
Building a GenSim Model

Harry Wagstaff, Tom Spink, Bruno Bodin, Bjoern Franke

Institute for Computing Systems Architecture
University of Edinburgh

October 2018

1



Introduction

In this talk:
• Slightly more detailed look at existing models
• Overview of components of a GenSim description
• Tools and techniques for producing a model

Introduction Overview 2



Introduction
Overview
Existing Models

Model Components
System Description
Syntax Description
Semantics Description

Developing a Model

GenSim Internals

Conclusion

Introduction Overview 3



Existing Models

Four models currently actively supported:

• ARMv7
• ARMv8
• RISC-V
• x86-64

But several other models have been worked on as side/student
projects:

• PowerPC (MSc project)
• MIPS (Side project)
• TI C6x DSP (Undergraduate internship)
• GPU (PhD project)

Introduction Existing Models 4



Existing Models

Four models currently actively supported:

• ARMv7
• ARMv8
• RISC-V
• x86-64

But several other models have been worked on as side/student
projects:

• PowerPC (MSc project)
• MIPS (Side project)
• TI C6x DSP (Undergraduate internship)
• GPU (PhD project)

Introduction Existing Models 4



ARMv7 Model

• Full ARM Core Instruction Set
• Thumb and Thumb-2 Support
• Some NEON and VFP Support
• User Mode and Full System (via Archsim)

Introduction Existing Models 5



ARMv8 Model

• Full AArch64 Instruction Set
• Some FP and Vector Support
• Full-System Support (via Captive)

Introduction Existing Models 6



RISC-V Model

• Full Core Instruction Set
• Some FP Support
• User Mode Only

Introduction Existing Models 7



x86-64 Model

• User mode only
• Uses Intel XED for decoding
• Under development, runs SPEC

Introduction Existing Models 8



Model Components

System

ARM
Thumb

r0
r1
r2
r3

LR
PC

Syntax

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

Semantics

add ldr

Model Components 9



System Description

System

ARM
Thumb

r0
r1
r2
r3

LR
PC

Syntax

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

Semantics

add ldr

Model Components System Description 10



System Description

Three main components to system description:
• Register Files
• Features
• Instruction Sets

Model Components System Description 11



Register File

GenSim treats the register file as a set of flat memory regions
(spaces) with aliased ‘views’.

Model Components System Description 12



Register File

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15

ARM GPR Bank

R
B

6
4

 B
y
te

s

ac_regspace(64) {
bank RB (uint32, 0, 16, 4, 1, 4, 4);
slot PC (uint32, 4, 60) PC;
slot SP (uint32, 4, 52) SP;

}

Model Components System Description 13



Register File

ARM GPR Bank

SP

PC

6
4

 B
y
te

s

ac_regspace(64) {
bank RB (uint32, 0, 16, 4, 1, 4, 4);
slot PC (uint32, 4, 60) PC;
slot SP (uint32, 4, 52) SP;

}

Model Components System Description 13



Register File - Vectors

ARM NEON Bank
S0 S1 S2 S3
S4 S5 S6 S7

2
5

6
 B

y
te

s

ac_regspace(256) {
bank FP_SP (float, 0, 32, 4, 1, 4, 4);
bank FP_DP (double, 0, 32, 8, 1, 8, 8);
bank FP_Q (float, 0, 16, 16, 4, 4, 4);

}

Model Components System Description 14



Register File - Vectors

ARM NEON Bank
D0 D1
D2 D3

2
5

6
 B

y
te

s

ac_regspace(256) {
bank FP_SP (float, 0, 32, 4, 1, 4, 4);
bank FP_DP (double, 0, 32, 8, 1, 8, 8);
bank FP_Q (float, 0, 16, 16, 4, 4, 4);

}

Model Components System Description 14



Register File - Vectors

ARM NEON Bank
Q0
Q1

2
5

6
 B

y
te

s

ac_regspace(256) {
bank FP_SP (float, 0, 32, 4, 1, 4, 4);
bank FP_DP (double, 0, 32, 8, 1, 8, 8);
bank FP_Q (float, 0, 16, 16, 4, 4, 4);

}

Model Components System Description 14



Features

Primarily performance feature - give hints to simulator about
things which change infrequently.

