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Introduction

In this talk:
• Slightly more detailed look at existing models
• Overview of components of a GenSim description
• Tools and techniques for producing a model
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Existing Models

Four models currently actively supported:

• ARMv7
• ARMv8
• RISC-V
• x86-64

But several other models have been worked on as side/student
projects:

• PowerPC (MSc project)
• MIPS (Side project)
• TI C6x DSP (Undergraduate internship)
• GPU (PhD project)
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ARMv7 Model

• Full ARM Core Instruction Set
• Thumb and Thumb-2 Support
• Some NEON and VFP Support
• User Mode and Full System (via Archsim)
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ARMv8 Model

• Full AArch64 Instruction Set
• Some FP and Vector Support
• Full-System Support (via Captive)
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RISC-V Model

• Full Core Instruction Set
• Some FP Support
• User Mode Only
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x86-64 Model

• User mode only
• Uses Intel XED for decoding
• Under development, runs SPEC
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Model Components

System
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Syntax

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

Semantics

add ldr
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System Description

Three main components to system description:
• Register Files
• Features
• Instruction Sets
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Register File

GenSim treats the register file as a set of flat memory regions
(spaces) with aliased ‘views’.
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Register File
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ARM GPR Bank

R
B
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s

ac_regspace(64) {
bank RB (uint32, 0, 16, 4, 1, 4, 4);
slot PC (uint32, 4, 60) PC;
slot SP (uint32, 4, 52) SP;

}
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Register File - Vectors

ARM NEON Bank
S0 S1 S2 S3
S4 S5 S6 S7
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ac_regspace(256) {
bank FP_SP (float, 0, 32, 4, 1, 4, 4);
bank FP_DP (double, 0, 32, 8, 1, 8, 8);
bank FP_Q (float, 0, 16, 16, 4, 4, 4);

}
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Register File - Vectors
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bank FP_SP (float, 0, 32, 4, 1, 4, 4);
bank FP_DP (double, 0, 32, 8, 1, 8, 8);
bank FP_Q (float, 0, 16, 16, 4, 4, 4);

}

Model Components System Description 14



Features

Primarily performance feature - give hints to simulator about
things which change infrequently.

• Actual processor features
• FPU Enablement
• Privilege mode
• Configuration info
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Instruction Sets

Which instruction sets are available to this architecture?
• Allows for instruction set switching
• e.g. ARM⇔ Thumb1

1SAMOS’15: https://doi.org/10.1109/SAMOS.2015.7363665
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Syntax Description

System

ARM
Thumb

r0
r1
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r3

LR
PC

Syntax

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

Semantics

add ldr
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Overview

How are instructions encoded?
How do we decode them?
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GenSim Assumptions

GenSim currently makes a few assumptions about instruction
encoding:
• Instruction decoding is stateless
• Instructions are standalone
• Instructions execute in PC order
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GenSim Assumptions

However, GenSim does have native support for the following
features:
• Instruction Predication
• Variable Length Instructions
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Formats

Formats described using printf-like string
• Inspired by ArchC2

• Specify constant and variable fields

2Developed by UNICAMP, www.archc.org
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Formats

ARM Data-Processing (Register) Format

RISC-V R-Type
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Formats

RISC-V R-Type

"%funct7:7 %rs2:5 %rs1:5 %funct3:3 %rd:5 %opcode:7";
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Formats

AC_ISA(riscv)
{

ac_format rtype = "%funct7:7 %rs2:5 %rs1:5 %funct3:3 %rd:5 %opcode:7";

}
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Instructions

Instructions represent ‘individually decodable’ units
• Somewhat flexible...

• But decode as much as possible at decode time!
• i.e., avoid general ‘ALU’ instructions
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Instructions

AC_ISA(riscv)
{

ac_format rtype = "%funct7:7 %rs2:5 %rs1:5 %funct3:3 %rd:5 %opcode:7";

ac_instr<rtype> add;

}

Model Components Syntax Description 26



Decoding

Let’s consider an example from RISC-V:

RISC-V R-Type

RISC-V ADD

funct7 0b0000000
funct3 0b000
opcode 0b0110011

add.set_decoder(funct7=0x0, funct3=0x0, opcode=0x33);
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Decoding

AC_ISA(riscv)
{

ac_format rtype = "%funct7:7 %rs2:5 %rs1:5 %funct3:3 %rd:5 %opcode:7";

ac_instr<rtype> add;

isa_ctor(riscv)
{

add.set_decoder(funct7=0x0, funct=0x0, opcode=0x33);

}

}
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Branch Metadata

Used to indicate which instructions can change the PC
• Is an instruction an end-of-block?
• Is it a direct jump? What is it’s target?
• Is it an indirect jump?

