Institute for Computing
Systems Architecture

icsa

Building a GenSim Model

Harry Wagstaff, Tom Spink, Bruno Bodin, Bjoern Franke

Institute for Computing Systems Architecture
University of Edinburgh

October 2018

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Introduction

In this talk:
¢ Slightly more detailed look at existing models
e Overview of components of a GenSim description
¢ Tools and techniques for producing a model

Introduction Overview

. \'"g THE UNIVERSITY of EDINBURGH
@ informatics

icsa

Institute for Computing
Systems Architecture

Introduction
Overview
Existing Models
Model Components
System Description
Syntax Description
Semantics Description
Developing a Model
GenSim Internals

Conclusion

Introduction Overview

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Existing Models

Four models currently actively supported:
e ARMv7
e ARMv8
e RISC-V
o x86-64

Introduction Existing Models

Institute for Computing
Systems Architecture

@ informatics icsa

Existing Models

Four models currently actively supported:

e ARMv7

e ARMv8

e RISC-V

e x86-64
But several other models have been worked on as side/student
projects:

e PowerPC (MSc project)

e MIPS (Side project)

e TI C6x DSP (Undergraduate internship)

e GPU (PhD project)

Introduction Existing Models

Institute for Computing
Systems Architecture

@ informatics icsa

ARMvV7 Model

Full ARM Core Instruction Set

Thumb and Thumb-2 Support

Some NEON and VFP Support

User Mode and Full System (via Archsim)

Introduction Existing Models

Institute for Computing
Systems Architecture

<2 P E UNIVERSIT INBURGH H
@ informatics ICSQA

ARMv8 Model

e Full AArch64 Instruction Set
e Some FP and Vector Support
e Full-System Support (via Captive)

Introduction Existing Models

Institute for Computing
Systems Architecture

SRR Ti: UNIVERSITY of EDINBURGH L]
€ informatics ICSQ

RISC-V Model

e Full Core Instruction Set
e Some FP Support
e User Mode Only

Introduction Existing Models

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

x86-64 Model

e User mode only
e Uses Intel XED for decoding
e Under development, runs SPEC

Introduction Existing Models

@ informatics

L] . .
Icsa ‘ Institute for Computing
Systems Architecture

Model Components

System Syntax
E’I';:umb 1 ;‘;’ fmt_dpi = "%cond:4 %rd:3..."

) add sub Idr

Gy
T

Model Components

Semantics

. . THE UNIVERSITY of EDINBURGH
@ informatics

L] . .
Icsa ‘ Institute for Computing
Systems Architecture

System Description

System Syntax
DAL 1 L} fmt_dpi = "%cond:4 %rd:3..."
Thumb 53 add sub Idr

Model Components ~ System Description

Semantics

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Institute for Computing

Systems Architecture

System Description

Three main components to system description:
e Register Files
e Features
e Instruction Sets

Model Components System Description

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Register File

GenSim treats the register file as a set of flat memory regions
(spaces) with aliased ‘views’.

Model Components ~ System Description 12

THE UNIVERSITY of EDINBURGH °
informatics icsa |

Institute for Computing

Systems Architecture

Register File

ARM GPR Bank

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

RB

64 Bytes

ac_regspace (64) {
[pank RB (uint32, 0, 16, 4, I, 4, 4);]
slot PC (uint32, 4, 60) PC;
slot SP (uint32, 4, 52) SP;

Model Components ~ System Description

. . THE UNIVERSITY of EDINBURGH
@ informatics

L] . .
Icsa ‘ Institute for Computing
Systems Architecture

Register File

ARM GPR Bank

64 Bytes

SP

PC

ac_regspace (64) {
bank RB (uint32,

0,

16,

4, 1, 4, 4);

slot PC (uint32,
slot SP (uint32,

4,
4,

60)
52)

EE)
SR

Model Components ~ System Description

THE UNIVERSITY of EDINBURGH °
informatics icsa |

Institute for Computing

Systems Architecture
Register File - Vectors
ARM NEON Bank
S0 S1 52 S3
54 S5 S6 s7
g
&
ac_regspace (256) {
[cank ¥P_SP (float, 0, 32, 4, 1, 4, 4);
bank FP_DP (double, 0, 32, 8, 1, 8, 8);
bank FP_Q (float, 0, 16, 16, 4, 4, 4);
}
Model Components ~ System Description 14

