Xterm Control Sequences

Edward Moy
University of California, Berkeley
Revised by
Stephen Gildea
X Consortium (1994)
Thomas Dickey
XFree86 Project (1996-2006)
invisible-island.net (2006-2012)

Definitions

The literal character c.
$C \quad$ A single (required) character.
$P_{s} \quad$ A single (usually optional) numeric parameter, composed of one of more digits.
$P_{m} \quad$ A multiple numeric parameter composed of any number of single numeric parameters, separated by $\quad ;$ acter(s). Individual values for the parameters are listed with P_{s}.
$P_{t} \quad$ A text parameter composed of printable characters.

C1 (8-Bit) Control Characters

The xterm program recognizes both 8 -bit and 7 -bit control characters. It generates 7 -bit controls (by default) or 8 -bit if S8C1T is enabled. The following pairs of 7-bit and 8-bit control characters are equivalent:

ESC	D

Index (IND is 0x84).

ESC	E

Next Line (nel is 0x85).

ESC	H

Tab Set (HTS is 0x88).

ESC	\mathbf{M}

Reverse Index (RI is 0 x 8 d).

ESC	N

Single Shift Select of G2 Character Set (ss2 is 0x8e). This affects next character only.

ESC	O

Single Shift Select of G3 Character Set ($\boxed{\mathrm{SS} 3}$ is 0 x 8 f). This affects next character only. | ESC | P |
| :--- | :--- |

Device Control String (DCS is 0x90).

```
ESC V
    Start of Guarded Area (SPA is 0x96).
EsC W
    End of Guarded Area (EPA is 0x97).
ESC X
    Start of String (SOS is 0x98).
ESC Z
    Return Terminal ID (DECID is 0x9a). Obsolete form of CSI c}\mathrm{ (DA).
ESC [
    Control Sequence Introducer (CSI is 0x9b).
#ESC \
    String Terminator (\ST is 0x9c).
ESS []
    Operating System Command (\boxed{OsC}}\mathrm{ is 0x9d).
ESC ^^
    Privacy Message (PM is 0x9e).
ESC
    Application Program Command (\trianglePPC is 0x9f).
```

These control characters are used in the vtXXX emulation.

VT100 Mode

Most of these control sequences are standard VT102 control sequences, but there is support for later DEC VT terminals (i.e., VT220, VT320, VT420, VT510), as well as ISO 6429 and aixterm color controls. The only VT102 feature not supported is auto-repeat, since the only way X provides for this will affect all windows. There are additional control sequences to provide xterm-dependent functions, such as the scrollbar or window size. Where the function is specified by DEC or ISO 6429, the code assigned to it is given in parentheses. The escape codes to designate and invoke character sets are specified by ISO 2022; see that document for a discussion of character sets.

Single-character functions

BEL	Bell (Ctrl-G).
BS	Backspace (Ctrl-H).
CR	Carriage Return (Ctrl-M).
ENQ	Return Terminal Status (Ctrl-E). Default response is an empty string, but may be overridden by a resource answerbackString.
FF	Form Feed or New Page (NP). Ctrl-L is treated the same as LF.
LF	Line Feed or New Line (NL). (LF is Ctrl-J).
SI	Shift In (Ctrl-O) \rightarrow Switch to Standard Character Set. This invokes the G0 character set (the default).
so	Shift Out (Ctrl-N) \rightarrow Switch to Alternate Character Set. This invokes the G1 character set.
SP	Space.
TAB	Horizontal Tab (HT) (Ctrl-I).

Vertical Tab (Ctrl-K). This is treated the same as LF.

Controls beginning with ESC

This excludes controls where ESC is part of a 7-bit equivalent to 8-bit C1 controls, ordered by the final character(s).

ESC	SP	F
ESC	SP	G
ESC	SP	L
ESC	SP	M
ESC	SP	N
ESC	\#	3
ESC	\#	4
ESC	\#	5
ESC	\#	6
ESC	\#	8
ESC	\%	@
ESC	\%	G
ESC	(C

7-bit controls (S7C1T).
8 -bit controls (S8C1T).
Set ANSI conformance level 1 (dpANS X3.134.1).
Set ANSI conformance level 2 (dpANS X3.134.1).
Set ANSI conformance level 3 (dpANS X3.134.1).
DEC double-height line, top half (DECDHL).
DEC double-height line, bottom half (DECDHL).
DEC single-width line (DECSWL).
DEC double-width line (DECDWL).
DEC Screen Alignment Test (DECALN).
Select default character set. That is ISO 8859-1 (ISO 2022).
Select UTF-8 character set (ISO 2022).
Designate G0 Character Set (ISO 2022, VT100).
Final character C for designating 94 -character sets. In this list, $0, \mathrm{~A}$ and B apply to
VT100 and up, the remainder to VT220 and up:
$C=0 \rightarrow$ DEC Special Character and Line Drawing Set.
$C=\mathrm{A} \rightarrow$ United Kingdom (UK).
$C=\mathrm{B} \rightarrow$ United States (USASCII).
$C=4 \rightarrow$ Dutch.
$C=\mathrm{C}$ or $5 \rightarrow$ Finnish.
$C=\mathrm{R} \rightarrow$ French.
$C=\mathrm{Q} \rightarrow$ French Canadian.
$C=\mathrm{K} \rightarrow$ German.
$C=\mathrm{Y} \rightarrow$ Italian.
$C=\mathrm{E}$ or $6 \rightarrow$ Norwegian/Danish.
$C=\mathrm{Z} \rightarrow$ Spanish.
$C=\mathrm{H}$ or $7 \rightarrow$ Swedish.
$C==\rightarrow$ Swiss.

| ESC |) $C \quad$ Designate G1 Character Set (ISO 2022, VT100). |
| :--- | :--- | :--- |

The same character sets apply as for ESC $\quad(C$.

ESC	$*$

The same character sets apply as for ESC (C
ESC $+C$ Designate G3 Character Set (ISO 2022, VT220).
The same character sets apply as for ESC (C

ESC	-
C	Designate G1 Character Set (VT300).

The same character sets apply as for ESC (C

Application Program-Control functions

$\triangle \mathrm{APC} P_{t} \boxed{\mathrm{ST}} \quad$ None. xterm implements no APC functions; P_{t} is ignored. P_{t} need not be printable characters.

Device-Control functions

$\boxed{\mathrm{DCS}} P_{s} ; P_{s} \square P_{t}$| ST |
| :---: |

User-Defined Keys (DECUDK). The first parameter:
$P_{s}=0 \rightarrow$ Clear all UDK definitions before starting (default).
$P_{s}=1 \rightarrow$ Erase Below (default).
The second parameter:
$P_{S}=0 \leftarrow$ Lock the keys (default).
$P_{s}=1 \leftarrow$ Do not lock.
The third parameter is a ';'separated list of strings denoting the key-code separated by a ' $/$ ' from the hex-encoded key value. The key codes correspond to the DEC function-key codes (e.g., F6=17).

DCS	$\$$	q
P_{t}	ST	

Request Status String (DECRQSS). The string following the " q " is one of the following:
\square " $\mathrm{q} \rightarrow$ DECSCA
$\cdots \mathrm{p} \rightarrow$ DECSCL
$\mathrm{r} \rightarrow$ DECSTBM
$\mathrm{m} \quad \rightarrow$ SGR

$\mathrm{SP} \mathrm{q} \rightarrow$ DECSCUSR

$\mathrm{DCS}+\mathrm{p} P_{t}$ ST

Set Termcap/Terminfo Data (xterm, experimental). The string following the " p " is a name to use for retrieving data from the terminal database. The data will be used for the "tcap" keyboard configuration's function- and special-keys, as well as by the Request Termcap/Terminfo String control.

Request Termcap/Terminfo String (xterm, experimental). The string following the " q " is a list of names encoded in hexadecimal (2 digits per character) separated by ; which correspond to termcap or terminfo key names.

Two special features are also recognized, which are not key names: Co for termcap colors (or colors for terminfo colors), and $T N$ for termcap name (or name for terminfo name).

 The strings are encoded in hexadecimal (2 digits per character).

Functions using Csi , ordered by the final character(s)

¢ $\mathrm{CSI} P_{s}$ @	Insert P_{s} (Blank) Character(s) (default $\left.=1\right)(\mathrm{ICH})$.
${ }_{\text {CSI }} P_{s}$ A	Cursor Up P_{s} Times (default $=1$) (CUU).
${ }_{\text {CSI }} P_{s}$ B	Cursor Down P_{s} Times (default $\left.=1\right)(\mathrm{CUD})$.
$\triangle \mathrm{CSI} P_{s}$	Cursor Forward P_{s} Times (default $\left.=1\right)($ CUF $)$.
${ }_{\text {CSI }} P_{s}$ D	Cursor Backward P_{s} Times (default $\left.=1\right)($ CUB $)$.
${ }_{\text {CSI }} P_{s}$ E	Cursor Next Line P_{s} Times (default $=1$) (CNL).
${ }^{\mathrm{CSI}} P_{s} \triangle \mathrm{~F}$	Cursor Preceding Line P_{s} Times (default $=1$) (CPL).
${ }^{\mathrm{CsI}} P_{s}, \mathrm{G}$	Cursor Character Absolute [column] (default $=[$ row, $]$) (CHA).
${ }^{\text {CSI }} P_{s} \square ; P_{s} \square \mathrm{H}$	
	Cursor Position [row;column] (default $=[1,1])($ CUP $)$.
${ }_{\text {CSI }} P_{s} \square \mathrm{I}$	Cursor Forward Tabulation P_{s} tab stops $($ default $=1)($ CHT $)$.
${ }^{\mathrm{CSI}} P_{s} \triangle \mathrm{~J}$	Erase in Display (ED).
	$P_{s}=0 \rightarrow$ Erase Below (default).
	$P_{s}=1 \rightarrow$ Erase Above.
	$P_{s}=2 \rightarrow$ Erase All.
	$P_{s}=3 \rightarrow$ Erase Saved Lines (xterm).

CSI	$?$	$P_{s} \quad \mathrm{~J} \quad$ Erase in Display (DECSED).

$P_{S}=0 \rightarrow$ Selective Erase Below (default).
$P_{s}=1 \rightarrow$ Selective Erase Above.
$P_{s}=2 \rightarrow$ Selective Erase All.
$\mathrm{CSII}_{s} \quad \mathrm{~K} \quad$ Erase in Line (EL).
$P_{S}=0 \rightarrow$ Erase to Right (default).
$P_{s}=1 \rightarrow$ Erase to Left.
$P_{S}=2 \rightarrow$ Erase All.

