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Abstract

Although we now routinely sequence human genomes, we cannot yet confidently
identify functional variants. Here a deep mutational scanning framework is de-
veloped that combines random codon-mutagenesis and multiplexed functional
variation assays with computational imputation and regularization to yield
exhaustive functional maps for human missense variants. The framework is
applied to five proteins corresponding to seven human genes: UBE2I (encod-
ing SUMO E2 conjugase), SUMO1 (small ubiquitin-like modifier), NCS1 (neu-
ronal calcium sensor 1), TPK1 (thiamin pyrophosphokinase), and CALM1/2/3
(three genes encoding the protein calmodulin). The resulting functional impact
scores correspond to known protein features, and serve to confidently identify
pathogenic variation.
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1. Introduction

Given the constantly improving cost and speed of genome sequencing, it is
reasonable to expect that within the coming decades personal genomes will
be known for a substantial part of the global populace. Unfortunately, our
limited ability to interpret the variation within stands in stark contrast with
this development. Even when only considering mutations in coding regions
of the genome, the effects of most missense variants are not known. While
a number of computational approaches exist to make predictions as to the
effects of coding variants, they are currently not reliable enough for clinical use.
By comparison, laboratory assays produce more trustworthy results, but until
recently did not scale to the space of all possible mutations. The development
of Deep Mutational Scanning [1–3] has now made this endeavour possible. In
the following sections, each of these issues will be discussed in more detail.

1.1. The Genotype-Phenotype Problem

Linking genotype to phenotype is a very difficult problem. The part of the
human genome we understand best are protein-coding genes, yet they only
constitute a small fraction the whole. Impacts of mutations in other functional
elements such as splice sites, promoters, or regulatory sequences are more dif-
ficult to assay, not to mention the vast stretches of intergenic space. While
one might expect the latter to not bear functional significance a priori, a large
number of loci identified as correlated with diseases in genome-wide association
studies (GWAS) are found within these regions [4]. While many of these cases
may simply be spurious findings due to linkage disequilibrium with variants
in coding regions [5], more functions yet unknown may lie hidden within this
vast space. But even for protein-coding sequences the problem is far from sim-
ple. Alleles with simple Mendelian behaviour are the exception rather than the
rule. Most phenotypes are complex, i.e. they emerge through the interplay of
many different genetic or environmental factors. Conversely, many genes are
also pleiotropic, i.e. they are involved more than one mechanism. As a result
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1. Introduction

of this complexity, a mutation found in one person may not have the same
effect as in another—a phenomenon called incomplete penetrance. Similarly,
two different mutations within the same coding sequence will often not have
the same effect either. Depending on how the translated protein is affected
(e.g. catastrophic folding failure, alteration of a molecular interaction interface
or active site, or a subtle change on an unused surface) the effects may differ in
severity or in rare cases may even result in the emergence of new behaviours.

Given the much greater difficulty of interpreting non-coding regions, clinical
applications have so far largely concentrated on protein-coding genes. Sequenc-
ing panels for known disease-associated genes and even whole-exome sequenc-
ing (WES) are widely commercially available. A number of different standards
for classifying mutations with respect to their potential health impacts have
been proposed. Most prominently, the American College of Medical Genet-
ics and Genomics (ACMG) standard [6]. It defines categories stretching from
“pathogenic” via “variant of uncertain significance” (VUS) to “benign”. Even
though the mutational landscape for a handful of genes, such as BRCA1 are
explored better than others due to their established relevance and potential
for taking clinical action [7], the vast majority of clinical variants are currently
classified as VUS. For example, in a recent study using gene panels assessing
germline cancer risk loci [8], over 98% of missense variants have been called
VUS. Not only can these uncertainties burden patients with unnecessary anx-
iety [7], they also call into question the value of sequencing in the clinic if the
majority of findings are not actionable. With increasing use of WES over gene
panels, this problem is only going to get worse. According to the 1000 Genomes
Project data, every person carries 100-400 missense variants that are so rare
that they have likely never been seen before in the clinic [9]. In the absence
of previous observations they would automatically be added to the long list of
VUS.

1.2. In silico approaches to variant function
assessment

A number of algorithms exist that offer predictions as to the deleteriousness
of mutations, the most prominent ones being PolyPhen-2 [10], SIFT [11] and
PROVEAN [12]. PolyPhen-2 employs a machine learning method based on
evolutionary conservation and protein structural features. It uses a set of pre-
viously reported pathogenic alleles as a positive training set and differences
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between human genes and their mammalian homologues as a negative training
set. By contrast, SIFT (Sorting Intolerant From Tolerant) only uses evolu-
tionary conservation. The tool uses multiple sequence alignments to calculate
position-specific score matrices for each gene which are then normalized and
transformed into probability values. PROVEAN (PROtein Variation Effect
ANalyzer) similarly only takes into account sequence alignments. However,
rather than just computing a position-specific score, PROVEAN calculates the
difference in alignment quality between using the wildtype or variant sequence
against clusters of homologous sequences. The average distance is then inter-
preted as indicative of the deleteriousness of the variant.

While the three tools succeed in making good predictions, their reliability is
unfortunately still not high enough to serve as a basis of clinical decision mak-
ing. Song Sun and other members of the Roth Lab recently performed an inde-
pendent comparison of these tools on a set of well established disease-causing
variants as well as rare polymorphisms with no known disease association [13].
A high precision (the fraction of correct classifications out of all positive classifi-
cations) can be considered especially important when considering taking clinical
action based on a prediction. When compared at a minimum precision level of
90%, PolyPhen-2 and PROVEAN only reach a sensitivity of 19% and 21%, re-
spectively (where sensitivity is defined as the fraction of correct classifications
out of all real existing disease variants). SIFT was not capable of achieving
90% precision at any score threshold. In concordance with these limitations,
the ACMG currently considers only cases in which multiple methodologically
orthogonal prediction algorithms agree as weak evidence in a supporting role
for VUS re-classification [6].

1.3. Laboratory approaches to variant function
assessment

An alternative to computational prediction for variant assessment is the use of
laboratory assays. Many different types of assays exist that can yield potential
insight into the effects of missense variants on protein function. However, most
of them need to be performed individually for each protein and are not easily
scalable. Two particularly useful assays in this respect are Yeast-2-Hybrid and
functional complementation.

Yeast-2-Hybrid (Y2H) [14] is a binary protein interaction assay performed
within the yeast Saccharomyces cerevisiae (Figure 1.1A). The qualifier ‘bi-
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nary’ refers to the fact that it detects direct physical associations compared
between two individual proteins as opposed to often-indirect associations like
co-localization or co-complex-membership. It is based on the reconstitution of
two fragments of the transcription factor Gal4. The Gal4 protein is comprised
of two domains: A DNA-binding (DB) domain and an activating domain (AD).
Both are required for it to successfully associate with its cognate promoter re-
gion and induce expression of a reporter gene downstream of the promoter.
When two proteins X and Y are fused to the DB and AD domain respectively,
a prospective interaction between X and Y leads to the reconstitution of the
transcription factor and subsequently to reporter expression. In most cases,
the reporter is an auxotrophy marker, such as HIS3, thus linking the ability of
the two proteins to interact with each other to the ability of the yeast strain
to grow on selective (e.g. histidine-deficient) media. When comparing different
variants of the same protein interacting with the same partner, reporter ex-
pression has even been shown to be proportional to binding affinity [15]. This
proportional relationship allows for quantitative interpretation of Y2H results
under these specific circumstances. However, this cannot be generalized to
compare different proteins.

Y2H does however suffer from a number of drawbacks. Due to the the tran-
scription factor needing to physically associate with DNA, any protein to be
examined needs to be able to enter the nucleus and function within. While
the DB domain already contains a nuclear localization sequence (NLS), the
AD ORF is often the fused with an additional NLS. However, this does not
work for every protein [16]. A particular problem are membrane proteins which
generally cannot enter the nucleus at all [17]. A variant of Y2H, MYTH (Mem-
brane Yeast-Two-Hybrid) exists for these proteins [18, 19]. This system relies
on the reconstitution of a split ubiquitin through the interaction of membrane
proteins. A reconstitution of ubiquitin allows for recognition by deubiquitinases
(DUBs), which cleave off a fused transcription factor that activates a reporter
gene.
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Figure 1.1.: Complementation and Yeast-2-Hybrid. A) Yeast-2-Hybrid:
Strains carrying fusion of ORF X to Gal4-DB and ORF Y to
Gal4-AD are mated. A successful interaction between X and Y
in the diploid progeny results in reconstitution of Gal4 and thus
in the expression of the HIS3 reporter, allowing for auxotrophy
selection. B) Complementation: Inactivation of gene X in yeast
results in a fitness defect, that is rescued by expression of X’s hu-
man orthologue. A damaging variant of human X results in loss of
complementation.
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In the past it has often been stated that Y2H results are unreliable and suffer
from low precision. One source for these claims goes back to a comparison be-
tween two early Y2H screens of the S. cerevisiae interactome by Ito et al. [20]
and Uetz et al. [21], whose maps only overlapped by 19%. Yu et al. later showed
that this low overlap was not due to low specificity as previously thought, but
rather low sensitivity. It has been estimated that Y2H has an overall assay
sensitivity of 20% [22]. That is, only one in five real existing protein inter-
actions can be detected by Y2H. These sensitivity levels are comparable to
most other binary interaction assays, such as Protein-fragment Complemen-
tation Assays (PCA) [23] or the Mammalian Protein-Protein-Interaction Trap
(MaPPIT) [24].

When considering Y2H as an assay for variant function assessment it is im-
portant to consider that it does not measure all aspects of a protein’s function-
ality, but rather only its ability to physically associate with a given interaction
partner. Thus only variants that result either in major failures in protein fold-
ing or in changes to the binding binding interface could be detected. However,
in a recent examination of the Y2H performance of common disease associ-
ated variants, we found that approximately two out of three disease variants
in proteins with detectable interactions manifest in such a way [25].

Nonetheless, an assay that can measure the overall functionality of a protein
within the cell would be preferable. Functional complementation in yeast [26,
27] offers such an option (Figure 1.1B). It based on the premise that some
human genes can be used to rescue the deletion of their orthologues in yeast.
That is, a fitness defect resulting from the inactivation of the yeast gene is
alleviated by the artificial expression of the human gene. Therefore, any rel-
ative changes in fitness upon expressing a variant of the human gene can be
interpreted as the variant’s effect on the protein’s overall ability to function.
Song Sun and other members of the Roth Lab have recently examined the
applicability of functional complementation in yeast to the assessment of dis-
ease variants [13]. They have found an astonishing predictive capacity despite
yeast and humans being diverged by ∼ 1 billion years. Yeast complementation
outperformed in silico methods like PolyPhen-2 and PROVEAN in terms of
disease variant prediction by a wide margin. At the 90% specificity threshold
discussed in section 1.2, the complementation assay achieved a sensitivity of
over 60% (as compared to 19% and 21% for the two in silico methods, respec-
tively). It is consistent with these findings that the ACMG considers functional
assays among the strongest sources of evidence for variant classification [6].

The only major drawback of yeast complementation is that currently only
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∼ 200 human genes have been found to be amenable to the assay [13]. However,
in recent years CRISPR screens have revealed many genes for which growth
phenotypes exist directly in human cell lines [28–30]; opening the possibility of
performing functional complementation directly in these cell lines.

1.4. Deep Mutational Scanning

Complementation and Y2H promise to be useful tools in the classification of
variants of uncertain significance. Yet applying them to retroactively test vari-
ants only once they have been found in the clinic would be a slow process.
Instead, a proactive approach could prove to be more useful: Building an atlas
of the functional effects of all possible variants before they are observed in a
patient. Indeed, given the size of the human population and the frequency of
de novo mutation [31], every missense variant that can possibly exist (and is
not fundamentally incompatible with life) can be expected to occur on average
in 46 individuals1. However, assaying all possible variants in known disease
genes would require massive parallelization. Indeed such parallelization efforts
have previously been described, albeit not primarily for the reclassification of
VUS. The winter semester of 2010/11 saw three papers by Fowler et al. [1],
Ernst et al. [2] and Hietpas et al. [3] that collectively pioneered a technology
called Deep Mutational Scanning (DMS). DMS can be thought of as a natural
extension to Alanine Scanning [32], expanding it into the space of all possible
amino acid changes. These seminal papers have since inspired a growing num-
ber of similar efforts by other groups [33–61]. Tables 1.1 and 1.2 list a selection
of these studies that showcase the breadth of methodologies that has since
emerged. Deep Mutational Scanning, as performed in these studies, can be
broken down into a number of experimental and computational components:
(1) Mutagenesis; (2) Selection of functional variants; (3) Sequencing of the
selected and control populations; and (4) Computational analysis. In the fol-
lowing sections we will review the different previous implementations of these
components in detail.

1Back-of-envelope calculation: 7.4bn humans×0.6 de-novo exome SNVs
30Mb exome×3 possible SNVs

≈ 46humans
bp
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1. Introduction

1.4.1. Mutagenesis approaches

A fair number of saturation mutagenesis methods have previously been applied
in DMS studies; some more technically challenging than others. The simplest
method is error-prone PCR amplification [62, 63]. While this has the advan-
tage of being an inexpensive and facile procedure, it will only result in the
generation of point mutations and as such will not generate all possible amino
acid replacements. One may argue that the evaluation of VUS does not require
insight into mutations outside of these variants, as they are unlikely to occur
in nature. Nonetheless, exploring all possible amino acid changes offers the
potential of valuable biochemical insights. Moreover, the preference for tran-
sitions over transversions in these methods leads to uneven representations of
variants.

Another set of methods often employed are scaled-up versions of site-directed
mutagenesis approaches [64–66], with one popular example being Kunkel mu-
tagenesis [67]. It uses a strain of E. coli that has been modified to produce
high levels of uridine and lacks the ability to excise these bases from DNA.
A phage vector carrying the desired template sequence is transfected into the
cells resulting in its replication with a high uracil incorporation rate. The
thus uracilated template can be PCR amplified with primers containing the
mutations of interest and subsequently amplified in regular E. coli which will
degrade the uracilated template, thus enriching the mutant copies. A number
of derivatives of Kunkel mutagenesis have since been developed to bring its
output to a scale supporting saturated libraries, most notably Pfunkel [66]. To
address the full spectrum of amino acids at a given position, oligonucleotides
carrying degeneracy codons [68] are often used. Particularly popular is the use
of NNK and NNS degeneracies, which have long been used in biochemistry [69,70].
Here, S denotes either Guanine or Cytosine and K denotes either Guanine or
Thymine in the third position of the degenerate codon. Either of these options
only enables 32 out of all 64 possible codons, but each covers all 20 possible
amino acids while avoiding two of the three possible stop codons (TGA and TAA).
A more recent development is the use of custom oligonucleotide arrays cover-
ing all possible (or desired) options of codon changes explicitly rather than
relying on degeneracy [56]. While this option allows for the precise control of
desired mutations, it is currently too expensive to be applicable for more than
a handful of genes at a time.

Another saturation mutagenesis method often applied in Deep Mutational
Scanning is EMPIRIC (“Extremely Methodical and Parallel Investigation of
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1.4. Deep Mutational Scanning

Randomized Individual Codons”) [3]. In this method, rather than using PCR
amplification, oligonucleotide cassettes carrying the variants of interest are di-
rectly ligated at the appropriate positions. This is achieved by designing the
underlying vector such that it omits the cassette sequence. Instead, it car-
ries a restriction site at the equivalent position, which can be cut to create
sticky ends. Pairs of oligos carrying the variants of interest can be synthesized
such that they can assemble into a fitting cassette that integrates with the
vector. EMPIRIC is one example of a mutagenesis method that was explic-
itly developed to be used in Deep Mutational Scanning. Another example is
PALS (“Programmed ALlelic Series”) [56], which aims to limit the number of
amino acid changes per library clone to only one. Oligos carrying the variants
of interest are annealed to uracilated templates and linearly amplified with
strand-displacing polymerase. In a second step, the template is degraded us-
ing Uracil-DNA-Glycosylase and an antisense strand is generated in a second
linear amplification step. The product is denatured and yet again hybridized
with uracilated template allowing it to be extended towards the other end of
the template. Finally, the template is degraded again and the now full-length
mutagenized strands are amplified.

In addition to the various mutagenesis methods discussed here, it may be
noted that complete variant libraries are also recently becoming commercially
available via gene synthesis [71]. While this method is certainly the most
convenient, it is by far the most expensive option. However it is possible that
with increased interest in gene synthesis applications, these options may become
more affordable in the future.

1.4.2. Selection approaches

The most central component of a Deep Mutation Scan is the selection process.
In section 1.3 two options were already discussed in detail: Y2H and functional
complementation. There are a fair number of other options, even though many
of them may not be as useful in the context of identifying disease variants. The
different assays used in previous studies can be sorted into three broad cate-
gories: (i) In vitro display methods (such as Phage Display or Ribodisplay); (ii)
Competition-based methods that couple a protein property under investigation
(such as molecular interactions, toxicity, or overall functionality) to host cell
fitness; and (iii) Cell sorting based on fluorescence labeled reporters.

