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1The Unitary Fermi Gas

1.1 introduction

For a good introduction to cold-atom physics, look at the book by
Pethick and Smith [1]. Then, to get a feel for the current state of
research, look at the reviews [2–5].

1.2 universality

First some notations. We consider here gases of two-species of non-
relativistic fermion, which we shall label a and b, One can think of two spin states

in neutrons, or two hyperfine
states of an atom in cold atom, or
even two different species.

that interact with
an attractive and short range interaction. Let the masses be equal
ma = mb = m, and the densities be denoted na and nb such that the
total density is n+ = na +nb. We shall express everything in terms of
the Fermi wave-vector kF, Fermi energy εF =  h2k2F/2m. It is common to drop factors of

 h = 1 and mass m = 1 to obtain
more “natural” units. I will
endeavour to keep them in the
formulae, but don’t be alarmed if
they go astray – just add them as
needed to make up the
appropriate densities.

At low densities, the two-body s-wave interaction dominates and
can be described by the effective range expansion (see for example [6])

k cot δk =
−1

aS
+
rek

2

2
+O(k4). (1)

where δk is the phase shift at wave-vector k. This is one way of defining
the s-wave scattering length aS. (See problem p-4 to get a feel for the
unitary limit.) The unitary limit corresponds to the separation of scales

re ≪ k−1F ≪ aS. (2)

I.e. when the density can be taken so low that the interparticle sep-
aration is much larger than the range (kFre ≪ 1), then the system is
fully described by the single dimensionless combination kFaS. In this
limit, all properties of the potential that are characterized by higher
terms in the effective range expansion (1) (sometimes called “shape”
parameters) become irrelevant and everything is characterized by the
s-wave scattering length aS.

Since the only length scales are the interparticle spacing ∝ k−1F
and the scattering length aS, the physics of homogeneous matter is
completely described by the dimensionless parameter (kFaS)

−1: this
set of theories describe the Bardeen-Cooper-Schrieffer (bcs)/Bose-
Einstein Condensate (bec) crossover. The unitary limit occurs when
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the unitary fermi gas

the scattering length is subsequently taken much larger than the
interparticle spacing (1 ≪ ∣kFaS∣). Then all length-scales drop out
and one obtains a theory who’s only dimensionful scale is set by the
density n+ = k3F/3π

2 (see problem p-2).
When this state was first considered, it was not at all obvious that

the limit of infinite scattering length could be taken simultaneously
with the zero-range limit. The potential failure of this approach would
be a collapseIndeed, cold atom systems

typically are unstable, with the
ground state being not a gas, but

a metal (lithium for example). The
dilute gases realized in

experiment are actually long-lived
metastable states. The decay

mode – via three-body scattering –
is highly suppressed in the dilute

limit.

whereby the density would increase until kFre ∼ 1 and
the shape of the potential would soften the potential, allowing the
exclusion pressure to stabilize the system in a high-density state.

George Bertsch formally posed the question of the stability of dilute
matter in this limit as a challenge question [7] that has since been
practically (though not formally) resolved through a combination of
theories and experiments. Thus, one realizes a single state of matter –
the Unitary Fermi Gas (ufg) – that can arise in the dilute limit of any
short-range interaction if the potential can be tuned so that aS ≫ k−1F .
This is the sense in which the physics is “universal”. This limit is not
“natural”: one would generically expect the the scattering length and
range to have the same scale aS ∼ re. It turns out, however, that dilute
neutron matter has an unnaturally large scattering length making
the unitary limit physically relevant. To deal with this unnatural
ordering of scales in Effective Field Theory (eft), one must choose the
appropriate subtraction scheme (see [10, 11] for details and [12] for a
pedagogical overview).

As a result of this universality we can define the thermodynamics
of the theory in terms of a single dimensionless parameter ξ ≈ 0.37 –
known as the Bertsch parameter – through the energy density:

E(n+) = ξEFG(n+) (3)

where EFG(n+) is the energy density of the free Fermi gas (see prob-
lems p-1 and p-2). Despite the simplicity of the thermodynamics, the
system itself is highly correlated and lacks any perturbative expansion
parameter. Thus, measuring and computing the value of ξ has been
a major challenge over the past decade (see Fig. 13 of [13] for the
historical set of values given for ξ).

1.3 away from unitarity

When one departs from the unitary limit – finite T , aS, re, polariza-
tion na −nb ≠ 0 etc., additional length scales enter the problem and
the thermodynamic functions depend on dimensionless functions of

6 Revision 2:287973e981ca tip.



1.3 away from unitarity

various dimensionless ratios (see problem p-6). For example, at finite
polarization, it is useful to characterized the thermodynamic func-
tions by dimensionless functions of the dimensionless ratio nb/na.
As one introduces more length scales, these functions become mul-
tidimensional and one quickly runs out of enough information to
accurately parametrize them. Currently, the finite-temperature char-
acterization has received the most rigorous characterization from the
Massachusetts Institute of Technology (mit) group [14].

Perhaps the most interesting physics lies in the polarized Fermi gas,
where many exotic phases may exist including p-wave superconduc-
tors, crystalline super-solids (Larkin-Ovchinnikov Fulde-Ferrel (loff)
states), and gapless superconductors (see figure 1).

Induced P-Wave Superfluidity in Asymmetric Fermi Gases

Aurel Bulgac,* Michael McNeil Forbes,† and Achim Schwenk‡

Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
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We show that two new intraspecies P-wave superfluid phases appear in two-component asymmetric
Fermi systems with short-range S-wave interactions. In the BEC limit, phonons of the molecular BEC
induce P-wave superfluidity in the excess fermions. In the BCS limit, density fluctuations induce P-wave
superfluidity in both the majority and the minority species. These phases may be realized in experiments
with spin-polarized Fermi gases.
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The phenomenon of fermionic superfluidity spans 20
orders of magnitude, from cold atomic gases, through
liquid 3He, electronic superconductors, nuclei, and neutron
stars, to quark color superconductors. Experiments with
trapped cold atoms provide clean access to this physics,
with tunable interactions and compositions.