CSI	$?$

$P_{S}=0 \rightarrow$ Selective Erase to Right (default).
$P_{s}=1 \rightarrow$ Selective Erase to Left.
$P_{s}=2 \rightarrow$ Selective Erase All.

$\mathrm{CSI}_{\mathrm{CSI}} P_{s} \mathrm{~L}$		Insert P_{s} Line(s) $($ default $=1)(\mathrm{IL})$.
$\mathrm{CSI}^{\text {CSI }} P_{s} \boxed{\mathrm{M}}$		Delete P_{s} Line $(\mathrm{s})($ default $=1)(\mathrm{DL})$.

$\boxed{\mathrm{CsI}} P_{s} \mathrm{P} \quad$ Delete P_{s} Character $(\mathrm{s})($ default $=1)(\mathrm{DCH})$.
\triangle CSI $P_{s} \square \mathrm{~S} \quad$ Scroll up P_{S} lines (default $=1$) (SU).
${ }^{\mathrm{CSI}} P_{s} \mathrm{~T} \quad$ Scroll down P_{s} lines (default $\left.=1\right)(\mathrm{SD})$.
${ }^{\mathrm{CSI}} P_{s} \square ; P_{s} \square ; P_{s} \square ; P_{s} \square ; P_{s} \boxed{\mathrm{~T}}$
Initiate highlight mouse tracking. Parameters are [func;startx;starty;firstrow;lastrow]. See the section Mouse Tracking.

CSI	$>$	$P_{s} \square$	$P_{s} \mathrm{~T}$

Reset one or more features of the title modes to the default value. Normally, "reset" disables the feature. It is possible to disable the ability to reset features by compiling a different default for the title modes into xterm.
$P_{s}=0 \rightarrow$ Do not set window/icon labels using hexadecimal.
$P_{s}=1 \rightarrow$ Do not query window/icon labels using hexadecimal.
$P_{s}=2 \rightarrow$ Do not set window/icon labels using UTF-8.
$P_{s}=3 \rightarrow$ Do not query window/icon labels using UTF-8. (See discussion of "Title Modes").
$\triangle \mathrm{CSI} P_{s} \mathrm{X} \quad$ Erase P_{s} Character(s) $($ default $=1)(\mathrm{ECH})$.
$\mathrm{CSI} P_{s} \mathrm{Z} \quad$ Cursor Backward Tabulation P_{s} tab stops $($ default $=1)(\mathrm{CBT})$.
$\mathrm{CSI}^{\mathrm{CS}} P_{m} \square$ Character Position Absolute [column] (default $=[$ row, 1] $)(\mathrm{HPA})$.
$\triangle \mathrm{CSI} P_{m} \mathrm{a} \quad$ Character Position Relative [columns] $($ default $=[$ row,col+1]) (HPR).
$\square^{\mathrm{CSI}} P_{s} \square \mathrm{~b} \quad$ Repeat the preceding graphic character P_{s} times (REP).
$\boxed{\mathrm{cSI}} P_{s} \square \mathrm{c} \quad$ Send Device Attributes (Primary DA).
$P_{s}=0$ or omitted \rightarrow request attributes from terminal. The response depends on the decTerminalID resource setting.

The VT100-style response parameters do not mean anything by themselves. VT220 parameters do, telling the host what features the terminal supports:
$P_{s}=1 \rightarrow$ 132-columns.
$P_{s}=2 \rightarrow$ Printer.
$P_{s}=6 \rightarrow$ Selective erase.
$P_{S}=8 \rightarrow$ User-defined keys.
$P_{S}=9 \rightarrow$ National replacement character sets.
$P_{s}=1 \quad 5 \rightarrow$ Technical characters.
$P_{s}=1 \quad 8 \rightarrow$ User windows.
$P_{s}=2 \quad 1 \rightarrow$ Horizontal scrolling.
$P_{s}=2,2 \rightarrow$ ANSI color, e.g., VT525.
$P_{s}=29 \rightarrow$ ANSI text locator (i.e., DEC Locator mode).

CSI	$>$	$P_{s} \leq \mathrm{c}$	Send Device Attributes (Secondary DA).

$P_{S}=0$ or omitted \rightarrow request the terminal's identification code. The response depends on the decTerminalID resource setting. It should apply only to VT220 and up, but xterm extends this to VT100.

$$
\rightarrow \mathrm{CSI}>P_{p} \square P_{v} \square ; P_{c} \boxed{\mathrm{c}}
$$

where P_{p} denotes the terminal type
$P_{p}=0 \quad{ }^{p} \rightarrow$ "VT100".
$P_{p}=1 \rightarrow$ "VT220".
$P_{p}=2 \rightarrow$ "VT240".
$P_{p}=18 \rightarrow$ "VT330".
$P_{p}=19 \rightarrow$ "VT340".
$P_{p}=24 \rightarrow$ "VT320".
$P_{p}=41 \rightarrow$ "VT420".
$P_{p}=61 \rightarrow$ "VT510".
$P_{p}=64 \rightarrow$ "VT520".
$P_{p}=65 \rightarrow$ "VT525".
and P_{v} is the firmware version (for xterm, this was originally the XFree86 patch number, starting with 95). In a DEC terminal, P_{c} indicates the ROM cartridge registration number and is always zero.

${ }^{\text {CSI }} P_{m}$ d	Line Position Absolute [row] (default = [1, column $)($ VPA $)$.
CSI P_{m} e	Line Position Relative [rows] (default $=[$ row +1 , column]) (VPR)
$\triangle \mathrm{CSI} P_{s} \square ; P_{s}$ 㐌	

Horizontal and Vertical Position [row;column] (default $=[1,1])($ HVP $)$.
Tab Clear (TBC).
$P_{S}=0 \rightarrow$ Clear Current Column (default).
$P_{s}=3 \rightarrow$ Clear All.
$\boxed{\mathrm{CSI}} P_{m} \mathrm{~h} \quad$ Set Mode (SM).
$P_{s}=2 \rightarrow$ Keyboard Action Mode (AM).
$P_{s}=4 \rightarrow$ Insert Mode (IRM).
$P_{s}=1 \quad 2 \rightarrow$ Send/receive (SRM).
$P_{s}=2 \quad 0 \rightarrow$ Automatic Newline (LNM).

CsI	$?$	$P_{m} \quad \mathrm{~h}$

$P_{s}=1 \rightarrow$ Application Cursor Keys (DECCKM).
$P_{s}=2 \rightarrow$ Designate USASCII for character sets G0-G3 (DECANM), and set VT100 mode.
$P_{s}=3 \rightarrow 132$ Column Mode (DECCOLM).
$P_{s}=4 \rightarrow$ Smooth (Slow) Scroll (DECSCLM).
$P_{S}=5 \rightarrow$ Reverse Video (DECSCNM).
$P_{s}=6 \rightarrow$ Origin Mode (DECOM).
$P_{s}=7 \rightarrow$ Wraparound Mode (DECAWM).
$P_{s}=8 \rightarrow$ Auto-repeat Keys (DECARM).
$P_{s}=9 \rightarrow$ Send Mouse X \& Y on button press. See the section Mouse Tracking.
$P_{s}=1 \rightarrow 0 \rightarrow$ Show toolbar (rxvt).
$P_{S}=1 \quad 2 \rightarrow$ Start Blinking Cursor (att610).
$P_{S}=1 \quad 8 \rightarrow$ Print form feed (DECPFF).
$P_{s}=1 \quad 9 \rightarrow$ Set print extent to full screen (DECPEX).
$P_{s}=25 \rightarrow$ Show Cursor (DECTCEM).
$P_{s}=3 \quad 0 \rightarrow$ Show scrollbar (rxvt).
$P_{s}=3 \quad 5 \rightarrow$ Enable font-shifting functions (rxvt).
$P_{s}=3 \quad 8 \rightarrow$ Enter Tektronix Mode (DECTEK).
$P_{s}=400 \rightarrow$ Allow $80 \leftrightarrow 132$ Mode.
$P_{s}=4 \quad 1 \rightarrow \operatorname{more}(1)$ fix (see curses resource).
$P_{s}=4 \quad 2 \rightarrow$ Enable Nation Replacement Character sets (DECNRCM).
$P_{s}=4 \quad 4 \rightarrow$ Turn On Margin Bell.
$P_{s}=45 \rightarrow$ Reverse-wraparound Mode.
$P_{s}=46 \rightarrow$ Start Logging. This is normally disabled by a compile-time option.
$P_{s}=4 \square 7 \rightarrow$ Use Alternate Screen Buffer. (This may be disabled by the titeInhibit resource).
$P_{s}=66 \rightarrow$ Application keypad (DECNKM).
$P_{S}=67 \rightarrow$ Backarrow key sends backspace (DECBKM).
$P_{S}=6 \quad 9 \rightarrow$ Enable left and right margin mode (DECLRMM), VT420 and up.
$P_{s}=9 \square 5 \rightarrow$ Do not clear screen when DECCOLM is set/reset (DECNCSM), VT510 and up.

$P_{s}=$| 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |\rightarrow Send Mouse $\mathrm{X} \& \mathrm{Y}$ on button press and release. See the section

Mouse Tracking.

$P_{s}=$| 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- |\rightarrow Use Hilite Mouse Tracking.

$P_{s}=$| 1 | 0 | 0 | 2 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Use Cell Motion Mouse Tracking.

$P_{s}=$| 1 | 0 | 0 | 3 |
| :--- | :--- | :--- | :--- |

$P_{s}=$| 1 | 0 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Send FocusIn/FocusOut events.

$P_{s}=$| 1 | 0 | 0 | 5 |
| :--- | :--- | :--- | :--- |\rightarrow Enable UTF-8 Mouse Mode.

$P_{s}=$	1	0	0	6

$P_{s}=$| 1 | 0 | 0 | 7 |
| :--- | :--- | :--- | :--- |

$P_{S}=$| 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Scroll to bottom on tty output (rxvt).

$P_{s}=$| 1 | 0 | 1 | 5 |
| :--- | :--- | :--- | :--- |

$P_{s}=$| 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Scroll to bottom on key press (rxvt).

$P_{s}=$| 1 | 0 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Interpret "meta" key, sets eighth bit. (enables the eightBitInput resource).

$P_{s}=$| 1 | 0 | 3 | 5 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Enable special modifiers for Alt and NumLock keys. (This enables the

numLock resource).

$P_{S}=$| 1 | 0 | 3 | 6 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Send ESC when Meta modifies a key. (This enables the metaSendsEscape resource).

