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Introduction

Elevator Pitch
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Hands-On Peek

This tutorial includes a hands-on - participation will require a
Linux machine (several common distributions are supported).

To participate, please go to http://gensim.org/download and
install the dependencies for your particular distribution.
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GenSim History

Ongoing project from University of Edinburgh
- 2011 Arcsim Simulator

2011 - 2014 GenSim PhD Project
2014 - 2018 PAMELA Project
2018 - Open Source
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What are we doing with GenSim?

We use the GenSim toolset in the following research areas:

• Dynamic Binary Translation
• GPU Simulation
• ADL Design and Implementation
• DSP/VLIW Simulation
• Cross-architecture Virtualisation

Introduction 5



Structure of the Tutorial

• Talk 1: Introduction (1 Hour)
• Brief Introduction to Simulation
• Overview of GenSim and Tools

• Hands-On Session (90 Minutes)
• Downloading & Installing GenSim
• Using GenSim/ArchSim to perform experiments

• Talk 2: Building a Model (1 Hour)
• More detailed look at GenSim
• Future plans & Conclusion
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Instruction Set Simulation

What is Instruction Set Simulation?

• Model a partial or complete computer system
• Potentially add instrumentation or perform analysis
• May be timing accurate

Note that this also covers associated technologies!
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Instruction Set Simulation

Instruction Set Simulation is used in a wide variety of contexts:

• Design Space Exploration
• Software Development
• Backwards Compatibility
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Simulation Technologies

Broadly, there are two software-based simulation technologies:

Technology Slowdown Complexity
Interpretation 1000x Low
Binary Translation 10x High

Can we get the speed of BT without the complexity?
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Example QEMU Instruction

target_long imm = sextract64(inst, 20,12);
int rs1 = extract32(inst, 15, 5);
int rd = extract32(inst, 7, 5);
TCGv source1 = tcg_temp_new();
gen_get_gpr(source1, rs1);
tcg_gen_addi_tl(source1, source1, imm);
gen_set_gpr(rd, source1);
tcg_temp_free(source1);
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Architecture Description Languages

ADLs are useful tools for systems development. They let us:

• ...describe systems at different levels of abstraction
• ...use new technologies without rewriting all of our tools
• ...separate the behaviour of tools from their implementation
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QEMU/ADL Comparison

target_long imm = sextract64(inst, 20,12);
int rs1 = extract32(inst, 15, 5);
int rd = extract32(inst, 7, 5);
TCGv source1 = tcg_temp_new();
gen_get_gpr(source1, rs1);
tcg_gen_addi_tl(source1, source1, imm);
gen_set_gpr(rd, source1);
tcg_temp_free(source1);

sint32 imm = inst.imm;
imm <<= 20;
imm >>= 20;

sint32 rs = read_register_bank(inst.rs1);

rs += imm;

write_register_bank(GPR, inst.rd, rs);
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Architecture Description Languages

We consider ADLs mostly in the context of simulation
• Low level ADLs are more suited to detailed simulation
• More abstract ADLs are better suited to fast simulation
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The GenSim ADL
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The GenSim ADL

GenSim is the name of our ADL toolset. It is designed to:

• ... be intuitive and easy to learn
• ... create high performance simulation tools1

• ... be extensible in terms of analyses

1DAC’13: https://doi.org/10.1145/2463209.2488760
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GenSim Toolflow

System 
Description

Semantic 
Description

Syntax 
Description

GenSim
C++ 
Model
Source

Model
Module

ArchSim

Target
Binary

Simulation
Outputs
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GenSim Model Components

A GenSim description consists of three components

• A ‘System’ component
• Available instruction sets
• Register file layout
• Configurable Features

ARM
Thumb

r0
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LR
PC

• A ‘Syntax’ component
• Instruction formats
• Instruction encoding

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

• A ‘Semantics’ component
• Instruction behaviours
• Exception behaviour

add ldr
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Available Models

• ARMv7-A
• ARMv8
• RISC-V
• x86-64
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Available Models

