
GenSim
Hands-On Session

Harry Wagstaff, Tom Spink, Bruno Bodin, Bjoern Franke

Institute for Computing Systems Architecture
University of Edinburgh

October 2018

1

Introduction

In this session, you will learn:
• How to build GenSim from source
• How to perform simulations using ArchSim
• How to collect useful information from ArchSim
• How to add to existing GenSim models

Introduction 2

Introduction

GenSim tested on the following Linux distributions:
• Ubuntu 16.04
• Ubuntu 18.04
• Fedora 26
• Fedora 27
• ArchLinux
• Debian 9.3

If you have another distribution, or another OS, you may need
to use a GenSim VM image to take part in this session.

Introduction 3

Materials

To complete this session, you will also need to simulate some
binaries. These binaries are pre-built, and can be obtained
from the GenSim Tutorial downloads section at:
http://bitbucket.org/gensim/gensim-tutorial/
downloads
Extract this archive to a directory of your choice. In this slide
deck, we’ll be referring to this directory as $(mat), e.g.,
$(mat)/running-archsim/hello

Introduction 4

http://bitbucket.org/gensim/gensim-tutorial/downloads
http://bitbucket.org/gensim/gensim-tutorial/downloads

Building GenSim

Building GenSim takes three steps:
1 Install dependencies
2 Check out GenSim source code
3 Compile

Building GenSim 5

Install dependencies

GenSim has the following dependencies, which are generally
available and can be installed with your distro’s package
manager (they may have different names):

• autoconf
• cmake
• default-jre-headless
• g++
• libantlr3c-dev
• libncurses5-dev
• make
• mercurial
• wget
• zlib1g-dev

Building GenSim 6

Check Out Source Code

GenSim source code is kept in a Mercurial repository on
BitBucket. The code can be obtained by checking out that
repository, by running the command:
hg clone http://bitbucket.org/gensim/gensim

After the repository is checked out, you can change directory
into the repository:
cd gensim

Building GenSim 7

Compile

At this point, everything should be ready for you to compile
GenSim! Simply run
make

... and a short while later GenSim should be compiled. If you
have a multicore machine and wish to use additional
compilation agents, you can run
make -j{N}

Where {N} is the number of build agents to use.

Building GenSim 8

The Built Tools

You can find the built targets in gensim/build/dist/bin:

archsim The ArchSim simulator
archsim-armv7a-user A script to run ARMv7a binaries
gensim The GenSim ADL Processing tool
TraceCat A tool to format binary trace files
TraceLess A pager for binary trace files
TracePCDiff A diff tool (based on PC) for trace files

Building GenSim 9

Getting a GenSim VM

If you can’t get GenSim to build, or don’t have access to one of
the supported Linux distributions, you can try using a
pre-prepared VirtualBox image.

Building GenSim 10

Running ArchSim

Now that everything is built, it’s time to run some simulations!
gensim/build/dist/bin/archsim-armv7a-user $(mat)/running/hello

Running ArchSim 11

Running ArchSim

Now that everything is built, it’s time to run some simulations!
gensim/build/dist/bin/archsim-armv7a-user $(mat)/running/hello

Output:
Archsim: The Edinburgh High Speed (EHS) Simulator

University of Edinburgh (c) 2017
Revision : 5979651a74c9+ tip
Configuration: "Debug (Opt)"

Hello, world!

Running ArchSim 11

Advanced Configuration

Although the default configuration is fine for straightforward
simulation, if you want to simulate other architectures or
systems then you need to call ArchSim directly.

Running ArchSim 12

Advanced Configuration

archsim-armv7a-user is a script which calls ArchSim. Let’s
have a closer look at it, and in particular the line which actually
calls ArchSim:
$ARCHSIM -m arm-user -s armv7a -l contiguous -e $ELF

Running ArchSim 13

Advanced Configuration

archsim-armv7a-user is a script which calls ArchSim. Let’s
have a closer look at it, and in particular the line which actually
calls ArchSim:
$ARCHSIM -m arm-user -s armv7a -l contiguous -e $ELF

The Emulation Model - How is the binary loaded? What happens
when an exception occurs?

Running ArchSim 13

Advanced Configuration

archsim-armv7a-user is a script which calls ArchSim. Let’s
have a closer look at it, and in particular the line which actually
calls ArchSim:
$ARCHSIM -m arm-user -s armv7a -l contiguous -e $ELF

The Guest Architecture - What guest architecture should be
used?

Running ArchSim 13

Advanced Configuration

archsim-armv7a-user is a script which calls ArchSim. Let’s
have a closer look at it, and in particular the line which actually
calls ArchSim:
$ARCHSIM -m arm-user -s armv7a -l contiguous -e $ELF

The Memory Model - How should underlying memory be
stored?

Running ArchSim 13

Advanced Configuration

archsim-armv7a-user is a script which calls ArchSim. Let’s
have a closer look at it, and in particular the line which actually
calls ArchSim:
$ARCHSIM -m arm-user -s armv7a -l contiguous -e $ELF

The target binary - which binary should be loaded for simulation?

Running ArchSim 13

Advanced Configuration

Let’s try running with a custom configuration. We’ll add the
--verbose flag, which will cause simulation information to be
printed:
archsim -m arm-user -s armv7a -l contiguous --verbose -e $(mat)/running/hello

This will cause some simulation statistics to be printed,
including speed, instruction count, simulation time, etc.