$\left.P_{s}=$| 1 | 0 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- | \right\rvert\, Send DEL from the editing-keypad Delete key.

 resource).

$P_{S}=$| 1 | 0 | 4 | 0 |
| :--- | :--- | :--- | :--- |\rightarrow Keep selection even if not highlighted. (This enables the keepSelection resource).

$P_{s}=$| 1 | 0 | 4 | 1 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Use the CLIPBOARD selection. (This enables the selectToClipboard resource).

$P_{s}=$| 1 | 0 | 4 | 2 |
| :--- | :--- | :--- | :--- |\rightarrow Enable Urgency window manager hint when Control-G is received. (This enables the bellIsUrgent resource).

$P_{s}=$| 1 | 0 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Enable raising of the window when Control-G is received. (enables the popOnBell resource).

$P_{s}=$| 1 | 0 | 4 | 7 |
| :--- | :--- | :--- | :--- |\rightarrow Use Alternate Screen Buffer. (This may be disabled by the titeInhibit resource).

$P_{s}=$| 1 | 0 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Save cursor as in DECSC. (This may be disabled by the titeInhibit resource).

$P_{s}=$| 1 | 0 | 4 | 9 |
| :--- | :--- | :--- | :--- |\rightarrow Save cursor as in DECSC and use Alternate Screen Buffer, clearing it first. (This may be disabled by the titeInhibit resource). This combines the effects of the

 than the 4,7 mode.

$P_{S}=$	1	0	5	0

$P_{s}=1$ 1 $00501 \rightarrow$ Set Sun function-key mode.

$P_{s}=$| 1 | 0 | 5 | 3 |
| :--- | :--- | :--- | :--- |\rightarrow Set SCO function-key mode.

$P_{S}=$| 1 | 0 | 6 | 0 | \rightarrow Set legacy keyboard emulation (X11R6). |
| :--- | :--- | :--- | :--- | :--- |

$P_{S}=1$| | 0 | 6 | 1 |
| :--- | :--- | :--- | :--- |\rightarrow Set VT220 keyboard emulation.

$P_{S}=$| 2 | 0 | 0 | 4 |
| :--- | :--- | :--- | :--- |

Media Copy (MC).
$P_{S}=0 \rightarrow$ Print screen (default).
$P_{s}=4 \rightarrow$ Turn off printer controller mode.
$P_{s}=5 \rightarrow$ Turn on printer controller mode.

CSI	$?$	P_{m}	i

$P_{S}=1 \rightarrow$ Print line containing cursor.
$P_{S}=4 \rightarrow$ Turn off autoprint mode.
$P_{s}=5 \rightarrow$ Turn on autoprint mode.
$P_{s}=1 \quad 0 \rightarrow$ Print composed display, ignores DECPEX.
$P_{s}=1 \quad 1 \rightarrow$ Print all pages.
$\mathrm{CSI} P_{m} \square 1 \quad$ Reset Mode (RM).
$P_{S}=2 \rightarrow$ Keyboard Action Mode (AM).
$P_{S}=4 \rightarrow$ Replace Mode (IRM).
$P_{S}=1 \quad 2 \rightarrow$ Send/receive (SRM).
$P_{s}=2 \quad 0 \quad \rightarrow$ Normal Linefeed (LNM).

CSI	$?$	$P_{m} \boxed{ } \quad$

DEC Private Mode Reset (DECRST).
$P_{s}=\square \rightarrow$ Normal Cursor Keys (DECCKM).
$P_{s}=2 \rightarrow$ Designate VT52 mode (DECANM).
$P_{s}=3 \rightarrow 80$ Column Mode (DECCOLM).
$P_{s}=4 \rightarrow$ Jump (Fast) Scroll (DECSCLM).
$P_{s}=5 \rightarrow$ Normal Video (DECSCNM).
$P_{s}=6 \rightarrow$ Normal Cursor Mode (DECOM).
$P_{s}=7 \rightarrow$ No Wraparound Mode (DECAWM).
$P_{s}=8 \rightarrow$ No Auto-repeat Keys (DECARM).
$P_{s}=9 \rightarrow$ Don't send Mouse X \& Y on button press.
$P_{s}=1 \quad 0 \rightarrow$ Hide toolbar (rxvt).
$P_{s}=1 \quad 2 \rightarrow$ Stop Blinking Cursor (att610).
$P_{s}=1 \quad 8 \rightarrow$ Don't print form feed (DECPFF).
$P_{s}=1 \quad 9 \rightarrow$ Limit print to scrolling region (DECPEX).
$P_{S}=2 \quad 5 \rightarrow$ Hide Cursor (DECTCEM).
$P_{s}=3 \quad 0 \quad \rightarrow$ Don't show scrollbar (rxvt).
$P_{S}=3 \quad 5 \rightarrow$ Disable font-shifting functions (rxvt).
$P_{s}=400 \rightarrow$ Disallow $80 \leftrightarrow 132$ Mode.
$P_{S}=4 \quad 1 \rightarrow$ No more(1) fix (see curses resource).
$P_{s}=42 \rightarrow$ Disable Nation Replacement Character sets (DECNRCM).
$P_{s}=4,4 \rightarrow$ Turn Off Margin Bell.
$P_{s}=4 \quad 5 \rightarrow$ No Reverse-wraparound Mode.
$P_{s}=4 \quad 6 \rightarrow$ Stop Logging. (This is normally disabled by a compile-time option).
$P_{s}=4 \rightarrow 7 \rightarrow$ Use Normal Screen Buffer.
$P_{s}=6 \quad 6 \rightarrow$ Numeric keypad (DECNKM).
$P_{s}=67 \rightarrow$ Backarrow key sends delete (DECBKM).
$P_{s}=69 \rightarrow$ Disable left and right margin mode (DECLRMM), VT420 and up.
$P_{s}=95 \rightarrow$ Clear screen when DECCOLM is set/reset (DECNCSM), VT510 and up.

$P_{s}=$| 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Don't send Mouse X \& Y on button press and release. See the section

Mouse Tracking.

$P_{s}=$| 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- |\rightarrow Don't use Hilite Mouse Tracking.

$P_{s}=$| 1 | 0 | 0 | 2 |
| :--- | :--- | :--- | :--- |\rightarrow Don't use Cell Motion Mouse Tracking.

$P_{s}=$| 1 | 0 | 0 | 3 |
| :--- | :--- | :--- | :--- |\rightarrow Don't use All Motion Mouse Tracking.

$P_{s}=$	1	0	0	4

$P_{s}=$	1	0	0	5

$P_{s}=$| 1 | 0 | 0 | 6 |
| :--- | :--- | :--- | :--- |\rightarrow Disable SGR Mouse Mode.

$P_{S}=$| 1 | 0 | 0 | 7 |
| :--- | :--- | :--- | :--- |\rightarrow Disable Alternate Scroll Mode.

$P_{S}=$| 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |\rightarrow Don't scroll to bottom on tty output (rxvt).

$P_{s}=$| 1 | 0 | 1 | 5 |
| :--- | :--- | :--- | :--- |\rightarrow Disable urxvt Mouse Mode.

$P_{s}=$| 1 | 0 | 1 | 1 | \rightarrow Don't scroll to bottom on key press (rxvt). |
| :--- | :--- | :--- | :--- | :--- |

$P_{s}=$| 1 | 0 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Don’t interpret "meta" key. (This disables the eightBitInput resource).

$P_{S}=$| 1 | 0 | 3 | 5 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Disable special modifiers for Alt and NumLock keys. (This disables the numLock resource).

$P_{s}=$| | 0 | 3 | 6 |
| :--- | :--- | :--- | :--- |\rightarrow Don't send ESC when Meta modifies a key. (This disables the metaSendsEscape resource).

$P_{S}=$| 1 | 0 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Send VT220 Remove from the editing-keypad Delete key.

$P_{s}=$| 1 | 0 | 3 | 9 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Don't send ESC when Alt modifies a key. (This disables the altSendsEscape resource).

$P_{S}=$| 1 | 0 | 4 | 0 |
| :--- | :--- | :--- | :--- |\rightarrow Do not keep selection when not highlighted. (This disables the keepSelection resource).

$P_{s}=$| 1 | 0 | 4 | 1 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Use the PRIMARY selection. (This disables the selectToClipboard resource).

$P_{s}=$| 1 | 0 | 4 | 2 |
| :--- | :--- | :--- | :--- |\rightarrow Disable Urgency window manager hint when Control-G is received. (This disables the bellIsUrgent resource).

$P_{s}=$| 1 | 0 | 4 | 3 |
| :--- | :--- | :--- | :--- |\rightarrow Disable raising of the window when Control-G is received. (This disables the popOnBell resource).

$P_{s}=$| 1 | 0 | 4 | 7 |
| :--- | :--- | :--- | :--- | Screen. (This may be disabled by the titeInhibit resource).

$P_{s}=$| 1 | 0 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Restore cursor as in DECRC. (This may be disabled by the titeInhibit resource).

$P_{s}=$| 1 | 0 | 4 | 9 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Use Normal Screen Buffer and restore cursor as in DECRC. (This may be disabled by the titeInhibit resource). This combines the effects of the | 1 | 0 | 4 | 7 |
| :--- | :--- | :--- | :--- |
| and | | | | | 1 | 0 | 4 | 8 | modes. Use this with terminfo-based applications rather than the\begin{tabular}{\|l|l|l|}
\hline
\end{tabular} $\mathbf{7}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | mode.

$P_{S}=$| 1 | 0 | 5 | 0 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Reset terminfo/termcap function-key mode.

$P_{S}=$| 1 | 0 | 5 | 1 |
| :--- | :--- | :--- | :--- |\rightarrow Reset Sun function-key mode.

$P_{S}=$| 1 | 0 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Reset HP function-key mode.

$P_{s}=$| 1 | 0 | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Reset SCO function-key mode.

$P_{s}=$| 1 | 0 | 6 | 0 |
| :--- | :--- | :--- | :--- | :--- |\rightarrow Reset legacy keyboard emulation (X11R6).

$P_{S}=$| 1 | 0 | 6 | 1 |
| :--- | :--- | :--- | :--- |\rightarrow Reset keyboard emulation to Sun/PC style.

