has already begun to explore its potential value for extrap-

olation. In an initial experiment, he was able to show that a machine learning method

trained on the functional data obtained for UBE2I was able to make better predictions

towards the effects of mutations in SUMO1 than if trained on the data set underlying

PolyPhen-2 (HumDiv). Thus, with each new functional map added to our variant atlas,

computational prediction method have the potential to become more powerful.

Functional classification of amino acid positions

The same wealth of functional data that may serve as training data for future compu-

tational prediction methods may also help us learn more about the set of roles played

by different residues within proteins. In an initial experiment, I have generated a hi-

erarchical cluster map across amino acid positions in UBE2I and SUMO1 (Figure 4.1).

The clustering hints at distinct functional classes occupied by different positions. There

are three broad groups: (1) Positions that are generally unrestricted and can be occu-

pied by almost any amino acid; (2) Positions that are generally constrained to a certain

small number of amino acids and; (3) Positions that show hyperactivity for many possible

amino acids. Within these groups there are a number of subclusters visible. For example,

within the second group, certain positions only tolerate aliphatic residues, while others

only tolerate aromatic residues. Evolution only samples a subset of the possible amino

acids at a given position. By growing the set of proteins with complete functional maps

we can potentially collect a catalog of possible functional ‘archetypes’ for positions within

proteins. Using multiple alignments we can then make predictions as to the archetype of

any given position.
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Appendix A

Variant maps with

hypercomplementation

As was shown in chapter 3 section 3.2.1, phylogenetic analysis of UBE2I and SUMO1

both showed that variants with ability to complement yeast better than wild-type are

likely deleterious in humans. Thus, fitness scores were transformed so that such hyper-

complementing mutations are considered to be deleterious. However, since hypercomple-

menting substitutions may provide interesting clues about differences between yeast and

human cellular contexts, the untransformed versions the maps are provided below.
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