Phage display [72] and ribodisplay [73] couple the genetic information of a
given variant to the physical protein itself and select according to the protein’s
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1. Introduction

ability to bind to a fixed interactor. In phage display this is achieved by the
protein being displayed on the surface of a phage that contains the correspond-
ing gene; while ribodisplay stalls a cluster of ribosomes on the variant mRNA
with the corresponding protein still attached. Variants that are unable to bind
to the interactor-coated surface are washed away and thus depleted. This can
be done in multiple rounds, as the associated genetic information can be repli-
cated again after selection (via viral propagation in bacteria for phage display
or via PCR in ribodisplay). Fowler and colleagues employed phage display
in their seminal DMS study with respect to the binding of the YAP65-WW
domain to its cognate peptide target [1]. However, since display methods are
only feasible for small proteins or fragments thereof, more recent studies have
employed more scalable methods instead.

The most frequently applied selection mechanisms are fitness based. In these
cases a particular property of the variant protein is coupled to its host cell’s
ability to thrive in competitive growth. Yeast-2-Hybrid and functional com-
plementation (as introduced in section 1.3) are two examples of such methods.
While Y2H couples fitness to the ability of the protein to maintain a specific
protein-protein interaction, complementation does so for the proteins overall
ability to perform its biological role. A popular condition-dependent extension
to complementation is selection according to drug resistance [39,48], but other
fitness-based selection methods have been used in DMS as well. For example,
Adkar and colleagues used the toxicity of CCDB in E. coli [34], while Kim and
colleagues select according to degron activity by fusing the degron to an aux-
otrophic marker [45]. Finally, a number of DMS studies have been performed
on viral genes, by selecting for virus propagation efficiency [52,53].

Finally, another selection mechanism is the use of fluorescence-activated cell
sorting (FACS) [74]. Here, surface markers whose abundance are proportional
to the activity of the studied protein are targeted with fluorescently labeled
antibodies, such that cells can be sorted accordingly, as has been performed by
Schlinkmann et al. and Majithia et al. [36, 61].

1.4.3. Sequencing strategies

The experimental step immediately following selection in a DMS experiment is
sequencing. Next-generation sequencing technology can be considered the key
technological advance that made Deep Mutational Scanning possible. Many
studies use a fairly simple approach by performing deep shotgun sequencing
of the library [2, 3, 33]. However, a major problem with this approach is that

12



1.4. Deep Mutational Scanning

without knowing which reads originate from which DNA molecule, each read
can only be considered by itself, making it difficult to distinguish real muta-
tions from sequencing error. To address this problem, different solutions have
emerged. In cases where the amplicon is short enough, paired-end sequencing
can be exploited to use information for variant calling. In the simplest case
this is achieved by requiring both reads to agree on the base call in question,
as in the case of Whitehead et al. [37]. A less stringent, but potentially more
sensitive alternative as used by Fowler and colleagues [1] is to perform Bayesian
inference on the quality scores associated with the base calls in each read pair.
This way a variant may still be identified if one of the two reads reported a
wildtype base call with low confidence.

Where the length of the nucleotide sequence in question exceeds the read
length capabilities of short-read sequencing technologies, other strategies are
required. A notable borderline case can be found in Olson et al. 2014 [50]
where only a partial overlap between read pairs was achieved and variant calls
outside of the overlap region were of lower quality. Other studies resort to
more involved approaches. A popular paradigm is the association of molecular
barcodes with each clone within the DMS library. While this simplifies the
readout of the experiment (as only the barcodes need to be sequenced and
counted), it adds the requirement of identifying which barcode belongs to which
genotype. In most cases this is addressed using “subassembly” [75], a high-
throughput amplicon sequencing approach based on attaching random tags to
amplicons. The DNA is then amplified, sheared and ligated to adapters, so that
paired end sequencing can be used to identify the random tag together with
each read. This allows reads to be sorted according to which original tagged
molecule they belong to, which in terms enables assemblies for each molecule
to be computed. The resulting high-quality virtual reads are long enough to
cover both ORF and barcode locus.

Another barcode-based method, called EMPIRIC-BC was described by Ma-
vor and colleagues [60], where the amplicon in question was short enough not
to require subassembly. Here, a long read can cover the entire ORF, while a
second, short read can identify the barcode.

An alternative approach to covering longer stretches of DNA is to subdivide
them into smaller regions that can be sequenced separately from each other. For
example, Doud and colleagues [59] amplify each region with primers carrying
random tags. This way, if multiple reads contain the same tag, they are highly
likely to originate from PCR copies of the same original molecule and can
be used to make more accurate variant calls. While this approach has the
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advantage of being less labour-intensive than barcoding each individual clone
in the DMS library, it can only detect variants co-occurring within the same
region of the sequence. Thus the library must be designed in such a way that
either only a single mutation occurs within each clone or that it is large enough
that effects of many co-occurring variants are averaged out.

1.4.4. Computational analysis

Most DMS studies use custom scripts to process the sequencing readout and
calculate the selection advantage for each variant. Nonetheless, a few published
software packages exist. The EMPIRIC mutagenesis and DMS method provides
its own software package for data processing [3], though it is not generally
applicable to other DMS methods. The dms tools package [76] offers the
same services, but is tailored more towards methods using regionally focused
sequencing. Finally, Enrich [77] offers a generalized solution applicable to most
DMS frameworks. A second version that adds a more sophisticated statistical
analysis including the assessment of measurement confidence levels is currently
under review [78].

1.4.5. Conclusion

When considering previous DMS studies in the context of VUS classification,
a number issues become apparent. Many of these have primarily used DMS
in the context of biochemistry. The assays underlying different DMS studies
are quite diverse and measure different aspects of a protein’s behaviour. As
a consequence, they cannot be easily compared with each other. In addition,
the achieved coverage of possible amino acid changes varies from map to map.
Finally, many maps to do not control the quality of measurements. There-
fore, the confidence levels underlying different parts of these maps are often
unknown. A generalized framework that would allow for the construction of
comparable, high-quality maps representing overall protein function would be
of great utility.

1.5. Background: The Sumoylation Pathway

In the following chapters, we will evaluate the performance of Deep Mutational
Scanning with respect to its ability to detect the effects of different variants
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on overall function. However, as mentioned in section 1.1, many genes perform
multiple functions and sub-functions and the proteins they encode engage in
multiple interactions with other molecules. Thus, beyond the amenability of
the proteins to the employed assays, an ideal testing ground would be comprised
of a biological system that is both mechanistically complex and has been well
studied previously in terms of structure and mechanism. This would allow for
an examination of the assay’s capabilities of detecting if and how a variant that
damages an individual sub-function is reflected in its overall functional impact.

The Sumoylation life cycle does not only fulfill these criteria [79], but is
also of great biological importance. Sumoylation is a protein modification in
which a small ubiquitin-like modifier (SUMO) is covalently attached to target
proteins in order to modulate their behaviour, especially in terms of localization
and physical interactions [80]. Sumoylation plays an important role in a large
number of cellular processes [80]. It is therefore not surprising that the core
members of the pathway are essential genes [81].

Despite employing a distinct set of proteins compared to the ubiquitination
machinery, the sumoylation pathway bears many close mechanistic similarities.
Analogously to ubiquitin, a cascade of enzymes, E1, E2 and E3s, guide SUMO
through its maturation, activation, conjugation and ligation phase [80] (Figure
1.2). After expression, SUMO is matured through cleavage of four amino acids
from its C-terminus, exposing a diglycine motif. In humans, this process is
performed by two peptidases, SENP1 and SENP2 (short for sentrin-specific
peptidase, where sentrin is an alternative name for SUMO). Next, an E1 ac-
tivation complex (UBA2-SAE1) forms a thioester bond between the SUMO
C-terminal diglycine and a cysteine residue within the E1 protein under the
consumption of ATP. An E2 conjugase (UBE2I) binds to the complex, so that
the activated SUMO can be transfered to one of its own cysteine residues via
transesterification.

The thus loaded E2 can recognize potential target proteins via an exposed
motif of four amino acids. The motif is generally described as ΨKxD/E, i.e. a
large hydrophobic residue, followed by a lysine, a spacer residue and an acidic
residue [86]. The motif is often found in an exposed loop extending from the
protein or in a disordered region [80, 87, 88]. The central lysine within the
motif enters the E2’s active site where it comes into contact with the SUMO
diglycine. There, a peptide bond is formed between the lysine ε-amino group
and the SUMO C-terminus [87]. This process can be made more efficient in the
presence of E3 proteins. It is interesting to note that while only a single SUMO
E2 conjugase (UBE2I) is encoded by the human genome, there are a variety
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Figure 1.2.: Steps in the sumoylation cascade. SENP protease matures a SUMO precursor by
cleaving off its four C-terminal residues. In the activation step, the E1 complex
forms a thioester bond between SUMO and one of its cysteine residues under ATP
consumption. It then transestereficates SUMO to a cysteine in the E2. The E2
recognizes potential targets via their ΨKxE motif. With the help of an E3, SUMO
is then ligated to the central lysine within that motif. SENP proteases can reverse
the process by hydrolysing this new peptide bond. Images were generated using
data from the following PDB structures: 2G4D [82], 3KYC [83], 4W5V [84], 3UIP [85]
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1.5. Background: The Sumoylation Pathway

of different SUMO E3 ligases. Some of these work by simply stabilizing the
SUMO-E2 complex, while others can outright force-feed non-canonical targets
to the E2 [89].

1 2 3 4
Sumoylated
Protein

Sumoyl

E2 (UBE2I) Loaded E2

Figure 1.3.: Steps in SUMO chain formation as proposed by Alontaga and col-
leagues [90]. An E2 noncovalently interacts with a SUMO mod-
ification of a target protein. A second E2 carrying a covalently
bound second SUMO binds the first E2-SUMO complex, allowing
for the first SUMO’s N-terminal tail to enter the active site, where
a lysine within the tail is forms a peptide bond with the second
SUMO’s C-terminus. Finally, the complex dissociates, leaving be-
hind the newly formed SUMO chain. Images were generated using
data from the following PDB structures: 3UIP [85], 4Y1L [90]

Like ubiquitin, SUMO can also form chains (Figure 1.3). However, of the
four SUMO proteins encoded by the human genome, only SUMO2 and SUMO3
are capable of doing so, as they contain a suitable lysine residue within a dis-
ordered N-terminal tail [91]. Capili and Lima previously observed that the
E2 (UBE2I) and SUMO can interact in a noncovalent manner via a distinct
binding interface [92]. According to a model proposed by Alontaga and col-
leagues [90] this interaction is a key mechanism in SUMO chain formation. The
interaction recruits a second, SUMO-loaded E2 that interacts with the complex
in such a manner that the lysine within the first SUMO’s N-terminal tail can
find its way into the active site of the second E2, where the second SUMO is
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1. Introduction

concatenated. While the role of polySUMO chains in humans are still unclear,
it has been shown that yeast deficient in SUMO chain formation are unable to
perform meiosis [93].

Given the complexity of the Sumoylation system, especially surrounding the
E2 component, an examination of sequence-structure-function relationships be-
comes a multifaceted problem. Mutations could in principle affect any combi-
nation of the multiple interaction interfaces which in turn contribute in complex
ways to the overall cellular phenotype. An alanine scan of the yeast SUMO
E2 Ubc9 was previously performed and succeeded in identifying functionally
important sites within the protein [94]. Similarly, a DMS scan of ubiquitin was
previously completed [40]. While both of these projects provided great insight
into the biochemistry of ubiquitin-like protein pathways, neither has produced
a complete map. That is, not all possible amino acid changes were measured
at high confidence levels. The Deep Mutational Scanning Framework we will
discuss in chapter 2 enabled us to not only recapitulate many of the known
mechansims in SUMO and its E2, but also to uncover new details about their
biochemistry, as will be discussed in chapter 3.
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2. A framework for comprehensive
and high-fidelity Deep
Mutational Scanning

The work described below represents a team effort including many members
of the Roth Lab. Wet lab elements of the work were performed by Atina
Coté, Jennifer Knapp, Song Sun and Marta Verby, while all computational and
statistical aspects were developed and implemented by myself, except where
indicated otherwise.

2.1. Introduction

Deep Mutational Scanning (DMS) [1–3], a strategy for large-scale functional
testing of variants, yields functional maps describing a large fraction of substi-
tutions for an often substantial subset of residue positions. The assays used for
DMS studies are diverse, often measuring different aspects of a protein’s be-
haviour. Functional complementation assays test a variant’s impact on overall
protein function by testing the variant gene’s ability to rescue the phenotype
caused by reduced activity of the wild type gene (or its ortholog in the case
of trans-species complementation) [26, 27]. In a previous paper, Song Sun and
other members of the Roth Lab have previously found cell-based functional
complementation assays to accurately identify disease variants across a diverse
collection of human disease genes [13].

There are many challenges to the DMS strategy. One challenge is establish-
ment of robust interpretable assays that measure each variant’s impact on the
disease-relevant functions of a gene. Another is that the fraction of possible
amino acid changes that are measured varies from map to map. Finally, many
maps do not control for the overall quality of measurements, or estimate the
quality of each measurement. The lack of a comprehensively measured map
of known-quality functional impact scores limits the opportunity for confident
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2. High-fidelity DMS framework

use of DMS maps to evaluate specific variants.
Here, a modular DMS framework will be described to generate complete,

high-fidelity maps of variant function based on functional complementation.
The framework employs a novel mutagenesis strategy, two alternative sequencing-
based selection screens, and a machine learning strategy to impute otherwise
missing parts of the map with surprising accuracy, and uses regularization to
correct less confidently measured data points. The framework is evaluated with
respect to its performance on the SUMO E2 conjugase UBE2I.

2.2. Results

When carrying out deep mutational scans of protein sequences yielding com-
prehensive atlases of sequence-function relationships, it is useful to describe
the process in distinct stages. The framework described in the following sec-
tions can be broken down into six such stages (see Figure 2.1): 1) mutagenesis;
2) generation of a clone library; 3) selection for clones encoding a functional
protein; 4) read-out of the selection results and analysis to produce an initial
sequence-function map; 5) computational analysis to impute missing values;
and 6) computational analysis to refine measured values based on imputa-
tion models. The framework incorporates previously-described deep mutational
scanning concepts as well as new experimental components (e.g. an imputation
and regularization strategy) and analytic methods. In particular, the last two
stages enabling a complete and accurate DMS map have not been applied in
any published DMS study.

In the following sections, I will first describe a version of the framework called
DMS-BarSeq and apply it to the human SUMO conjugase UBE2I, exhaustively
measuring the ability of protein variants to function. DMS-BarSeq provides
direct variant function measurements and the ability to examine higher-order
multi-mutant effects. An alternative version of the framework, DMS-TileSeq,
generally captures only single-variant effects, but is less resource-intensive. Af-
ter comparing DMS-TileSeq and DMS-BarSeq, the resulting maps are com-
bined, missing data points are computationally inferred and map quality re-
fined.
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2.2. Results

No selection Selection

3. Selection:
Complementation

1. Mutagenesis:
POPCode/oxPCR

BarSeq

2. Library Generation:
en masse LR

TileSeq

BarSeq

TileSeq

4. Readout:
BarSeq / TileSeq

5. Imputation:
RandomForest

6. Regularization
RandomForest

??

Figure 2.1.: An overview of the Deep Mutational Scanning Framework. Step
1: Using mutagenesis via POPCode and oxidized nucleotide PCR,
a pool of variant ORFs is created. Step 2: A library is generated
via en-masse gateway cloning. Depending on the downstream se-
quencing procedure either plain or barcoded expression vectors are
used. Step 3: Clones compete with each other for growth under
selective and control conditions. Step 4: In case of BarSeq, bar-
codes are sequenced and counted. In case of TileSeq, individual
tiles within the ORF are amplified used in paired-end sequencing.
Step 5: Machine Learning methods are used to impute the effects
of missing variants. Step 6: Machine learning predictions are also
used to support less confidently measured variants. (Incl. illustra-
tions by [95,96])
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2. High-fidelity DMS framework

2.2.1. A barcode-based Deep Mutational Scanning strategy

As an initial test of the overall framework, we first aimed to generate a map
of functional missense variation for UBE2I. Our goals for this map were as
follows: (i) High and even coverage of the full spectrum of amino acid changes;
(ii) Determination of mutant effects on overall protein functionality; (iii) High
fidelity of functional effect readouts. We therefore designed the different stages
of the framework accordingly.