In this Letter, we discuss the possibility of P-wave
superfluidity in cold asymmetric Fermi gases comprising
two species ( " and # ) of equal mass m, with short-range
S-wave interactions. (The generalization to unequal
masses is straightforward.) If the system is symmetric
(equal number density of each species), the ground state
is well described as a fully gapped superfluid: there is a
crossover from a BCS state at weak attraction to a BEC of
tightly bound diatomic molecules (dimers) at strong
attraction.

The ground state of asymmetric systems is not even
qualitatively well understood. If the chemical potential
difference !" between the two species is larger than the
gap ! in the spectrum, the stability of the superfluid state is
compromised. At weak coupling it is known that there
must be a phase transition for !" < !=

!!!
2

p
to some asym-

metric state [1]. Various possible asymmetric superfluid
phases have been proposed: for example, anisotropic/in-
homogeneous superfluid states with crystalline structure
(LOFF) [2] or deformed Fermi surfaces [3], and homoge-
neous gapless (breached pair) superfluids [4]. To date, all
proposed phase diagrams conclude that, for large asymme-
try, one finds a normal Fermi liquid [5–7].

Here we show that attractive intra-species P-wave in-
teractions are induced between gapless fermions, leading
to the formation of P-wave superfluids. We propose a
phase diagram (Fig. 1) where phases with excess fermions
are P-wave superfluids (except for the free Fermi gas
consisting of a single noninteracting species). In the BEC
regime, the P1 phase consists of a molecular BEC with a
single P-wave superfluid of the excess particles. In the
BCS regime, the P2 phase has two coexisting P-wave
superfluids: one in the majority component, and one in
the minority component.

We calculate the induced interactions that give rise to
P-wave superfluidity in the controlled limit of small scat-
tering length, and estimate the dependence of the P-wave
gap !P on the various physical parameters. These P-wave
phases could soon be observed, as experiments are just

FIG. 1. Conjectured zero-temperature grand canonical phase
diagram after [6]. Scaling relations allow this two-dimensional
projection of the three parameters (", a, !"). The chemical
potential asymmetry !" ! """ #"#$=2, and the S-wave scat-
tering length a are expressed in units of the S-wave gap !!"!0

and density n!"!0 of the symmetric state with the same parame-
ters " and a, but with !" ! 0. The phase P1—a gapless
superfluid with single Fermi surface in [6]—is our P-wave
superfluid/BEC phase. The phase P2—a two-component
Fermi liquid in [6]—is our two-component P-wave phase.
There may be additional P-wave phases (for instance, in the
breached pair phases) near the S-wave Feshbach resonance.
Likewise, the exact nature of the phase(s) labeled LOFF? has
yet to be determined. This phase diagram is illustrative: our
results are independent of its quantitative structure. The dotted
lines in the BEC and BCS regimes represent sample trajectories
of constant a and !". A trap provides a radially varying ", and
would comprise concentric shells of the various phases crossed
by these trajectories starting from the crosses at the center of the
trap. To maximize the physical space occupied by these new
phases, it might be useful to load the trap so the core is a P-wave
phase as indicated by the two shorter trajectories. [Note: we have
verified the qualitative structure and shape of this diagram (out-
side of the unitary regime) with a self-consistent mean-field
crossover model.]

PRL 97, 020402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
14 JULY 2006

0031-9007=06=97(2)=020402(4) 020402-1  2006 The American Physical Society

Figure 1: (Figure 1 from [15].) Conjectured zero-temperature grand
canonical phase diagram after [16]. Scaling relations allow this two-
dimensional projection of the three parameters (µ,aS, δµ). The chemi-
cal potential asymmetry δµ = (µa − µb)/2, and the s-wave scattering-
length aS are expressed in units of the s-wave gap ∆δµ=0 and density
nδµ=0 of the symmetric state with the same parameters µ and a, but
with δµ = 0. The phase P1 – a gapless superfluid with single Fermi
surface in [16] – is a p-wave superfluid/bec phase. The phase P2 –
a two-component Fermi-liquid in [16] – is a two-component p-wave
phase. There may be additional p-wave phases (for instance in the
breached pair phases) near the s-wave Feshbach resonance. Likewise,
the exact nature of the phase(s) labeled “loff?” has yet to be deter-
mined. The dotted lines in the bec and bcs regimes represent sample
trajectories of constant aS and δµ. A trap provides a radially varying
µ, and would comprise concentric shells of the various phases crossed
by these trajectories starting from the crosses at the center of the trap.
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the unitary fermi gas

1.4 physical realizations

As mentioned before, dilute neutron matter – as expected in the
shells of neutron stars – is well modelled by the ufg on account
of the unnaturally large neutron-neutron scattering length ann ≈

−18.9(4) fm [17]. Many qualitative properties of dilute neutron matter
may thus be studied with the ufg, though quantitative calculations
need to take into account the effects of the rather large effective range
rnn ≈ 2.75(11) fm [19].

The ufg can be realized directly in systems of trapped neutral
alkali atoms (6Li is the most commonly studied isotope). These sys-
tems are tuned through a Feshbach resonance [20] by adjusting an
external magnetic field so that a bound-state in a closed channel is
brought to zero-energy. This resonance allows different hyperfine
states of the atoms to interact over large inter-particle separations
even though their range is extremely small (set by the van der Waals
interactions). Through various cooling techniques (see the demo http:

//www.colorado.edu/physics/2000/bec/evap_cool.html), cold-atom
experiments can study cool quantum-degenerate gases comprising
∼ 106 particles. (See [21] for a review of the experimental techniques.)

In addition to tuning the interactions, one can control the particle
number and population imbalance. Systems can also be produced
with different interacting species, or a variety of different hyperfine
states to study multi-component systems. In addition to s-wave Fesh-
bach resonances, many resonances in higher partials such as p-wave
interactions have been identified. (See [22] for a review of known
resonances.)

Through precise control of magnetic and optical traps, 1d tubes, 2d

planes, and a variety of 3d systems can be studied. Recent interest has
concerned optical lattices – spatially varying potentials – which can be
used to study lattice models, or to further control interactions. Optical
traps can also be used to manipulate the systems: for example, by
stirring the system, the mit group observed regular vortex lattices [23] –
an indication that superfluidity had be achieved. One typically images
these systems destructively through photo-absorption imaging, but
other techniques are being developed. See [21] for a review.