• Actual processor features
• FPU Enablement
• Privilege mode
• Configuration info

Model Components System Description 15



Instruction Sets

Which instruction sets are available to this architecture?
• Allows for instruction set switching
• e.g. ARM⇔ Thumb1

1SAMOS’15: https://doi.org/10.1109/SAMOS.2015.7363665
Model Components System Description 16

https://doi.org/10.1109/SAMOS.2015.7363665


Syntax Description

System

ARM
Thumb

r0
r1
r2
r3

LR
PC

Syntax

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

Semantics

add ldr

Model Components Syntax Description 17



Overview

How are instructions encoded?
How do we decode them?

Model Components Syntax Description 18



GenSim Assumptions

GenSim currently makes a few assumptions about instruction
encoding:
• Instruction decoding is stateless
• Instructions are standalone
• Instructions execute in PC order

Model Components Syntax Description 19



GenSim Assumptions

However, GenSim does have native support for the following
features:
• Instruction Predication
• Variable Length Instructions

Model Components Syntax Description 20



Formats

Formats described using printf-like string
• Inspired by ArchC2

• Specify constant and variable fields

2Developed by UNICAMP, www.archc.org
Model Components Syntax Description 21

www.archc.org


Formats

ARM Data-Processing (Register) Format

RISC-V R-Type

Model Components Syntax Description 22



Formats

RISC-V R-Type

"%funct7:7 %rs2:5 %rs1:5 %funct3:3 %rd:5 %opcode:7";

Model Components Syntax Description 23



Formats

AC_ISA(riscv)
{

ac_format rtype = "%funct7:7 %rs2:5 %rs1:5 %funct3:3 %rd:5 %opcode:7";

}

Model Components Syntax Description 24



Instructions

Instructions represent ‘individually decodable’ units
• Somewhat flexible...

• But decode as much as possible at decode time!
• i.e., avoid general ‘ALU’ instructions

Model Components Syntax Description 25



Instructions

Instructions represent ‘individually decodable’ units
• Somewhat flexible...
• But decode as much as possible at decode time!

• i.e., avoid general ‘ALU’ instructions

Model Components Syntax Description 25



Instructions

Instructions represent ‘individually decodable’ units
• Somewhat flexible...
• But decode as much as possible at decode time!
• i.e., avoid general ‘ALU’ instructions

Model Components Syntax Description 25



Instructions

AC_ISA(riscv)
{

ac_format rtype = "%funct7:7 %rs2:5 %rs1:5 %funct3:3 %rd:5 %opcode:7";

ac_instr<rtype> add;

}

Model Components Syntax Description 26



Decoding

Let’s consider an example from RISC-V:

RISC-V R-Type

RISC-V ADD

funct7 0b0000000
funct3 0b000
opcode 0b0110011

add.set_decoder(funct7=0x0, funct3=0x0, opcode=0x33);

Model Components Syntax Description 27



Decoding

Let’s consider an example from RISC-V:
RISC-V R-Type

RISC-V ADD

funct7 0b0000000
funct3 0b000
opcode 0b0110011

add.set_decoder(funct7=0x0, funct3=0x0, opcode=0x33);

Model Components Syntax Description 27



Decoding

Let’s consider an example from RISC-V:
RISC-V R-Type

RISC-V ADD

funct7 0b0000000
funct3 0b000
opcode 0b0110011

add.set_decoder(funct7=0x0, funct3=0x0, opcode=0x33);

Model Components Syntax Description 27



Decoding

Let’s consider an example from RISC-V:
RISC-V R-Type

RISC-V ADD

funct7 0b0000000
funct3 0b000
opcode 0b0110011

add.set_decoder(funct7=0x0, funct3=0x0, opcode=0x33);

Model Components Syntax Description 27



Decoding

Let’s consider an example from RISC-V:
RISC-V R-Type

RISC-V ADD

funct7 0b0000000
funct3 0b000
opcode 0b0110011

add.set_decoder(funct7=0x0, funct3=0x0, opcode=0x33);

Model Components Syntax Description 27



Decoding

AC_ISA(riscv)
{

ac_format rtype = "%funct7:7 %rs2:5 %rs1:5 %funct3:3 %rd:5 %opcode:7";

ac_instr<rtype> add;

isa_ctor(riscv)
{

add.set_decoder(funct7=0x0, funct=0x0, opcode=0x33);

}

}

Model Components Syntax Description 28



Branch Metadata

Used to indicate which instructions can change the PC
• Is an instruction an end-of-block?
• Is it a direct jump? What is it’s target?
• Is it an indirect jump?