For Stage 1 of the DMS-BarSeq framework—mutagenesis—to achieve a rel-
atively even representation of all possible single amino acid substitutions, we
wished to allow multiple mutations per clone. This would not only allow for
greater mutational coverage for any given library size, but it would also offer
an opportunity to discover intragenic epistatic relationships between variants.
To fulfill these requirements, we developed a mutagenesis protocol (Precision
Oligo-Pool based Code Alteration or POPCode) which generates random codon
replacements. At the second stage—library generation—we wished to be able
to track the fitness effects of each individual mutant clone rather than just
average effects of mutations across the population, as this could be expected
to allow for higher quality measurements. Thus, in Stage 2 of the framework,
we opted to assign molecular barcodes to each clone that could be identified
by sequencing. To catalogue the pairing of mutant genotypes with barcodes,
we developed a novel multiplex amplicon sequencing method called KiloSeq, in
collaboration with Joseph Mellor at SeqWell Inc, Boston. The selection pro-
cess (Stage 3) was performed as a yeast complementation assay, to allow for
determination of overall functional effects of mutations. The assay would be
performed as a time series in triplicates, as this again promised to allow for
higher quality of readouts Finally, Stage 4, consists of barcode sequencing and
statistical analysis. All four stages will be described in further detail in the
following subsections.

POPCode: A Precision Oligo Pool Codon alteration mutagenesis method

This method scales up a previously described method developed by Seyfang et al. [65].
To achieve complete wide coverage over the complete spectrum of possible
amino acid changes in a given gene, oligonucleotides are designed such that
they centre on each codon in the Open Reading Frame (ORF) and replace the
target with an NNK degeneracy code. As explained in chapter 1 section 1.4, this
has been previously used to allow all amino acid changes while reducing the

22



2.2. Results

chance of generating stop codons [68].
When designing a set of suitable oligonucleotide sequences, two important

criteria need to be considered: (i) The melting temperature across the complete
set must be as uniform as possible as this will ensure a more even mutation rate
across the ORF sequence; (ii) the degenerate codon sequence should be located
as close to the centre of the oligo as permissible given the first criterium. To
simplify the process of choosing an appropriate set of oligos based on these
criteria, I developed a web tool that can be used to calculate the optimal
solution to the given problem. The tool requires the sequence of the target ORF
and flanking vector sequences, a desired average oligo length and a maximum
offset parameter. The offset parameter determines how many bases can be
maximally added or removed from each side of a given oligo to optimize its
melting temperature.

In some cases, a moderate deviation from the average in melting temperature
for some oligos cannot be avoided. To alleviate these effects, the web tool also
offers a mutation rate prediction. This is based on observations from all the
POPCode procedures performed as part of this work in combination with linear
regression. The prediction can be used to preemptivly adjust concentrations
of potentially troublesome oligos in the POPCode protocol. An additional
feature in the tool, also based on the mutation rate prediction, is the automatic
calculation of necessary library size to achieve a desired mutational coverage.
The webtool is available online1.

Having designed and obtained suitable oligonucleotides, the ORF sequence is
PCR amplified in the presence of dUTP to generate uracil-doped template for
the mutagenesis reaction. Oligonucleotide pools are then hybridized with the
template. Gaps between hybridizations are filled with non-strand-displacing
polymerase. Following cleanup, the uracil-doped template is incapacitated us-
ing Uracil-DNA-Glycosylase (UDG). The mutagenesis product is then amplified
with primers that add attB sites to allow for Gateway BP cloning into entry
vectors.

To accomplish mutagenesis across the entire coding region of our gene of
interest, UBE2I, we designed a tiled collection of oligos using the web tool
and applied POPCode to generate a codon-mutagenized amplicon library. In
parallel, we also carried out PCR with oxidized nucleotides [63] to enable deeper
representation of amino acid changes achievable from single-nucleotide changes.

1http://llama.mshri.on.ca/cgi/popcodeSuite/main
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Mutant library

Transformation
+

Robot-assisted
colony picking

kiloSeq
+

re-array

uracil-doped ORF template

pool of codon-degenerate oligos

cleave uracil-doped templates
re-amp with att-sites

attB

attB

mutant ORF

Barcoded
Expression

Vector

barcode

non-strand-displacing
polymerase

BP+LR
cloning

Figure 2.2.: POPCode mutagenesis and library generation. A pool of codon-
denerate oligos is hybridized to a uracil-doped template, gaps be-
tween oligos are closed via non-strand-displacing polymerase, and
the backbone sealed. Uracil-doped template is degraded to enrich
for mutants. After mutagenesis, Gateway attB sites are added,
followed by BP+LR cloning into barcoded vectors and transfor-
mation into bacteria. Finally, colonies are picked and arrayed.
(Incl. illustration by [?])

Library generation and highly multiplexed amplicon sequencing

For Stage 2 of the framework—generation of a clone library—we employed an
en masse recombinational cloning strategy to generate a Gateway Entry vec-
tor library of UBE2I variants. This library was transferred via en masse re-
combinational subcloning into a pool of randomly-barcoded plasmids enabling
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2.2. Results

expression of UBE2I variants in yeast. As sequencing is required to establish
the full-length ORF sequence and barcode of each clone, the complementation
vector is designed such that the variant ORF and the barcode locus are in close
proximity to each other. Thus, only a relatively small segment of the plasmid
needs to be inspected to determine the pairing of genotype and barcode.

After bacterial transformation, we proceeded to robotically pick 19,968 co-
lonies, which were stored in 52 384-well plates. As sequencing needs to be
performed to catalogue the identities of nearly 20,000 individual samples, we
used a novel sequencing method called KiloSeq which combines plate-position-
specific index sequences with Illumina sequencing (Figure 2.3). KiloSeq was
developed in collaboration with SeqWell Inc., Boston. First, for each clone
in the library, the region of interest is amplified with primers containing well-
specific tags, uniquely identifying each well coordinate. This step is dependent
on the use of a HydroCycler, which allows up to 4608 PCR reactions to be
performed in parallel. In the next step, wells for each plate can be pooled.
Nextera tagmentation using Tn5 transposase is used to break the amplicons
into random fragments and simultaneously ligate them to Illumina sequencing
linkers with plate-specific indices. Then the pool is re-amplified with 3’-specific
primers, to enrich for fragments that contain the well tags. The resulting library
is now ready for paired-end sequencing. In each pair of reads, one read will
contain the well tag and the barcode locus, whereas the other will contain a
fragment of the mutant ORF.

To process the results of a KiloSeq sequencing run, I developed a custom-
built software pipeline, which can be divided into three phases: demultiplex-
ing; barcode clustering; and alignment and variant calling. The first phase—
demultiplexing—takes place on two levels, corresponding to library plates and
the wells within those plates. Demultiplexing at plate level is performed by
Illumina’s bcl2fastq software, which resolves i5-i7 index combinations. The
second phase is performed on a high performance computing cluster. Sets of
read pairs are distributed across computing nodes, where they are processed
by worker scripts. The well-tag within each R2 read is identified using a k-mer
search algorithm, and read-pairs are sorted accordingly into bins. Each bin
corresponds to one well in a given plate. At the same time, barcode sequences
are extracted from the R2 reads in preparation for the next phase.

The second phase—barcode clustering—uses the extracted barcode sequences
within each bin and clusters them according to their Levenstein distance [97]
(i.e. the number of edit operations required to transform one into the other).
This step is necessary in order to resolve possible contamination across wells
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2. High-fidelity DMS framework

ORF BCattatt

ORF BCattatt tag

ORF BCatt tag i7i5

ORF BCatt tag i7i5
read1

read2

add well-tag

tagmentation, 3' re-amp

paired-end seq

Figure 2.3.: KiloSeq schema. 1) For each library well, amplicons containing the
variant ORF (gold) and Barcode locus (green) are amplified with
primers adding a well-specific tag. 2) Tn5 tagmentation fragments
the DNA while simultaneously adding Illumina i5/i7 linkers. 3’
re-amplification enriches for fragments containing the well tags. 3)
Each pair of sequencing reads now contains a fragment of ORF
sequence and the associated barcode and well tag.

that occurred during library preparation. Each barcode cluster corresponds to
a different clone, and the different unique sequences within each clusters cor-
respond to different sequencing errors. The most frequently observed sequence
within each cluster is interpreted as the true barcode. Finally, read pairs within
each bin are again subdivided according to their respective barcode cluster.

The third phase—alignment and variant calling—is then executed for each
barcode cluster within each well within each plate. The R1 reads are aligned
to the template sequence and variants are called. This is complicated by the
fact that the KiloSeq library preparation usually creates a certain amount of
cross-contamination between wells. While single or multi-nucleotide variants
are still relatively unproblematic to identify, standard tools were found to be
unable to identify copy number variations (CNVs) due to these problems. I
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2.2. Results

thus developed a custom method for CNV calling, based on detecting sudden
changes in read depth across the alignments. First, the individual read depth
track is normalized to the average read depth across all wells the plate. Then
a modified one-dimensional Sobel operator [98] is used to detect sharp edges in
the signal. An example of this can be seen in Figure 2.4. Detection thresholds
were optimized by comparison with Sanger sequencing.
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Figure 2.4.: Indel detection example. A duplication event in well A A02 is de-
tected by normalizing relative read depth by the mean depth across
the plate and using a Sobel operator to detect sudden changes.

After successful genotyping with kiloseq, I determined the subset of clones
that (i) contained at least one missense mutation, (ii) did not contain any
insertions or deletions, (iii) did not contain mutations outside of the ORF, (iii)
had unique barcodes, and (iv) had sufficient read coverage during KiloSeq to
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2. High-fidelity DMS framework

allow for confident genotyping. Over half of the clones in the library conformed
to these criteria. The single largest reason for exclusion was the occurrence of
indels and CNVs (Figure 2.5A).

An analysis of the mutation signatures across clones generated by POPCode
revealed that two different mechanisms appear to underlie mutagenesis. When
considering only mutations that change more than one base in a given codon,
there is an equal chance for every possible base except in the third position,
where almost no adenine or cytosine was introduced. This is consistent with
the NNK degeneracy code used in the POPCode oligo design. By contrast,
variants that change only a single base in a given codon show a strong bias for
transitions over transversions. These could be introduced due to polymerase
error (Figure 2.5B). This secondary source of variation is also reflected in the
relative share of single nucleotide variants, which make up 56% of mutations
(Figure 2.5C). As a consequence, when examining the mutation coverage across
the sequence of the ORF, it is clearly visible that the share of amino acids
reachable with a single nucleotide change from the respective wildtype codon
is much closer to saturation than the the set of all possible amino acid changes
(Figure 2.5D). Additionally, some hotspots are visible in which the mutation
rate is higher, which is likely due to different hybridization efficiencies of oligos
across the ORF sequence.

Using a pinning robot, we re-arrayed the subset of usable clones into a con-
densed final library of 40 plates. This final library comprised 6,553 UBE2I
variants, covering different combinations of 1,848 (61% of all possible) unique
amino acid changes. In preparation for the next stage, variant plasmids were
pooled, together with barcoded empty vector and wild type control plasmids.
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2. High-fidelity DMS framework

Complementation screen and Barcode sequencing

For Stage 3 of the DMS-BarSeq framework—the selection of clones encoding a
functional protein—we employed a previously described S. cerevisiae functional
complementation assay [26, 27]. This assay is based a yeast strain carrying a
temperature sensitive (ts) allele of the UBE2I orthologue UBC9. Expression
of human UBE2I rescues growth at an otherwise lethal elevated temperature.
As such, the fitness observed for a clone carrying a mutant allele of UBE2I can
be interpreted as the overall ability of the variant protein to function within its
biological context [13]. The plasmid library from Stage 3 was introduced into
the appropriate ts strain by en-masse transformation. Pools were then grown
in triplicates over a period of 48 hours at the permissive (25◦C) and selective
(37◦C) temperatures, respectively (see Methods) and evaluated at multiple
time points via high-throughput sequencing.

To facilitate the readout of the selection (Stage 4), I developed a sequence
analysis pipeline. The pipeline distributes sets of read pairs across across the
nodes of a high-performance computing cluster, where a k-mer search algorithm
is used to identify multiplexing tags that encode the temperature and time
point and replicate number associated with the sample. The same algorithm
is also used to identify the barcode itself. The number of occurrences of each
barcode in each sample is counted and aggregated across the cluster nodes. The
frequencies at which each barcode is observed corresponds to the population
size of the associated clone. This can then be used to reconstruct of individual
growth curves and quantify the normalized fitness for each of the 6,553 strains
(see Methods section for details). The fitness measurements are normalized
to the wildtype and null controls, such that a score of 1 is equivalent to the
average wildtype fitness, and 0 is equivalent to the average null control fitness.

Additional care needs to be taken to quantify the level of confidence for each
fitness measurement. While comparing the three technical replicates available
for each clone allows for a rough estimation of standard error, improvements
can be made. Baldi and Long previously published a Bayesian method allow-
ing for the regularization of variance estimations using prior data [99]. Two
sources of prior information offer themselves: (1) The number of sequencing
reads observed at time 0 of the experiment, as a low number indicates un-
derrepresentation in the library, which is likely to result in a poor frequency
estimate; and (2) the fitness estimate itself, as variance can be expected to
be proportional to the mean. Indeed, when comparing both properties with
the standard deviation, a clear trend is visible (Figure 2.6). After obtaining a
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prior estimate via linear regression, it can be used to regularize the empirical
standard deviation.
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Figure 2.6.: Comparison of fitness and initial barcode count against standard
deviation. Both properties can be used as prior information to
improve confidence quantification.

A barcoded-based functional map of UBE2I

Before further refinement in Stages 5 and 6, I assessed the quality of comple-
mentation scores. I first examined reproducibility of scores between technical
replicates (Figure 2.7A), and biological replicates (different clones carrying the
same mutation; Figure 2.7B). In each case the scores were reproducible (Pear-
son’s R of 0.97 and 0.78, respectively). We next carried out semi-quantitative
manual complementation spotting assays for a subset of mutants that spanned
the range of fitness scores. Complementation scores from deep mutational scan-
ning correlated well with these small-scale tests. Indeed, agreement between
the large-scale and manual scores was about the same as agreement between
internal replicates of the large-scale scores (Figure 2.7B,C).

As a further sanity check, I next examined evolutionary conservation and
common predictors of deleteriousness, such as PolyPhen-2 [10] and PROVEAN [12].
Although each of these measures is far from perfect in predicting the functional-
ity of amino acid changes, they should and did each correlate with functionality
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2. High-fidelity DMS framework

(Figure 2.7D,E,F). Finally, I confirmed that, as expected, amino acid residues
on the protein surface are more tolerant to mutation than those in the pro-
tein core or within interaction interfaces (Figure 2.7G). Taken together, these
observations support the biological relevance of the DMS-BarSeq approach.
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2. High-fidelity DMS framework

2.2.2. An alternative strategy for DMS via tiled regional
sequencing

While the DMS-BarSeq approach has many advantages (see Discussion), its
performance comes at the cost of producing and maintaining an arrayed clone
library, and of determining the full-length sequence of each coding region and
barcode for each clone. We therefore investigated an alternative approach called
DMS-TileSeq: Instead of tracking the fitness of each individual clone, we car-
ried out en masse measurements of the frequency of each variant in the pool
before and after selection, by deep sequencing. Sequencing was carried out
for a set of short amplicon tiles that collectively encompass the complete cod-
ing region. In this way, it is possible to discern the impact of each mutation
by observing the impact of selection on the abundance of clones carrying this
mutation.

In terms of mutagenesis (Stage 1), DMS-TileSeq is identical to DMS-BarSeq.
Given the mutagenized amplicon library, the cloning step (Stage 2) was car-
ried out by en masse recombinational subcloning into complementation vectors
(thus skipping the step of arraying and sequencing individual clones). This plas-
mid pool was next transformed en masse into the ubc9-ts strain appropriate
for assessing the complementation ability of UBE2I variants. As with DMS-
BarSeq, DMS-TileSeq employs pooled strains grown competitively (Stage 3)
at the permissive and selective temperatures. However, instead of using bar-
code sequencing to determine the fitness associated with individual stains, we
directly sequence the coding region from the clone population to determine the
frequency of each variant in each pool (before and after selection). To overcome
the problem of distinguishing mutations from sequencing errors, we divide the
coding region into tiles such that each individual template molecule can be com-
pletely sequenced on both strands. By requiring that each variant be seen on
both strands, the incidence of base-calling errors can be substantially reduced.

An important aspect of DMS-TileSeq is that it requires the library to be suf-
ficiently complex to ensure that the effect of a mutation is determined from
enough clones and averaged over enough genetic backgrounds to be repro-
ducible. Therefore it was necessary to first validate the reliability of DMS-
TileSeq in comparison to DMS-BarSeq on our established UBE2I map. Cor-
relation between DMS-TileSeq and DMS-BarSeq was comparable to the cor-
relation observed between biological replicates of DMS-BarSeq (Figure 2.8A),
suggesting that reproducibility of DMS-TileSeq is at least comparable to that of
DMS-BarSeq. DMS-TileSeq and DMS-BarSeq showed similar agreement with
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2.2. Results

complementation scores from manual assays (Figure 2.8B). Thus, DMS-TileSeq
avoids the substantial cost of arraying and sequencing thousands of individual
clones, while performing on par with DMS-BarSeq in terms of reliability of the
functional complementation scores it produces.
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2.2.3. A complete functional map of UBE2I

Having performed two independent deep mutational scans of UBE2I using func-
tional complementation assays, we wished to integrate both results into a single
comprehensive high-quality map. To accomplish this, I first combined the re-
sults of each screening approach into a joint map. This required bringing the
maps onto the same scale. Using a regression-based transformation function, I
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2. High-fidelity DMS framework

transformed the DMS-TileSeq scores to the more intuitive scale of DMS-BarSeq
(where 0 corresponds to the typical score of a null mutant and 1 corresponds to
the typical score of a wildtype control). I then combined scores from the two
methods, giving greater weight to more confident measurements (see methods
section).