An exciting possibility is to use cold-atoms systems to simulate
neutron matter, or even Quantum Chromo-Dynamics (qcd). This
program is in its infancy, but progress in cold-atom technology has
been extremely rapid, and it is likely that simple simulators can be
realized in the near future. (For example, people have explored the

8 Revision 2:287973e981ca tip.
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1.4 physical realizations

possibility of engineering interactions with a finite range to simulate
neutron matter [24], as well as attempted to model dynamical gauge
fields [25].)
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2Theoretical Techniques

2.1 perturbative techniques

The two limiting cases of the bec/bcs crossover admit perturbative
treatment. In the bec limit, one can describe the system in terms
of tightly-bound bosonic dimers and excess fermions (if polarized).
One can explicitly solve the two, three, and four-body problems to
obtain the properties of these weakly interacting components, and
then perform perturbation theory. For example, solving the two-body
problem (problem p-4), one finds that the bosonic dimer has a binding-
energy of EB =  h2/ma2S. Likewise, one can compute the dimer-fermion
scattering length aFB by solving the three-body problem, and the
dimer-dimer scattering length aBB by solving the four-body problem.
Including these, we obtain the following energy for the bec limit: We consider only na ≥ nb so that

any excess (unpaired) fermions
are of type a and there are
nF = na −nb of these (per unit
volume). The remaining fermions
are all paired into nB = nb dimers.

E(nF,nB) = −EBnB +
3

5

 h2

2m
(6π2)2/3n

5/3

F + fFBnFnB +
1

2
fBBn

2
B, (4)

where nB = nb is the number of dimers (tightly bound “bosons”)
and nF = na −nb is the number of unpaired fermions. The couplings
are determined from the scattering length aS > 0 using few-body
methods [26–28]:

fBB =
π h2

m
aBB aS ≈

π h2

m
1.2aS, (5a)

fFB =
π h2

m
aFB aS ≈

π h2

m
3.54aS, (5b)

EB =
 h2

m
a−2S (5c)

Deep in the bec limit, the couplings become weak and the many-body
system may be treated perturbatively as an expansion in kFaS (here
kF is typically defined in terms of the total density kF = (3π2n+)

1/3 as
before).

Likewise, when the bare attraction between the fermions is weak,
the scattering length becomes small and negative. In this bcs limit,
one may perturbatively expand in powers of kFaS, but one must
first deal with the infrared (ir) singularities associated with the well-
known bcs instability. This probably is highlighted by our lack of
understanding about the nature of polarized superfluid phases, even
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theoretical techniques

in this weak-coupling regime. There may be many possible partially
polarized states – even at weak coupling – but one needs to know the
ir structure of these states to be able to compare their energies. The
bcs superfluid state appears as an instability in the normal state, and
one might discover a hint of a new state from a perturbative calculation,
but as is well known, one cannot reach the bcs perturbatively from
the normal state, even though the system has weak interactions.

Many proposed phases exist, include crystalline loff states, gapless
superfluids, and p-wave superconductors, but the best one can do is
to compare the energies of these various states. In principle, the true
ground state at finite polarization might be something very different,
and if it is separated by a first-order transition from the other states,
then there might not even be a perturbative signal in the form of an
instability. To truly understand what is happening in these interesting
regimes, one needs a reliable ab initio method or experiment. Once
one has identified the ir structure of the ground state, then these
perturbative techniques allow one to quantify what happens in the
deep bec and bcs limits (see Fig. 1). Unfortunately, they do not help
at all for quantifying what happens in the unitary limit where kFaS
diverges.

Another perturbative approach developed by Son and Nishida [29]
is known as the ε expansion. The idea here is to do a dimensional
expansion about 4d in ε = 4− d. There is no strictly four-dimensional
unitary limit – the dimers collapse and require an effective range to
stabilize them – but in 4 − ε dimensions, the dimers become small
(they scale like ε) so that the theory looks like a weakly interacting
gas of dimers and perturbative calculations can be applied to this gas
of tightly bound dimers. This allows one to compute quantities and
then extrapolate back to d = 3 dimensions. Unfortunately, to answer
questions about d = 3 one needs to take ε = 1 which is no-longer a
small parameter. One can play a similar game expanding about the 2d

gas in ε = d− 2. In this case, the unitary 2d gas is non-interaction (see
problem p-4) and again one can compute as desired.Unfortunately, the assumptions

made to perform the interpolation
are known to be incorrect, but this

opens the door to the possibility
that somehow one can learn about

the asymptotic properties of the
expansion, thereby correcting

these results.

One can then
interpolate between d = 2 and d = 3 by making assumptions about
the asymptotic forms of the series and one obtains, for example, very
reasonable values for the Bertsch parameter.

Finally, one can perform a perturbative virial expansion in µ/T that
works at high temperatures, but this does not shed any light on the
interesting physics below the superfluid phase transition.

12 Revision 2:287973e981ca tip.



2.2 non -perturbative techniques

In summary, the unitary regime admits no perturbative expansion.
This should be evident since there is only one length scale: all physical
quantities of interest have the same scale! Nothing is small.

2.2 non -perturbative techniques

2.2.1 Mean-field Approach

To gain an intuitive understanding as to what might be happening at
unitarity, one typically turns to a mean-field analysis (see problem p-
8). The mean-field approach provides a simple physical picture for
what is happening, and can provide qualitative suggestions about the
potentially relevant physics. The unitary gas, however, demonstrates
that one cannot trust mean-field models quantitatively.