$P_{s}=$| 2 | 0 | 0 | 4 |
| :--- | :--- | :--- | :--- |\rightarrow Reset bracketed paste mode.

$$
\begin{aligned}
& \hline \mathrm{CSI} P_{m} \mathrm{~m} \quad \text { Character Attributes (SGR). } \\
& P_{S}=0 \rightarrow \text { Normal (default). } \\
& P_{S}=1 \rightarrow \text { Bold. } \\
& P_{S}=4 \rightarrow \text { Underlined. } \\
& P_{S}=5 \rightarrow \text { Blink (appears as Bold). } \\
& P_{S}=7 \rightarrow \text { Inverse. } \\
& P_{S}=8 \rightarrow \text { Invisible, i.e., hidden (VT300). } \\
& P_{S}=2 \rightarrow 2 \rightarrow \text { Normal (neither bold nor faint). }
\end{aligned}
$$

$P_{S}=24 \rightarrow$ Not underlined.
$P_{S}=25 \rightarrow$ Steady (not blinking).
$P_{s}=277 \rightarrow$ Positive (not inverse).
$P_{s}=2.8 \rightarrow$ Visible, i.e., not hidden (VT300).
$P_{s}=3 \rightarrow 0 \rightarrow$ Set foreground color to Black.
$P_{s}=3 \quad 1 \rightarrow$ Set foreground color to Red.

$P_{s}=$| | 2 |
| :--- | :--- |\rightarrow Set foreground color to Green.

$P_{S}=3 \rightarrow 3 \rightarrow$ Set foreground color to Yellow.
$P_{S}=3,4 \rightarrow$ Set foreground color to Blue.
$P_{s}=3 \quad 5 \rightarrow$ Set foreground color to Magenta.
$P_{S}=3-6 \rightarrow$ Set foreground color to Cyan.
$P_{s}=3 \quad 7 \rightarrow$ Set foreground color to White.
$P_{S}=3 \quad 9 \rightarrow$ Set foreground color to default (original).
$P_{s}=400 \rightarrow$ Set background color to Black.
$P_{S}=4 \quad 1 \rightarrow$ Set background color to Red.
$P_{S}=42 \rightarrow$ Set background color to Green.
$P_{s}=4 \rightarrow 3 \rightarrow$ Set background color to Yellow.
$P_{S}=4,4 \rightarrow$ Set background color to Blue.
$P_{s}=45 \rightarrow$ Set background color to Magenta.
$P_{S}=4 \quad 6 \rightarrow$ Set background color to Cyan.
$P_{s}=47 \rightarrow$ Set background color to White.
$P_{s}=4 \quad 9 \rightarrow$ Set background color to default (original).
If 16 -color support is compiled, the following apply. Assume that xterm's resources are set so that the ISO color codes are the first 8 of a set of 16 . Then the aixterm colors are the bright versions of the ISO colors:

$$
\begin{aligned}
& P_{s}=9 \rightarrow 0 \rightarrow \text { Set foreground color to Black. } \\
& P_{s}=9 \quad 1 \rightarrow \text { Set foreground color to Red. } \\
& P_{S}=9 \rightarrow 2 \rightarrow \text { Set foreground color to Green. } \\
& P_{s}=9 \rightarrow 3 \rightarrow \text { Set foreground color to Yellow. } \\
& P_{s}=9.4 \rightarrow \text { Set foreground color to Blue. } \\
& P_{S}=\begin{array}{|c|}
\hline
\end{array} \mathrm{5} \rightarrow \text { Set foreground color to Magenta. } \\
& P_{s}=9 \rightarrow 6 \rightarrow \text { Set foreground color to Cyan. } \\
& P_{s}=97 \rightarrow \text { Set foreground color to White. } \\
& P_{s}=\begin{array}{|l|l|l|}
\hline 1 & 0 & 0 \\
\hline
\end{array} \\
& P_{S}=\begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array} \rightarrow \text { Set background color to Red. } \\
& P_{s}=\begin{array}{|l|l|l}
1 & 0 & 2
\end{array} \rightarrow \text { Set background color to Green. } \\
& P_{s}=\begin{array}{|l|l|l|l}
\hline 1 & 0 & 3 \\
\hline
\end{array} \rightarrow \text { Set background color to Yellow. } \\
& P_{s}=\begin{array}{|l|l|l|}
\hline 1 & 0 & 4 \\
\hline
\end{array} \\
& P_{s}=\begin{array}{|l|l|l|}
\hline 1 & 0 & 5 \\
\hline
\end{array} \\
& P_{s}=\begin{array}{l|l|l|l}
\hline 1 & 0 & 6 \\
\hline
\end{array}
\end{aligned}
$$

$P_{s}=10067 \rightarrow$ Set background color to White.
If x term is compiled with the 16-color support disabled, it supports the following, from rxvt:
$P_{S}=1 \quad 0 \quad 0 \quad \rightarrow$ Set foreground and background color to default.
Xterm maintains a color palette whose entries are identified by an index beginning with zero. If 88- or 256-color support is compiled, the following apply:

- All parameters are decimal integers.
- RGB values range from zero (0) to 255.
- ISO-8613-3 can be interpreted in more than one way; xterm allows the semicolons in this control to be replaced by colons (but after the first colon, colons must be used).

These ISO-8613-3 controls are supported:
$P_{s}=3 \quad 8 ; 2 ; P_{r} ; P_{g} ; P_{b} \rightarrow$ Set foreground color to the closest match in xterm's palette for the given RGB $P_{r} / P_{g} / P_{b}$.
$P_{S}=3 \quad 8 ; 5 ; P_{s} \rightarrow$ Set foreground color to the second P_{s}.
$P_{s}=4 \square 8 ; 2 ; P_{r} ; P_{g} ; P_{b} \rightarrow$ Set background color to the closest match in xterm's palette for the given RGB $P_{r} / P_{g} / P_{b}$.
$P_{s}=4 \quad 8 ; 5 ; P_{s} \rightarrow$ Set background color to the second P_{s}.

Set or reset resource-values used by xterm to decide whether to construct escape sequences holding information about the modifiers pressed with a given key. The first parameter identifies the resource to set/reset. The second parameter is the value to assign to the resource. If the second parameter is omitted, the resource is reset to its initial value.
$P_{s}=0 \rightarrow$ modifyKeyboard.
$P_{S}=1 \rightarrow$ modifyCursorKeys.
$P_{S}=2 \rightarrow$ modifyFunctionKeys.
$P_{s}=4 \rightarrow$ modifyOtherKeys.
If no parameters are given, all resources are reset to their initial values.
${ }^{\mathrm{CSI}} P_{s} \mathrm{n} \quad$ Device Status Report (DSR).
$P_{s}=5 \rightarrow$ Status Report. Result ("OK") is

CSI	0	n

$P_{s}=6 \rightarrow$ Report Cursor Position (CPR) [row;column]. Result is
$\mathrm{CSI} r \square c \mathrm{R}$
 sponds to a resource value of " -1 ", which cannot be set with the other sequence. The parameter identifies the resource to be disabled:
$P_{s}=0 \rightarrow$ modifyKeyboard.
$P_{s}=1 \rightarrow$ modifyCursorKeys.
$P_{S}=2 \rightarrow$ modifyFunctionKeys.
$P_{s}=4 \rightarrow$ modifyOtherKeys.

If the parameter is omitted, modifyFunctionKeys is disabled. When modifyFunctionKeys is disabled, xterm uses the modifier keys to make an extended sequence of functions rather than adding a parameter to each function key to denote the modifiers.

CSI	$?$	$P_{s} \square \mathrm{n}$

Device Status Report (DSR, DEC-specific).
$P_{s}=6 \rightarrow$ Report Cursor Position (DECXCPR) [row;column] as $\mathrm{CsI} \square ? r \square c \square \mathrm{R}$ (assumes the default page, i.e., "1").

| 1 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (not ready).

CSI	$?$	2	1	n	(locked).

$P_{s}=26 \rightarrow$ Report Keyboard status as

CSI	$?$	2	7	$;$	1	$;$	0	$;$	0	n

The last two parameters apply to VT400 \& up, and denote keyboard ready and LK01 respectively.

 in, or | CSI | $?$ | 5 | 0 | | n |
| :--- | :--- | :--- | :--- | :--- | :--- |

$P_{s}=62 \rightarrow$ Report macro space (DECMSR) as CsI $P_{n} \backslash *\{$
$P_{s}=6 \quad 3 \rightarrow$ Report memory checksum (DECCKSR) as DCS $P_{t} \square!\mathrm{xx} \mathrm{x} \mathrm{x} \quad \mathrm{ST}$
P_{t} is the request id (from an optional parameter to the request).
The x's are hexadecimal digits $0-9$ and A-F.

 multiple-session operation).

| CSI | $>$ | $P_{s} \leq \mathrm{p}$ | Set resource value pointerMode. This is used by xterm to decide whether to hide the pointer cur- |
| :--- | :--- | :--- | :--- | sor as the user types. Valid values for the parameter:

$P_{s}=0 \rightarrow$ never hide the pointer.
$P_{s}=1 \rightarrow$ hide if the mouse tracking mode is not enabled.
$P_{s}=2 \rightarrow$ always hide the pointer. If no parameter is given, xterm uses the default, which is
\square

CSI	$!$	p	Soft terminal reset (DECSTR).

${ }^{\mathrm{CSI}} P_{s} \mathrm{\$} / \mathrm{p}$
Request ANSI mode (DECRQM). For VT300 and up, reply is
${ }^{\mathrm{CSI}} P_{s} \square P_{m} \$$
where P_{s} is the mode number as in RM, and P_{m} is the mode value:
0 - not recognized
1 - set
2 - reset
3 - permanently set
4 - permanently reset

CSI	$?$	P_{S}	$\$$	p

Request DEC private mode (DECRQM). For VT300 and up, reply is

CSI	$?$
	$;$

where P_{s} is the mode number as in DECSET, P_{m} is the mode value as in the ANSI DECRQM.
${ }^{\mathrm{CSI}} P_{S} \square ; P_{S}{ }^{\bullet \cdots} \mathrm{p}$
Set conformance level (DECSCL). Valid values for the first parameter:
$P_{s}=6 \quad 1 \rightarrow$ VT100.
$P_{s}=6,2 \rightarrow$ VT200.
$P_{s}=6 \rightarrow 3 \rightarrow$ VT300.
Valid values for the second parameter:
$P_{s}=0 \rightarrow 8$-bit controls.
$P_{s}=1 \rightarrow 7$-bit controls (always set for VT100).
$P_{s}=2 \rightarrow 8$-bit controls.
$\mathrm{CSI} P_{S} \mathrm{q}$ Load LEDs (DECLL).
$P_{s}=0 \rightarrow$ Clear all LEDS (default).
$P_{s}=1 \rightarrow$ Light Num Lock.
$P_{s}=2 \rightarrow$ Light Caps Lock.
$P_{s}=3 \rightarrow$ Light Scroll Lock.
$P_{s}=2 \rightarrow 1 \rightarrow$ Extinguish Num Lock.
$P_{s}=2 \quad 2 \rightarrow$ Extinguish Caps Lock.
$P_{S}=2 \rightarrow 3 \rightarrow$ Extinguish Scroll Lock.

