
GenSim
A Toolset for Binary Translation and Emulation

Harry Wagstaff, Tom Spink, Bruno Bodin, Bjoern Franke

Institute for Computing Systems Architecture
University of Edinburgh

October 2018

1



Introduction

Elevator Pitch

Introduction 2



Hands-On Peek

This tutorial includes a hands-on - participation will require a
Linux machine (several common distributions are supported).

To participate, please go to http://gensim.org/download and
install the dependencies for your particular distribution.

Introduction 3



GenSim History

Ongoing project from University of Edinburgh
- 2011 Arcsim Simulator

2011 - 2014 GenSim PhD Project
2014 - 2018 PAMELA Project
2018 - Open Source

Introduction 4



What are we doing with GenSim?

We use the GenSim toolset in the following research areas:

• Dynamic Binary Translation
• GPU Simulation
• ADL Design and Implementation
• DSP/VLIW Simulation
• Cross-architecture Virtualisation

Introduction 5



Structure of the Tutorial

• Talk 1: Introduction (1 Hour)
• Brief Introduction to Simulation
• Overview of GenSim and Tools

• Hands-On Session (90 Minutes)
• Downloading & Installing GenSim
• Using GenSim/ArchSim to perform experiments

• Talk 2: Building a Model (1 Hour)
• More detailed look at GenSim
• Future plans & Conclusion

Introduction 6



In This Talk

Introduction

Instruction Set Simulation
Introduction to Simulation
Architecture Description Languages

GenSim
The GenSim ADL
The ArchSim Simulator
Captive

Conclusion

Introduction 7



Instruction Set Simulation

What is Instruction Set Simulation?

• Model a partial or complete computer system
• Potentially add instrumentation or perform analysis
• May be timing accurate

Note that this also covers associated technologies!

Instruction Set Simulation Introduction to Simulation 8



Instruction Set Simulation

What is Instruction Set Simulation?

• Model a partial or complete computer system

• Potentially add instrumentation or perform analysis
• May be timing accurate

add r0, r1, r2
ldr r1, [r0, #10]
mov r8, r9
str r10, [r8, #4]!
bl memcpy
mov r0, r4
ldr r4, [r8]
add r0, r1, r2
ldr r1, [r0, #10]
mov r8, r9
str r10 [r8 #4]!

12

3

6

9

Note that this also covers associated technologies!

Instruction Set Simulation Introduction to Simulation 8



Instruction Set Simulation

What is Instruction Set Simulation?

• Model a partial or complete computer system
• Potentially add instrumentation or perform analysis

• May be timing accurate

add r0, r1, r2
ldr r1, [r0, #10]
mov r8, r9
str r10, [r8, #4]!
bl memcpy
mov r0, r4
ldr r4, [r8]
add r0, r1, r2
ldr r1, [r0, #10]
mov r8, r9
str r10 [r8 #4]!

12

3

6

9

Note that this also covers associated technologies!

Instruction Set Simulation Introduction to Simulation 8



Instruction Set Simulation

What is Instruction Set Simulation?

• Model a partial or complete computer system
• Potentially add instrumentation or perform analysis
• May be timing accurate

add r0, r1, r2
ldr r1, [r0, #10]
mov r8, r9
str r10, [r8, #4]!
bl memcpy
mov r0, r4
ldr r4, [r8]
add r0, r1, r2
ldr r1, [r0, #10]
mov r8, r9
str r10 [r8 #4]!

12

3

6

9

Note that this also covers associated technologies!

Instruction Set Simulation Introduction to Simulation 8



Instruction Set Simulation

What is Instruction Set Simulation?

• Model a partial or complete computer system
• Potentially add instrumentation or perform analysis
• May be timing accurate

add r0, r1, r2
ldr r1, [r0, #10]
mov r8, r9
str r10, [r8, #4]!
bl memcpy
mov r0, r4
ldr r4, [r8]
add r0, r1, r2
ldr r1, [r0, #10]
mov r8, r9
str r10 [r8 #4]!

12

3

6

9

Note that this also covers associated technologies!

Instruction Set Simulation Introduction to Simulation 8



Instruction Set Simulation

Instruction Set Simulation is used in a wide variety of contexts:

• Design Space Exploration
• Software Development
• Backwards Compatibility

Instruction Set Simulation Introduction to Simulation 9



Instruction Set Simulation

Instruction Set Simulation is used in a wide variety of contexts:
• Design Space Exploration

• Software Development
• Backwards Compatibility

Instruction Set Simulation Introduction to Simulation 9



Instruction Set Simulation

Instruction Set Simulation is used in a wide variety of contexts:
• Design Space Exploration
• Software Development

• Backwards Compatibility

Instruction Set Simulation Introduction to Simulation 9



Instruction Set Simulation

Instruction Set Simulation is used in a wide variety of contexts:
• Design Space Exploration
• Software Development
• Backwards Compatibility

Instruction Set Simulation Introduction to Simulation 9



Simulation Technologies

Broadly, there are two software-based simulation technologies:

Technology Slowdown Complexity
Interpretation 1000x Low
Binary Translation 10x High

Can we get the speed of BT without the complexity?