2.2.2 Density Functional Theory

A related approach, is to use the intuition developed with a mean-
field model to develop a Density Functional Theory (dft) to describe
the system. In principle, dft is an exact approach: The Hohenberg-
Kohn theorem [33] establishes the existence of a functional E[n] of the
density n(x⃗) such that the energy and density of the ground state in
any There are some reasonable caveats:

check the theorem for details.
external potential V(x⃗) may be found by minimizing:

min
n(x⃗)

E[n]+∫ d3x⃗ V(x⃗)n(x⃗). (6)

The problem is that the form of the functional E[n] might be extremely
complicated and non-local. The way to proceed is to make some
assumptions about the form. In particular, a useful variation due to
Kohn and Sham [34] introduces an auxiliary “kinetic” density τ(x⃗) so
that the equations of motion after minimization describe quasiparticles.
If one also introduces an anomalous (pairing) density ν(x⃗), then it
turns out that a three-parameter local energy density works very well
for describing the ufg There are still some subtleties

with the zero-range limit: the
local form of ν and τ+ here are
divergent, and the coupling g
must be taken to zero in such a
way that the ∆ = −gν is held fixed.
See [35] and the references therein
for details.

is

Eslda = α
τ+

2m
+βEFG(n+)+ gν

†ν. (7)

The parameter α describes the inverse effective mass of the quasiparti-
cles in the theory, the parameter β rectifies the missing Hartree terms
in the mean-field theory, and the third parameter (hidden in g) sets
the pairing strength. The standard variational mean-field result is
obtained when one sets α = 1 and β = 0.

Revision 2:287973e981ca tip. 13



theoretical techniques

This simple three-parameter model, does an exceptional job of
modelling homogeneous systems in the ufg. In particular, it seems to
properly capture all of the finite-size (shell) corrections for particles in
a periodic box, even all the way down to N+ = 2 [36]. Corrections in
the form of gradients are currently being explored.

One big advantage of dft approaches is that they can be trivially
extended to investigate time-dependent phenomena. See [35] for
details.

2.2.3 Diagrammatic Resummation

One may also go beyond the perturbative by summing certain infinite
subsets of diagram, and various methods in the literature rely on sum-
ming the ladders of the T -matrix. These include both self-consistent
and non–self-consistent approximation depending on whether the
bare (G0) or renormalized (G) propagators are included. The mixed
(G0G) approximation exhibits a pseudo-gap (see section 3.3), but does
not agree quantitatively with thermodynamic quantities. The self-
consistent (GG) approximation, on the other hand, seems to fare much
better with the quantitative thermodynamics, but does not have a
pseudo-gap. Unfortunately, at unitarity, neither method is under con-
trol and the errors are unknown: It is quite possible that the apparent
quantitative agreement is accidental. Various T -matrix expansions
play an important role in describing the polaron (see section 3.2 and
problem p-7). See the references in [38] for a recent discussion and
review of some of these methods.

We mention one final form of resummation: the so-called bold dia-
grammatic Monte Carlo (mc) scheme. Here one uses a mc algorithm
to integrate a large set of Feynman diagrams (see for example [39, 42]).
Although this allows for a summation of high order diagrams (order
∼ 10), as with any diagrammatic approach, this can not access non-
perturbative physics (and can certainly not probe through a phase
transition). To overcome this limitation, one must manually include
some infinite ladder summations – the “bold” diagrams – and the
proponents of this method argue that this allows the method to access
regimes of interest. The process appears to work with systems above
Tc, but the choice of ladders, order, etc. seem rather arbitrary and not
everyone is convinced that errors are under control with this method.

Unfortunately, none of these approaches provides a rigorous quan-
titative method for understanding the ufg. For this, we must turn to
Quantum Monte Carlo (qmc) calculations or experiments.

14 Revision 2:287973e981ca tip.



2.2 non -perturbative techniques

2.2.4 Monte-Carlo Calculations

Most The bold-diagrammatic mc

algorithms are a notable
exception.

mc algorithms applied to cold-atom systems use some sort of
mc update to evolve a wavefunction

2.2.4.1 Fixed-Node Green’s Function Monte Carlo

One way of dealing with the sign problem is to perform a qmc calcu-
lation over a restricted set of wavefunctions. The Fixed-Node Green’s-
Function mc (gfmc) (fngfmc) algorithm starts with a particular wave-
function ΨV and evolves this forward in imaginary time by e−Ĥτ while
holding the nodes (zeros) of the wavefunction fixed. Formally, this is
equivalent to performing a full mc calculation on the projected space
of wavefunction that all have the same nodal structure as the initial
state ΨV . Thus, if ΨV can be chosen to have the same nodal structure
as the ground state, then one will obtain the ground-state properties of
the system. The advantage of working with a set of states with fixed
nodes is that one can ensure the measure for the mc integral remains
positive – thereby solving the sign problem.

The nodal structure of the ground state, however, is not known, and
so one must choose a physically motivated guess for ΨV . (Knowing
the ir structure of the state you are interested in comes in handy at
this point.) The result of the mc calculation is thus only an upper
bound on the true ground state energy. To improve this bound, the
wavefunction is then parametrized with a handful of parameters that
affect the nodal structure, and the mc calculation is repeated while
varying these parameters to lower the bound as much as possible.

The fngfmc algorithm operates in the continuum – one instead
uses some basis of functions (typically plane waves). Thus, the contin-
uum limit is not an issue, but one must ensure that the basis set is large
enough. The challenge is thus to extrapolate to the thermodynamic
limit of infinite volume. It turns out that a dft make be formulated
that works both in finite volumes, and in the thermodynamic limit.
Furthermore, this dft is consistent with the qmc calculations, thereby
providing a tool for extrapolating to the continuum limit. Some of the
best bounds for ξ have been obtained using dft extrapolated fngfmc

calculations [36].
This process has provided some of the most accurate quantitative

calculations to date of cold-atom systems – even for symmetric systems
where other methods have no sign problem. Unfortunately, the results
are only strictly reliable as upper bounds. Another advantage of this
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theoretical techniques

method, however, is that it can be directly applied to polarized systems
where there is a sign problem. Armed with a good understanding of
the ir structure of the polarized phase, one hopes to provide some
quantitative understanding with this approach.

One other potential limitation of the fngfmc method is that it
requires potentials to be formulated in position space. This is not a
problem for cold-atom systems, but makes implementing some of the
representations of nuclear forces somewhat tricky. For further details
about this method, see [44], and for some recent results, see [36].