CSI	$P_{S} \mathrm{sp}$	q

$P_{s}=0 \rightarrow$ blinking block.
$P_{s}=1 \rightarrow$ blinking block (default).
$P_{s}=2 \rightarrow$ steady block.
$P_{s}=3 \rightarrow$ blinking underline.
$P_{s}=4 \rightarrow$ steady underline.
$P_{s}=5 \rightarrow$ blinking bar (xterm).
$P_{s}=6 \rightarrow$ steady bar (xterm).
$\boxed{\operatorname{CSI}} P_{S} \square$ q \quad Select character protection attribute (DECSCA). Valid values for the parameter:
$P_{S}=0 \rightarrow$ DECSED and DECSEL can erase (default).
$P_{s}=1 \rightarrow$ DECSED and DECSEL cannot erase.
$P_{s}=2 \rightarrow$ DECSED and DECSEL can erase.
${ }^{\mathrm{CSI}} P_{s} \square ; P_{s} \leq \mathrm{r}$
Set Scrolling Region [top;bottom] (default = full size of window) $($ DECSTBM $)$.

| CSI | $?$ | P_{m} | r |
| :---: | :--- | :--- | :--- | same as for DECSET.

Change Attributes in Rectangular Area (DECCARA), VT400 and up.
$P_{t} \boxed{;} P_{\square} ; P_{b} \square ; P_{r}$ denotes the rectangle.
P_{S} denotes the SGR attributes to change: $0,1,4,5,7$.
$\boxed{\text { CsI }} P_{l} \boxed{\square} P_{r} \boxed{\mathrm{~s}}$
Set left and right margins (DECSLRM), available only when DECLRMM is enabled (VT420 and up).

CSI	S		Save cursor (ANSI.SYS), available only when DECLRMM is disabled.
CSI $?$ P_{m} s Save DEC Private Mode Values. P_{s} values are the same as for DECSET. CSI $P_{s} \square ;$ $P_{s} \square ;$ $P_{s} \square \mathrm{t}$			

Window manipulation (from dtterm, as well as extensions). These controls may be disabled using the allowWindowOps resource. Valid values for the first (and any additional parameters) are:
$P_{s}=1 \rightarrow$ De-iconify window.
$P_{S}=2 \rightarrow$ Iconify window.
$P_{S}=3 \square ; \quad x \square y \rightarrow$ Move window to $[\mathrm{x}, \mathrm{y}]$.
$P_{s}=4 \square ;$ height \square width \rightarrow Resize the xterm window to given height and width in pixels. Omitted parameters reuse the current height or width. Zero parameters use the display's height or width.
$P_{s}=5 \rightarrow$ Raise the xterm window to the front of the stacking order.
$P_{s}=6 \rightarrow$ Lower the xterm window to the bottom of the stacking order.
$P_{s}=7 \rightarrow$ Refresh the xterm window.
$P_{s}=8 \square ;$ height \square width \rightarrow Resize the text area to given height and width in characters. Omitted parameters reuse the current height or width. Zero parameters use the display's height or width.
$P_{s}=9 \rightarrow ; 0 \rightarrow$ Restore maximized window.
$P_{s}=9 \square ; \quad 1 \rightarrow$ Maximize window (i.e., resize to screen size).
$P_{s}=9 \quad ; \quad 2 \rightarrow$ Maximize window vertically.
$P_{s}=9 ; 3 \rightarrow$ Maximize window horizontally.

$P_{S}=$| 1 | 0 | $;$ | 0 |
| :--- | :--- | :--- | :--- |\rightarrow Undo full-screen mode.

$P_{s}=100 ;-1 \rightarrow$ Change to full-screen.
$P_{s}=100 ; \quad 2 \rightarrow$ Toggle full-screen.
$P_{s}=1 \quad 1 \rightarrow$ Report xterm window state. If the xterm window is open (non-iconified), it

$P_{S}=1 \square 4 \rightarrow$ Report xterm window in pixels. Result is $\mathrm{CSI} 4 \square \square$ height \square width $\square \mathrm{t}$

$P_{s}=108 \rightarrow$ Report the size of the text area in characters. Result is | CSI | 8 | $;$ |
| :---: | :---: | :---: |
| | | |

$P_{s}=1 \rightarrow 9 \rightarrow$ Report the size of the screen in characters. Result is | CSI | 9 | $;$ |
| :---: | :---: | :---: |
| | | |

$P_{s}=200 \rightarrow$ Report xterm window's icon label. Result is OSC L label ST
$P_{s}=2 \square 1 \rightarrow$ Report xterm window's title. Result is osc 1 label sT
$\left.P_{s}=2 \square 2\right] \quad ; \quad 0 \quad \rightarrow$ Save xterm icon and window title on stack.
$P_{s}=202 ; \quad 1 \quad \rightarrow$ Save xterm icon title on stack.
$P_{s}=220 ; 2 \rightarrow$ Save xterm window title on stack.

$P_{s}=$| | 3 | $;$ | 0 |
| :--- | :--- | :--- | :--- |\rightarrow Restore xterm icon and window title from stack.

$P_{s}=2 \square 3 \square ; 1 \quad \rightarrow$ Restore xterm icon title from stack.
$P_{s}=223 \rightarrow ; 2 \rightarrow$ Restore xterm window title from stack.
$P_{s}>=2,4 \rightarrow$ Resize to P_{s} lines (DECSLPP).

Reverse Attributes in Rectangular Area (DECRARA), VT400 and up.
$P_{t} \sqrt{\square} P_{\square} \quad ; P_{b} \boxed{;} P_{r}$ denotes the rectangle.
P_{s} denotes the attributes to reverse, i.e., $1,4,5,7$.

CSI	$>$	$P_{s} ;$	$P_{s} \boxed{\mathrm{t}}$

Set one or more features of the title modes. Each parameter enables a single feature.
$P_{s}=0 \rightarrow$ Set window/icon labels using hexadecimal.
$P_{S}=1 \rightarrow$ Query window/icon labels using hexadecimal.
$P_{S}=2 \rightarrow$ Set window/icon labels using UTF-8.
$P_{s}=3 \rightarrow$ Query window/icon labels using UTF-8. (See discussion of "Title Modes")

CSI	$P_{s} \mathrm{sp}$	t

$P_{s}=0$ or $1 \rightarrow$ off.
$P_{S}=2,3$ or $4 \rightarrow$ low.
$P_{s}=5,6,7$, or $7 \rightarrow$ high.

CSI	u	Restore cursor (ANSI.SYS).

CSI	P_{S}	sP
u	Set margin-bell volume (DECSMBV, VT520).	

$P_{s}=1 \rightarrow$ off.
$P_{s}=2,3$ or $4 \rightarrow$ low.
$P_{s}=0,5,6,7$, or $8 \rightarrow$ high.

Copy Rectangular Area (DECCRA, VT400 and up).
$P_{t} \boxed{\square} P_{\square} \quad ; P_{b} \square ; P_{r}$ denotes the rectangle.
P_{p} denotes the source page.
$P_{t} \quad ; P_{l}$ denotes the target location.
P_{p} denotes the target page.
$\boxed{\mathrm{CSI}} P_{t} \square ; P_{l} \square ; P_{b} \square ; P_{r} \square, \boxed{\mathrm{~W}}$
Enable Filter Rectangle (DECEFR), VT420 and up.
Parameters are [top;left;bottom;right].
Defines the coordinates of a filter rectangle and activates it. Anytime the locator is detected outside of the filter rectangle, an outside rectangle event is generated and the rectangle is disabled. Filter rectangles are always treated as "one-shot" events. Any parameters that are omitted default to the current locator position. If all parameters are omitted, any locator motion will be reported. DECELR always cancels any prevous rectangle definition.
$\boxed{\mathrm{CSI}} P_{s} \mathrm{x} \quad$ Request Terminal Parameters (DECREQTPARM).
if P_{s} is a " 0 " (default) or " 1 ", and xterm is emulating VT100, the control sequence elicits a response of the same form whose parameters describe the terminal:

$$
\begin{aligned}
& P_{s} \rightarrow \text { the given } P_{s} \text { incremented by } 2 . \\
& P_{n}=1 \\
& P_{n}=1 \leftarrow \text { no parity. } \\
& P_{n}=1 \leftarrow \text { eight bits. } \\
& P_{n}=1 \leftarrow 2 \leftarrow 8 \text { transmit } 38.4 \mathrm{k} \text { baud. }
\end{aligned}
$$

$P_{n}=1 \leftarrow$ clock multiplier.
$P_{n}=0 \leftarrow$ STP flags.
$\mathrm{CsI} P_{s} \square^{*} \mathrm{x}$ Select Attribute Change Extent (DECSACE).
$P_{S}=0 \rightarrow$ from start to end position, wrapped.
$P_{s}=1 \rightarrow$ from start to end position, wrapped.
$P_{s}=2 \rightarrow$ rectangle (exact).

Request Checksum of Rectangular Area (DECRQCRA), VT420 and up. Response is DCS $P_{t} \square!\mathrm{x} \mathrm{x} \mathrm{x} \mathrm{x} \mathrm{ST}$
P_{i} is the request id.
P_{g} is the page number.
$P_{\curvearrowleft} \quad ; P_{\square} ; P_{b} \square P_{r}$ denotes the rectangle.
The x's are hexadecimal digits $0-9$ and A-F.
$\boxed{\mathrm{CSI}} P_{c} \boxed{\square} P_{t} \boxed{;} P_{l} \square ; P_{b} \square ; P_{r} \boxed{\$} \boxed{\mathrm{x}}$
Fill Rectangular Area (DECFRA), VT420 and up.
P_{c} is the character to use.
$P_{t}, ; P_{\square} ; P_{b} \downarrow ; P_{r}$ denotes the rectangle.