Imputation and regularization of missing or less accurate data

As is the case for all previously published DMS maps, our combined map
contained some entries that were poorly measured or missing (e.g., because
these substitutions were underrepresented in the input clone library). To fill the
gaps in the map (Stage 5 in the framework), I trained a Random Forest [100]
regression model using the existing measurements in the map. The features
used for the model fall into four categories: intrinsic information; conservation
information; chemicophysical properties; and structural properties.

The most important intrinsic feature consists of weighted positional averages
in the map. That is, for any given amino acid change, all other observed
effects of variants at the same amino acid position are weighted according to
their measurement confidence and are then used to form an average. A second
intrinsic feature consists of the confidence-weighted average effect of all variants
containing the amino acid change in question. Finally, as a third intrinsic
feature I calculate the expected variant fitness predicted by a multiplicative
model often applied to detect genetic interactions [101, 102]. In the absence
of interaction, the fitness of a double mutant fA,B is expected to follow the
product of the individual single mutant fitness levels fA,B ≈ fA · fB . Thus, in
cases where a double mutant (A,B) and a single mutant B is known, the fitness

of A can be estimated to be fA ≈ fA,B

fB
. The model is applied to all available

double mutant fitness values carrying the mutation in question in combination
with available complementary single mutant fitness values. As the latter two
features rely on multi-mutant fitness measurements, they can only be applied
where DMS-BarSeq data is available.
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2. High-fidelity DMS framework

The second category of features focuses on evolutionary conservation. For
each amino acid change in question, this encompasses the corresponding BLO-
SUM62 [103], SIFT [11] and PROVEAN [12] scores, and the AMAS [104]
conservation at the given position. The third category of features comprises
chemicophysical properties such as mass and hydrophobicity of the original and
wildtype amino acids and the difference between the two. The fourth and final
category of features consists of structural properties of the affected amino acid
residues, such as solvent accessibility, engagement in polar interactions and
burial in interaction interfaces.

I assessed the performance of the imputation model using cross-validation.
Surprisingly, I found the root-mean-squared deviation (RMSD) of imputed val-
ues to be on par with measurement error in experimentally measured data (Fig-
ure 2.9A). An examination of the prediction performance by location showed
increased error in positions with lower mutation density and for variants with
above-WT fitness levels (Figure 2.9B). As an additional validation step, we per-
formed manual complementation assays for a set of UBE2I variants that were
not present in the machine learning training data set and compared the results
against the predictions (Figure 2.9C), again finding a surprisingly strong agree-
ment. Notably, variants showing above wild-type level growth in the manual
assay were generally predicted to be deleterious. Although above-WT com-
plementation may indicate that a variant is adaptive in yeast, the imputation
models suggested that these variants would be deleterious in humans, a hy-
pothesis that is explored further in chapter 3.

An analysis of feature importance can be performed by comparing the in-
crease in the mean squared prediction error upon permuting the values of a
feature in question. The analysis revealed that intrinsic features were the most
informative (Figure 2.9D), with the weighed position-wise average and multi-
mutant average seen to be the two single most important features (49% and
40%, respectively), while the multiplicative model contributed 14%. The sec-
ond most important group was conservation information, with PROVEAN and
SIFT weighing in at 39% and 32%, respectively.

Finally, in stage 6 of the DMS framework, we wished to address cases in which
experimental measurements were available but less confident. I implemented a
regularization method, combining experimental measurements with machine-
learning predicted values after dynamically weighting them according to their
respective confidence levels. That means: the less confident a measurement, the
stronger the regularization. Overall, most values were only adjusted minimally
through regularization, with 90% of values being altered by less than 2.5% of
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2.2. Results

the score difference between null and wt controls (Figure 2.10). This reflects
the fact that most values were already of high quality.

To evaluate the effect on the minority of variants that required stronger reg-
ularization, I looked for cases that were of low quality in the DMS-TileSEQ
dataset, but well measured in the DMS-BarSeq experiment. This would al-
low me to treat the DMS-BarSeq values as a gold-standard basis of compar-
ison when performing the regularization procedure only on the DMS-TileSeq
dataset. I identified six cases that fulfilled these criteria. In all six cases
regularization of DMS-TileSeq resulted in improvement, i.e. adjusted the cor-
responding values such that they more closely resembled the gold standard
(Figure 2.10B). However, I found the changes to be still very conservative.
More drastic weighting towards the machine learning prediction could have
improved these cases even more.

To evaluate the complete map, we once more applied manual complementa-
tion assays to a set of variants that represented the full range of fitness scores.
DMS fitness scores corresponded closely with manual assays (Figure 2.10)C,
with a Spearman correlation of 0.83 between the high-throughput and low-
throughput values (a slight improvement of 0.06 compared to the raw, unreg-
ularized experimental data).
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Figure 2.10.: A) Cumulative distribution of changes to the fitness scores on the map as a result
of regularization. B) Six variants were that were well measured in DMS-BarSeq
but less well measured in DMS-TileSeq. For evaluation, regularization was per-
formed only on the DMS-TileSeq data and compared to the DMS-BarSeq gold
standard. Base and tip of arrows indicate pre- and post-regularization values,
gray circles indicate the machine learning predictions used. Red targets indicate
BarSeq gold standard. C) Comparison of values in the regularized map against
manual complementation spotting assay values. D) Completeness of the map
(in terms of coverage of possible amino acid changes) at different stages of the
framework.
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2.3. Discussion

Here I have demonstrated the capabilities of a new improved Deep Mutational
Scanning framework that uses functional complementation in yeast to map the
impact of mutations on the overall ability of a protein to function. I integrated
a machine learning-based imputation and regularization strategy into the deep
mutational scanning process, to create the first DMS map that is complete
with respect to high-quality functional impact scores over the full length of a
protein.

The two versions of DMS described, DMS-BarSeq and DMS-TileSeq, each
have advantages and limitations. DMS-BarSeq permits study of the combined
effects of mutations located at any distance along the clone, and therefore
can reveal intramolecular genetic interactions (as will be explored further in
the next chapter). Futhermore, mutant clones produced for DMS-BarSeq are
arrayed, sequenced and indexed which enables potential follow up investigation
of individual variants. DMS-BarSeq also allows for the direct comparison of
growth of any clone to null and wild type controls, resulting in an intuitive
scoring scheme. However, the cost of arraying and sequencing clones for DMS-
BarSeq renders it more costly and labour intensive, even given the efficient
KiloSeq strategy. By contrast, the regional sequencing strategy of DMS-TileSeq
is substantially more efficient, but can only analyze fitness of those double
mutant combinations that fall within the same tile.

The use of codon-replacement mutagenesis allows for the observation of a
fuller repertoire of amino-acid substitutions than single-nucleotide mutagenesis
would have allowed (only ∼ 30% of all possible amino acid substitutions are
accessible by single nucleotide mutation). However, given that the majority
of missense variants observed in individual genomes are single-nucleotide vari-
ants [105], one might reasonably wonder whether codon mutagenesis is worth
carrying out in addition to single-nucleotide mutagenesis. There are three argu-
ments for using codon-level mutagenesis to reveal the impact of all 19 possible
amino acid substitutions at each position: 1) a full picture of functional mis-
sense variation enables a clearer understanding of what biochemical properties
are required of each functionally important residue; 2) an analysis of over 60,000
unphased human exomes [105] found that each individual human harbors ap-
proximately 23 codons containing multiple nucleotide variants that collectively
encode an amino acid not encoded by either single variant; 3) it seems likely
that, going forward, the dominant cost of DMS will be development and val-
idation of the functional assay, so that carrying out codon-level mutagenesis
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instead of (or in addition to) nucleotide-level mutagenesis has a relatively small
impact on overall cost.

2.4. Methods

2.4.1. Mutagenesis and library construction

Oxidized nucleotide PCR: Oxidized nucleotide PCR was performed by Jen-
nifer Knapp as previously described by Mohan and colleagues [63]. A 100µM
dNTP mixture was incubated at 37◦C with 5mM FeSO4 for 10 minutes. Ad-
dition of 0.5M Mannitol was used to stop the reaction. Oxidized nucleotides
were prepared fresh for every PCR reaction. PCR in presence of oxidized
nucleotides. PCR reaction containing: 1-5ng template DNA, 1× Thermopol
Buffer (Invitrogen), 1.5mM MgCl2, 0.2mM dNTP, 0.33µM forward and re-
verse primers containing attB sites, 1U Taq polymerase was set up during the
nucleotide oxidation reaction. Oxidized nucleotides were the last component
added to the PCR reaction at a concentration of 0.1mM (half the amount of
regular dNTP). Thermal cycler program: 95◦C for 10 min, 30 cycles of 95◦C
for 1 min, 50◦C for 1 min, 72◦C for 1 min, final extension at 72◦C for 10
min. Mutagenized PCR product was visualised on a 1% agarose gel, and gel-
extracted using a gel extraction kit (Qiagen). The gel extracted PCR product
is the pooled mutagenesis product carrying attB sites that is carried through
to the KiloSeq stage.

POPCode mutagenesis

Oligonucleotide design: POPCode oligos are generated using the POPCodeSuite
webtool I created. Given a target oligo length and a maximum length offset,
the tool calculates for every codon in the target gene the set of possible oligos
conforming to the length and offset parameters. Then, melting temperatures
for the 5’ and 3’ halves of each oligo are calculated. For each codon, the oligo
that most closely matches the median 5’ and 3’ melting temperatures is cho-
sen. Based on parameters derived from previous observations, the expected
mutation frequency is calculated for each oligo and used to simulate variant
coverage rates at different library sizes. The source code is provided on the
attached storage media and can also be found online2.

2 http://dalai.mshri.on.ca/~jweile/projects/popcodeSuite/
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The POPCode mutagenesis protocol was performed by Atina Coté, Jennifer
Knapp and Marta Verby in the following steps: (i) the uracil-containing wild
type template was generated by PCR-amplifying the ORF with dNTP/dUTP
mix and HotTaq DNA polymerase, (ii) the mixture of phosphorylated oligonu-
cleotide pool and uracil-containing template was denatured by heating it to
95◦C for 3 minutes and then cooled down to 4◦C to allow the oligos hybridize
to the template, (iii) gaps between hybridized oligonucleotides were filled with
the non-strand-displacing Sulpholobus Polymerase IV (NEB) and sealed with
T4 DNA ligase (NEB), (iv) after degradation of the uracil-doped wild-type
strand using Uracil-DNA-Glycosylase (UDG) (NEB), the mutant strand was
amplified with attB-sites-containing primers and subsequently transferred en
masse to a donor vector by Gateway BP reaction to generate a library of entry
clones.

Synthesis of uracil-containing template: A 50µl PCR reaction contained the
following: 1ng template DNA, 1× Taq buffer, 0.2mM dNTPs-dTTP, 0.2mM
dUTP, 0.4µM forward and reverse oligos, and 1U Hot Taq Polymerase. Ther-
mal cycler conditions are as follows: 98◦C for 30s, 25 cycles of 98◦C for 15s,
60◦C for 30s, and 72◦C for 1min. A final extension was performed at 72◦C for
5 min. Uracilated amplicon was gel-purified using the Minelute gel purification
kit (Qiagen).

Phosphorylation of mutagenic oligos: Desalted oligos were purchased from
Eurofins and Thermo Scientific. The phosphorylation reaction is as follows: a
50µl reaction containing 1× PNK buffer, 300 pmol oligos, 1mM ATP, and 10U
Polynucleotide Kinase (NEB) was incubated at 37◦C for 2 hours. The reaction
was used directly in the subsequent POPCode reaction.

POPCode oligo annealing and fill-in: A 20µl reaction containing 20ng ura-
cilated DNA, 0.15µM phosphorylated oligo pool, and 1.5µM 5’-oligo was in-
cubated at 95◦C for 3 minutes followed by immediate cooling to 4◦C. A 30µl
reaction containing 1× Taq DNA Ligase buffer, 0.2mM dNTPs, 2U Sulfolobus
DNA Polymerase IV (NEB), and 40U Taq DNA Ligase (NEB) was added to
the DNA and was incubated at 37◦C for 2 hours.

Degradation of wild-type template: 1µl fill-in reaction was added to a 20µl
reaction containing 1× UDG buffer and 5U Uracil DNA Glycosylase (NEB)
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2. High-fidelity DMS framework

and incubated at 37◦C for 2 hours.

Amplification of mutagenized DNA: 1µl UDG reaction was added to a 50µl
reaction containing 1× Taq buffer, 0.2mM dNTPs, 0.4µM forward and reverse
oligos, and 1U Hot Taq Polymerase. Thermal cycler conditions are as follows:
98◦C for 30s, 25 cycles of 98◦C for 15s, 60◦C for 30s, and 72◦C for 1min. A
final extension was performed at 72◦C for 5 min.

Library construction

Library construction was performed by Atina Coté, Jennifer Knapp and Marta
Verby following the en masse LR cloning protocol previously described in
Yachie et al. [106].

Generation of mutagenised pool of Entries: An en masse Gateway BP reac-
tion containing 150ng of pooled mutagenesis PCR product carrying attB sites,
150ng of pDONR223, 1µL Gateway BP Clonase II Enzyme Mix (Invitrogen),
1× TE Buffer is prepared. This reaction is incubated overnight at room tem-
perature and then transformed into E. coli aiming for the maximum number
of transformants (at least 100,000 CFUs) to keep complexity high. Several
colonies are picked at this stage for a quality control check by Sanger sequenc-
ing, and the rest are put through a pooled DNA extraction. The result is a
pool of mutagenised PCR product inserted into the entry vector pDONR223.

Generation of Barcoded Destination Pools: Barcoded destination plasmids
were generated as previously described in Yachie et al. [106], but instead of
being arrayed were maintained as pools with high complexity. Briefly, a linear
PCR product containing two random 25 nucleotide barcode regions along with
common linker sequences for priming was combined with a Gateway-compatible
vector at a SacI restriction site through in vitro DNA assembly [107]. This
barcoded destination vector pool was transformed into One Shot ccdB Survival
T1R Competent Cells (Invitrogen). The transformations were spread onto
large round LB+ampicillin petri plates for increased selection capacity and
pool complexity was estimated from CFU counts. The plates were combined
into a single pool for plasmid DNA extraction by maxiprep.

En masse Gateway LR reaction: An en masse Gateway LR reaction was used
to transfer the mutagenised pool of entries into the barcoded destination pool.
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This reaction takes place over five days. On Day 1, a 5µL reaction containing
150ng of mutagenised ORF pool in pDONR223 backbone, 150ng barcoded
pHYC expression vector pool, 1µL LR ClonaseII Enzyme Mix, 1× TE buffer
is prepared. The reaction is incubated at room temperature overnight. On
each of days 2-5, add in a 5µL volume consisting of 150ng barcoded pHYC
expression vector, 1µL LR ClonaseII Enzyme Mix, 1× TE Buffer, incubating
at room temperature overnight each day. On day 5, the final volume is 25µL.

Transformations and colony picking: LR reactions were transformed into
E. coli and plated to achieve a density of 400-600 individual colonies per plate.
A Biomatrix robot (Biomatrix BM5-BC robot, S&P Robotics) was then used
to automatically pick and array 384 colonies per plate for a total of ∼20,000
clones in ∼52 plates per ORF of interest. Each colony at this stage should
contain a pHYC expression vector harbouring a variant of the ORF of interest
and a unique barcode.

2.4.2. KiloSeq and library condensation

Experimental procedures: KiloSeq library preparation was performed by Atina
Coté, Jennifer Knapp and Marta Verby. The first step is to PCR-amplify a
segment of the plasmid containing both ORF and barcode locus. PCRs were
carried out using the Hydrocycler 16 (LGC Group, Ltd.), using primers with
well-specific index sequences. Amplicons from each plate were pooled, and sub-
jected to Nextera tagmentation using Tn5 transposase to generate a library of
amplicons with random breaks to which the adapters have been ligated. The
fragments are then re-amplified to generate a library of amplicons such that
one end of each amplicon bears the well-specific tag and the other (ladder) end
bears the Nextera adapter. These libraries can be re-amplified to introduce Il-
lumina TruSeq adaptors, allowing multiple plates of amplicons to be sequenced
together. Paired-end sequencing was carried out using Illumina NextSEQ 500.
In each pair of reads, one read will reveal the well tag and the barcode lo-
cus, whereas the other will contain a fragment of the mutant ORF, and these
fragments can be assembled into a contiguous sequence.