Instruction Set Simulation Introduction to Simulation 10



Simulation Technologies

Broadly, there are two software-based simulation technologies:

Technology Slowdown Complexity
Interpretation 1000x Low
Binary Translation 10x High

Can we get the speed of BT without the complexity?

Instruction Set Simulation Introduction to Simulation 10



Simulation Technologies

Broadly, there are two software-based simulation technologies:

Technology Slowdown Complexity
Interpretation 1000x Low
Binary Translation 10x High

Can we get the speed of BT without the complexity?

Instruction Set Simulation Introduction to Simulation 10



Example QEMU Instruction

target_long imm = sextract64(inst, 20,12);
int rs1 = extract32(inst, 15, 5);
int rd = extract32(inst, 7, 5);
TCGv source1 = tcg_temp_new();
gen_get_gpr(source1, rs1);
tcg_gen_addi_tl(source1, source1, imm);
gen_set_gpr(rd, source1);
tcg_temp_free(source1);

Instruction Set Simulation Introduction to Simulation 11



Architecture Description Languages

ADLs are useful tools for systems development. They let us:

• ...describe systems at different levels of abstraction
• ...use new technologies without rewriting all of our tools
• ...separate the behaviour of tools from their implementation

ALU

Regs

LSU

add

sub

jump

...

r0 = 5

r1 = 3

PC = 2

Old te
ch

New Tech

Source

Slow
Tool

Fast
Tool

add ldr

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

ARM
Thumb

r0
r1
r2
r3

LR
PC

GenSim Model Simulator

Execution
Engine

DBT Frontend

Memory
System

Instruction Set Simulation Architecture Description Languages 12



Architecture Description Languages

ADLs are useful tools for systems development. They let us:
• ...describe systems at different levels of abstraction

• ...use new technologies without rewriting all of our tools
• ...separate the behaviour of tools from their implementation

ALU

Regs

LSU

add

sub

jump

...

r0 = 5

r1 = 3

PC = 2

Old te
ch

New Tech

Source

Slow
Tool

Fast
Tool

add ldr

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

ARM
Thumb

r0
r1
r2
r3

LR
PC

GenSim Model Simulator

Execution
Engine

DBT Frontend

Memory
System

Instruction Set Simulation Architecture Description Languages 12



Architecture Description Languages

ADLs are useful tools for systems development. They let us:
• ...describe systems at different levels of abstraction
• ...use new technologies without rewriting all of our tools

• ...separate the behaviour of tools from their implementation

ALU

Regs

LSU

add

sub

jump

...

r0 = 5

r1 = 3

PC = 2

Old te
ch

New Tech

Source

Slow
Tool

Fast
Tool

add ldr

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

ARM
Thumb

r0
r1
r2
r3

LR
PC

GenSim Model Simulator

Execution
Engine

DBT Frontend

Memory
System

Instruction Set Simulation Architecture Description Languages 12



Architecture Description Languages

ADLs are useful tools for systems development. They let us:
• ...describe systems at different levels of abstraction
• ...use new technologies without rewriting all of our tools
• ...separate the behaviour of tools from their implementation

ALU

Regs

LSU

add

sub

jump

...

r0 = 5

r1 = 3

PC = 2

Old te
ch

New Tech

Source

Slow
Tool

Fast
Tool

add ldr

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

ARM
Thumb

r0
r1
r2
r3

LR
PC

GenSim Model Simulator

Execution
Engine

DBT Frontend

Memory
System

Instruction Set Simulation Architecture Description Languages 12



QEMU/ADL Comparison

target_long imm = sextract64(inst, 20,12);
int rs1 = extract32(inst, 15, 5);
int rd = extract32(inst, 7, 5);
TCGv source1 = tcg_temp_new();
gen_get_gpr(source1, rs1);
tcg_gen_addi_tl(source1, source1, imm);
gen_set_gpr(rd, source1);
tcg_temp_free(source1);

sint32 imm = inst.imm;
imm <<= 20;
imm >>= 20;

sint32 rs = read_register_bank(inst.rs1);

rs += imm;

write_register_bank(GPR, inst.rd, rs);