Enable Locator Reporting (DECELR).
Valid values for the first parameter:
$P_{s}=0 \rightarrow$ Locator disabled (default).
$P_{s}=1 \rightarrow$ Locator enabled.
$P_{S}=2 \rightarrow$ Locator enabled for one report, then disabled.
The second parameter specifies the coordinate unit for locator reports.
Valid values for the second parameter:
$P_{u}=0 \leftarrow$ or omitted \rightarrow default to character cells.
$P_{u}=1 \leftarrow$ device physical pixels.
$P_{u}=2 \leftarrow$ character cells.
$\boxed{\mathrm{CSI}} P_{t} \square ; P_{\square} ; P_{b} \boxed{;} P_{r} \boxed{\$} \mid \mathrm{z}$
Erase Rectangular Area (DECERA), VT400 and up.
$P_{t} \boxed{;} P_{\square} ; P_{b} \square P_{r}$ denotes the rectangle.
$\boxed{\mathrm{CSI}} P_{m} \square \square \boxed{\{ } \quad$ Select Locator Events (DECSLE).
Valid values for the first (and any additional parameters) are:
$P_{s}=0 \rightarrow$ only respond to explicit host requests (DECRQLP).
(This is default). It also cancels any filter rectangle.
$P_{s}=1 \rightarrow$ report button down transitions.
$P_{s}=2 \rightarrow$ do not report button down transitions.
$P_{S}=3 \rightarrow$ report button up transitions.
$P_{S}=4 \rightarrow$ do not report button up transitions.

Selective Erase Rectangular Area (DECSERA), VT400 and up. $P_{t} \sqrt{\square} P_{\downarrow} ; P_{b} \boxed{;} P_{r}$ denotes the rectangle.
Request Locator Position (DECRQLP).
Valid values for the parameter are: $P_{s}=0,1$ or omitted \rightarrow transmit a single DECLRP locator report.

If Locator Reporting has been enabled by a DECELR, xterm will respond with a DECLRP Locator Report. This report is also generated on button up and down events if they have been enabled with a DECSLE, or when the locator is detected outside of a filter rectangle, if filter rectangles have been enabled with a DECEFR.

$$
\rightarrow \mathrm{CSI}_{e} P_{e} \boxed{;} P_{b} \boxed{;} P_{r} \boxed{;} P_{c} \boxed{\square} P_{p} \boxed{\mathrm{w}}
$$

Parameters are [event;button;row;column;page].
Valid values for the event:
$P_{e}=0 \rightarrow$ locator unavailable - no other parameters sent.
$P_{e}=\square \rightarrow$ request - xterm received a DECRQLP.
$P_{e}=2 \rightarrow$ left button down.
$P_{e}=3 \rightarrow$ left button up.
$P_{e}=4 \rightarrow$ middle button down.
$P_{e}=5 \rightarrow$ middle button up.
$P_{e}=6 \rightarrow$ right button down.
$P_{e}=7 \rightarrow$ right button up.
$P_{e}=8 \rightarrow$ M4 button down.
$P_{e}=9 \rightarrow$ M4 button up.
$P_{e}=1 \quad 0 \rightarrow$ locator outside filter rectangle.
"button" parameter is a bitmask indicating which buttons are pressed:
$P_{b}=0 \leftarrow$ no buttons down.
$P_{b} \& \square \leftarrow$ right button down.
$P_{b} \& 2 \leftarrow$ middle button down.
$P_{b} \& 4 \leftarrow$ left button down.
$P_{b} \& 8 \leftarrow \mathrm{M} 4$ button down.
"row" and "column" parameters are the coordinates of the locator position in the xterm window, encoded as ASCII decimal.

The "page" parameter is not used by xterm, and will be omitted.
$\left.\boxed{\mathrm{CSI}} P_{m} \boxed{\mathrm{SP}} \square\right\}$ Insert P_{S} Column(s) (default $\left.=1\right)(\mathrm{DECIC})$, VT420 and up.

Operating System Controls

$\boxed{\mathrm{OSC}} P_{s} \square ; P_{t} \boxed{\mathrm{ST}}$
$\boxed{\mathrm{OSC}} P_{s} \square ; P_{t}$ BEL
Set Text Parameters. For colors and font, if P_{t} is a "?", the control sequence elicits a response which consists of the control sequence which would set the corresponding value. The dtterm control sequences allow you to determine the icon name and window title.
$P_{s}=0 \rightarrow$ Change Icon Name and Window Title to P_{t}.
$P_{s}=1 \rightarrow$ Change Icon Name to P_{t}.
$P_{s}=2 \rightarrow$ Change Window Title to P_{t}.
$P_{s}=3 \rightarrow$ Set X property on top-level window. P_{t} should be in the form "prop=value", or just "prop" to delete the property
$P_{s}=4 ; c ;$ spec \rightarrow Change Color Number c to the color specified by spec. This can be a name or RGB specification as per XParseColor. Any number of c name pairs may be given. The color numbers correspond to the ANSI colors $0-7$, their bright versions $8-15$, and if supported, the remainder of the 88 -color or 256 -color table.

If a "?" is given rather than a name or RGB specification, xterm replies with a control sequence of the same form which can be used to set the corresponding color. Because more than one pair of color number and specification can be given in one control sequence, xterm can make more than one reply.

$P_{s}=5 ; c ;$ spec \rightarrow Change Special Color Number c to the color specified by spec. This can be a name or RGB specification as per XParseColor. Any number of c name pairs may be given. The special colors can also be set by adding the maximum number of colors to these codes in an | OSC | 4 |
| :--- | :--- |
| control: | |

$P_{c}=0 \leftarrow$ resource colorBD (BOLD).
$P_{c}=1 \leftarrow$ resource colorUL (UNDERLINE).
$P_{c}=2 \leftarrow$ resource colorBL (BLINK).
$P_{c}=3 \leftarrow$ resource colorRV (REVERSE).
The 10 colors (below) which may be set or queried using 1 dynamic colors, since the corresponding control sequences were the first means for setting xterm's colors dynamically, i.e., after it was started. They are not the same as the ANSI colors. These controls may be disabled using the allowColorOps resource. At least one parameter is expected for P_{t}. Each successive parameter changes the next color in the list. The value of P_{s} tells the starting point in the list. The colors are specified by name or RGB specification as per XParseColor.

If a "?" is given rather than a name or RGB specification, xterm replies with a control sequence of the same form which can be used to set the corresponding dynamic color. Because more than one pair of color number and specification can be given in one control sequence, xterm can make more than one reply.
$P_{s}=1 \quad 0 \rightarrow$ Change VT100 text foreground color to P_{t}.
$P_{s}=1 \rightarrow 1 \rightarrow$ Change VT100 text background color to P_{t}.
$P_{s}=1 \quad 2 \rightarrow$ Change text cursor color to P_{t}.
$P_{s}=1 \quad 3 \rightarrow$ Change mouse foreground color to P_{t}.
$P_{S}=1 \quad 4 \rightarrow$ Change mouse background color to P_{t}.
$P_{s}=1 \quad 5 \rightarrow$ Change Tektronix foreground color to P_{t}.
$P_{s}=1 \quad 6 \rightarrow$ Change Tektronix background color to P_{t}.
$P_{s}=17 \rightarrow$ Change highlight background color to P_{t}.
$P_{s}=1 \quad 8 \rightarrow$ Change Tektronix cursor color to P_{t}.
$P_{s}=1 \quad 9 \rightarrow$ Change highlight foreground color to P_{t}.
$P_{s}=46 \rightarrow$ Change Log File to P_{t}. (This is normally disabled by a compile-time option).
$P_{s}=500 \rightarrow$ Set Font to P_{t}. These controls may be disabled using the allowFontOps resource. If P_{t} begins with a "\#", index in the font menu, relative (if the next character is a plus or minus sign) or absolute. A number is expected but not required after the sign (the default is the current entry for relative, zero for absolute indexing).

The same rule (plus or minus sign, optional number) is used when querying the font. The remainder of P_{t} is ignored.
A font can be specified after a "\#" index expression, by adding a space and then the font specifier. If the "TrueType Fonts" menu entry is set (the renderFont resource), then this control sets/queries the faceName resource.
$P_{S}=51$ (reserved for Emacs shell).
$P_{s}=5 \quad 2 \rightarrow$ Manipulate Selection Data. These controls may be disabled using the allowWindowOps resource. The parameter P_{t} is parsed as

$$
P_{c} \longleftarrow ; P_{d}
$$

The first, P_{c}, may contain zero or more characters from the set \begin{tabular}{l|l|l|l|l|l|l|}
c \& p \& s \& 0 \& 1 \& 2 \& 3

\hline

4 \& 5 \& 6 \& 7 \& . It is used to construct a list of selection parameters for clipboard, primary,

 select, or cut buffers 0 through 7 respectively, in the order given. If the parameter is empty, xterm uses

\hline \& S

0 \& 0

, to specify the configurable primary/clipboard selection and cut buffer 0 .
\end{tabular}

The second parameter, P_{d}, gives the selection data. Normally this is a string encoded in base64. The data becomes the new selection, which is then available for pasting by other applications. If the second parameter is a \square, xterm replies to the host with the selection data encoded using the same protocol.
If the second parameter is neither a base 64 string nor \square, then the selection is cleared.

$P_{s}=$| 1 | 0 | 4 |
| :--- | :--- | :--- |
| | $; c \rightarrow$ Reset Color Number c. It is reset to the color specified by the corre- | | sponding X resource. Any number of c parameters may be given. These parameters correspond to the ANSI colors $0-7$, their bright versions $8-15$, and if supported, the remainder of the 88 -color or 256-color table. If no parameters are given, the entire table will be reset.

$P_{s}=1005 ; c \rightarrow$ Reset Special Color Number c. It is reset to the color specified by the corresponding X resource. Any number of c parameters may be given. These parameters correspond to the special colors which can be set using an OSC 5 control (or by adding the maximum number of colors using an osc 4 control).

The dynamic colors can also be reset to their default (resource) values:
$\left.P_{s}=1\right]|1| 0 \rightarrow$ Reset VT100 text foreground color.
$P_{s}=1$ [1 1 1 \rightarrow Reset VT100 text background color.

$P_{s}=$| 1 | 1 | 2 |
| :--- | :--- | :--- | :--- |\rightarrow Reset text cursor color.

$P_{s}=1 \quad 1 \quad 3 \rightarrow$ Reset mouse foreground color.
$P_{s}=1$ 1 1 , $4 \rightarrow$ Reset mouse background color.

$P_{s}=$| 1 | 1 | 5 |
| :--- | :--- | :--- |

$P_{s}=$| 1 | 1 | 6 |
| :--- | :--- | :--- | :--- |\rightarrow Reset Tektronix background color.