2.2.4.2 Auxiliary Field Path Integral Monte Carlo

Another ab initio approach is to compute quantities directly from the
partition function (for more details, see [35]). The partition function
and average of an observable Ô are calculated according to

Z(β,µ,V) = Tr{exp[−β(Ĥ−µN̂)]} ,

O(β,µ,V) =
Tr {Ô exp[−β(Ĥ−µN̂)]}

Z(β,µ,V)
,

where β = 1/T (in this example we will take Boltzmann’s constant to
be kB = 1 so that temperature is expressed in units of energy). In order
to be able to calculate these quantities one first factorizes the statistical
weight using the Trotter formula:

exp[−β(Ĥ−µN̂)] =
Nτ

∏
j=1

exp[−τ(Ĥ−µN̂)] (8)

where β = Nττ. The next step is to decompose the exponentials on
the right hand side into exponentials that depend separately on the
kinetic and potential energy operators. The second order expansion is
(higher orders require more effort, see [45–48]):

exp[−τ(Ĥ−µN̂)]

= exp [−
τ(K̂−µN̂)

2
] exp(−τV̂) exp [−

τ(K̂−µN̂)

2
]+O(τ3), (9)

where K̂ is the kinetic energy operator, whose dispersion relation, for
momenta smaller than the cut-off, is given by εk⃗ =  h2k2/2m.

In order to efficiently evaluate the term containing the interaction,
one has to replace it by the sum (or integral) of one body terms. This
can be done with the Hubbard-Stratonovich (hs) transformation [49].
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2.2 non -perturbative techniques

The transformation is not unique, and one takes advantage of this
freedom to ensure an efficient summation (or integration) scheme. In
our case, due to the simplicity of the interaction term, a discrete hs

transformation can be applied, similar to that in [50]:

exp[−gτn̂a(r⃗)n̂b(r⃗)] =
1

2
∑

σ(r⃗,τj)=±1
[1+Aσ(r⃗, τj)n̂a(r⃗)][1+Aσ(r⃗, τj)n̂b(r⃗)],

(10)
where A =

√
exp(−gτ)− 1, τj labels the location on the imaginary time

axis, j = 1, . . . ,Nτ, and There are more general hs

transformations that allow σ to
take continuous values in both
compact and infinite domains.

σ(r⃗, τj) is a field that can take values ±1 at each
point on the space-time lattice.

One thereby renders all fermionic operations one-body in nature,
allowing them to be directly applied to the state. The cost is that
one must now use mc to perform the sum over the σ(r⃗, τj) field
configurations. The advantages of this transform is discussed, for
example, in [50, 51]. One can show that the measure is positive definite
for symmetric systems µa = µb. The sign problem in other cases can
sometimes be cured by properly choosing the hs transformation [52].

The many-fermion problem is thus reduced to an Auxiliary Field
Quantum Monte Carlo problem (Auxiliary-Field qmc (afqmc)), to
which the standard Metropolis algorithm can be applied. In contrast
to the fngfmc algorithm, the afqmc algorithm is an ab initio method,
providing unbiased estimates (providing convergence is achieved),
however, it is afflicted by the sign problem, and so has been of limited
used when discussing polarized phases. For more details, see [51, 53–
61], and the review [35].

2.2.4.3 Lattice Methods

Finally, one can apply more standard lattice techniques to calculate
properties of the ufg. Several groups have explored lattice techniques,
including [62], [13, 64, 65], and [66]. These approaches use an Eu-
clidean time lattice formalism, developing a lattice action, and tuning
the interactions to reproduce the phase shifts in a periodic box as given
by the so-called Lüscher formula [67]

k cot δk =
1

πL
S(η), η = (

Lk

2π
)
2

, S(η) = lim
Λ→∞

[∑
n⃗

θ(Λ2 −n2)

n2 − η
− 4πΛ] .

In principle, these methods seem very attractive – by carefully tuning
the lattice operators, for example, they should be able to probe the
unitary limit, even with small lattice volumes. In practise, however,
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theoretical techniques

these methods seem to disagree with the preponderance of evidence,
including the most recent high-precision experiment at mit which
found ξ = 0.376(4) [14]; consistent with afqmc results and fngfmc

bounds [36]. For example, the earliest lattice calculations of ξ [62]
found very small values ξ ≲ 0.33(1) while the more recent calcula-
tions find somewhat larger values ξ ≳ 0.39(1). The latter results have
not been fully extrapolated to the continuum limit, but comparison
with fngfmc bounds is troubling: the lattice results seem to exhibit
much stronger finite-size (shell) effects, many of which contradict the
variational upper bound provided for by the fngfmc method.

Unfortunately, all these methods seem to give the same results at
some of the simpler points where there are reliable few-body methods.
This includes the N+ = 2 systems (which have analytical solutions
from the two-body problem), and the N+ = 4 and N+ = 6 harmonically
trapped gases which enjoy a high-precision few-body method [68]. The
lattice methods are promising in principle, but these disagreements
need to be understood before further progress is made.
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3Open Questions

3.1 polarized phases

Not much is known about the phases of polarized matter in the
bec/bcs crossover. As has been mentioned, many possibilities exist,
including p-wave superfluid states, crystalline loff states, states with
deformed Fermi surfaces [69], and others, but no reliable calculations
exist to address this question rigorously. Part of the problem is that
one encounters a sign-problem as one moves away from na = nb

symmetric matter. Another part is that the ir structure of possible
phases is not particularly well understood – if it were, then perhaps a
good ansatz could be make for the nodal structure of the wavefunction,
allowing fngfmc to attack the problem. One approach is to “ignore”
the sign problem and hope that it is not too bad. This yields some
information about polarized properties, such as the size of the gap,
but precision results are lacking.

Experiments should in principle have no problem studying these
phase, and indeed, they have been probed. However, they typically
occupy a small shell on the outside of trap. The crystalline loff

phases, for example, require a substantial physical volume to allow the
crystal structure to develop. This might be possible with flat-bottom
traps, but as of yet, experimentalists have yet to explore these phases
seriously. The group at mit is apparently

undertaking a systematic study of
the polarized equation of state as
they did with the symmetric state
in [14], so the situation may be
somewhat remedied in the near
future.