• ARMv7-A
• ARM + Thumb-2
• Some VFP and NEON
• User Mode + Full System

• ARMv8
• RISC-V
• x86-64 Raspberry Pi Model B
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Available Models

• ARMv7-A
• ARMv8

• AArch64 Only
• Some FP Support
• User Mode + Full System

• RISC-V
• x86-64 Raspberry Pi 3 Model B+
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Available Models

• ARMv7-A
• ARMv8
• RISC-V

• Core and FP
• User Mode only

• x86-64
SiFive RISC-V SBC
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Available Models

• ARMv7-A
• ARMv8
• RISC-V
• x86-64

• External decoder
• User Mode only

ADL ADLE3800SEC
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Execution Model

GenSim generally has a simplistic execution model
• Instructions have a straightforward encoding
• Instructions are executed in PC order
• Effects occur immediately
• Instructions can be predicated

Which architectures do not fit this model?
• x86 (stateful encoding)
• MIPS (delay slots)
• DSP-like architectures (delayed effects)
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The ArchSim Simulator
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The ArchSim Simulator

ArchSim is our research simulation platform. It is highly
modular and configurable.

• User Mode & Full System Simulation
• Modular in terms of processors, devices, and platforms
• High speed trace system

GenSim The ArchSim Simulator 23



Modularity

ArchSim can accept a variety of modules
• GenSim processor modules
• External devices
• Execution Engines

This allows processor models, devices, and new simulation
technologies to be developed as closed-source and still be
used by ArchSim.

GenSim The ArchSim Simulator 24



Execution Framework

ArchSim supports a variety of execution methods

ldr r0, [r1]
mov r1, r8
bl memset
sub r0, r1, r2
mov r5, r8
cmp r8, #0
beq 0x1208
add r0, r1, r3
mov r5, r7
cmp r8, #0
beq 0x1240

Fetch

Decode

Execute

Interpretation

ldr r0, [r1]
mov r1, r8
bl memset
sub r0, r1, r2
mov r5, r8
cmp r8, #0
beq 0x1208
add r0, r1, r3
mov r5, r7
cmp r8, #0
beq 0x1240

Block-based DBT Region-based DBT
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Execution Framework

System 
Description

Semantic 
Description

Syntax 
Description

GenSim

Processor Module

Module
Descriptor
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High Speed Tracing

• High performance
(>1MIPS)

• Full architectural trace
• Easily extensible
• Tools for manipulation

& visualisation
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Short Demo

(https://www.youtube.com/watch?v=aZXx17oYumc)
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The Captive Cross-Architectural Hypervisor
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The Captive Cross-Architectural Hypervisor

System 
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GenSim
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Model
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Binary

Simulation
Outputs
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The Captive Cross-Architectural Hypervisor

Alternative full-system simulation tool which uses GenSim ADL
models2

• Uses x86 virtualisation features
• Supports ARMv7 and ARMv8 (AArch64)
• Some host machine devices can also be used

2TACO: http://doi.acm.org/10.1145/2996798
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MMU Virtualisation

In full-system simulation, one of the largest performance costs
is virtual-physical address translations.

• Need to check privileges
• Perform actual address translation
• Trigger exception if necessary

Most simulators speed up this process using a software cache
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MMU Virtualisation in Captive

Captive avoids this cost by using the host MMU to perform
translations:

• The host page table is set up to mimic the guest page table
• Host privilege levels used to track guest privilege levels
• Host memory faults can be used to model guest faults
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Gem-5 ArchSim QEMU Captive
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Captive - Host Virtualisation Features

Many possible x86 features which could be used:

• Intel-VT (or AMD-V)
• Memory Protection Keys
• Process Context IDs
• Privileged Execution
• Interrupts/Exceptions
• ...
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Future Plans

GenSim is still a work in progress!

• Better support for decoding unusual/CISC architectures
• Dependent Typing
• Better documentation
• New models and platforms
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Recap

• Instruction Set Simulation is useful
• GenSim can be used to build binary translators
• Multiple supported GenSim models
• Multiple supported simulation tools
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Hands-On Session
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