Computational procedures: I developed a sequence analysis pipeline to pro-
cess all KiloSeq data. The pipeline runs on a high-performance computing
cluster (Figure 2.11). In the first step, Illumina bcl2fastq is used to demulti-
plex the reads at the plate level using the custom Nextera indices. The resulting

45



2. High-fidelity DMS framework

BCL

D
is

tr
ib

ut
e

to
80

cl
us

te
r

no
de

s

Well A1 Well A2 Well A3 Well A4 Well A5 Well A6 Well A7 Well A8 ...

Distribute to 80 cluster nodes

Extract
barcodes

Barcodes
ACTGCCT
ACTGCCT
TGAAACA
TGAAACA
TGAAACA

Levenshtein
distance

cl
us

te
rin

g

k-mer search
well-tags

R2
FASTQ

BC1-R1
fastq bowtie2

BC1-R1
sam

bcl2fastq

BC1-R1
pileup

samtools

POP+SNV calling
Long indel detection

Variants

52 plates
FASTQ

in chunks

Figure 2.11.: KiloSeq analysis pipeline: bcl2fastq is used to demultiplex by
plate. The resulting FASTQ files are broken up in to chunks and
feed to worker nodes on the fly. Each worker identifies well-tags
in the R2 reads and demultiplexes by well accordingly. After
demultiplexing is complete, jobs for each well in each plate are
distributed across worker nodes. There, barcode sequences are
extracted and clustered based on Levenshein distance. R1 reads
from each cluster are aligned to the ORF reference and pileups
are generated, which are used for variant calling and long indel
detection (via recognition of sudden changes in read depth using
a modified Sobel filter.)

FASTQ files are then further demultiplexed using the well-tags in a highly par-
allel fashion. This results in a folder structure containing tens of thousands of
individual FASTQ files sorted by plate and well location. These are then fur-
ther processed in parallel to identify barcodes. Wells can sometimes contain
more than one clone (e.g., due to incomplete washing in the robotic pinning
process). Thus barcode sequences are extracted from each read and then clus-
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tered by edit distance [97] to determine the set of barcodes in each well. The
associated paired reads for each barcodes are then further split by barcode.
Each barcode-specific set of ORF reads can then be analyzed with respect to
mutations. Bowtie2 [108] is used to align reads to the ORF template, PCR du-
plicates are removed and nucleotide variants called using samtools pileup [109].
Given limited read lengths, identification of longer indels is not straightforward.
A solution was found by extracting depth of coverage tracks for each clone and
normalizing them with respect to average positional coverage across each 384-
well plate, applying an edge-detection algorithm [98] to find sudden increases
or decreases within normalized coverage, indicating the presence under-covered
regions that can arise as a result of insertions or deletions. The source code is
provided on the attached storage media and can also be found online3.

After successful genotyping with KiloSeq, I determined the subset of clones
that (i) contained a minimum of one missense mutation, (ii) did not contain any
insertions or deletions, (iii) did not contain mutations outside of the ORF, (iii)
had unique barcodes, (iv) had sufficient read coverage during KiloSeq to allow
for confident genotyping. We re-arrayed this filtered subset of clones (using
the Biomatrix BM5-BC robot, S&P Robotics) into a condensed final library
of 40 plates containing 6,548 clones. I created a custom software library to
automatically program the Biomatrix robot’s picking protocol. The software
is provided on the attached storage media and can also be found online4.

2.4.3. DMS-BarSeq

Complementation competition experiment: Complementation experiments
were performed by Jennifer Knapp, Song Sun and Marta Verby. Plasmids ex-
tracted from the pool of 6,548 barcoded and KiloSeq-validated mutant clones,
together with barcoded null and wildtype controls, were transformed into a
S. cerevisiae strain carrying the temperature-sensitive (ts) ubc9-2 allele which
can be functionally complemented by the corresponding wild-type human gene [13,
79]. Complexity for this transformation was 100,000 CFU. For the time series
BarSeq screen, the pools were grown separately at both non-selective (25◦C)
and selective (38◦C) temperatures in triplicates to be examined at 5 different
timepoints (0h, 6h, 12h, 24h, 48h) yielding 30 samples. At their respective
time points, plates were scraped, OD quantified, and their barcode loci ampli-
fied with primers carrying sample-specific tags. The amplified product is then

3http://dalai.mshri.on.ca/~jweile/projects/kiloseq/
4http://dalai.mshri.on.ca/~jweile/projects/biomatrix/
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sequenced on an Illumina NextSeq 500.

Sequence analysis: I created a custom sequence analysis pipeline, which was
used to identify and count individual sample tags and barcode combinations
within each read. The pipeline uses a k-mer search algorithm in a highly
parallelized fashion on a SunGridEngine HPC cluster. Barcodes are counted
and the counts aggregated across cluster nodes. The pipeline source code is
provided on the attached storage media and can also be found online5.

Scoring: I developed a custom software to perform scoring and statistical
analysis. First, the relative population size for each clone is calculated by
dividing each clone’s barcode count by the total number of barcodes in each
condition. Then the estimated absolute population size for each clone is cal-
culated by multiplying the relative population size with the estimated total
number of cells on the respective plate at the corresponding time point (ob-
tained from OD measurements). I then treat the amount of growth between
each individual time point compared to the pool average as an individual es-
timate of fitness, all of which act cumulatively. This is calculated as follows:
Let cτi,tk be the barcode count for clone i, time point tk at temperature τ , then
∀i ∈ {1 ≤ i ≤ N |i ∈ N}, ∀k ∈ {1 ≤ k ≤ 5|k ∈ N}, ∀τ ∈ {25◦, 37◦}

5http://dalai.mshri.on.ca/~jweile/projects/screen_pipeline/
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is the relative population size for clone i and time point tk at
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is the absolute population size for clone i, time point tk at
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is the measured hourly growth rate for clone i, time point

tk at temperature τ , φ
(τ)
i,tk

is the fitness advantage relative to the pool growth for
clone i, time point tk at temperature τ , φ′i,tk is the normalized relative fitness
advantage for clone i at time point tk, and si is the cumulative normalized
relative fitness advantage for clone i. Finally, s′i is the fitness score relative
to the internal null and wild type controls. This results in null-like mutants
receiving a score of zero and wild type-like mutants receiving a score of one.

The scoring software is part of a larger DMS analysis package provided on
the attached storage media. It is also available online6.

Error regularization: I regularized the standard error measurements for each
clone using a Bayesian method published by Baldi and Long [99]. A prior es-
timate for each measurement was obtained via linear regression over permis-

6http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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sive read counts and fitness values. The prior is combined with the empirical
standard deviation obtained from technical replication using Baldi and Long’s
original formula

σ2 =
vnσ

2
n

vn − 2
=
v0σ

2
0 + (n− 1)s2

v0 + n− 2
,

where v0 represents the degrees of freedom assigned to the prior estimate, σ0 is
the prior estimate, n represents the degrees of freedom for the empirical data
(i.e. the number of replicates) and s is the empirical standard deviation.

The error regularization procedure is part of a larger DMS analysis package
provided on the attached storage media. It is also available online7.

2.4.4. DMS-TileSeq

Complementation competition experiment The TileSEQ experiment was
performed by Song Sun and Marta Verby. Plasmids extracted from a pool
of ∼ 105 PopCode-generated clones were transformed into the S. cerevisiae
ubc9-2 ts strain yielding around 106 total transformants. Plasmids were pre-
pared from two replicates of each 10 ODU of cells and used as templates for the
downstream tiling PCR. These serve as the two replicates in the non-selective
condition. A further two replicates of 40 ODU of cells were inoculated into
200ml medium and grown under continuous shaking to full density at 36◦C.
Plasmids were extracted from 10 ODU of each culture and were used as tem-
plates for the downstream tiling PCR. These serve as the two replicates in
the selective condition. Finally, plasmid expressing the wild-type ORF was
transformed into the S. cerevisiae ubc9-2 ts strain and grown to full density
under selection. Plasmids were extracted from two replicates of 10 ODU of
cells and used as templates for the downstream tiling PCR. These serve as the
two replicates of wild-type control. For each plasmid library, a tiling PCR was
performed in two steps: (i) the targeted region of the ORF was amplified with
primers carrying a binding site for Illumina sequencing adaptors, (ii) each am-
plicon was indexed with an Illumina sequencing adaptor. Finally, paired end
sequencing is performed on the tiled regions across the ORF using an Illumina
NextSeq 500.

TileSeq Analysis pipeline: Sequencing data is demultiplexed using Illumina
bcl2fastq. Reads are the aligned to the UBE2I template using Bowtie2 [108]

7http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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and variants called where both reads in each pair agree. Variants are counted
and aggregated for each condition and replicate. Counts in each condition are
normalized to sequencing depth at the respective position. Then, wildtype con-
trol counts are subtracted from the selective and permissive condition counts.
Finally, the log ratio between adjusted selective and permissive counts is cal-
culated. Error regularization was performed the same way as in DMS-BarSeq
using the Baldi and Long method [99]. The scoring procedure is implemented
as part of a larger DMS analysis package provided on the attached storage
media. It is also available online8.

2.4.5. Joining of maps, imputation and regularization

While DMS-TileSeq produces only one fitness score per variant, DMS-BarSeq in
many cases contains multiple biological replicates of the same variant associated
with different barcodes. To provide summary fitness values on a per-variant
basis, I combined scores from biological replicates using weighted means, where
the weight is inversely proportional to the Bayesian regularized standard error.
The standard error associated with the joint score is also adjusted to account
for differences in input fitness measurements and increased sample size.

The results from the barcoded and regional sequencing screens do not scale
linearly with each other. I used regression to find a monotonic transformation
function

f(x) = a · ex + b · x+ c

between the two screens’ respective scales. The standard deviation is trans-
formed accordingly using a Taylor series-based approximation.

σ′ = σ · (a · eµ + b)

After both datasets have been brought to the same scale I can join correspond-
ing data points using weighted means, where the weight is again inversely
proportional to the Bayesian regularized standard error. Output standard er-
ror was adjusted again to account for differences in input fitness values and

8http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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increased sample size.
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where µ0 is the DMS-BarSeq value, σ0 the associated standard deviation, σ
(0)
x̄

the associated standard error, df0 the associated degrees of freedom, µ1 is the

DMS-TileSeq value, σ1 the associated standard deviation, σ
(1)
x̄ the associated

standard error, and df1 the associated degrees of freedom.
Imputation of missing values was performed using RandomForest Regres-

sion [100]. The following intrinsic features were generated: the confidence-
weighted average fitness across mutations at the same position; the average
fitness of multi-mutant clones that contain the mutation of interest; and the
estimated fitness according to a multiplicative model to infer mutant fitness
A using a double mutant AB and single mutant B. A second set of features
was computed from differences between various chemical properties of the wild-
type and mutant amino acids. These properties include size, volume, polarity,
charge, and hydropathy. A third set of features is derived from the structural
context of each amino acid position. These include secondary structure, sol-
vent accessibility, burial in interfaces with different interaction partners, and
involvement in hydrogen bonds or salt bridges with interaction partners. Sec-
ondary structures were calculated using Stride [110]. Solvent accessibility and
interface burial were calculated using the GETAREA tool [111] on the following
PDB entries: 3UIP [85]; 4W5V [84]; 3KYD [83]; 2UYZ [112]; 4Y1L [90]. Hydrogen
bonds and salt bridges candidates were predicted using OpenPyMol [113] and
evaluated for validity by manual inspection. Additional features used are the
PROVEAN [12] and BLOSUM [103] scores for a given amino acid change and
the evolutionary conservation of the amino acid position. Conservation was
obtained by generating a multiple alignment of direct functional orthologues
across many eukaryotic species using CLUSTAL [114], which was used as input
for AMAS [104].

The machine learning predictions generated above were also used to regular-
ize experimental measurements of lower confidence. To this end, the corrected
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standard error associated with each data point can be used to determine the
weight assigned to the measurement, as follows:
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where µ0 is the measured value, σ0 the associated standard deviation, σ
(0)
x̄

the associated standard error, df0 the associated degrees of freedom, µ1 is
the RandomForest predicted value, σ1 the associated standard deviation as

approximated by cross-validation RMSD, σ
(1)
x̄ the associated standard error,

and df1 the associated virtual degrees of freedom.
The joining, imputation, and regularization procedures are implemented as

part of a larger DMS analysis package provided on the attached storage media,
and also available online9.

2.4.6. Complementation spotting assays

To validate the reliability of the fitness scores obtained during the screen, I
selected three subsets of clones from our original UBE2I variant library: (1) A
set of clones carrying variants with functional scores representing the full spec-
trum in the screen; (2) A set of clones carrying hypercomplementing variants
in the screen; and (3) A set of clones carrying variants not present in the impu-
tation training data set. Jennifer Knapp and I performed genotype verification
using Sanger sequencing. The spotting assay was then performed by Jennifer
Knapp as follows. Each verified variant was transferred to the yeast expression
plasmid pHYCDest by Gateway cloning and individually transformed into the
S. cerevisiae ubc9-2 ts strain. Cells were grown to saturation in 96-well cell cul-
ture plates at room temperature. Each culture was then adjusted to an OD600
of 1.0 and serially diluted to 5−1, 5−2, 5−3, 5−4, and 5−5. These cultures (5µl
of each) were then spotted on SC-Leucine plates as appropriate to maintain

9http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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2. High-fidelity DMS framework

the plasmid and incubated at either the permissive (25◦C) or non-permissive
(37◦C) temperatures for two days. Each variant was assayed alongside negative
and positive controls for loss of complementation (expression of either the wild
type human protein or a GFP control). Results were interpreted by comparing
the growth difference between the yeast strains expressing human genes and
the corresponding control strain expressing the GFP gene.

I developed a custom software, PlateOrganizer, to organize and analyze im-
age data from spotting assays. It is provided on the attached storage media
and can also be found online10.

10http://dalai.mshri.on.ca/~jweile/projects/PlateOrganizer/
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3. Expanding the atlas of variant
effects in human disease genes

As in the previous chapter, the work described here is the result of a team effort
including multiple members of the Roth Lab as well as other collaborators.
Wet lab procedures were executed by Marta Verby, Song Sun, Atina Coté and
Jennifer Knapp, while computational aspects of the work were developed and
implemented by myself, except where indicated otherwise.

3.1. Introduction

Within coming decades, millions of people will have their genome sequenced.
Unfortunately, we have limited ability to interpret personal genomes, each car-
rying 100-400 rare missense variants [9] of which many must currently be clas-
sified as Variants of Uncertain Significance (VUS). For example, gene panel se-
quencing aimed at identifying germline cancer risk variants in families yielded
VUS for the majority of missense variants [8]. While functional variants can be
predicted via computational tools such as PolyPhen-2 [10] and PROVEAN [12],
these methods can confidently detect only one third as many disease variants as
are detectable by experimental assays [13]. Unfortunately, experimental assays
are either unavailable or economically inviable for most human disease genes.

Recent DMS studies have provided individual maps for the critical RING
domain of BRCA1 [57] associated with breast cancer risk, and the PPARγ
protein associated with Mendelian lipodystrophy and increased risk of type 2
diabetes [61]. Such maps can not only identify functionality of a clinical variant
accurately, but also potentially do so in advance of that variant’s first clinical
presentation.

In the previous chapter, a framework for comprehensive high-quality screen-
ing of functional effects across all possible missense mutations in human genes
was established. The functional complementation assay used in the assay allows
for the generation of maps that not only represent the overall functional con-
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3. Atlas of human disease variants

sequences of mutations, but also serves as a common basis to make maps more
directly comparable. In addition, the statistical analysis and machine learning
component introduced allows for high overall map quality and completeness.
Using this framework a complete functional map for the SUMO E2 conjugase
UBE2I was created. Here I describe the creation of a map of a second member
of the Sumoylation pathway, SUMO1. I examine both map in detail before
discussing the interpretation of yeast complementation phenotypes in terms of
humans.

To demonstrate the value of the DMS framework in terms of clinical inter-
pretation of variants, a diverse set of six new disease gene maps was added
to the atlas: TPK1 encoding Thiamin Pyrophosphokinase 1, NCS1 encoding
Neuronal Calcium Sensor 1, as well as the paralogues CALM1, CALM2 and
CALM3, which each encode the protein Calmodulin. The maps are evaluated
in terms of pathogenicity prediction and VUS reclassification.

3.2. Results

3.2.1. A functional map of SUMO E2 recapitulates known
biology and poses new questions

The DMS map of UBE2I produced in the previous chapter paints a compre-
hensive picture of variant effects on protein function. The complete, refined
functional map of UBE2I after imputation and regularization can be seen in
Figure 3.1. For comparison, additional tracks showing position-specific evo-
lutionary conservation, secondary structure, relative solvent accessibility and
burial in protein-protein interaction interfaces are also shown. Based on the
map, several observations can be made. Consistent with the results of smaller-
scale biochemical studies of the SUMO E2 conjugase [87, 94], the areas most
sensitive to mutation are those proximal to the active site (particularly residues
81-88, 90, 92-96, and 127-130), and the N-terminal α-helix which mediates
four protein interactions including the critical interaction with the E1 SUMO-
activating complex. Within the active site, particularly strong sensitivity to
mutation can be observed at the cysteine residue at position 93. This is con-
sistent with its central role in E2 function, as it forms a thioester bond with
the SUMO C-terminus [87].
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3. Atlas of human disease variants

An interesting feature of the map is the alternating tendency towards damag-
ing and benign substitutions across positions 55-65. A comparison with solvent
accessibility reveals this to be caused by alternating externally and internally-
oriented residues, with the latter positions constrained to be hydrophobic. This
alternating tendency is also reflected in evolutionary conservation across these
positions.