Can also be used for various optimisations.3

3LCTES’14, http://doi.acm.org/10.1145/2666357.2597810
Model Components Syntax Description 29

http://doi.acm.org/10.1145/2666357.2597810


Semantics Description

System

ARM
Thumb

r0
r1
r2
r3

LR
PC

Syntax

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

Semantics

add ldr

Model Components Semantics Description 30



GenC

C-like language used to implement instruction behaviours
• C-like syntax
• Only basic types supported
• Vector types and operations supported natively
• Reference parameters are supported

Model Components Semantics Description 31



Architectural Manipulation

Processor state is manipulated using built-in functions
• Register accesses
• Memory access
• Privilege/ISA modes
• Floating Point Environment

Model Components Semantics Description 32



Register Access

Built-in functions available:
slot_type read_register(slot_name)
reg_type read_register_bank(bank_name, index)

void write_register(slot_name, slot_type)
void write_register_bank(bank_name, index, reg_type)

slot_type depends on the type specified in the System
Description

Model Components Semantics Description 33



Memory Access

void mem_read_[8,16,32,64](address_type, uint[8,16,32,64]&)
void mem_write_[8,16,32,64](address_type, uint[8,16,32,64])

void mem_read_[8,16,32,64]_user(address_type, uint[8,16,32,64]&)
void mem_write_[8,16,32,64]_user(address_type, uint[8,16,32,64])

‘user’ variants are used in full-system simulation, where certain
kernel-mode memory instructions (ldrt/strt in ARM) access
memory with user privileges

Model Components Semantics Description 34



Vector Types

GenC has support for vector types and operations on values of
those types
• Vectors are declared using array notation
• Vectors can be read and written to register banks
• Arithmetic operations can be performed on vectors

Model Components Semantics Description 35



Vector Types

GenC has support for vector types and operations on values of
those types
• Vectors are declared using array notation
• Vectors can be read and written to register banks
• Arithmetic operations can be performed on vectors

float[2] fp_vector;
uint32[4] u32_vector;

Model Components Semantics Description 35



Vector Types

GenC has support for vector types and operations on values of
those types
• Vectors are declared using array notation
• Vectors can be read and written to register banks
• Arithmetic operations can be performed on vectors

fp_vector = read_register_bank(FP_SP2, inst.vm);
write_register_bank(U32_V, inst.vm, u32_vector);

Model Components Semantics Description 35



Vector Types

GenC has support for vector types and operations on values of
those types
• Vectors are declared using array notation
• Vectors can be read and written to register banks
• Arithmetic operations can be performed on vectors

// pairwise addition
result_vector = fp_vector + fp_vector;

// operation by scalar
result_vector = fp_vector + 10.0;

Model Components Semantics Description 35



Intrinsics

There are a large number of intrinsics available for either
manipulating the architectural state or performing other
operations. For example:

• take_exception - trigger an exception
• __builtin_clz - count leading zeros
• bitcast_float_u32 - ‘bitcast’ a float to a uint32

Model Components Semantics Description 36



Developing a Model

So how do we build a model from the ground up?

Developing a Model 37



Developing a Model

Model development is not too difficult but can take a long time

• ARMv7 and RISC-V models developed by students with no
prior experience

• Mostly a task of transcribing instruction pseudocode
• Can be easy to introduce subtle errors or edge cases

Developing a Model 38



Our Workflow

We generally start small and work our way up:
• Implement enough instructions for a Hello World program

• (this can be quite a lot due to startup/shutdown code)

• Then try small benchmarks (e.g., EEMBC, MyBench)
• Work up to larger benchmarks (e.g., SPEC)

The model should be tested at each step (using fuzzing/small
unit tests)

Developing a Model 39



Continuous Build/Test

We use Jenkins for continuous build.
• Commits to GenSim repo are built and tested
• All supported repos tested via Docker

Jenkins: http://jenkins.io, Docker: http://www.docker.com/
Developing a Model 40



Instruction Fuzzing

Fuzzing is a randomized testing method

• Test instructions with many inputs against a ground truth
• We use QEMU as a ground truth
• Still problems with unspecified/undefined behaviour