3.2 polaron

The question about whether or not induced p-wave superfluidity can
exist and be seen at unitarity as suggested in [15] has not been fully
resolved. Perturbative analysis [15] suggested yes; Born-Oppenheimer
analyses suggested no [70]; Most recently, uncontrolled diagrammatic
summations suggest yes [71]. Reliably resolving this question would
be helpful to guide experimental searches for these exotic phases.

3.3 pseudo -gap

Some qmc calculations of the spectral function at finite temperature
suggest that, even above the critical temperature T > Tc, the single-
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particle dispersion relationship still has a “gap” [58]. This “pseudo-
gap” phenomenon can be easily understood in the bec limit where the
critical temperature Tc is related to the phase coherence of the bosonic
dimers, whereas the “gap” – the energy required to split pairs – is at a
much higher scale set by the pair binding energy. The “pseudo-gap”
in this context appears in the single-particle dispersion as a negative
chemical potential:

Ek =

¿
Á
ÁÀ

(
 h2k2

2m
−µ)

2

+ ∣∆∣2. (11)

When µ < 0, the spectral gap is
√

∣µ∣2 + ∣∆∣2, which remains even above
T > Tc where ∆ = 0.

The unitary point lies in a regime with positive chemical potential,
however, so the naïve picture would suggest no pseudogap. Some
calculations see a signature for a pseudogap (for example the non-self-
consistent T -matrix summation) while others do not (including the
self-consistent T -matrix approach). Even the experimental evidence
for a pseudogap is suspect since current analyses are based on the
Thomas-Fermi (tf) approximation, and properties of the homogeneous
phases can get mixed up by the trapping geometry. This point was
discussed extensively in a recent workshop at the Institute for Nuclear
Theory (int):

• http://www.int.washington.edu/talks/WorkShops/int_11_1/ See the
talks from the afternoon of 17 May 2011 starting with Randeria’s
overview “Pairing Pseudogap in Strongly Interacting Fermi Gases”.

3.4 disagreement between lattice methods

As discussed in section 2.2.4.3, the lattice-based approaches, although
nice formally, disagree with other qmc based methods. Compare, for
example, the extremely small values of ξ found in [62, 72, 73], and
the shell structure seen in [13, 65] with the values and lack of shell
structure seen in the fngfmc and dft approaches used in in [36].
This disagreement needs to be understood and resolve before further
progress with lattice methods is made for cold-atom systems.
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3.5 novel properties

3.5 novel properties

Cold atom experiments are increadibly diverse with their abiliity to
trap various species, to tune interactions, and to apply various poten-
tials, from confining particles to lower dimensions, to embedding the
particles in optical lattices. This opens the door to simulation: If one
finds an interesting system, then there is a chance that experiments
may be able to simulate it. In this way, one can use cold atom systems
to check and benchmark calculations. The interplay between comput-
ing to analyze properties of cold atom systems, and designing cold
atom systems to simulate theories that are difficult to compute will
likely be a hot topic of research in the near future.
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4Problems

p-1 free fermion properties

Consider a gas of two-species of non-interacting (free) non-relativistic
Fermions described by the Hamiltonian Here we introduce a useful

notation: d̄3k⃗ ≡ d3k⃗/(2π)3. This
is analogous to  h = h/2π and our
normalizations shall be such that
all factors of 2π in the Fourier
transform appear with measure of
momentum integrals.

Ĥ0 = ∫
dk⃗
3

(2π)3

 h2k2

2m
(â†
kâk + b̂

†
kb̂k) = ∫ d̄3k⃗

 h2k2

2m
(â†
kâk + b̂

†
kb̂k) .

This serves as the reference point for expressing quantities of the ufg.
Derive the following quantities for the energy EFG, number density n+,
and chemical potential µ = εF for the ground state of a homogeneous
T = 0 gas:

EFG(n+) =
3

5
n+εF(n+)∝ n

5/3
+ , (energy)

n+ = na +nb =
k3F
3π2

, kF ≡ (3π2n+)
1/3, (number density)

µ+ =
∂EFG

∂n+
= εF(n+) =

k2F
2m

∝ n
2/3
+ , (chemical potential)

PFG =
2

3
EFG. (pressure)

These implicitly define the Fermi wave-vector kF, Fermi energy εF,
and energy density EFG of the free Fermi gas at fixed number density
n+.

p-2 symmetric unitary fermi gas at t = 0

Using dimensional analysis, show that the symmetric T = 0 Unitary
Fermi Gas (ufg) must have an equation of state:

E(n+) = ξEFG(n+)∝ n
5/3
+ (p-2.1)

µ+ = ξεF(n+) (p-2.2)

where ξ is a dimensionless parameter (called the Bertsch Parameter).
Argue that the pressure P is related to the energy density E by This is simply a consequence of

the lack of scales and holds also
for the non-interacting gas.

P =
2

3
E . (p-2.3)

Revision 2:287973e981ca tip. 23



problems

p-3 natural units

The lack of length scales for the ufg allows us to express everything
in terms of the total number density n+ or the Fermi wave-vector
kF ≡ (3π2n+)

1/3. It is also common to set  h = 1 and the mass m = 1,
thereby defining a set of “natural” units. Show that energies, momenta,
etc have the following length dimensions in these units:Since m = 1, it is common to call

n+ simply the “density” rather
than “number density”, even

when keeping m explicit.
[T] = L2, [E] = L−2, [P] = [E] = L−5, [n+] = L

−3, [p] = [k] = L−1.

I will try to keep the factors of  h and m in the critical formulae, but
don’t be alarmed if they go astray – just add them as needed to make
up the appropriate densities.

p-4 two -body problem

Solve the Schrödinger equation for the two-particles interacting with
an attractive short-range radially symmetric potential V(r) of your
choice. (A square well will work fine, or perhaps use the Pöschl-Teller
form sech2(r) which admits a supersymmetric solution. If you have
not seen the supersymmetric method for solving quantum mechanics
problems, do yourself a favour and look it up [74]: it is very amusing
and useful for finding analytic solutions.)