THE UNIVERSITY of EDINBURGH

icsa |

Institute for Computing

informatics Systems Architecture
Register File - Vectors
ARM NEON Bank
DO D1
D2 D3
8
&
ac_regspace (256) {
bank FP_SP (float, 0, 32, 4, 1, 4, 4);
[bank FP_DP (double, 0, 32, 8, 1, 8, 8)jl
bank FP_Q (float, 0, 16, 16, 4, 4, 4);
}
Model Components ~ System Description 14

L
THE UNIVERSITY of EDINBURGHH Institute for Computing
informatics lcsa ‘ Systems Architecture

Register File - Vectors

ARM NEON Bank

Qo0
Q1

256 Bytes

ac_regspace (256) {
bank FP_SP (float, 0, 32, 4, 1, 4, 4);
bank FP_DP (double, 0, 32, 8, 1, 8, 8);
[oank FP_Q (float, 0, 16, 16, 4, 4, 4); |

Model Components ~ System Description 14

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Features

Primarily performance feature - give hints to simulator about
things which change infrequently.

e Actual processor features
e FPU Enablement

e Privilege mode

e Configuration info

Model Components System Description

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Instruction Sets

Which instruction sets are available to this architecture?
¢ Allows for instruction set switching
e e.9. ARM < Thumb'

'SAMOS'15: https://doi.org/10.1109/SAMOS.2015.7363665

Model Components System Description 16

https://doi.org/10.1109/SAMOS.2015.7363665

. . THE UNIVERSITY of EDINBURGH
@ informatics

L] . .
Icsa ‘ Institute for Computing
Systems Architecture

Syntax Description

fmt_dpi = "%cond:4 %rd:3..."

Syntax

System
E,I';:umb : ES

Model Components ~ Syntax Description

add

sub

Idr

Semantics

. \'"g THE UNIVERSITY of EDINBURGH
@ informatics

icsa |

Institute for Computing

Systems Architecture

Overview

How are instructions encoded?
How do we decode them?

Model Components Syntax Description

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

GenSim Assumptions

GenSim currently makes a few assumptions about instruction
encoding:

e Instruction decoding is stateless
¢ Instructions are standalone
e Instructions execute in PC order

Model Components Syntax Description 19

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

GenSim Assumptions

However, GenSim does have native support for the following
features:

e Instruction Predication
e Variable Length Instructions

Model Components Syntax Description 20

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Formats

Formats described using printf-like string
o Inspired by ArchC?
e Specify constant and variable fields

2Developed by UNICAMP, www .archc.org

Model Components ~ Syntax Description 21

www.archc.org

Ve L]
. THE UNIVERSITY 5 EDINBURGHH Institute for Computing
- informatics Icsa ‘ Systems Architecture

Formats

ARM Data-Processing (Register) Format

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [0 0 O] op [[imm5 Jop2]0]

RISC-V R-Type
31 27 26 25 24 20 19 15 14 12 11 6 0
funct7 [rs2 [rsl | funct3 | rd | opcode | R-type
—= —= 1 - -

— T = = g T

Model Components ~ Syntax Description 22

. THE UNIVERSITY of EDINBURGH

@ informatics

Institute for Computing

icsa |

Systems Architecture
Formats
RISC-V R-Type
31 27 26 25 24 20 19 15 14 12 11 7 6 0
[funct7 [rs2 [rsl [funct3 | rd [opcode | R-type
"$funct7:7 %$rs2:5 %$rsl:5 $funct3:3 %$rd:5 %$opcode:7";
Model Components Syntax Description 23

ST THE UNIVERSITY of EDINBURGH 1 ‘ Institute for Computi
. . putin,
@ informatics Icsa Systems Architecture ¢
Formats

AC_ISA(riscv)

{
ac_format rtype = "%$funct7:7 %rs2:5 %rsl:5 %funct3:3 %rd:5 %opcode:7";
}

Model Components ~ Syntax Description 24

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA ‘

Institute for Computing
Systems Architecture

Instructions

Instructions represent ‘individually decodable’ units
e Somewhat flexible...

Model Components Syntax Description

25

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Instructions

Instructions represent ‘individually decodable’ units
e Somewhat flexible...
e But decode as much as possible at decode time!