Running ArchSim 14

RISC-V

GenSim also has a RISC-V model. We can use this model by
changing the command-line flags:
archsim -m riscv-user -s riscv -l contiguous -e $(mat)/running/hello-riscv

Running ArchSim 15

Obtaining Simulation Statistics

ArchSim provides features to collect simulation statistics in a
variety of ways. We’ve already seen how basic statistics can be
collected, but they’re mainly about the simulator rather than the
simulated binary.
Additional profiling features include histograms of:

• Instruction types executed
• PC frequencies
• Instruction code frequencies

Profiling 16

Profiling Information

These histograms can be obtained with the following
command-line flags:

• Instruction types: --verbose --profile

• PC frequencies: --verbose --profile-pc

• Instruction codes: --verbose --profile-ir

The IR and PC histograms are written out to ir_freq.out and
pc_freq.out.

Profiling 17

Tracing

If these features do not provide enough detail, then a full trace
can be obtained and processed.
The following flags can be added to enable tracing:
--trace --trace-file $(output-file)

This will write a trace out to a file called $(output-file).

Profiling 18

Tracing

The TraceCat and TraceLess tools can be used to view the
traces. Alternatively, a custom tool can be used to perform
other analysis or trace-based simulation.
build/dist/bin/TraceLess $(trace file)

This tool behaves like less (although not quite as feature rich)

Profiling 19

Modifying an Existing Model

Now, let’s try modifying the RISC-V model.

Modifying an Existing Model 20

The New Instruction

Let’s add an integer dot product instruction to the instruction
set. The instruction will operate on two pairs of registers:
$(rd) = $(rs1) * $(rs1+1) + $(rs2) * $(rs2 + 1)

RISC-V has instruction space reserved for customisation,
which this instruction will use.

Modifying an Existing Model 21

Encoding the Instruction

First, we need to settle on the encoding for the instruction. The
32-bit RISC-V opcode space is divided into 28 subspaces,
several of which are reserved for custom extensions.

We will use the custom-0 space, which uses the 0b0001011
opcode.
We’ll use the R-Type format, since we’re doing an operation on
registers.
To keep things simple, we’ll fill 0s in to the instruction function
fields.

Modifying an Existing Model 22

Instruction Syntax

Let’s start editing the model! Open up
gensim/models/risc-v/riscv_isa.ac.
This is the Syntax Description file for the base RISC-V
instruction set. To keep things simple, we’ll edit this file rather
than creating a new file for our extension.

Modifying an Existing Model 23

Instruction Syntax - Adding the new Instruction

If you scroll to line 39, you’ll find a section of the file which
declares which instructions are available in the instruction set.
Each instruction is attached for a format, and they are declared
in a ‘template’-like manner.
Line 52 specifies the instructions for the R-Type format. Add a
dotproduct entry to the end of this line, like this:
ac_instr<Type_R> add,sub,sll,slt,sltu,xor,srl,sra,or,and,dotproduct;

Modifying an Existing Model 24

Instruction Syntax - Declaring the Instruction Behaviour

From Line 74, the instruction semantic behaviours are declared.
We need to add a new line for our dotproduct instruction
ac_behaviour dotproduct;

Modifying an Existing Model 25

Instruction Syntax - Decoding the new Instruction

From Line 124, the decoding for each instruction is described.
For our new dotproduct instruction, we’ll need to add a couple
of new lines. Add the following lines to the section (the position
doesn’t matter):
dotproduct.set_decoder(opcode=0x0b, funct3=0x0, funct7=0x0);
dotproduct.set_behaviour(dotproduct);

Modifying an Existing Model 26

The Instruction Semantics

That’s all we need to decode the instruction. Now, we need to
specify the semantics of the instruction. Open
gensim/models/risc-v/execute.riscv.

In this file, the semantic behaviour of each RISC-V instruction is
specified.

Modifying an Existing Model 27

The Instruction Semantics

Add the following text to the start of the file:
execute(dotproduct) {

uint32 rs1a = read_register_bank(GPR, inst.rs1);
uint32 rs1b = read_register_bank(GPR, inst.rs1+1);
uint32 rs2a = read_register_bank(GPR, inst.rs2);
uint32 rs2b = read_register_bank(GPR, inst.rs2+1);

uint32 result = (rs1a * rs1b) + (rs2a * rs2b);

write_register_bank(GPR, inst.rd, result);
}

Modifying an Existing Model 28

Building the model

We’ve now added enough to the model to decode and execute
our new instruction, so we need to rebuild the model. Go to the
root of the gensim repository and run make. If the system
builds with no errors, then you can now run simulations using
the new instruction!

Modifying an Existing Model 29

Using The Instruction

Now that we have built the model containing the new
instruction, we can run a program which uses it! The
$(mat)/riscv-dotproduct directory contains an example
program which uses this instruction. We can run this program
to test our new instruction:
archsim -s riscv -m riscv-user -l contiguous -e $(mat)/riscv-dotproduct/dotproduct

Operands: (1804289383, 846930886) (1681692777, 1714636915)
C Result: 4088578517
Asm Result: 4088578517

Modifying an Existing Model 30

Recap

To summarize, we’ve:
• Checked out and built GenSim
• Run some simple simulations using ArchSim
• Added a new instruction to the RISC-V model
• Run a binary which uses the new instruction

Conclusion 31

Conclusion

Now that you’ve had a bit of experience using GenSim and
ArchSim, we’ll look in more detail at the individual components
of a GenSim model.

Conclusion 32

	Introduction
	Building GenSim
	Running ArchSim
	Profiling
	Modifying an Existing Model
	Conclusion