$P_{s}=$| 1 | 1 | 7 |
| :--- | :--- | :--- |\rightarrow Reset highlight color.

$P_{s}=$| 1 | 1 | 8 |
| :--- | :--- | :--- |

Privacy Message

$\triangle \mathrm{PM} P_{t} \mathrm{ST} \quad$ xterm implements no $\quad \mathrm{PM}$ functions; P_{t} is ignored. P_{t} need not be printable characters.

Alt and Meta Keys

Many keyboards have keys labeled "Alt". Few have keys labeled "Meta". However, xterm's default translations use the Meta modifier. Common keyboard configurations assign the Meta modifier to an "Alt" key. By using xmodmap one may have the modifier assigned to a different key, and have "real" alt and meta keys. Here is an example:

$$
\begin{aligned}
& !\text { put meta on mod3 to distinguish it from alt } \\
& \text { keycode } 64=\text { Alt_L } \\
& \text { clear mod1 } \\
& \text { add mod1 }=\text { Alt_L } \\
& \text { keycode } 115=\text { Meta_L } \\
& \text { clear mod3 } \\
& \text { add mod3 }=\text { Meta_L }
\end{aligned}
$$

The metaSendsEscape resource (and altSendsEscape if altIsNotMeta is set) can be used to control the way the Meta modifier applies to ordinary keys unless the modifyOtherKeys resource is set:

- prefix a key with the ESC character.
- shift the key from codes 0-127 to $128-255$ by adding 128 .

The table shows the result for a given character "x" with modifiers according to the default translations with the
resources set on or off. This assumes altIsNotMeta is set:
center; lf3 lf3 lf3 lf3 lf3w(2c) lf3w(2c) lf3w(2c) lf3w(2c). _ key altSendsEscape metaSendsEscape result _ x off off x Meta-x off off shift Alt-x off off shift Alt+Metax off off shift x ON off x Meta-x ON off shift Alt-x ON off EsC x Alt+Metax ON off ESC shift x off ON x Meta- x off ON ESC x Alt- x off ON shift Alt+Meta-
 x ON ON ESC x _

PC-Style Function Keys

If xterm does minimal translation of the function keys, it usually does this with a PC-style keyboard, so PC-style function keys result. Sun keyboards are similar to PC keyboards. Both have cursor and scrolling operations printed on the keypad, which duplicate the smaller cursor and scrolling keypads.

X does not predefine NumLock (used for VT220 keyboards) or Alt (used as an extension for the Sun/PC keyboards) as modifiers. These keys are recognized as modifiers when enabled by the numLock resource, or by the "DECSET | 1 | 0 | 3 | 5 | " control sequence. |
| :--- | :--- | :--- | :--- | :--- |

The cursor keys transmit the following escape sequences depending on the mode specified via the DECCKM escape sequence.

The home- and end-keys (unlike PageUp and other keys also on the 6-key editing keypad) are considered "cursor keys" by xterm. Their mode is also controlled by the DECCKM escape sequence:

The application keypad transmits the following escape sequences depending on the mode specified via the DECKPNM and DECKPAM escape sequences. Use the NumLock key to override the application mode.

Not all keys are present on the Sun/PC keypad (e.g., PF1, Tab), but are supported by the program.

They also provide 12 function keys, as well as a few other special-purpose keys:

F9

Older versions of xterm implement different escape sequences for F1 through F4. These can be activated by setting the oldXtermFKeys resource. However, since they do not correspond to any hardware terminal, they have been deprecated. (The DEC VT220 reserves F1 through F5 for local functions such as Setup).

In normal mode, i.e., a Sun/PC keyboard when the sunKeyboard resource is false, xterm recognizes function key modifiers which are parameters appended before the final character of the control sequence.
center; cf3 lf3 cf3w(2c) lf3w(2c). Code Modifiers_2 Shift 3 Alt 4 Shift + Alt 5 Control 6 Shift + Control 7 Alt + Control 8 Shift + Alt + Control _

For example, shift-F5 would be sent as | CSI | 1 | 5 | $;$ | 2 | \sim |
| :--- | :--- | :--- | :--- | :--- | :--- |

If the alwaysUseMods resource is set, the Meta modifier also is recognized, making parameters 9 through 16.

VT220-Style Function Keys

However, xterm is most useful as a DEC VT102 or VT220 emulator. Set the sunKeyboard resource to true to force a Sun/PC keyboard to act like a VT220 keyboard.

The VT102/VT220 application keypad transmits unique escape sequences in application mode, which are distinct
from the cursor and scrolling keypad:

The VT220 provides a 6-key editing keypad, which is analogous to that on the PC keyboard. It is not affected by DECCKM or DECKPNM/DECKPAM:

The VT220 provides 8 additional function keys. With a Sun/PC keyboard, access these keys by Control/F1 for F13, etc.

VT52-Style Function Keys

A VT52 does not have function keys, but it does have a numeric keypad and cursor keys. They differ from the other emulations by the prefix. Also, the cursor keys do not change:

The keypad is similar:

center;		cf3		cf3	$1 f 3 \mathrm{w}$ (2c) $1 \mathrm{f} 3 \mathrm{w}(2 \mathrm{c})$			lf3w(2c)			Key				Num	neric	Application				
Space ${ }^{\text {sp }}$	ESC	?	SP		Tab	TAB	ESC	?	I		Ente			ESC	?	M		PF1	ESC	P		ESC	P
PF2 ESC	Q	ESC	Q	PF3	3 ESC	R		c R	PF	F4	ESC	S		ESC	S		mult	iply)	*	Es			+
(add)	+	ESC	?	k		(c)	omm		,		ESC			-		min	us)			ESC	?	m	
(period)		ESC	?	n	$\mathrm{n} /$ (did	(ivide)	1	/	ESC	?	0	0		0	ESC	?	p	1		1	ESC	?	q
$2 \quad 2$	ESC	?	r		3	3	ESC	?	s		4		4	ESC	$?$	t		5		5	ESC	?	u
$6 \quad 6$	ESC	?	v		7	7	ESC	?	w		8	8		esc	? x		9			ESC	?	y	$=$
(equal)	$=$		ESC	?	X																		

Sun-Style Function Keys

The xterm program provides support for Sun keyboards more directly, by a menu toggle that causes it to send Sunstyle function key codes rather than VT220. Note, however, that the sun and VT100 emulations are not really compatible. For example, their wrap-margin behavior differs.
Only function keys are altered; keypad and cursor keys are the same. The emulation responds identically. See the xterm-sun terminfo entry for details.

HP-Style Function Keys

Similarly, xterm can be compiled to support HP keyboards. See the xterm-hp terminfo entry for details.

The Alternate Screen Buffer

Xterm maintains two screen buffers. The normal screen buffer allows you to scroll back to view saved lines of output up to the maximum set by the saveLines resource. The alternate screen buffer is exactly as large as the display, contains no additional saved lines. When the alternate screen buffer is active, you cannot scroll back to view saved lines. Xterm provides control sequences and menu entries for switching between the two.

Most full-screen applications use terminfo or termcap to obtain strings used to start/stop full-screen mode, i.e., smсир and rmсир for terminfo, or the corresponding $t i$ and $t e$ for termcap. The titeInhibit resource removes the $t i$ and te strings from the TERMCAP string which is set in the environment for some platforms. That is not done when xterm is built with terminfo libraries because terminfo does not provide the whole text of the termcap data in one piece. It would not work for terminfo anyway, since terminfo data is not passed in environment variables; setting an environment variable in this manner would have no effect on the application's ability to switch between normal and alternate screen buffers. Instead, the newer private mode controls (such as $\left.\begin{array}{|l|l|l|l|}\hline 1 & 0 & 4 & 9\end{array}\right)$ for switching between normal and alternate screen buffers simply disable the switching. They add other features such as clearing the display for the same reason: to make the details of switching independent of the application that requests the switch.

Bracketed Paste Mode

When bracketed paste mode is set, pasted text is bracketed with control sequences so that the program can differentiate pasted text from typed-in text. When bracketed paste mode is set, the program will receive:
ESC [200 ~,
followed by the pasted text, followed by
ESC [201 ~.

Title Modes

The window- and icon-labels can be set or queried using control sequences. As a VT220-emulator, xterm "should" limit the character encoding for the corresponding strings to ISO-8859-1. Indeed, it used to be the case (and was documented) that window titles had to be ISO-8859-1. This is no longer the case. However, there are many applications which still assume that titles are set using ISO-8859-1. So that is the default behavior.
If xterm is running with UTF-8 encoding, it is possible to use window- and icon-labels encoded using UTF-8. That is because the underlying X libraries (and many, but not all) window managers support this feature.

The utf8Title X resource setting tells xterm to disable a reconversion of the title string back to ISO-8859-1, allowing the title strings to be interpreted as UTF-8. The same feature can be enabled using the title mode control sequence described in this summary.

Separate from the ability to set the titles, xterm provides the ability to query the titles, returning them either in ISO-8859-1 or UTF-8. This choice is available only while xterm is using UTF-8 encoding.

Finally, the characters sent to, or returned by a title control are less constrained than the rest of the control sequences. To make them more manageable (and constrained), for use in shell scripts, xterm has an optional feature which decodes the string from hexadecimal (for setting titles) or for encoding the title into hexadecimal when querying the value.

Mouse Tracking

The VT widget can be set to send the mouse position and other information on button presses. These modes are typically used by editors and other full-screen applications that want to make use of the mouse.

There are two sets of mutually exclusive modes:

- mouse protocol
- protocol encoding

The mouse protocols include DEC Locator mode, enabled by the DECELR $\mathrm{CSI}_{P} P_{s} ; P_{s} \square, \mathrm{z}$ control sequence, and is not described here (control sequences are summarized above). The remaining five modes of the mouse protocols are each enabled (or disabled) by a different parameter in the "DECSET $\operatorname{CSI}, ? P_{m} \square \mathrm{~h}$ " or "DECRST CSI $? P_{m} \square$ " control sequence.
Manifest constants for the parameter values are defined in xcharmouse.h as follows:

```
#define SET_X10_MOUSE 9
#define SET_VT200_MOUSE 1000
#define SET_VT200_HIGHLIGHT_MOUSE 1001
#define SET_BTN_EVENT_MOUSE 1002
#define SET_ANY_EVENT_MOUSE 1003
#define SET_FOCUS_EVENT_MOUSE 1004
#define SET_EXT_MODE_MOUSE 1005
#define SET_SGR_EXT_MODE_MOUSE 1006
#define SET_URXVT_EXT_MODE_MOUSE }101
#define SET_ALTERNATE_SCROLL 1007
```

The motion reporting modes are strictly xterm extensions, and are not part of any standard, though they are analogous to the DEC VT200 DECELR locator reports.
Normally, parameters (such as pointer position and button number) for all mouse tracking escape sequences generated by xterm encode numeric parameters in a single character as value +32 . For example, $\square!$ specifies the value 1. The upper left character position on the terminal is denoted as 1,1 . This scheme dates back to X10, though the normal mouse-tracking (from X11) is more elaborate.