Model Components ~ Syntax Description 25

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Institute for Computing
Systems Architecture

Instructions

Instructions represent ‘individually decodable’ units
e Somewhat flexible...
e But decode as much as possible at decode time!
e i.e., avoid general ‘ALU’ instructions

Model Components Syntax Description

25

THE UNIVERSITY of EDINBURGH

informatics icsa ‘ Institute for Computing

Systems Architecture

Instructions

AC_ISA(riscv)
{

ac_format rtype = "$funct7:7 %$rs2:5 $rsl:5 $funct3:3 %$rd:5 %opcode:7";

ac_instr<rtype> add;

Model Components Syntax Description 26

THE UNIVERSITY of EDINBURGH

informatics

icsa |

Institute for Computing
Systems Architecture

Decoding

Let’s consider an example from RISC-V:

Model Components Syntax Description

27

Ve L]
. THE UNIVERSITY 5 EDINBURGHH Institute for Computing
- informatics Icsa ‘ Systems Architecture

Decoding

Let’s consider an example from RISC-V:
RISC-V R-Type
31 27 26 25 24 20 19 15 14 12 11 7 6 0

[funct7 [rs2 [rsl [funct3 | rd [opcode | R-type

Model Components ~ Syntax Description 27

THE UNIVERSITY of EDINBURGH

informatics

icsa |

Institute for Computing

Systems Architecture
Decoding
Let’s consider an example from RISC-V:
RISC-V R-Type
31 27 26 25 24 20 19 15 14 12 11 7 6 0
[funct7 [rs2 [rsl [funct3 | rd [opcode | R-type
RISC-V ADD
| 0000000 | rs2 | rsl | 000 | rd | 0110011 | ADD
Model Components ~ Syntax Description 27

Ve L]
e oG Institute for Computing
- informatics Icsa ‘ Systems Architecture

Decoding

Let’s consider an example from RISC-V:

RISC-V R-Type
31 27 26 25 24 20 19 15 14 12 11 7 6 0
[funct7 [rs2 [rsl [funct3 | rd [opcode | R-type
RISC-V ADD
[0000000 | w2 | 1| 000 | _rd | 0110011 | ADD

funct? 0b0000000
funct3 0b000
opcode 0b0110011

Model Components ~ Syntax Description 27

. THE UNIVERSITY of EDINBURGH

- informatics

L] . .
Icsa ‘ Institute for Computing
Systems Architecture

Decoding

Let’s consider an example from RISC-V:

RISC-V R-Type
31 27 26 25 24 20 19 15 14 12 11 7 6 0
[funct7 [rs2 [rsl [funct3 | rd [opcode | R-type
RISC-V ADD
[0000000 | w2 | 1| 000 | _rd | 0110011 | ADD

funct? 0b0000000
funct3 0b000
opcode 0b0110011

add.set_decoder (funct7=0x0, funct3=0x0, opcode=0x33);

Model Components

Syntax Description

27

@ inlx:‘\ixxon;;;la)ﬁmcmg icsa ‘ Institute for Computing

Systems Architecture
Decoding
AC_ISA(riscv)
{
ac_format rtype = "$funct7:7 %$rs2:5 %$rsl:5 %funct3:3 %$rd:5 %Sopcode:7";

ac_instr<rtype> add;

isa_ctor (riscv)

{

add.set_decoder (funct7=0x0, funct=0x0, opcode=0x33);

Model Components Syntax Description 28

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Branch Metadata

Used to indicate which instructions can change the PC
e Is an instruction an end-of-block?
e |s it a direct jump? What is it’s target?
e Is it an indirect jump?

Can also be used for various optimisations.®

3LCTES'14, http://doi.acm.org/10.1145/2666357.2597810

Model Components Syntax Description 29

http://doi.acm.org/10.1145/2666357.2597810

@ informatics

L] . .
Icsa ‘ Institute for Computing
Systems Architecture

Semantics Description

System Syntax
DAL 1 L} fmt_dpi = "%cond:4 %rd:3..."
Thumb 53 add sub Idr

Model Components ~ Semantics Description

Semantics

30

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Systems Architecture

Institute for Computing

GenC

C-like language used to implement instruction behaviours
e C-like syntax
e Only basic types supported
e Vector types and operations supported natively
e Reference parameters are supported

Model Components ~ Semantics Description

31

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Architectural Manipulation

Processor state is manipulated using built-in functions
¢ Register accesses
e Memory access
e Privilege/ISA modes
e Floating Point Environment

Model Components ~ Semantics Description 32

L]
3 THE UNIVERSITY f EDINSURGHH Institute for Computing
@ informatics Icsa ‘ Systems Architecture

Register Access

Built-in functions available:

slot_type read_register (slot_name)
reg_type read_register_bank (bank_name, index)

void write_register (slot_name, slot_type)
void write_register_bank (bank_name, index, reg_type)

slot_type depends on the type specified in the System
Description

Model Components ~ Semantics Description

33

[}
A, T uveRsTYrOBURGH Institute for Computing
@ informatics Icsa ‘ Systems Architecture