We have our own tools for instruction fuzzing (which are linked
from GenSim website)

Developing a Model 41



Instruction Fuzzing

Fuzzing is a randomized testing method

• Test instructions with many inputs against a ground truth

• We use QEMU as a ground truth
• Still problems with unspecified/undefined behaviour

We have our own tools for instruction fuzzing (which are linked
from GenSim website)

Developing a Model 41



Instruction Fuzzing

Fuzzing is a randomized testing method

• Test instructions with many inputs against a ground truth
• We use QEMU as a ground truth

• Still problems with unspecified/undefined behaviour

We have our own tools for instruction fuzzing (which are linked
from GenSim website)

Developing a Model 41



Instruction Fuzzing

Fuzzing is a randomized testing method

• Test instructions with many inputs against a ground truth
• We use QEMU as a ground truth
• Still problems with unspecified/undefined behaviour

We have our own tools for instruction fuzzing (which are linked
from GenSim website)

Developing a Model 41



Instruction Fuzzing

Fuzzing is a randomized testing method

• Test instructions with many inputs against a ground truth
• We use QEMU as a ground truth
• Still problems with unspecified/undefined behaviour

We have our own tools for instruction fuzzing (which are linked
from GenSim website)

Developing a Model 41



Debugging with Tracing

Once we’re confident that our model works, we can run some
larger programs

But they might still go wrong! How do we debug this?

Developing a Model 42



Debugging with Tracing

Once we’re confident that our model works, we can run some
larger programs
But they might still go wrong! How do we debug this?

Developing a Model 42



Debugging with Tracing

We can carefully inspect a trace of the simulation and try and
see what went wrong.
• This can be quite a tedious and error-prone process
• It is usually necessary to narrow down the issue

beforehand
• Key idea is to spot errors in execution manually

• Need to be very familiar with the architecture!

Developing a Model 43



Model Optimisation

Certain code structures can lead to poor performance:
• Very complex instructions
• Non-fixed loop bounds
• ‘Hand written’ predicates
• Enablement checks (can be solved using Features)

Developing a Model 44



Model Optimisation

if(read_register(FP_ENABLED)) {
// do something

}

if(__builtin_get_feature(FP_ENABLED)) {
// do something

}

Developing a Model 45



The x86-64 Model

• The newest supported GenSim model
• Runs Linux User Mode applications
• Some SSE and x87 Support

Developing a Model 46



X86 Instruction Decoding

• x86 has a stateful instruction encoding
• This can’t be easily handled by GenSim
• We handle this by using the Intel XED library
• Instruction semantics still use GenSim

Developing a Model 47



Experiences with x86

• Biggest issue is inconsistency
• Lots of ’defined undefinedness’ makes testing tricky
• Vector performance is critical
• Otherwise handled fairly well in GenSim

Developing a Model 48



GenSim Internals

GenSim Internals 49



General Flow

System 
Description

Semantic 
Description

Syntax 
Description

C++
Sources

Makefile

GenSim

GenSim Internals 50



General Flow

GenSim

System 
Description

Semantic 
Description

Syntax 
Description

Frontend

C++
Sources

Makefile

Middle-End Backend

GenSim Internals 50



Frontend

System 
Description

Semantic 
Description

Syntax 
Description

ANTLR
Parser

ANTLR
Grammar

High-Level
IR

SSA

GenSim Internals 51



Middle-End

SSA Annotated
SSA

Optimisation Partial 
Evaluation

DAC’13: https://doi.org/10.1145/2463209.2488760
GenSim Internals 52

https://doi.org/10.1145/2463209.2488760


Back-Ends

Annotated
SSA

Backend
Generators

Architecture
Descriptor

Decoder

Interpreter

DBT 
Frontend

C++
Sources

GenSim Internals 53



Recap

To conclude:
• We’ve gone over the available models
• Looked at the components of a model
• I’ve shared some experiences building models
• Briefly covered the internal flow of GenSim

Conclusion 54



Conclusion

Thanks for coming!
Any Questions?

harry.wagstaff@gmail.com
general@gensim.org

Conclusion 55


	Introduction
	Overview
	Existing Models

	Model Components
	System Description
	Syntax Description
	Semantics Description

	Developing a Model
	GenSim Internals
	Conclusion