X10 compatibility mode sends an escape sequence only on button press, encoding the location and the mouse button pressed. It is enabled by specifying parameter 9 to DECSET. On button press, xterm sends $\operatorname{CsI} \mathrm{M} C_{b} C_{x} C_{y}$ (6 characters).

- $\quad C_{b}$ is button-1.
- $\quad C_{x}$ and C_{y} are the x and y coordinates of the mouse when the button was pressed.

Normal tracking mode sends an escape sequence on both button press and release. Modifier key (shift, ctrl, meta) information is also sent. It is enabled by specifying parameter 1000 to DECSET. On button press or release, xterm sends $\mathrm{CSI} \mathrm{M} C_{b} C_{x} C_{y}$.

- The low two bits of C_{b} encode button information: $0=\mathrm{MB} 1$ pressed, $1=\mathrm{MB} 2$ pressed, $2=\mathrm{MB} 3$ pressed, $3=$ release.
- The next three bits encode the modifiers which were down when the button was pressed and are added together: $4=$ Shift, $8=$ Meta, $16=$ Control. Note however that the shift and control bits are normally unavailable because xterm uses the control modifier with mouse for popup menus, and the shift modifier is used in the default translations for button events. The Meta modifier recognized by xterm is the modl mask, and is not necessarily the "Meta" key (see xmodmap).
- $\quad C_{x}$ and C_{y} are the x and y coordinates of the mouse event, encoded as in X10 mode.

Wheel mice may return buttons 4 and 5. Those buttons are represented by the same event codes as buttons 1 and 2 respectively, except that 64 is added to the event code. Release events for the wheel buttons are not reported. By default, the wheel mouse events are translated to scroll-back and scroll-forw actions. Those actions normally scroll the whole window, as if the scrollbar was used. However if Alternate Scroll mode is set, then cursor up/down controls are sent when the terminal is displaying the alternate screen. The initial state of Alternate Scroll mode is set using the alternateScroll resource.

Mouse highlight tracking notifies a program of a button press, receives a range of lines from the program, highlights the region covered by the mouse within that range until button release, and then sends the program the release coordinates. It is enabled by specifying parameter 1001 to DECSET. Highlighting is performed only for button 1, though other button events can be received.

Warning: use of this mode requires a cooperating program or it will hang xterm.
On button press, the same information as for normal tracking is generated; xterm then waits for the program to send mouse tracking information. All X events are ignored until the proper escape sequence is received from the pty: $\boxed{\mathrm{CSI}} P_{s} \square ; P_{s} \square ; P_{s} \square ; P_{s} \square ; P_{s} \boxed{\mathrm{~T}}$. The parameters are func, startx, starty, firstrow, and lastrow. func is non-zero to initiate highlight tracking and zero to abort. startx and starty give the starting x and y location for the highlighted region. The ending location tracks the mouse, but will never be above row firstrow and will always be above row lastrow. (The top of the screen is row 1.) When the button is released, xterm reports the ending position one of two ways:

- if the start and end coordinates are the same locations:

> | CSI | t |
| :---: | :---: |
| C_{x} | C_{y}. |

- otherwise:

CSI	T
C_{x}	C_{y}
C_{x}	C_{y}

The parameters are startx, starty, endx, endy, mousex, and mousey.

- startx, starty, endx, and endy give the starting and ending character positions of the region.
- mousex and mousey give the location of the mouse at button up, which may not be over a character.

Button-event tracking is essentially the same as normal tracking, but xterm also reports button-motion events. Motion events are reported only if the mouse pointer has moved to a different character cell. It is enabled by specifying parameter 1002 to DECSET. On button press or release, xterm sends the same codes used by normal tracking mode.

- On button-motion events, xterm adds 32 to the event code (the third character, C_{b}).
- The other bits of the event code specify button and modifier keys as in normal mode. For example, motion into cell x, y with button 1 down is reported as $\mathrm{CSI} \mathrm{M} @ C_{x} C_{y}$. ($@=32+0$ (button 1) +32 (motion indicator)). Similarly, motion with button 3 down is reported as $\operatorname{CSI} \mathrm{M}$ B $C_{x} C_{y}$. ($\quad \mathrm{B}=32+2$ (button 3$)+32$ (motion indicator)).

Any-event mode is the same as button-event mode, except that all motion events are reported, even if no mouse button is down. It is enabled by specifying 1003 to DECSET.

FocusIn/FocusOut can be combined with any of the mouse events since it uses a different protocol. When set, it causes xterm to send CSI I when the terminal gains focus, and	CSI	O when it loses focus.

The original X10 mouse protocol limits the C_{x} and C_{y} ordinates to $223(=255-32)$. Xterm supports more than one scheme for extending this range, by changing the protocol encoding:

UTF-8 (1005) This enables UTF-8 encoding for C_{x} and C_{y} under all tracking modes, expanding the maximum encodable position from 223 to 2015 . For positions less than 95 , the resulting output is identical under both modes. Under extended mouse mode, positions greater than 95 generate "extra" bytes which will confuse applications which do not treat their input as a UTF-8 stream. Likewise, C_{b} will be UTF-8 encoded, to reduce confusion with wheel mouse events.
Under normal mouse mode, positions outside $(160,94)$ result in byte pairs which can be interpreted as a single UTF-8 character; applications which do treat their input as UTF-8 will almost certainly be confused unless extended mouse mode is active.

This scheme has the drawback that the encoded coordinates will not pass through luit unchanged, e.g., for locales using non-UTF-8 encoding.

SGR (1006) The normal mouse response is altered to use CSI $<$ followed by semicolon-separated encoded button value, the C_{x} and C_{y} ordinates and a final character which is M for button press and m for button release.

The encoded button value in this case does not add 32 since that was useful only in the X10 scheme for ensuring that the byte containing the button value is a printable code. The modifiers are encoded in the same way. A different final character is used for button release to resolve the X10 ambiguity regarding which button was released.

The highlight tracking responses are also modified to an SGR-like format, using the same SGRstyle scheme and button-encodings.
URXVT (1015) The normal mouse response is altered to use csi followed by semicolon-separated encoded button value, the C_{x} and C_{y} ordinates and final character M .
This uses the same button encoding as X10, but printing it as a decimal integer rather than as a single byte.

However, | CSI | M | can be mistaken for DL (delete lines), while the highlight tracking $\operatorname{CSI} \mathrm{T}$ |
| :--- | :--- | :--- | can be mistaken for SD (scroll down), and the Window manipulation controls. For these reasons, the 1015 control is not recommended; it is not an improvement over 1005.

Tektronix 4014 Mode

Most of these sequences are standard Tektronix 4014 control sequences. Graph mode supports the 12 -bit addressing of the Tektronix 4014. The major features missing are the write-through and defocused modes. This document does not describe the commands used in the various Tektronix plotting modes but does describe the commands to switch modes.

BEL		Bell (Ctrl-G).
BS		Backspace ($\mathrm{Ctrl}-\mathrm{H}$).
TAB		Horizontal Tab (Ctrl-I).
LF		Line Feed or New Line (Ctrl-J).
vt		Cursor up (Ctrl-K).
FF		Form Feed or New Page (Ctrl-L).
CR		Carriage Return (Ctrl-M).
ESC	ETX	Switch to VT100 Mode (ESC Ctrl-C).
ESC	ENQ	Return Terminal Status ESC Ctrl-E).
ESC	FF	PAGE (Clear Screen) (ESC Ctrl-L).
ESC	so	Begin 4015 APL mode (ESC Ctrl-N). (This is ignored by xterm).
ESC	SI	End 4015 APL mode (ESC Ctrl-O). (This is ignored by xterm).
ESC	ETB	COPY (Save Tektronix Codes to file COPYyyyy-mm-dd.hh:mm:ss).
		ETB (end transmission block) is the same as Ctrl-W.

ESC	CAN	Bypass Condition (ESC Ctrl-X	
ESC	SUB	GIN mode (ESC Ctrl-Z).	
EsC	FS	Special Point Plot Mode (ESC	Ctrl-)
ESC	8	Select Large Character Set.	
ESC	9	Select \#2 Character Set.	
ESC	:	Select \#3 Character Set.	
ESC	,	Select Small Character Set.	
	$P_{s} \square ; P_{t} \stackrel{\text { BEL }}{ }$		

Set Text Parameters of VT window.
$P_{s}=0 \rightarrow$ Change Icon Name and Window Title to P_{t}.
$P_{s}=1 \rightarrow$ Change Icon Name to P_{t}.
$P_{s}=2 \rightarrow$ Change Window Title to P_{t}.
$P_{S}=46 \rightarrow$ Change Log File to P_{t}. (This is normally disabled by a compile-time option).

ESC	
ESC	a
ESC	b
ESC	c
ESC	d
ESC	h
ESC	
ESC	
ESC	k
ESC	
ESC	p
ESC	q
ESC	I
ESC	S
ESC	t

FS Point Plot Mode (Ctrl-
).
Graph Mode (Ctrl-]).
Incremental Plot Mode (Ctrl-^).
Alpha Mode (Ctrl-_).

VT52 Mode

Parameters for cursor movement are at the end of the ESC Y escape sequence. Each ordinate is encoded in a single character as value +32 . For example, $\square!$ is 1 . The screen coordinate system is 0 -based.

ESC	A	Cursor up.
ESC	B	
ESC	C	
ESC	D	

ESC	F	Enter graphics mode.
ESC	G	Exit graphics mode.
ESC	H	Move the cursor to the home position.
ESC	I	Reverse line feed.
ESC	J	Erase from the cursor to the end of the screen.
ESC	K	Erase from the cursor to the end of the line.
ESC	$\mathrm{Y} P_{s} P_{s}$	Move the cursor to given row and column.
ESC	Z	Identify.
		\rightarrow ESC $/ \mathrm{l}$ Z ('I am a VT52.').
ESC	$=$	Enter alternate keypad mode.
ESC	$>$	Exit alternate keypad mode.
ESC	<	Exit VT52 mode (Enter VT100 mode).