Memory Access

void mem_read_[8,16,32,64] (address_type, uint[8,16,32,64]1¢&)
void mem_write_[8,16,32,64] (address_type, uint[8,16,32,64])

void mem_read_[8,16,32,64]_user (address_type, uint[8,16,32,64]1¢&)
void mem_write_[8,16,32,64] user (address_type, uint([8,16,32,64])

‘user’ variants are used in full-system simulation, where certain
kernel-mode memory instructions (Idrt/strt in ARM) access
memory with user privileges

Model Components ~ Semantics Description 34

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Vector Types

GenC has support for vector types and operations on values of
those types

e Vectors are declared using array notation
e Vectors can be read and written to register banks
¢ Arithmetic operations can be performed on vectors

Model Components ~ Semantics Description 35

Institute for Computing
Systems Architecture

SR THE UNIVERSITY o EDINBURGH [}
6 informatics icsa

Vector Types

GenC has support for vector types and operations on values of
those types

o Vectors are declared using array notation
e Vectors can be read and written to register banks
¢ Arithmetic operations can be performed on vectors

float[2] fp_vector;
uint32[4] u32_vector;

Model Components ~ Semantics Description 35

Institute for Computing
Systems Architecture

SR THE UNIVERSITY o EDINBURGH [}
6 informatics icsa

Vector Types

GenC has support for vector types and operations on values of
those types

e Vectors are declared using array notation
o Vectors can be read and written to register banks
¢ Arithmetic operations can be performed on vectors

fp_vector = read_register_bank (FP_SP2, inst.vm);
write_register_bank (U32_V, inst.vm, u32_vector);

Model Components ~ Semantics Description 35

Institute for Computing
Systems Architecture

SR THE UNIVERSITY o EDINBURGH [}
6 informatics icsa

Vector Types

GenC has support for vector types and operations on values of
those types

e Vectors are declared using array notation
e Vectors can be read and written to register banks
o Arithmetic operations can be performed on vectors

// pairwise addition
result_vector = fp_vector + fp_vector;

// operation by scalar
result_vector = fp_vector + 10.0;

Model Components ~ Semantics Description 35

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Intrinsics

There are a large number of intrinsics available for either
manipulating the architectural state or performing other
operations. For example:

e take_exception - trigger an exception

e _builtin_clz - count leading zeros

e bitcast_float_u32 - ‘bitcast’ a float to a uint32

Model Components ~ Semantics Description 36

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Institute for Computing
Systems Architecture

Developing a Model

So how do we build a model from the ground up?

Developing a Model

37

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Developing a Model

Model development is not too difficult but can take a long time

e ARMv7 and RISC-V models developed by students with no
prior experience

e Mostly a task of transcribing instruction pseudocode
e Can be easy to introduce subtle errors or edge cases

Developing a Model 38

4 P \U"r, THE UNIVERSITY of EDINBURGH H
@ informatics ICSQA

Systems Architecture

Institute for Computing

Our Workflow

We generally start small and work our way up:
¢ Implement enough instructions for a Hello World program
e (this can be quite a lot due to startup/shutdown code)

e Then try small benchmarks (e.g., EEMBC, MyBench)
e Work up to larger benchmarks (e.g., SPEC)

The model should be tested at each step (using fuzzing/small
unit tests)

Developing a Model

39

:\\\ 2 HE UNIVERSITY of EDINBURGH H
@ informatics ICSQA

Systems Architecture

Institute for Computing

Continuous Build/Test

We use Jenkins for continuous build.
e Commits to GenSim repo are built and tested
¢ All supported repos tested via Docker

Jenkins: http:/jenkins.io, Docker: http://www.docker.com/
Developing a Model

40

. \'"g THE UNIVERSITY of EDINBURGH
@ informatics

icsa |

Institute for Computing
Systems Architecture

Instruction Fuzzing

Fuzzing is a randomized testing method

Developing a Model

41

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Instruction Fuzzing

Fuzzing is a randomized testing method

e Test instructions with many inputs against a ground truth

Developing a Model 41

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Instruction Fuzzing

Fuzzing is a randomized testing method

e Test instructions with many inputs against a ground truth
e We use QEMU as a ground truth

Developing a Model 4

Institute for Computing
Systems Architecture

SR THE UNIVERSITY o EDINBURGH [}
6 informatics icsa

Instruction Fuzzing

Fuzzing is a randomized testing method

e Test instructions with many inputs against a ground truth
e We use QEMU as a ground truth
¢ Still problems with unspecified/undefined behaviour

Developing a Model 4

Institute for Computing
Systems Architecture

SR THE UNIVERSITY o EDINBURGH [}
€ informatics icsa

Instruction Fuzzing

Fuzzing is a randomized testing method

e Test instructions with many inputs against a ground truth
e We use QEMU as a ground truth
¢ Still problems with unspecified/undefined behaviour

We have our own tools for instruction fuzzing (which are linked
from GenSim website)

Developing a Model 4

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Debugging with Tracing

Once we're confident that our model works, we can run some
larger programs

Developing a Model 42

Institute for Computing
Systems Architecture

SR THE UNIVERSITY o EDINBURGH [}
6 informatics icsa

Debugging with Tracing

Once we're confident that our model works, we can run some
larger programs
But they might still go wrong! How do we debug this?

