
The CPAN Toolchain
137 859 Perl modules, 30 268 distributions,

11 695 authors, 255 mirrors

Weborama Tech Day 2014

September 5, 2014



1 CPAN
Tools built around CPAN

2 Vendor distributions
Hosting vendor distributions

3 Outro



What is CPAN?

A public repository of practically all open source Perl code.

Very, very few open source Perl modules are not on CPAN.



The “killer app” of Perl

CPAN, the good parts:
zero barrier to entry
it has a module for everything
enables high rate of code reuse

1. The Perl community is generally not big on snippet sharing
(they learned their lesson with Matt’s Script Archive). Some
modules are just the result of one author thinking “I keep
writing this thing, I should get it right once and write a 10-loc
module with it”, and thanks to him everyone gets it right now.

2. Because it’s trivial and cheap to declare a dependency.



The “killer app” of Perl

CPAN, the bad parts:
zero barrier to entry
it has a module for everything
enables high rate of code reuse

1. This means you can find a lot of crappy modules on CPAN.
2. This means you can find a lot of crappy modules on CPAN.
3. Fortunately you can sift the good from the bad relatively

easily. When comparing several options, check CPAN Testers
to eliminate the ones that don’t pass their tests on your
platform. Check out the ratings (no ratings at all for a
distribution probably means nobody really uses it). Check out
the reverse dependencies (from different authors).

4. Because it’s so simple to install a distribution and add it as a
dependency, and because many simple things are
implemented as third party modules, some distributions have
very deep and wide dependency trees. Dist::Zilla is a
particular offender with 6934 files installed.



A public mirror of Perl code

authors/
01mailrc.txt.gz
02authors.txt.gz
id/

A/
B/
...
E/

ET/
ETHER/

CHECKSUMS
Class-Method-Modifiers-2.07.tar.gz
Module-Metadata-1.000019.tar.gz
Moose-2.1210.tar.gz
MooseX-Types-0.44.tar.gz
Safe-Isa-1.000004.tar.gz
strictures-1.004004.tar.gz

...
modules/

02packages.details.txt.gz
03modlist.data.gz

CPAN clients know how to navigate this conventional structure

1. This mirror could be exposed via HTTP (like Pinto, most
mirrors), FTP (out of fashion), or just the local filesystem.

2. The important files here are all the *.tar.gz distribution
tarballs, and the 02packages.details.txt.gz package
index file which maps package names to tarball paths, e.g.
Moose::Role version 2.1210 is available in
E/ET/ETHER/Moose-2.1210.tar.gz.

3. Because it’s such a basic interface, tools can make use of it
very easily.

E/ET/ETHER/Moose-2.1210.tar.gz


CPANTS

The CPAN Testing Service
unpacks every newly-uploaded distribution
checks 51 different indicators – is there a README file, a
LICENSE file, can the tarball be extracted correctly, does
it provide documentation...
calculates an overall “kwalitee” score

Kwalitee
“Kwalitee” is something that looks like quality, sounds like
quality, but is not quite quality.

1. This is very useful to module authors, not so much to users,
except insofar as it turns authors better at making
distributions.

2. http://cpants.cpanauthors.org/author/WEBORAMA –
oops

3. From the DESCRIPTION of Test::Kwalitee: “Kwalitee is
an automatically-measurable gauge of how good your
software is. That’s very different from quality, which a
computer really can’t measure in a general sense. (If you can,
you’ve solved a hard problem in computer science.)”

http://cpants.cpanauthors.org/author/WEBORAMA


CPAN Testers

Probably the largest continuous integration service in the
Open Source community

individual volunteers from the community use special
CPAN clients to pull newly-uploaded distributions
they each attempt to run the distribution’s unit tests, and
report the results to the cpantesters service
the result is one big matrix of test results without any
work done on the distribution author’s part



CPAN Testers

after a couple days, every dist version you’ve uploaded
has been tested on all Perl versions from 5.8.8 to 5.21.1
and on most platforms, from vanilla GNU/Linux to
win32s to cygwin to most BSDs
and most combinations thereof

This is really useful, and definitely one of the things to look at
when comparing several similar distributions. YAML, YAML::Syck,
YAML::XS all basically do the same thing, but do they all build
properly for your architecture and Perl version? If the pre-install
tests are failing for you, maybe they’re also failing for every Perl
5.16.3 user?



Other stuff

the MetaCPAN ElasticSearch API
community reviews, ratings, etc.
http://rt.cpan.org
many more...

1. The MetaCPAN API may be used to get notifications when a
distribution you’re interested in gets an update; list all past
releases of a distribution (so that you can fetch them and do
some crazy bisecting to guess when a new feature has been
added)...

2. Community reviews and ratings also help in the egregious
TIMTOWTDI cases.

3. RT is mostly superseded by the lightweight GitHub issue
tracker.

http://rt.cpan.org


What about non-CPAN distributions?

For any closed-source project, a good chunk of code will never
be uploaded to CPAN.

it contains business logic
it contains proprietary information
it’s just plain not interesting for the community

So, we can forget about all those packaging conventions and
distribution management tools, right?



Advantages to packaging vendor code for CPAN

Even if we never upload our stuff to CPAN we still gain many
things from packaging it properly.

installation to known (almost) standard paths
declaration and installation of dependencies
compatibility with existing CPAN clients
everybody knows about t/

Install a CPAN module:
cpanm -v Data::UUID Install a CPAN module:
cpanm -v Data::UUID Install a Weborama module:
cpanm -v Weborama::Database

TL;DR: Packaging your vendor distributions like CPAN
distributions allows you to treat both in exactly the same way and
use the same tools everywhere. And it’s one fewer step to
publication.



How do we make them available to sites?

So everybody’s convinced by now that
packaging vendor stuff for CPAN is good.

We still need to host the tarballs
somewhere a CPAN client can find it.

HYPNOTOAD COMMANDS YOU
TO BE CONVINCED



CPAN::Mini

minicpan is one of the more mature solutions
it fetches all the tarballs currently indexed in an existing
CPAN mirror
with CPAN::Mini::Inject, you can then insert your
own distributions in your custom mirror
it presents the same interface as a regular CPAN mirror
so you can just point your CPAN client at it
also useful if you want a cheap local CPAN mirror
not so useful if you’re not interested in e.g. all the joke
Acme:: modules



Pinto and Stratopan

Pinto is a more recent solution
you can use the Pinto client to talk to a remote Pinto
server
more features: adding only your vendor distributions (and
their dependencies pulled from CPAN), “pinning”
distributions so they don’t get upgraded by mistake,
reverting changes to the mirror
Stratopan, developed by the same author, is basically
Pinto as a service
Weborama uses six Pinto instances: one each for the
integration, pre-production and production environments,
for two different software stacks



Questions?



Thanks for listening.



Director’s Cut

All the missing stuff:
PAUSE, the Perl Author Upload SErver
cpan, cpanp and cpanm
BackPAN
http://deb.perl.it

http://pause.perl.org
http://backpan.perl.org
http://deb.perl.it

	CPAN
	Tools built around CPAN

	Vendor distributions
	Hosting vendor distributions

	Outro