All protein-protein interaction interfaces previously captured in co-crystal
structures show increased sensitivity to mutation when compared to other sur-
face residues (Figure 3.2). When comparing individual protein interaction in-
terfaces, the most substantial fitness defects are observed in those for the E1
activating complex binding interface and the covalent and non-covalent SUMO
binding interfaces (Figure 3.2A). While the homodimerization interface also
shows significant sensitivity (Wilcoxon P = 6.87 · 10−21), the effects are not as
severe as those at the E1 interface (Wilcoxon P = 4.28 · 10−8) (Figure 3.2B).
This is consistent with the Alontaga and colleagues’ hypothesis regarding its
involvement in SUMO chaining [90], as in yeast SUMO chain formation has so
far only been observed to be involved in meiosis [93], which is not a mecha-
nism vital to fitness in a complementation assay. Alontaga et al. also postulate
however, that non-covalent SUMO binding is necessary for SUMO chain forma-
tion. In contrast to the homodimerization interface, the non-covalent SUMO
binding interface shows a much stronger sensitivity to mutation (Wilcoxon
P = 4.73 · 10−8). This may be due to two different reasons: (i) there is a 27%
overlap between the interface for non-covalent SUMO binding interface and
the interface for E1-E2 binding, which is among the most sensitive surfaces of
UBE2I; and (ii) non-covalent SUMO binding also plays an important role as
an adapter for many E3 proteins [115].

Another interesting observation can be made with respect to a known phos-
phorylation site on the surface of UBE2I. Su and colleagues previously dis-
covered that phosphorylation of Serine 71 via the Cyclin-dependent Kinase
CDK1 results in sumoylation hyperactivity [116]. The map shows that sub-
stitutions with phosphomimetic residues at this position lead to hyperactive
complementation, consistent with Su et al.’s observations. Furthermore, other
residues amenable to phosphorylation are also tolerated, while hydrophobic
replacements are generally deleterious (Figure 3.3).
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Figure 3.2.: Complementation fitness of mutations at interaction interfaces. A)
Median mutant fitness mapped to the crystal structure of UBE2I.
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Wilcoxon tests. Bold bars represent medians, thin bars indicate
25% and 75% quartiles.

59



3. Atlas of human disease variants

≤0

1

≥2

co
m

pl
em

en
ta

tio
n 

fit
ne

ss

S71
SUMO

UBE2I
S71

Ψ
K
X
E AA

 re
si

du
e

P
C
G
Q
N
T
S
E
D
K
H
R
W
Y
F
M
I

L
V
A

hy
dr

op
ho

bi
c

po
la

r−
+

ar
om

Figure 3.3.: Phosphorylation site of UBE2I shows hyperactive complementa-
tion when mutated to phosphomimetic residues.

Substrate specificity shifts and E2 hyperactivity

Intriguingly, many sites show fitness that is better than wildtype (e.g., positions
74, 76, 88, 89, 91 and 98). Manual functional complementation spotting as-
says confirmed that complementation with these mutants allows greater growth
than does the wild type human protein, but resemble more closely the growth
at the permissive temperature for the ubc9-ts strain (Figure 3.4A). One might
be tempted to interpret these cases as reversions to residues present in the
yeast protein. However, a comparison of fitness score distributions between
changes to S. cerevisiae residues and those occurring in the distant species
Dictyostelium discoideum (amoeba) or Drosophila melanogaster (fly) showed
no significant difference (Figure 3.4B). Recognizing that in this assay, human
UBE2I must function with the yeast versions of other sumoylation pathway
members, it stands to reason that some substitutions could be adaptive by
improving compatibility with yeast interaction partners. A comparison with
co-crystal structure data [85] shows that many of the hypercomplementing
residues are located on the surface facing the general direction of the sub-
strate, with some being in direct contact with the substrate’s sumoylation mo-
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tif (Figure 3.4C). This suggests a possible adaptation via improved recognition
of substrates for which sumoylation is most important for yeast growth. In-
deed, in vitro sumoylation assays performed previously for a small number of
UBE2I mutants revealed increased sumoylation for some substrates [87]. Com-
paring the map with these sumoylation assay results, I observed many cases of
substrate specificity shift (Figure 3.4D). Of the three cases tested in the sumoy-
lation assay that showed hyperactive behaviour in the map (E98A, T91A and
K74A), one displayed hyperactive sumoylation of P53, while two displayed de-
creased sumoylation of P53 and IκBα. However, similar behaviour was seen for
3 other variants (D100, P128A and S89A), which scored as wildtype-like in the
map. Most cases for which P53 saw wild-type level sumoylation showed either
wildtype-like or slightly below complementation in the map. Finally, the four
cases that disrupted sumoylation of all substrates were strongly deleterious in
the map. In conclusion, variants that either positively or negatively or nega-
tively affect P53 sumoylation levels in vitro appear show either wildtype-like
or hyperactive complementation in yeast. This may indicate that differential
sumoylation of one or more yeast proteins with a P53-like interface positively
affects yeast growth.

As Figure 3.4D shows, substrate specificity does not paint a complete picture
of the mechanisms potentially underlying hyperactive complementation. A par-
ticularly interesting exception can be observed at residues A15 and T108. Both
residues harbor hyperactive mutations but do not face towards the substrate.
Instead, they form part of the interface with the E3 SUMO ligase RanBP2, and
flank a small cavity on UBE2I’s surface into which RanBP2 inserts a pheny-
lalanine residue upon binding [85]. Changing either A15 or T108 into aromatic
residues results in a large fitness increase (Figure 3.5). This may be the result
from the emergence of a π-stack interaction that strengthens E2-E3 binding.

It is unclear how to interpret the effect of mutations that enhance growth
in the yeast complementation assay. If fitness measured in the assay is di-
rectly proportional to fitness in the real biological context, then these enhanc-
ing mutations would be beneficial. However one can also imagine an alterna-
tive scenario in which activity-enhancing mutations are deleterious in the real
biological context. To objectively distinguish between these possibilities, we
collaborated with Jesse Bloom to employ a method he recently published that
leverages likelihood-based phylogenetics to quantitatively compare how well
different experimental measurements represent actual evolutionary constraints
in nature [52, 117]. We compared three models relating the experimental fit-
ness to the evolutionary preference for a mutated amino-acid sequence: (a) the
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Figure 3.4.: Hyperactive complementation in UBE2I. A) Variants scoring
higher than the wildtype controls show stronger growth in manual
complementation spotting assays and resemble the WT yeast. B)
Distribution of scores for changes to residues naturally occurring
in yeast, amoeba and fly are not significantly different from each
other. C) Maximum mutant score mapped to amino acid positions
on UBE2I structure. Hyperactive mutations are clustered at the
substrate recognition site. Structure data from PDB:3UIP [85] D)
In vitro sumoylation assay data from Bernier-Villamor et al. [87]
in comparison to the complementation fitness scores.

evolutionary preference was directly proportional to the untransformed exper-
imental fitness; (b) the preference had a ceiling at the wildtype experimental
fitness (values greater than 1 were set to 1); or (c) the preference was set to
the reciprocal of fitness for mutations with greater-than-wildtype scores, cor-
responding to a deleterious effect of enhancing mutations. Dr. Bloom kindly
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Figure 3.5.: Potential de-novo pi-stack interaction between UBE2I and the E3
RanBP2. Structure data from PDB:3UIP [85]

provided the phydms software [117] to test which of these three approaches best
described the evolutionary constraint on a set of naturally occurring UBE2I
homologs. The analysis was performed using fitness scores that excluded con-
servation features from the regularization process, to avoid the circularity of
using natural sequence data when deriving the scores. As shown in Table 3.1,
the best fit is achieved using the model that assumes that enhancing mutations
are deleterious. This result provides objective support for the idea that muta-
tions that enhance activity above wildtype levels in the complementation assay
are actually deleterious in a real biological context.

Based on these observations I reinterpreted cases of hyperactive complemen-
tation in the map as deleterious. I repeated the imputation and regulariza-
tion procedure on the transformed map, which resulted in substantially im-
proved cross-validation performance (Root-Mean-Squared-Deviation, RMSD,
decreased from 0.33 to 0.24).

Intragenic epistasis and compensatory mutations

Full-length UBE2I clones generated for DMS-BarSeq analysis often encoded
more than one amino acid change. Multi-mutant clones offer the opportunity
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Table 3.1.: Comparison of different models for the effects of hyperactivating
mutations. AIC: Akaike Information Criterion

Model ∆AIC relative
to best model

Hyperactive mutations as deleterious 0
Hyperactive mutations as WT 27.7
Hyperactive mutations as beneficial 60.6

to search for intragenic genetic interactions. Genetic interaction is defined as
the case of a combination of mutations that yields an unexpected phenotypic
effect. Therefore, identifying genetic interactions requires modeling the pheno-
type that is expected from a combination of mutations, given the single-mutant
effects. Here I used a previously-described multiplicative model [101, 102] in
which genetic interaction is measured as εij = fi · fj − fij , where fi and fj
represent single mutant fitness and fij represents double mutant fitness scores.
Most double mutants (71%) did not show a significant deviation from εij = 0
under this model, while 328 position pairs did show significant genetic interac-
tion (Figure 3.6).

Of particular interest are compensatory interactions, i.e. cases where a dou-
ble mutation is more fit than either of the component single mutations. Where
compensatory residues are proximal in the protein structure, the combination
of two mutant residues may be able to re-establish a physical interaction that
was lost in each of the single mutants. Although the majority of genetically
interacting sites were not proximal in the structure (Figure 3.6B), there were
interesting exceptions. For example, the I4T-P69S double mutant appears to
exhibit compensatory behaviour: In the wild type structure, the van-der-Waals
radii of the two residues are in direct contact (Figure 3.6C). Either mutation
alone would be expected to destabilize the hydrophobic interaction between
isoleucine and proline. However, in the double mutant, hydroxyl groups on the
two residues could adopt a hydrogen bond that re-establishes interaction and
re-stabilizes the fold (Figure 3.6D).
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3.2.2. A comparison of complementation and Y2H reveals a
interaction interface

An important factor behind the choice of UBE2I as a testing ground for the
DMS framework was the mechanistic complexity of the Sumoylation pathway,
in which the central component UBE2I engages in many different protein-
protein interactions. Having examined the relative importance of its known
interaction interfaces we wished to evaluate the possibility of detecting new
interfaces. To this end, we adapted the DMS framework to use a Y2H assay in
the selection step.

L113

M62

R61

F24

V25

L114
C75

Mutant disrupts interaction
but not overall function

Other residues

V25

F155

R61

Q126
P128

Figure 3.7.: Potential interfacial residues for UBE2I’s interaction with SATB1.
Highlighted residues disrupt Y2H interaction without disrupting
overall function as measured by complementation. The dotted
frame in the left panel indicates the plane across which the struc-
ture was cut to produce the panel on the right.

We explored the set of previously identified Y2H interactions of UBE2I and
found its interaction with the Special AT-rich sequence Binding protein SATB1,
a sumoylation target [118], to be the strongest interaction signal. We used
DMS-BarSeq to map the effects of UBE2I variants on the UBE2I-SATB1 in-
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teraction and compared the results to those of the complementation assay.
Although too few variants in the Y2H screen were measured with high enough
confidence to perform reliable imputation, I was able to identify 15 variants that
specifically disrupted the UBE2I-SATB1 binding without affecting its overall
function as measured by the complementation assay. Interestingly, three amino
acid positions (V25, C75 and F155) were represented with multiple variants in
this list, highlighting their importance. Figure 3.7 marks the affected residues
on the surface of UBE2I, which may determine the specificity of the UBE2I-
SATB1 interaction. Consistent with SATB1’s known role as a sumoylation tar-
get [118], the residues are clustered near the known substrate recognition and
binding surface. Intriguingly, I also found a number of residues within UBE2I’s
hydrophobic core, that upon mutation to alternative hydrophobic residues re-
sulted in a disruption of UBE2I-SATB1 binding (Figure 3.7). The fact that
these residues are physically close to the locations of surface residues with sim-
ilar behaviour may indicate that mutations at these positions could result in
subtle shifts of UBE2I’s fold that disrupt the SATB1 binding interface without
affecting other functions.

3.2.3. A functional map for SUMO1

Using the DMS-TileSeq version of the framework established in the previous
chapter we also created a complete functional map for SUMO1 (Figure 3.8A).
Out of the 1919 possible amino acid changes, fitness effects for 1700 (89%)
were measured directly in the complementation competition experiment. The
remaining 11% were obtained through imputation, which achieved a cross-
validation RMSD of 0.25, a performance very similar to that of the UBE2I
map.

The most immediately apparent feature of the SUMO1 map was the strong
enrichment for neutral substitutions within the first 20 amino acid positions,
which is consistent both with the low level of evolutionary conservation for this
region and its annotation as a disordered region. The last four amino acid
positions appeared similarly insensitive to mutation, consistent with the cleav-
age of this region by SENP proteases during SUMO maturation. By contrast,
other residue positions were strongly sensitive to mutation, including many
inward-facing residues that are apparently constrained to be hydrophobic. As
expected, the C-terminal diglycine, directly preceding the last four cleaved
residues, is also very sensitive to mutation, as it is required for the covalent
binding of SUMO to the E1, the E2 and to the sumoylation target protein.
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Interestingly, except for the C-terminal diglycine, the residues that directly
touch the E2 during covalent binding are not as sensitive (Figure 3.8B). This
may be due to SUMO being force-fed to the E2 by the E1 activating complex
and the thioester bond it forms with the E2’s cysteine 93 being sufficient to
maintain the complex. By contrast, residues in the interface for non-covalent
E2 binding are much more sensitive (Figure 3.8C), especially leucine 80 and
methionine 82.

Other strongly constrained residues are core members of interaction inter-
faces. These include the central phenylalanine 36 in the SUMO recognition
motif (SRM) interface; glycine 68, which forms the apex of a tight turn within
the interface with de-sumoylation enzymes, as well as the E1 and E2 proteins;
and leucine 80, which is part of the interface with non-covalently bound E2.
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Figure 3.9.: A salt bridge within SUMO1 between Asp73 and Lys38 appears im-
portant for stability. Met59Asp may increase stability even further.

The proximity and orientation of aspartate 73 and lysine 48 suggests that
they are able to form a salt bridge with one another. The importance of each
residue according to the DMS map supports a model in which this salt bridge
is important for SUMO folding and/or stability. Interestingly, substituting
aspartate for methionine 59, which points towards lysine 48 from an angle
similar to that of aspartate 73, enhances the complementation fitness of SUMO1
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Table 3.2.: Map quality comparison. RMSD: Root-Mean-Squared-Deviation in
10× cross validation. max(σx̄): maximal standard error across non-
imputed values in the map.

Gene Possible
AA changes

Achieved
AA changes

Imputation
RMSD

Experimental
max(σx̄)

Regularized
max(σx̄)

UBE2I 3021 2563 (85%) 0.24 0.36 0.25
SUMO1 1919 1700 (89%) 0.25 0.19 0.17
TPK1 4617 3181 (69%) 0.34 0.49 0.37
CALM1 2831 1813 (64%) 0.29 0.28 0.22
NCS1 3610 2542 (70%) 0.63 1.84 0.97

beyond wild type levels. This further underlines the potential importance of a
polar interaction involving lysine 48 (Figure 3.9).

3.2.4. Functional maps of three human disease genes

Having established and evaluated the Deep Mutational Scanning framework
on two members of the sumoylation pathway, we aimed to create maps for a
diverse set of genes that have been associated with disease with varying degrees
of confidence. While heterozygous null mutations in SUMO1 have previously
been associated with cleft palate [119], we wished to create maps that could
be tested in the context of variant classification in terms of disease. Based
on the availability of robust complementation assays, we applied DMS-TileSeq
to the following protein targets: Thiamine Pyrophosphokinase 1 (TPK1), as-
sociated with vitamin B1 metabolism dysfunction [120]; Neuronal Calcium
Sensor 1 (NCS1), which has been implicated in autism based on a single de
novo mutation [121]; and CALM1, CALM2 and CALM3 associated with the
heart conditions long-QT syndrome [122] and catecholaminergic polymorphic
ventricular tachycardia [123]. Although the three calmodulin genes differ in
nucleotide sequence, each encodes the same polypeptide sequence. Thus, we
performed a deep mutational scan only for CALM1, which enabled us to also
map missense variant effects in CALM2 and CALM3. In each case, we used the
TileSeq approach coupled with complementation to generate a map of missense
variant functions.