Can also be used for various optimisations.3

3LCTES’14, http://doi.acm.org/10.1145/2666357.2597810
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Semantics Description

System

ARM
Thumb

r0
r1
r2
r3

LR
PC

Syntax

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

Semantics

add ldr
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GenC

C-like language used to implement instruction behaviours
• C-like syntax
• Only basic types supported
• Vector types and operations supported natively
• Reference parameters are supported
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Architectural Manipulation

Processor state is manipulated using built-in functions
• Register accesses
• Memory access
• Privilege/ISA modes
• Floating Point Environment
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Register Access

Built-in functions available:
slot_type read_register(slot_name)
reg_type read_register_bank(bank_name, index)

void write_register(slot_name, slot_type)
void write_register_bank(bank_name, index, reg_type)

slot_type depends on the type specified in the System
Description
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Memory Access

void mem_read_[8,16,32,64](address_type, uint[8,16,32,64]&)
void mem_write_[8,16,32,64](address_type, uint[8,16,32,64])

void mem_read_[8,16,32,64]_user(address_type, uint[8,16,32,64]&)
void mem_write_[8,16,32,64]_user(address_type, uint[8,16,32,64])

‘user’ variants are used in full-system simulation, where certain
kernel-mode memory instructions (ldrt/strt in ARM) access
memory with user privileges
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Vector Types

GenC has support for vector types and operations on values of
those types
• Vectors are declared using array notation
• Vectors can be read and written to register banks
• Arithmetic operations can be performed on vectors

Model Components Semantics Description 35



Vector Types

GenC has support for vector types and operations on values of
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float[2] fp_vector;
uint32[4] u32_vector;
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Vector Types

GenC has support for vector types and operations on values of
those types
• Vectors are declared using array notation
• Vectors can be read and written to register banks
• Arithmetic operations can be performed on vectors

fp_vector = read_register_bank(FP_SP2, inst.vm);
write_register_bank(U32_V, inst.vm, u32_vector);

Model Components Semantics Description 35



Vector Types

GenC has support for vector types and operations on values of
those types
• Vectors are declared using array notation
• Vectors can be read and written to register banks
• Arithmetic operations can be performed on vectors

// pairwise addition
result_vector = fp_vector + fp_vector;

// operation by scalar
result_vector = fp_vector + 10.0;
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Intrinsics

There are a large number of intrinsics available for either
manipulating the architectural state or performing other
operations. For example:

• take_exception - trigger an exception
• __builtin_clz - count leading zeros
• bitcast_float_u32 - ‘bitcast’ a float to a uint32
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Developing a Model

So how do we build a model from the ground up?
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Developing a Model

Model development is not too difficult but can take a long time

• ARMv7 and RISC-V models developed by students with no
prior experience

• Mostly a task of transcribing instruction pseudocode
• Can be easy to introduce subtle errors or edge cases
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Our Workflow

We generally start small and work our way up:
• Implement enough instructions for a Hello World program

• (this can be quite a lot due to startup/shutdown code)

• Then try small benchmarks (e.g., EEMBC, MyBench)
• Work up to larger benchmarks (e.g., SPEC)

The model should be tested at each step (using fuzzing/small
unit tests)
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Continuous Build/Test

We use Jenkins for continuous build.
• Commits to GenSim repo are built and tested
• All supported repos tested via Docker

Jenkins: http://jenkins.io, Docker: http://www.docker.com/
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Instruction Fuzzing

Fuzzing is a randomized testing method

• Test instructions with many inputs against a ground truth
• We use QEMU as a ground truth
• Still problems with unspecified/undefined behaviour

We have our own tools for instruction fuzzing (which are linked
from GenSim website)
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Debugging with Tracing

Once we’re confident that our model works, we can run some
larger programs

But they might still go wrong! How do we debug this?
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Debugging with Tracing

We can carefully inspect a trace of the simulation and try and
see what went wrong.
• This can be quite a tedious and error-prone process
• It is usually necessary to narrow down the issue

beforehand
• Key idea is to spot errors in execution manually

• Need to be very familiar with the architecture!
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Model Optimisation

Certain code structures can lead to poor performance:
• Very complex instructions
• Non-fixed loop bounds
• ‘Hand written’ predicates
• Enablement checks (can be solved using Features)
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Model Optimisation

if(read_register(FP_ENABLED)) {
// do something

}

if(__builtin_get_feature(FP_ENABLED)) {
// do something

}
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The x86-64 Model

• The newest supported GenSim model
• Runs Linux User Mode applications
• Some SSE and x87 Support
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X86 Instruction Decoding

• x86 has a stateful instruction encoding
• This can’t be easily handled by GenSim
• We handle this by using the Intel XED library
• Instruction semantics still use GenSim
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Experiences with x86

• Biggest issue is inconsistency
• Lots of ’defined undefinedness’ makes testing tricky
• Vector performance is critical
• Otherwise handled fairly well in GenSim

Developing a Model 48



GenSim Internals
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General Flow

System 
Description

Semantic 
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Frontend

System 
Description

Semantic 
Description

Syntax 
Description

ANTLR
Parser

ANTLR
Grammar

High-Level
IR

SSA
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Middle-End

SSA Annotated
SSA

Optimisation Partial 
Evaluation

DAC’13: https://doi.org/10.1145/2463209.2488760
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Back-Ends

Annotated
SSA

Backend
Generators

Architecture
Descriptor

Decoder

Interpreter

DBT 
Frontend

C++
Sources
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Recap

To conclude:
• We’ve gone over the available models
• Looked at the components of a model
• I’ve shared some experiences building models
• Briefly covered the internal flow of GenSim
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Conclusion

Thanks for coming!
Any Questions?

harry.wagstaff@gmail.com
general@gensim.org
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