Instruction Set Simulation Architecture Description Languages 13



Gem-5 ArchSim QEMU

Pe
rf

o
rm

a
n
ce

<5 MIPS

100s MIPS

Instruction Set Simulation Architecture Description Languages 14



Architecture Description Languages

We consider ADLs mostly in the context of simulation
• Low level ADLs are more suited to detailed simulation
• More abstract ADLs are better suited to fast simulation

ALU

Regs

LSU

add
sub
jump
...

r0 = 5
r1 = 3
PC = 2

Instruction Set Simulation Architecture Description Languages 15



The GenSim ADL

GenSim The GenSim ADL 16



The GenSim ADL

GenSim is the name of our ADL toolset. It is designed to:

• ... be intuitive and easy to learn
• ... create high performance simulation tools1

• ... be extensible in terms of analyses

1DAC’13: https://doi.org/10.1145/2463209.2488760
GenSim The GenSim ADL 17

https://doi.org/10.1145/2463209.2488760


GenSim Toolflow

System 
Description

Semantic 
Description

Syntax 
Description

GenSim
C++ 
Model
Source

Model
Module

ArchSim

Target
Binary

Simulation
Outputs

GenSim The GenSim ADL 18



GenSim Model Components

A GenSim description consists of three components

• A ‘System’ component
• Available instruction sets
• Register file layout
• Configurable Features

ARM
Thumb

r0
r1
r2
r3

LR
PC

• A ‘Syntax’ component
• Instruction formats
• Instruction encoding

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

• A ‘Semantics’ component
• Instruction behaviours
• Exception behaviour

add ldr

GenSim The GenSim ADL 19



GenSim Model Components

A GenSim description consists of three components
• A ‘System’ component

• Available instruction sets
• Register file layout
• Configurable Features

ARM
Thumb

r0
r1
r2
r3

LR
PC

• A ‘Syntax’ component
• Instruction formats
• Instruction encoding

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

• A ‘Semantics’ component
• Instruction behaviours
• Exception behaviour

add ldr

GenSim The GenSim ADL 19



GenSim Model Components

A GenSim description consists of three components
• A ‘System’ component

• Available instruction sets
• Register file layout
• Configurable Features

ARM
Thumb

r0
r1
r2
r3

LR
PC

• A ‘Syntax’ component
• Instruction formats
• Instruction encoding

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

• A ‘Semantics’ component
• Instruction behaviours
• Exception behaviour

add ldr

GenSim The GenSim ADL 19



GenSim Model Components

A GenSim description consists of three components
• A ‘System’ component

• Available instruction sets
• Register file layout
• Configurable Features

ARM
Thumb

r0
r1
r2
r3

LR
PC

• A ‘Syntax’ component
• Instruction formats
• Instruction encoding

fmt_dpi = "%cond:4 %rd:3..."

add sub ldr

• A ‘Semantics’ component
• Instruction behaviours
• Exception behaviour

add ldr

GenSim The GenSim ADL 19



Available Models

• ARMv7-A
• ARMv8
• RISC-V
• x86-64

GenSim The GenSim ADL 20



Available Models

• ARMv7-A
• ARM + Thumb-2
• Some VFP and NEON
• User Mode + Full System

• ARMv8
• RISC-V
• x86-64 Raspberry Pi Model B

GenSim The GenSim ADL 20



Available Models

• ARMv7-A
• ARMv8

• AArch64 Only
• Some FP Support
• User Mode + Full System

• RISC-V
• x86-64 Raspberry Pi 3 Model B+

GenSim The GenSim ADL 20



Available Models

• ARMv7-A
• ARMv8
• RISC-V

• Core and FP
• User Mode only

• x86-64
SiFive RISC-V SBC

GenSim The GenSim ADL 20



Available Models

• ARMv7-A
• ARMv8
• RISC-V
• x86-64

• External decoder
• User Mode only

ADL ADLE3800SEC

GenSim The GenSim ADL 20



Execution Model

GenSim generally has a simplistic execution model
• Instructions have a straightforward encoding
• Instructions are executed in PC order
• Effects occur immediately
• Instructions can be predicated

Which architectures do not fit this model?
• x86 (stateful encoding)
• MIPS (delay slots)
• DSP-like architectures (delayed effects)

GenSim The GenSim ADL 21



Execution Model

GenSim generally has a simplistic execution model
• Instructions have a straightforward encoding
• Instructions are executed in PC order
• Effects occur immediately
• Instructions can be predicated

Which architectures do not fit this model?
• x86 (stateful encoding)
• MIPS (delay slots)
• DSP-like architectures (delayed effects)

GenSim The GenSim ADL 21



The ArchSim Simulator

GenSim The ArchSim Simulator 22



The ArchSim Simulator

ArchSim is our research simulation platform. It is highly
modular and configurable.