Developing a Model 42

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Institute for Computing
Systems Architecture

Debugging with Tracing

We can carefully inspect a trace of the simulation and try and
see what went wrong.

e This can be quite a tedious and error-prone process

e ltis usually necessary to narrow down the issue
beforehand

e Key idea is to spot errors in execution manually
e Need to be very familiar with the architecture!

Developing a Model 43

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Model Optimisation

Certain code structures can lead to poor performance:
e Very complex instructions
¢ Non-fixed loop bounds
e ‘Hand written’ predicates
e Enablement checks (can be solved using Features)

Developing a Model 44

> °
A, T uveRsTYrOBURGH Institute for Computing
@ informatics Icsa ‘ Systems Architecture

Model Optimisation

if (read_register (FP_ENABLED)) {
// do something
}

if(__builtin_get_feature (FP_ENABLED)) {
// do something
}

Developing a Model 45

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

The x86-64 Model

e The newest supported GenSim model
¢ Runs Linux User Mode applications
e Some SSE and x87 Support

Developing a Model 46

B> . THE UNIVERST RGH L]
@ informatics icsa

Institute for Computing

Systems Architecture

X86 Instruction Decoding

x86 has a stateful instruction encoding

This can’t be easily handled by GenSim

We handle this by using the Intel XED library
Instruction semantics still use GenSim

Developing a Model

47

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Experiences with x86

Biggest issue is inconsistency

Lots of 'defined undefinedness’ makes testing tricky
Vector performance is critical

Otherwise handled fairly well in GenSim

Developing a Model 48

@ informatics

icsa |

Institute for Computing
Systems Architecture

GenSim Internals

GenSim Internals

49

L]
. THE UNIVERSITY f EDINBURGHH Institute for Computing
informatics lcsa ‘ Systems Architecture
General Flow
System
Description
C++
Sources
Semantic G S A
Description en I I I l
Makefile
Syntax
Description
GenSim Internals 50

SR THE UNIVERSITY o EDINBURGH H ‘ Institute for Computi
o . putin,
@ informatics Icsa Systems Architecture ¢
General Flow
System
Description
GenSim C++
Sources
Semantic "
Description Frontend (> Middle-End —> Backend >
Makefile
Syntax
Description
GenSim Internals 50

Sty L]
Ty e unvEsTY EisURGH Institute for Computing
@ informatics Icsa ‘ Systems Architecture
Frontend
System ANTLR
Description Grammar
Semantic ANTLR | High-Level SSA
Description Parser 7 IR
Syntax
Description

GenSim Internals

51

Ve L]
. THE UNIVERSITY 5 EDINBURGHH Institute for Computing
- informatics Icsa ‘ Systems Architecture

Middle-End

SSA >Optimisation| »| _Partial »| Annotated |
Evaluation SSA

DAC’13: https://doi.org/10.1145/2463209.2488760

GenSim Internals 52

https://doi.org/10.1145/2463209.2488760

THE UNIVERSITY of EDINBURGH

& informatics

icsa

Institute for Computing

Systems Architecture
Back-Ends

Decoder

Architecture

Descriptor
Backend CH++
Int t
Generators nterpreter Sources
Annotated
SSA
DBT
Frontend
GenSim Internals 53

Institute for Computing
Systems Architecture

4 P \"',,/ THE UNIVERSITY of EDINBURGH °
@ informatics ICSQA

Recap

To conclude:
o We've gone over the available models
e Looked at the components of a model
¢ |'ve shared some experiences building models
e Briefly covered the internal flow of GenSim

Conclusion 54

L]
3 THE UNIVERSITY f EDINSURGHH Institute for Computing
@ informatics Icsa ‘ Systems Architecture

Conclusion

Thanks for coming!
Any Questions?

harry.wagstaff@gmail.com
general@gensim.org

Conclusion 55

	Introduction
	Overview
	Existing Models

	Model Components
	System Description
	Syntax Description
	Semantics Description

	Developing a Model
	GenSim Internals
	Conclusion