As was shown above for UBE2I, phylogenetic analysis of SUMO1 similarly
showed that variants with ability to complement yeast better than wild-type are
likely deleterious in humans. I therefore transformed fitness scores so that such
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hypercomplementing mutations are considered to be deleterious (see Methods).
The transformed disease gene maps can be seen in Figures 3.10 and 3.12. How-
ever, since hypercomplementing substitutions may provide interesting clues
about differences between yeast and human cellular contexts, I also provide
untransformed versions of each map (see Appendix A).

A thiamine pyrophosphokinase map reflects a recessive phenotype

Thiamine pyrophosphokinase (TPK1) is a protein that forms a dimer to per-
form its biochemical function. Its substrate, thiamine diphosphate, is bound
within two active sites formed by the dimerization interface [124]. That is,
each monomer contributes half of the residues making up each of the two ac-
tive sites. Each monomer in turn is made up of an N-terminal globular domain
and a C-terminal β-sandwich domain (Figure 3.11A). The residues most sen-
sitive to mutation in the protein make up the hydrophobic cores of the two
domains: L21, V22, W36, G48, Y53, P65, G70, Y83, L108, I122, T124, and
G127 for the N-terminal domain; and L161, G168, G199, L200, V227, V229,
L236, and W237 for the C-terminal domain (Figure 3.11B).

As might have been expected, mutation-sensitive residues include those closely
involved in forming the active sites: D46, G70, D71, D73, D100, and K103 in
the N-terminal half of the active site, contacting the diphosphate portion of the
substrate (Figure 3.11C). In the C-terminal half of the active site, K203, L209,
G212, L214, S216, T217, and N219 show similar sensitivity. Interestingly, the
tryptophan residue at position 202 appears to be insensitive to mutation de-
spite its close and extensive contact with the thiamine ligand. By contrast, a
neighbouring lysine at position 201 is surprisingly sensitive suggesting poten-
tial importance in coordinating the ligand. The remainder of the dimerization
interface also features a number of sensitive residues, such as M136, G184,
V188, G189 and G211. Finally, residues 1-12, which form a β-strand anchoring
the N-terminal domain back to the C-terminal domain were also found to be
sensitive.
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Figure 3.11.: Thiamine pyrophosphokinase 1 coloured by median complementa-
tion score. A) TPK1 homodimer structure showing one monomer
as surface model, the other monomer as cartoon model. B) Hy-
drophobic residues facing the inside of the C-terminal β-sandwich
domain are sensitive to mutation. C) Active site residues in con-
tact with the substrate are sensitive to mutation. Structure data
from PDB:3S4Y [124]
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3. Atlas of human disease variants

The two calcium sensors NCS1 and Calmodulin show different profiles

Calmodulin (CALM1/2/3) and the Neuronal Calcium Sensor protein (NCS1)
are homologs (E-value 4·10−5 when searched against the human proteome [125,
126]) with 24% sequence identity and 48.5% similarity [127]. However, they
display different impact patterns despite their similar domain structure and
similar molecular roles as calcium sensing proteins. Both are comprised of
four Calcium-binding EF-hands, with NCS1 containing additional sequences
upstream and downstream of the four hands. A comparison of previously pub-
lished NMR structures reveals that the overall folds of the two proteins differ
substantially [128, 129]. In its active (Ca2+-bound) form, Calmodulin features
a long central helix that separates two globular domains, called the N-lobe and
the C-lobe, each comprised of two EF hands. Two hydrophobic pockets serving
as a binding interface for interacting proteins are formed within the lobes. By
contrast, NCS1’s active form takes a single shell-like shape, centered around a
large hydrophobic crevice. This crevice acts as a binding interface for interact-
ing proteins. Thus, the divergent DMS profiles observed for CALM1/2/3 and
NCS1 are not surprising given these substantial structural differences.

The Neuronal Calcium Sensor NCS1 displays the greatest sensitivity to mu-
tation within the N-terminal region containing the myristoylation site. This
myristoylation site is essential for anchoring NCS1 into the plasma membrane.
One other residue that stands out is the tryptophan at position 30, which re-
sults in complete loss of function when replaced with any other amino acid.
Like most other sensitive residues W30 is found among those contributing to
the hydrophobic crevice acting as an interaction interface. Other cases include
F55, F56, A104, M121, I152, and A182. An interesting observation can be
made with respect to the two helices that separate the two N-terminal EF
hands from the two C-terminal EF hands. A kink between the two helices
brings them into an angle that allows the globular shape of the overall protein
to form. Without this kink it is conceivable that NCS1’s fold would much more
resemble that of active Calmodulin. A glycine residue (G95) is likely respon-
sible for forming that kink due to its helix breaking properties. This residue is
also found to be quite sensitive to mutation.
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3. Atlas of human disease variants

Within Calmodulin, the regions most sensitive to mutation are: 1) the hy-
drophobic cores of the two globular domains; 2) interfacial residues for protein-
protein interactions, and 3) a subset of the negatively charged residues in EF
hands that contact Ca2+ ions. Within the hydrophobic cores of the two lobes,
five mutually interacting phenylalanine residues at positions 17, 69, 90, 93, and
142 stand out in particular, as all of them are found in the top 9 most sensitive
residues on the map. Within the interaction interface, the residues D85, A89,
F93, M100, L106, V109, L113, G114, L117, M125, V137, F142, M145, M146 are
the most strongly sensitive to mutation. Regarding the four Calcium-binding
EF-hand loops, it was interesting to find that only a subset of the negatively-
charged residues contacting Ca2+ are even moderately sensitive. Within EF1,
only D25 appears to be important, in EF2 only N61, in EF3 only D94 and D96,
and in EF4 only D130 and D134. Overall, the EF3/4 in the C-lobe also appear
to be more important than their N-lobe counterparts. This is in agreement with
previous observations made by Sarhan and colleagues [128], who described the
C-lobe as displaying a higher Ca2+ affinity. A number of unexplained sensi-
tivities exist as well: Arginines at positions 54 and 91 show strong phenotypes
despite extending from seemingly unused surfaces of the protein, offering the
possibility that these residues are functionally relevant sites of interaction or
modification.

3.2.5. Functional maps recapitulate known disease cases

To validate the utility of the maps in the context of human disease, I extracted
known disease-associated variants from ClinVar [130], as well as rare and com-
mon polymorphisms observed independent of disease from GnomAD [105], and
somatic variants previously observed in tumors from COSMIC [131].

For TPK1, a large number of very rare variants (minor allele frequency or
MAF < 10−6) is known from GnomAD. At first look, it appears the majority
of these variants are shown to be deleterious (Figure 3.13). This seems unlikely,
given that Thiamine Metabolism Dysfunction Syndrome, reported to be caused
by mutations in this gene, is a very severe disease to which patients succumb in
childhood [120], and given that GnomAD attempts to filter out subjects with
severe pediatric disease. However, the disease is also known to follow a recessive
inheritance pattern, with only homozygous or compound heterozygous individ-
uals being affected. I thus used phased sequence data from the 1000 Genomes
Project [9] to determine the diploid genotypes in the TPK1 locus for all listed
individuals. Using these diploid phenotypes, I based the phenotype predictions
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3.2. Results

on the maximum fitness score of either (i.e. paternal and maternal) allele.
This improved prediction performance markedly, leading to complete separa-
tion between disease and non-disease genotypes. However, both PROVEAN
and PolyPhen-2 were also able to perfectly separate the two groups when using
diploid genotypes (Figure 3.13B). Additional compound heterozygotes with
known disease status will be required to determine whether this DMS map
is more useful than computational methods for classifying pathogenic TPK1
variants.
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Figure 3.13.: Variant classificationin TPK1. A) Distribution of functional
scores for rare polymorphisms (GnomAD) (green) and pathogenic
and benign variants (ClinVar) (red, blue) in TPK1 overlaid on a
histogram of functional scores for all missense variant. Top panel:
Haploid scores considering the phenotype based only on a single
allele. Bottom panel: Diploid scores, considering the phenotype
based on both alleles in each individual. B) Precision-Recall curve
for disease variant classification using diploid scores from the atlas
presented here, PROVEAN and PolyPhen-2, based on the data
from (A).

Evaluating the utility of the NCS1 map was similarly difficult. NCS1 does
not have any entries in ClinVar. However, a previous publication identified the
variant R102Q as a de novo variant in a single patient with autism spectrum
disorder [121]. While the variant did not affect overall protein folding and
localization, the authors did observe that the dynamics of cytosol-membrane
cycling were altered. The complementation map did not show any functional
impact for this variant. As is the case for TPK1, the emergence of more patient
data in the future may enable a more useful evaluation of this map.
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3. Atlas of human disease variants

While no disease-associated missense alleles are recorded for UBE2I and
SUMO1 in ClinVar, a number of somatic mutations for these genes have been
observed in cancer according to COSMIC. While these can be expected to be
passenger mutations, one may still hypothesize that somatic variants are likely
not subject to the same selection pressures as germline variants, as interference
with developmental processes is not necessarily detrimental to a tumour. I thus
tested whether germline polymorphisms in these three genes were enriched for
being functional compared to their somatic counterparts in the maps. Indeed, I
observed a significant difference between the two sets (Wilcoxon P = 2.6 ·10−5)
(Figure 3.14A).

Finally, I examined the functional map of Calmodulin. Here a sufficient num-
ber of disease-associated alleles were recorded in ClinVar. I found that the map
was able to distinguish the disease variants from non-disease variants visibly
well (Figure 3.14B). In contrast to TPK1, the Calmodulin map did not need to
be corrected for diploid genotypes, as previously reported disease variants have
been described as following a dominant inheritance pattern [122]. A precision-
recall (PRC) plot reveals a superior performance (AUC = 0.74) compared to
PROVEAN (AUC = 0.47) and PolyPhen-2 (AUC = 0.47) (Figure 3.14C). Re-
markably, at 100% precision, the DMS map still achieves a recall of 50%, while
PROVEAN and PolyPhen-2 only reach 20% and 15%, respectively.

To further put the Calmodulin map to the test in a clinical scenario, we
inquired with Invitae, a company offering gene panel sequencing services for
Long QT syndrome, including CALM1/2/3. In a blind test, we requested
a list of Calmodulin variants they observed in patients but were unable to
classify. After calibrating the map with respect to the above ClinVar and
GnomAD datasets, I classified these 10 new variants (Table 3.3). Two were
classified as damaging, six as benign, and two were too close to the threshold
to be called either. In the next phase, Invitae revealed the associated patient
cardiovascular phenotypes. Five out of the six patients with benign predictions
were revealed to be unrelated to cardiovascular phenotypes, while both patients
with damaging predictions did show a positive phenotype. The two uncertain
cases were revealed to be affected as well. A Wilcoxon test showed these results
to be statistically significant (P = 0.008).
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Figure 3.14.: Detection of disease-associated variants. A) Distributions of func-
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for somatic in cancer (COSMIC) (gold) in UBE2I, SUMO1 and
NCS1. B) Distribution of functional scores for rare polymor-
phisms (GnomAD) (green) and known pathogenic alleles (Clin-
Var) (red) in CALM1, CALM2 and CALM3, overlaid on a his-
togram of all missense variant scores (gray). C) Precision-Recall
curves for classification of disease variants using the variant atlas
presented here, PROVEAN and PolyPhen-2 in CALM1, CALM2
and CALM3 based on rare polymorphisms from GnomAD and
pathogenic variants from ClinVar.

3.3. Discussion

In total, this study has produced five maps with functional impacts for 15,998
possible missense variants. The functional maps generated for sumoylation
pathway members UBE2I and SUMO1 and disease-implicated genes NCS1,
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3. Atlas of human disease variants

Table 3.3.: Re-classification attempt for variants of uncertain significance found
in Invitae gene panel sequencing. MAF: Minor allele frequency in
GnomAD, if known; sd/rmsd: standard error or RMSD of observa-
tion in map. imp/reg: imputed or degree of regularization; DMS
score pre-regularization; DMS score post-regularization; DMS call:
Classification according to DMS score; Indication: Type of sequenc-
ing panel ordered.

Variant MAF sd/ rmsd imp/ reg pre-reg DMS DMS call indication
D94A NA 0.26 imputed NA 0.46 likely damaging Cardio
D96H NA 0.26 imputed NA 0.72 likely damaging Cardio
I28V 1 · 10− 5 0.05 mild 0.88 0.88 uncertain Cardio
N98S NA 0.05 mild 0.89 0.89 uncertain Cardio
T35I 4 · 10− 6 0.04 mild 0.93 0.93 likely benign Non-Cardio
E48G NA 0.05 mild 0.93 0.93 likely benign Cardio
G26D NA 0.06 mild 0.94 0.94 likely benign Non-Cardio
T27S 3 · 10− 5 0.05 mild 0.96 0.96 likely benign Non-Cardio
V122A NA 0.05 mild 0.98 0.98 likely benign Non-Cardio
A104G NA 0.08 mild 1.00 1.00 likely benign Non-Cardio

CALM1/2/3 and TPK1 using the DMS framework were consistent with bio-
chemical expectations while providing new hypotheses. DMS maps based on
functional complementation were highly predictive of disease causing muta-
tions, outperforming computational prediction methods such as PolyPhen-2 or
PROVEAN. The imputation method I employed allows me to generate com-
plete functional maps while maintaining the reliability on par with the experi-
mental results.

Given the prospect of personalized and precision medicine, genome sequenc-
ing is expected to become increasingly common in everyday medical practice.
Current estimates suggest that every human carries an average of 200-300 rare
missense mutations that have never before been seen in the clinic [9]. This
creates a need for fast, reliable interpretation of variant effects. Instead of gen-
erating clones and functionally testing variants of unknown significance after
they are first observed, DMS technology offers to generate exhaustive maps of
functional variation that enable interpretation immediately upon clinical pre-
sentation, even for rare and personal variation.
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3.4. Methods

A key requirement for DMS mapping is an en masse functional assay that
can be applied at the scale of 104−105 variant clones, such as complementation
in yeast. However, among ∼ 4000 disease genes, examination of four system-
atic screens and curated literature suggests that only ∼ 5% of human disease
genes have a yeast complementation assay [13,132,133]. Complementation as-
says can also be carried out in human cells [48], and en masse transfection is
achievable at the required scale [29]. Based on only three large-scale CRISPR
studies [28–30], cellular growth phenotypes have already been observed in at
least one cell line for 29% of human disease genes. Beyond complementation,
sub-functional assays, e.g. of protein interaction, can not only reveal variation
that impacts the specifically assayed sub-function but also folding/stability
mutations that ablate overall function. In a recent study, approximately two
thirds of disease-causing variants were found to impact at least one protein
interaction [25]. Although only a minority of human protein interactions have
been mapped [134], already 40% of human genes have at least one interaction
partner detectable by yeast two-hybrid assay in a recent screen [134]. Taking
the union of available assays, one may estimate that 57% of known disease-
associated genes already have an assay potentially amenable to DMS. Emerg-
ing protein interaction data and CRISPR screens suggests that the proportion
of DMS-accessible disease genes will continue to rise.

3.4. Methods

3.4.1. DMS-TileSeq

The DMS-TileSeq experiment for SUMO1, TPK1, NCS1, and CALM1 was
performed by Song Sun and Marta Verby as described in chapter 2. The mutant
alleles for the yeast temperature sensitive strains used were smt3-331, thi80-
ph, frq1-1 and cmd1-1. The downstream sequencing data analysis, scoring,
imputation and regularization was performed by me as described in chapter 2.

3.4.2. DMS-BarSeq Y2H

The DMS-BarSeq Y2H experiment was performed by Jennifer Knapp as de-
scribed in chapter 2, except for the following differences: (1) The en masse
LR cloning of the UBE2I variant library was targeted into barcoded Y2H AD
vectors; (2) Following KiloSeq and re-arraying, the library was pooled and
transformed into haploid MATa yeast strains and mated with MATα strains
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3. Atlas of human disease variants

carrying SATB1-DB plasmids. Following diploid selection, the pool was grown
for 48h in triplicates on Histidine-supplemented (permissive) and Histidine-
deficient (selective) media, respectively. Plates were scraped and barcode loci
amplified for BarSEQ.

Downstream sequencing data analysis and scoring was performed by me.
Barcode counts were divided by the overall number of barcodes reads in each
condition to obtain relative barcode frequency. Barcode frequencies in the -HIS
condition were divided by frequencies in +HIS condition. Scores were then
scaled to the null and WT controls, such that 0 corresponds to the average
fitness of null controls and 1 to the average fitness of WT controls. Standard
deviation based on technical replicates were regularized using the Baldi & Long
method as described in chapter 2. The underlying code is part of a larger DMS
analysis package provided on the attached storage media, and also available
online1.

