Nate Zimmerman
Elise Russell

11/30/15
Neural Networks and Fuzzy Systems: Project 5 Report

Project Overview

We followed the instructions given with the sample code to edit the scripts in the Neural
Networks Part 1 folder and the scripts in the Neural Networks Part 2 folder. The Neural
Networks Part 1 scripts are concerned with the implementation of logistic regression and cost
function, while the Neural Networks Part 2 scripts are concerned with the implementation and
training of an actual network using forward propagation and backpropagation on the given data.

The given data consisted of 5000 samples of handwritten numerals, in 20x20 pixel grayscale
images, and each is assigned a class from 0 - 9 corresponding to the numeral represented in
the picture. Below is an example of some of the inputs which were to be identified:

SEs T Z2H %S0
3
¢

~on s o bl -] N

-1 AO L
S0 995
5 s/
ZZE
& 29 6
<90
5920
O lwg 3
372/

mm-MLﬁxuﬂ
S LWy A
EPRLY SLOT Sol o T N N
DO RNN oo =

2
!

-
.
I

&
g

Neural Networks Part 1

For this section of the assignment, there were two stages. In the first, we had to modify the
following scripts:

e IrCostFunction.m, to implement the logistic regression cost function
e oneVsAll.m, to train a set of one-vs-all logistic regression classifiers on the given data

e predictOneVsAll.m, to use a set of one-vs-all logistic regression classifiers to predict the
classes of a given data set
In the second stage, we had to modify the following script:
e predict.m, to use a trained neural network represented as a pair of Theta matrices to
generate predictions of the classes of a given data set using forward propagation.

Since a previous assignment required us to implement logistic regression, we were readily able
to port the sections of code that we needed and adapt them to these scripts. Additionally, the
forward-propagation algorithm turned out to be simple to implement in a vectorized manner; the
additions we made consist of five lines of code successively multiplying matrices together and
applying the sigmoid function.

Results of Neural Networks Part 1

The logistic regression master script for the first stage of this part of the homework was called
ex3.m. When run, it first showed a grid of some of the data images in order to visualize the
data, then it trained a set of logistic regression classifiers corresponding to each class. It then
used predictOneVsAll.m to get the accuracy of the set of classifiers on the training data. Our
implementation accuracy was 94.48%.

The forward-propagation master script for the second stage of this part of the homework was
called ex3_nn.m. When run, it first loaded the already-trained theta parameters, then calculated
the training set accuracy of the forward-propagation algorithm using predict.m. This
implementation used a pre-calculated neural network with pre-loaded, fixed theta weights. The
implementation accuracy was 97.52%. It then displayed sample images and the predictions
that the system assigned them, giving the user a visual idea of the network’s performance.

Neural Networks Part 2

For this section of the assignment, we had to modify the following scripts:
e sigmoidGradient.m, to implement a derivative of the sigmoid function at the given vector
of inputs
randInitialWeights.m, to initialize a network’s theta matrices with random weights
nnCostFunction.m, to implement forward-propagation and backpropagation using the
given data and theta matrices, then calculate the overall cost function and the gradient
matrices for the network on that data.

The first two scripts were relatively easy to implement, since they are straightforward
demonstrations of simple concepts. The nnCostFunction script contained the meat of the
project, and we implemented it in two stages. First, we figured out how to implement
forward-propagation and backpropagation, while calculating the necessary values, on each
training sample separately in a for loop. Then, we vectorized this implementation and
discarded the for loop so that the script was cleaner and would run faster.

Below is an example diagram of the neural network:

Input Layer Hidden Layer Output Layer

10 Qutput Digits

400 Input Pixels

25 Hidden Units

Pixel 400

As mentioned previously, there were 400 input pixels to the neural network. There were 25
hidden units which had sigmoid activation functions. Finally, the neural network had 10 logistical
outputs ranging from numerals 0 to 9 to be identified by the network.

Results of Neural Networks Part 2

The master script for this section of the assignment was called ex4.m. It first runs through
several checks to determine the accuracy of various parts of the implementation, with and
without regularization. Our implementation passed these checks as follows:

e Feedforward Using Neural Network... Cost at pre-loaded parameters (should be about
0.287629): 0.287629.

e Checking Cost Function (w/ Regularization) ... Cost at pre-loaded parameters (should be
about 0.383770): 0.383770.

e Evaluating sigmoid gradient at [1 -0.5 0 0.5 1]: [3.586161 2.755252 2.500000 2.755252
3.586161]

e Checking backpropagation... relative difference (should be less than 1e-9):
2.32978e-11.

e Checking backpropagation (w/ Regularization)... relative difference (should be less than
1e-9): 2.26112e-11.

e Cost at fixed debugging parameters (w/ lambda = 10) (should be about 0.576051):
0.576051.

The script then trains the neural network using our implementation over 50 iterations. This ends
with a cost usually around 6.490774e-01. It then shows a visualization of the hidden layer.
Below is the visualization of the hidden layer of the neural network generated by our
implementation.

Last, the script calculates the network’s accuracy over the training set. Our network had a
95.84% accuracy. Note that this accuracy could have been adjusted (and possibly improved) by
running more iterations or tweaking of the regularization parameter. We used “1” for our lambda
regularization parameter.

Conclusion:

Overall this homework project was an adequate introduction to logistical regression as well as
elementary neural networks. Given the information obtained by completing this assignment,
implementation of neural networks on other data sources should be possible as well as easier to
implement.

References:
https://www.coursera.org/learn/machine-learning