• User Mode & Full System Simulation
• Modular in terms of processors, devices, and platforms
• High speed trace system

GenSim The ArchSim Simulator 23



Modularity

ArchSim can accept a variety of modules
• GenSim processor modules
• External devices
• Execution Engines

This allows processor models, devices, and new simulation
technologies to be developed as closed-source and still be
used by ArchSim.

GenSim The ArchSim Simulator 24



Execution Framework

ArchSim supports a variety of execution methods

ldr r0, [r1]
mov r1, r8
bl memset
sub r0, r1, r2
mov r5, r8
cmp r8, #0
beq 0x1208
add r0, r1, r3
mov r5, r7
cmp r8, #0
beq 0x1240

Fetch

Decode

Execute

Interpretation

ldr r0, [r1]
mov r1, r8
bl memset
sub r0, r1, r2
mov r5, r8
cmp r8, #0
beq 0x1208
add r0, r1, r3
mov r5, r7
cmp r8, #0
beq 0x1240

Block-based DBT Region-based DBT

GenSim The ArchSim Simulator 25



Execution Framework

System 
Description

Semantic 
Description

Syntax 
Description

GenSim

Processor Module

Module
Descriptor

Arch.
Descriptor

ISA
Descriptors

DBT
Frontend

ArchSim

Module
Loader

Thread
Interface

Execution
Engines

GenSim The ArchSim Simulator 26



High Speed Tracing

• High performance
(>1MIPS)

• Full architectural trace
• Easily extensible
• Tools for manipulation

& visualisation

GenSim The ArchSim Simulator 27



Short Demo

(https://www.youtube.com/watch?v=aZXx17oYumc)

GenSim The ArchSim Simulator 28

https://www.youtube.com/watch?v=aZXx17oYumc


The Captive Cross-Architectural Hypervisor

GenSim Captive 29



The Captive Cross-Architectural Hypervisor

System 
Description

Semantic 
Description

Syntax 
Description

GenSim
C++ 
Model
Source

Model
Module

Captive

Target
Binary

Simulation
Outputs

GenSim Captive 30



The Captive Cross-Architectural Hypervisor

Alternative full-system simulation tool which uses GenSim ADL
models2

• Uses x86 virtualisation features
• Supports ARMv7 and ARMv8 (AArch64)
• Some host machine devices can also be used

2TACO: http://doi.acm.org/10.1145/2996798
GenSim Captive 31

http://doi.acm.org/10.1145/2996798


MMU Virtualisation

In full-system simulation, one of the largest performance costs
is virtual-physical address translations.

• Need to check privileges
• Perform actual address translation
• Trigger exception if necessary

Most simulators speed up this process using a software cache

GenSim Captive 32



MMU Virtualisation in Captive

Captive avoids this cost by using the host MMU to perform
translations:

• The host page table is set up to mimic the guest page table
• Host privilege levels used to track guest privilege levels
• Host memory faults can be used to model guest faults

GenSim Captive 33



Gem-5 ArchSim QEMU Captive

Pe
rf

o
rm

a
n
ce

<5 MIPS

100s MIPS

1000 MIPS

GenSim Captive 34



Captive - Host Virtualisation Features

Many possible x86 features which could be used:

• Intel-VT (or AMD-V)
• Memory Protection Keys
• Process Context IDs
• Privileged Execution
• Interrupts/Exceptions
• ...

GenSim Captive 35



Future Plans

GenSim is still a work in progress!

• Better support for decoding unusual/CISC architectures
• Dependent Typing
• Better documentation
• New models and platforms

Conclusion 36



Recap

• Instruction Set Simulation is useful
• GenSim can be used to build binary translators
• Multiple supported GenSim models
• Multiple supported simulation tools

Conclusion 37



Recap

• Instruction Set Simulation is useful

• GenSim can be used to build binary translators
• Multiple supported GenSim models
• Multiple supported simulation tools

Conclusion 37



Recap

• Instruction Set Simulation is useful
• GenSim can be used to build binary translators

• Multiple supported GenSim models
• Multiple supported simulation tools

Conclusion 37



Recap

• Instruction Set Simulation is useful
• GenSim can be used to build binary translators
• Multiple supported GenSim models

• Multiple supported simulation tools

Conclusion 37



Recap

• Instruction Set Simulation is useful
• GenSim can be used to build binary translators
• Multiple supported GenSim models
• Multiple supported simulation tools

Conclusion 37



Hands-On Session

Conclusion 38


	Introduction
	Instruction Set Simulation
	Introduction to Simulation
	Architecture Description Languages

	GenSim
	The GenSim ADL
	The ArchSim Simulator
	Captive

	Conclusion