Parametrize your potential with two parameters: a strength g and
a range re. I.e. gV(r/r0). Adjust the strength of your potential so
that the potential has a bound state with zero energy E = 0. This
potential has an infinite s-wave scattering length aS = 0. Take the
range of the potential r0 → 0 to zero and adjust the strength g so that
the bound-state remains at E = 0. This is the unitary limit. Is the
potential stronger or weaker than a delta-function? What does this
“unitary” limit look like in d = 2 dimensions? (Hint: How weak do you
need to make the attractive potential in order for the bound state to
disappear?) What about d = 4 dimensions?

Now consider the bec limit where the interaction becomes stronger.
The scattering length will become positive and kFaS will be a small
positive number. Solve for the binding energy of the two-body system
and show that it behaves like

Ebind =
 h2

ma2S
. (p-4.1)

For details, see Erich Mueller’s tutorial http://people.ccmr.cornell.
edu/~emueller/tutorials.html and play with the Java Applets to get
a feel for this limit.
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p-5 unitary hamiltonian

p-5 unitary hamiltonian

The Unitary Fermi Gas (ufg) can be defined through the Hamiltonian

ĤUFG = ∫
dk⃗
3

(2π)3

 h2k2

2m
(â†
kâk + b̂

†
kb̂k)+∫ d3x⃗ n̂a(x⃗)n̂b(y⃗)V(∥x⃗− y⃗∥)

where n̂a(x⃗) = â†(x⃗)â(x⃗) is the density operator, where the two-
body interaction potential V(r) is taken to zero range as described
in problem p-4. Since the physics is universal, one need not restrict
oneself to local interactions. An alternative formulation that is useful
in calculations is to use a separable potential

ĤUFG = ∫
dk⃗
3

(2π)3

 h2k2

2m
(â†
kâk + b̂

†
kb̂k)+

+∫ d̄3k⃗ d̄3p⃗ d̄3q⃗ V∥p⃗−q⃗∥V∥p⃗−q⃗+2k⃗∥â
†
p⃗+k⃗

âp⃗b̂
†
q⃗−k⃗b̂q⃗. (p-5.1)

One can also use a contact interaction with an appropriate cutoff:

ĤUFG = ∫
dk⃗
3

(2π)3

 h2k2

2m
(â†
kâk + b̂

†
kb̂k)+ g∫ d3x⃗ δ(3)(x⃗)n̂a(x⃗)n̂b(x⃗)

(p-5.2)

but recall from problem p-4 that the limiting interaction is substan-
tially weaker than a δ-function potential. This theory needs to be
computed with a regulator, either a momentum space cutoff Λ, or
perhaps with dimensional regularization (see [76]). One must then
match the regulated theory to a physical observable like the phase
shifts (1) to determine the relationship between the cutoff and the
coupling. This is carefully discussed in the review [77].

To get around the need for regularization, people sometimes use a
“pseudo-potential” – a weaker potential of the form δ(r)∂/∂r. These
work by enforcing the appropriate short-range boundary conditions
on the many-body wavefunction whenever two particles approach
each others (valid in the limit x⃗ → y⃗ for any particle a at x⃗ and any
particle b at y⃗) :

ψ(⋯, x⃗, y⃗,⋯)∝
1

∥x⃗− y⃗∥
−
1

aS
+O(∥x⃗− y⃗∥). (p-5.3)

A full parametrization of pseudo-potentials can be described with the
use of appropriately defined generalized functions (analogues of the
Dirac δ-function) as described by Shina Tan [78].
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One of the challenges of studying the ufg on the lattice is to ap-
propriately define the lattice interaction so that it approaches the
appropriate unitary limit as you take the continuum limit. This is
somewhat non-trivial, and the reader is referred to the discussions
in [13, 65].

p-6 away from unitarity

The energy density E and pressure P of a polarized (na ≠ nb) in the
unitary limit can be expressed as [79]

E(na,nb) =
3

5
a(nag(x))

5/3

, a =
(6π2)2/3 h2

2m
, x =

nb

na
, (p-6.1)

P(µa,µb) =
2

5
b(µah(y))

5/2

, b =
1

6π2
(
2m

 h2
)
3/2

, y =
µb

µa
(p-6.2)

where the non-perturbative physics is described by the dimensionless
functions g(x) and h(y) of the dimensionless ratios x = nb/na and
y = µb/µa.

Show that convexity of the thermodynamic functions E(na,nb) and
P(µa,µb) is guaranteed (necessary and sufficient) by the convexity of
the dimensionless functions g(x) and h(x). This the reason for this
somewhat complicated parametrization. Recall that first-order phase
transitions are denoted by kinks in P but flat lines in E (corresponding
to the Maxwell construction). Finally, show how g(x) and h(y) are
constrained by the form of the symmetric energy density and the
value of ξ, and by the form of the free energy density of a completely
polarized gas nb = 0. (See [79] for details.)

The completely polarized gas occurs when y = µb/µa is less than
some critical negative value denoting the energy of a single impurity
(polaron) of type b immersed in a sea of particles of type a. See
problem p-7.

Finally, show that one obtains an analogous parametrization for
finite temperature using the dimensionless function hT(z) where z =
µ/T [55] with the same convexity properties as before:

P(T ,µ) =
2

5
b (ThT(z))

5/2 , z =
µ

T
. (p-6.3)

p-7 polaron

Consider a single fermion of species b (polaron) immersed in a sea
of non-interacting fermions of species a. For attractive interaction,

26 Revision 2:287973e981ca tip.



p-7 polaron

the particle b is drawn into the sea with a “binding” energy E < 0.
At unitarity, there are no length scales in the problem other than the
interparticle spacing k−1F for species a, so we must have

Eb = cεF(na) (p-7.1)

for some universal dimensionless number c. One can get an upper
bound on this number variationally by considering the following
variational state proposed by Chevy [80]

∣Ψ⟩ = φ0 ∣FG⟩ ∣p⃗⟩+ ∑
q≤kF
k>kF

φk,qâ
†
kâq ∣FG⟩ ∣p⃗+ q⃗− k⃗⟩ . (p-7.2)

The first term ∣FG⟩ ∣p⃗⟩ is the filled Fermi sea of species a (all states
k ≤ kF are filled) and the polaron b in momentum state p⃗. The second
term is a linear combination of all states where a single a particle of
momentum q⃗ with q ≤ kF is excited out of the Fermi sphere to a state
k⃗ with k > kF and the polaron b has momentum p⃗+ q⃗− k⃗ so that the
total momentum of the system p⃗ remains conserved. Compute the
variational energy of this state using a Hamiltonian of your choice to
obtain an upper bound for the polaron binding energy Eb by setting
p⃗ = 0 (one can estimate the effective polaron mass by looking at the
dispersion relationship for non-zero momenta p⃗).