3.4.3. UBE2I-SATB1 analysis

I integrated the complementation and Y2H data and filtered out low-quality
measurements (s.d. > 0.3). To find interface candidates, I then selected the set
of variants for which (i) the complementation score was greater than 0.5, (ii)
the Y2H score was less than 0.5, and (iii) the Y2H score is at least 0.5 units
below the complementation score. I then mapped the resulting variants on the
UBE2I crystal structure.

3.4.4. UBE2I interface analysis

Co-crystal structure data for UBE2I was obtained from the PDB (Entries:
3UIP [85]; 4W5V [84]; 3KYD [83]; 2UYZ [112]; 4Y1L [90]). A custom script was
developed to obtain solvent accessibility using GETAREA [111] for monomers and
complexes, allowing for the calculation of relative burial of interfacial residues.
Complementation fitness distributions for each interaction’s interfacial residues
were tallied and tested for statistically significant differences using Wilcoxon
tests. Distributions were plotted using the R package beeswarm [135]. The
methods were implemented as part of a larger DMS analysis package provided
on the attached storage media, and also available online2.

1http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
2http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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3.4. Methods

3.4.5. Structure coloration

A custom script was developed to calculate median and maximum complemen-
tation fitness values for each residue and autogenerate coloration commands
for OpenPyMol [113]. The methods were implemented as part of a larger DMS
analysis package provided on the attached storage media, and also available
online3.

3.4.6. Complementation spotting assays

Complementation spotting assays were performed by Jennifer Knapp as de-
scribed in chapter 2. Image data was processed using PlateOrganizer and
integrated and compared to the high-throughput results using custom scripts.

3.4.7. Hypercomplementing mutation analysis

Hypercomplementation and reversion to yeast residues: To examine whether
changing amino acid residues into those residues naturally occur in yeast were
more likely to show hyperactive complementation I compared these cases to
changes into residues occurring in other species. The UBE2I amino acid se-
quence was aligned to that of its orthologues in S. cerevisiae, D. discoideum
and D. melanogaster using CLUSTAL [114]. A custom script was used to extract
inter-species amino acid changes and lookup the corresponding complementa-
tion fitness values in the UBE2I map. Distributions were plotted using the
R package beeswarm [135]. Wilcoxon tests revealed no significant differences
between the distributions. The methods were implemented as part of a larger
DMS analysis package provided on the attached storage media, and also avail-
able online4.

In vitro sumoylation comparison Images from in vitro sumoylation assays
performed for UBE2I variants by Bernier-Villamor et al. [87] were scored by
visual inspection while blinded to the underlying variant information. Scores
were then represented as a heatmap and compared complementation scores
from the UBE2I map. The methods were implemented as part of a larger DMS

3http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
4http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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3. Atlas of human disease variants

analysis package provided on the attached storage media, and also available
online5.

Phylogenetic comparison of different models for hyperactive mutations Jesse
Bloom at the Fred Hutchinson Research Center in Seattle kindly provided the
phydms software package [117] and applied it to test three different models re-
lating the effect of activity-enhancing mutations in SUMO1 and UBE2I to the
actual evolutionary preference for that amino acid in a real biological context.
Specifically, using the substitution models described in [117], three different
ways of relating the evolutionary preference πr,a for amino-acid a at site r to
the fitness score fr,a for a given mutation were tested.

In the first model,
πr,a = fr,a.

In the second model,
πr,a = min(fr,a, fr,wt),

where fr,wt is the fitness score for the wildtype amino-acid at site r.
Finally, in the third model,

πr,a =

{
fr,a if fr,a ≤ fr,wt

1
fr,a

otherwise
.

Each of these models were fit to the set of Ensembl homologues with at least
75% sequence identity to the human protein.

3.4.8. Transformation of maps for human phenotypes

Having established the third substitution model to provide the best fit for
evolutionary preference (see above), I applied the corresponding transformation
function underlying the model to the complementation data for each tested gene
and repeated the imputation and regularization steps described in the previous
chapter on the transformed data.

3.4.9. Intragenic epistasis analysis

Genetic interactions were determined based on a previously described multi-
plicative model [101,102], that expects double mutant fitness to conform to the

5http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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product of single mutant fitness effects in the absence of interaction between
the two. Under this model, the strength of genetic interaction is defined as

εij = fi · fj − fij ,

where fi and fj represent single mutant fitness and fij represents double mutant
fitness scores. To test for deviation from this model, all cases where double
mutant and both corresponding single mutants were known in the data were
extracted. The standard deviation for the expected double mutant fitness fi ·fj
was estimated using

V(XY ) = E(X2Y 2)− (E(XY ))2 = V(X)V(Y ) +V(X)(E(Y ))2 +V(Y )(E(X))2

Using these estimates, Student t-tests were performed between the measured
and expected double mutant fitnesses and corrected for multiple hypothesis
testing using the Benjamini-Hochberg [136] method at a 5% FDR threshold.

To detect potential direct compensatory relationships, the genetic interac-
tions were compared with physical distance in the protein’s 3D structure. The
Euclidean distance between the Cα atoms in of each pair of residues was cal-
culated using a custom script using structural data from the PDB (3UIP [85]).
The methods were implemented as part of a larger DMS analysis package pro-
vided on the attached storage media, and also available online6.

3.4.10. Structural analysis of disease gene maps

Co-crystal and NMR structure data for SUMO1, TPK1, NCS1 and CALM1 was
obtained from the PDB (Entries: 2G4D [82]; 2IO2 [137]; 3KYD [83]; 3UIP [85];
2ASQ [138]; 4WJO [139]; 4WJQ [139]; 1WYW [140]; 2L2E (Ames et al. unpublished);
4GUK (Chengpeng et al. unpublished); 5AFP [141]; 3G43 [142]; 4DJC [128];
3S4Y [124]; ). Structures were colorized using the same method described
above for UBE2I and analyzed using OpenPyMol [113].

3.4.11. Disease variant analysis

Missense variant tables for UBE2I, SUMO1, TPK1, NCS1, CALM1, CALM2
and CALM3 were integrated ClinVar, COSMIC, and GnomAD and compared
with complementation scores. To calculate diploid scores for TPK1, phased

6http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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3. Atlas of human disease variants

variant call files (VCF) for the TPK1 gene obtained from the 1000 genomes
project database to identify homozygous, heterozygous and compound het-
erozygous cases for all present variants using a custom script. For each case,
the diploid score was calculated as sdiploid = max(s1, s2), where s1 and s2 are
the variant scores for the paternal and maternal allele. The methods were im-
plemented as part of a larger DMS analysis package provided on the attached
storage media, and also available online7.

7http://dalai.mshri.on.ca/~jweile/projects/popcodePipeline/doc
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4. Conclusion

4.1. Summary

Here we have presented a complete framework for the construction of compre-
hensive, high-fidelity functional maps. We have demonstrated two versions of
this framework: DMS-BarSeq, a barcode-based approach that allows for high-
confidence measurement of individual clones including double- and higher-order
multi-mutants; and DMS-TileSeq, a fast and efficient framework that general-
izes fitness effects over many different clones sharing variants of interest. Both
versions use a new mutagenesis protocol, POPCode, which thanks to its ac-
companying webtool makes it easer than before to generate variant libraries
covering the complete space of amino acid changes. At its core, the framework
relies on a functional complementation assay in yeast, which can measure the
overall effect of variants on protein function and has been shown to be highly
predictive of variant pathogenicity in humans, outperforming common in silico
methods, despite the ∼ 1 billion year divergence between the two organisms.
The DMS analysis software developed here introduces novel advances to deep
mutational scanning: (i) The degree of confidence behind each measurement is
carefully assessed and recorded in order to help variant classification; and (ii)
variants that were missing in the complementation library or measured with low
confidence were supplemented using a RandomForest-based machine learning
method, yielding predictions that were found to be surprisingly reliable.

We have evaluated the technical features of the framework on the two sumoy-
lation pathway members UBE2I and SUMO1. We found that the functional
maps generated with our method were able to successfully recapitulate known
features of the proteins’ biology and biochemistry and even hint at novel fea-
tures that warrant further investigation. We found a large number of genetic
interactions between variants in UBE2I, some of which may be due to direct
compensatory relationships of amino acid replacements. Most interactions how-
ever were found to involve residue pairs separated by larger physical distances.

Having validated the framework, we demonstrated its power to detect pathogenic
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variants in the disease genes TPK1, NCS1, CALM1, CALM2, and CALM3. We
found that our Calmodulin map excelled at distinguishing disease-associated
variants from benign polymorphisms and greatly outperformed the common
prediction algorithms PolyPhen-2 and PROVEAN. We subsequently applied
our functional map for CALM1, CALM2, and CALM3 to classify VUS ob-
served in patients during gene panel sequencing and found our predictions to
correlate significantly with patient indications.

Limitations of the DMS framework

Despite these successes, there are a number of limitations to the current form
of our DMS framework. A fairly simple problem is the current restriction to
scan relatively short genes. This is due to three reasons: (1) Longer genes
would require a re-formulation of the mutagenesis protocol, as the number of
mutations introduced per clone can be expected to increase linearly with gene
length. This would need to be addressed by varying the concentration of mutant
oligos in the amplification step. This solution could be tested systematically
for templates of different lengths to determine the exact relationship between
the factors involved. The results can then be added to the POPCode oligo
design web tool to automatically report the most suitable protocol for each
case to the experimenter. (2) Variant clone pools for longer genes must be kept
at larger population sizes at all times to avoid bottlenecking the complexity
of the pools. (3) Finally, larger libraries also require more sequencing reads
to cover all variants at adequate depth. Thus they either require the use of
higher-throughput instruments or would have to be processed in batches. A
possible solution to all three problems would be to mutagenize only sections of
longer genes that would be scanned separately from each other, although this
would be more time consuming and costly.

A more difficult problem is that currently, the number of genes amenable
to functional complementation in yeast is very limited. Song Sun and other
members of the Roth lab have previously determined that only ∼ 200 human
disease genes can currently be examined using this assay [13]. In addition,
we found that some of these genes suffer from mapping quality issues. We
observed this in the NCS1 map, which was of lower quality compared to other
genes due to its relatively weak wildtype complementation fitness resulting in
a less favourable signal-to-noise ratio. However it is possible that these assays
might be improved by using different yeast strains with different backgrounds
or by using different growth selection conditions. Moreover, as mentioned in
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section 3.3 of the previous chapter, we have determined that 57% of disease
genes could potentially be assayed using DMS variants based on Y2H or human
cell lines instead, as will be discussed in further detail in the next section.

4.2. Outlook

4.2.1. Using DMS data in a clinical context

As introduced in chapter 1, a major motivating factor behind the development
of our framework is to address the growing problem of variants of uncertain sig-
nificance observed in the clinic. While our results show that functional maps as
produced by our framework can be helpful in the effort of VUS reclassification, a
single line of evidence is not usually sufficient. Even though the ACMG consid-
ers functional assays among the strongest classification criteria, they require at
least one additional criterium of moderate strength, such as enrichment in cases
over controls, or negligible allele frequency in the general population [6]. While
most of the data informing the required criteria cannot be generated en masse,
other information, such as allele frequencies in the general population are avail-
able from the 1000 genomes project [9] and the genome and exome aggregation
database (GnomAD) [105]. Thus an important goal for the future would be the
construction of a public database with an underlying automatic data integra-
tion and classification system that obtains information from available sources
and automatically applies the ACMG’s recommended decision-making process
towards variant classification. Classification results should be presented trans-
parently, revealing the individual underlying evidence, confidence levels, and
reasoning structure. Alternatively, it is conceivable that future iterations of
DMS maps can be validated to be sufficiently rigorous to allow for a change in
ACMG guidelines.

Another factor to consider with respect of the presentation of DMS maps for
clinical use is the reporting of imputation and regularization. Even though this
work has shown that imputed values are equivalent in quality to their experi-
mental counterparts and that regularization leads to improved performance, a
sociological bias against computational predictions may lead to users dismissing
these data. While full disclosure of data provenance is necessary, it may also
lead to the misinterpretation of data if its presentation is not handled carefully.

The commitment towards the construction of a resource is only warranted
if its primary source of information, functional maps generated using Deep
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Mutational Scanning, can continue to be provided. The Roth lab is planning
to continue building functional maps of disease genes and to expand the list
of genes amenable to deep mutational scanning. A shortlist of ∼100 genes is
planned to be addressed in the coming years. However, this undertaking is a
costly one. Per 500 amino acid positions scanned, approximately $5500 need
to be spent on consumables, primarily for sequencing and oligos for POPCode
mutagenesis. Assuming six genes being scanned in parallel, approximately 45
full-time employee hours need to be invested per gene. Ultimately, this under-
taking cannot be shouldered by one lab alone and will require outreach to other
groups. As shown in chapter 1 section 1.4, a fair number of groups are already
performing deep mutational scans and may be interested in collaboration. As
a first step, the Roth and Fowler labs are already collaborating with respect to
mapping a number of heart disease associated genes.

4.2.2. Adaptation and extentions to DMS technology

DMS in human cell lines

As mentioned above, an important future direction is the adaptation of the deep
mutational scanning framework toward directly using human cell lines in com-
petition assays. Recent genome-wide CRISPR screens have revealed a sizable
number of genes with growth phenotypes in different human cell lines [28–30].
While a number of DMS efforts have already been performed using human
cells [47, 48, 55, 61], the underlying assays were not generalizable, for example,
the most recent effort by Majithia and colleagues [61] for PPARγ was only
possible due to the fortuitous circumstances of having found a surface marker
whose expression level directly reflects PPARGγ activity. Atina Cote in the
Roth Lab is currently working on establishing a generalizable growth-based
complementation assay using CRISPR in human cell lines.

Screening of other functional elements

Another important future direction is to expand the capability of Deep Muta-
tional Scanning to enable assaying variants outside of protein-coding regions
of the genome. However, since the space of the human genome is simply too
large to be tested in its entirety the logical choice is to concentrate on elements
most likely to be functionally relevant, such as splice sites, promoters, or tran-
scription factor binding sites. Hanane Ennajdaoui in the Roth Lab is currently
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working on adapting our DMS framework to scan intronic regions (shortened
to exclude medial sequences).

4.2.3. Other uses of DMS functional map data

Screening for viral suppressors

Deep Mutational Scanning has many other potential uses beyond disease vari-
ant classification. As we have demonstrated in chapter 3 for UBE2I, the method
helps shed light on the biophysical mechanisms underlying the function of a
gene. We have also shown that using a combination of Y2H and complemen-
tation, DMS can point to potential new protein interaction interfaces.

UBE2I is known to be directly targeted by many viruses, such as HIV
and EBV, through specific protein-protein interactions to subvert host de-
fenses [143]. Using Y2H as the selection assay in our DMS framework and
using our existing functional map of UBE2I as a reference, it would be possible
to scan for variants that specifically disrupt interactions with viral proteins
while not affecting overall UBE2I function. At the same time, this approach
could help finding the specific interface for the interactions in question and
could inform future drug development.

Advances in computational prediction of disease variants

As the number of functional maps produced via DMS grows, so does their value
as training data for in silico prediction methods. Currently the number of
genes scanned is not yet representative enough to cover the functional diversity
of the proteome. However, Yingzhou Wu in the Roth Lab has already begun to
explore its potential value for extrapolation. In an initial experiment, he was
able to show that a machine learning method trained on the functional data
obtained for UBE2I was able to make better predictions towards the effects of
mutations in SUMO1 than if trained on the data set underlying PolyPhen-2
(HumDiv). Thus, with each new functional map added to our variant atlas,
computational prediction method have the potential to become more powerful.

Functional classification of amino acid positions

The same wealth of functional data that may serve as training data for future
computational prediction methods may also help us learn more about the set
of roles played by different residues within proteins. In an initial experiment, I
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Figure 4.1.: Hierarchical clustering of amino acid positions in UBE2I and
SUMO1 based on mutation profile similarity

have generated a hierarchical cluster map across amino acid positions in UBE2I
and SUMO1 (Figure 4.1). The clustering hints at distinct functional classes
occupied by different positions. There are three broad groups: (1) Positions
that are generally unrestricted and can be occupied by almost any amino acid;
(2) Positions that are generally constrained to a certain small number of amino
acids and; (3) Positions that show hyperactivity for many possible amino acids.
Within these groups there are a number of subclusters visible. For example,
within the second group, certain positions only tolerate aliphatic residues, while
others only tolerate aromatic residues. Evolution only samples a subset of
the possible amino acids at a given position. By growing the set of proteins
with complete functional maps we can potentially collect a catalog of possible
functional ‘archetypes’ for positions within proteins. Using multiple alignments
we can then make predictions as to the archetype of any given position.
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A. Variant maps with
hypercomplementation

As was shown in chapter 3 section 3.2.1, phylogenetic analysis of UBE2I and
SUMO1 both showed that variants with ability to complement yeast better
than wild-type are likely deleterious in humans. Thus, fitness scores were
transformed so that such hypercomplementing mutations are considered to be
deleterious. However, since hypercomplementing substitutions may provide in-
teresting clues about differences between yeast and human cellular contexts,
the untransformed versions the maps are provided below.
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A. Hypercomplementation maps
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A. Hypercomplementation maps
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