In what follows, we shall use the simplified notation ∣FG⟩ ≡ ∣FG⟩ ∣p⃗⟩

and ∣kq⟩ ≡ â†
kâq ∣FG⟩ ∣p⃗+ q⃗− k⃗⟩.

Note that there are four overlaps. The ∣φ0∣
2 contribution from

⟨FG∣FG⟩, a contribution φ†
0φk,q and its conjugate from the overlap

⟨FG∣kq⟩, and two contributions from the overlap of ⟨kq∣kq⟩ after the
contractions are performed. To simplify the calculation in the short-
range limit, you may neglect the “particle-hole” contribution where
one sums over only the finite set of hole states q < kF. In the short-
range limit, this will remain finite while the coupling constant g→ 0
(see problem p-4) and so it will vanish.

By varying the resulting equations with respect to φ0 and φk,q

subject to the normalization constraint ⟨Ψ∣Ψ⟩ = 1, one obtains the
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following set of equations, where the binding energy Eb enters as the
Lagrange multiplier for the normalization constraint condition:These are also valid for p⃗ ≠ 0⃗.

mEb = ∑
q<kF

1

1
4πaS

+
I(E)

m

(p-7.3a)

I(E)

m
= ∑
k>kF

1

mεk,q −mEb
−∑
k

1

2mεk
, (p-7.3b)

εk,q = εk − εq + εp⃗+q⃗−k⃗ − εp, εk =
k2

2m
. (p-7.3c)

This implicit equation for Eb can be solved numerically to obtain
Eb < −0.6066⋯εF(na). This should be compared with qmc calculations
Eb = −0.58(1)εF(na) [81] and Eb = −0.594(6)εF(na) [82], as well as
with higher-order resummation Eb = −0.6158εF(na) [83] which agrees
with the diagrammatic qmc results [42] (but which are quoted without
errors). One can show that the variational approximation discussed
here corresponds diagrammatically to the non–self-consistent T -matrix
analysis mentioned earlier.

An outstanding question is whether the induced p-wave interac-
tionSince the polarons are identical

fermions, the s-wave interaction
must vanish by symmetry.

between two polarons is attractive. The perturbative calculations
in [15] from both bec and bcs limits suggest that they are attractive
with increasing magnitude towards the unitary limit (leading to the
suggestion that a p-wave superfluid state might be observable). How-
ever, this is contradicted by an estimate from the Born-Oppenheimer
approximation of heavy polarons (mb ≫ ma) which finds that the
p-wave interactions become repulsive at unitarity [70]. Recent dia-
grammatic resummations [83] suggest again that the interaction may
be attractive. None of these is completely reliable and the question
remains unresolved.

p-8 mean -field analysis

The Eagle-Leggett [84] approach to understanding the bec/bcs crossover
is to apply a mean-field model. I like to think of this in the following
way: define a purely quadratic Hamiltonian Ĥ0 that contains variable
parameters. For the problem at hand, one uses (the integration over
all momenta k⃗ has been suppressed)

Ĥ0 = (
 h2k2

2m
+U) â†

kâk + (
 h2k2

2m
+U) b̂†

kb̂k +∆â
†
kb̂

†
−k +∆

†b̂−kâk.

where the parameters Ua and Ub characterize the self-energy, and
∆ characterizes the “gap”. Feynman [87] shows that one can obtain
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p-8 mean -field analysis

a variational bound for the thermodynamic potential of any other
Hamiltonian Ĥ as

Ω ≤Ω0 + ⟨Ĥ− Ĥ0⟩0 (p-8.1)

where Ω0 is the thermodynamic potential of Ĥ0 and the expectation
value is taken with respect to the thermodynamic ensemble for the
quadratic model Ĥ0. Since Ĥ0 is quadratic, it may be diagonalized and
so that Ω0 may be computed. The ensemble described by opH0 also
only contains two-body correlations: hence, any expectation values
can be decomposed into pairs which may also be evaluated:

⟨â†b̂
†
b̂â⟩0 = ⟨â†â⟩0 ⟨b̂

†
b̂⟩0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hartree

− ⟨â†b̂⟩0 ⟨b̂
†
â⟩0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fock

+ ⟨â†b̂
†
⟩0 ⟨b̂â⟩0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pairing

. (p-8.2)

The right-hand-side of (p-8.1) may be thus be computed for any Hamil-
tonian Ĥ and one can then vary the parameters Ua, Ub, and ∆ in Ĥ0
to obtain a variational bound – the mean-field model.

To simplify the algebra, introduce the following “Nambu-Gorkov”
operator

Ψ̂k =
⎛

⎝

âk

b̂
†
−k

⎞

⎠
(p-8.3)

so that the trial Hamiltonian can be written (including the integral
now and including a chemical potential so that we can compute the
thermodynamic potential Ω = E− TS−µN)

Ĥ0 = ∫ d̄3k⃗ Ψ̂
†
k

⎛

⎝

 h2k2

2m
−µ+U ∆†

∆ −
 h2k2

2m
+µ−U

⎞

⎠
Ψ̂k (p-8.4)

up to a unimportant constant. Show that this may be diagonalized by
a unitary transformation

Q = (
uk v†

k

vk −uk
) (p-8.5)

and has the spectrum

Ek =

¿
Á
ÁÀ

(
 h2k2

2m
−µ+U)

2

+ ∣∆∣2. (p-8.6)

Hence, ∆ is indeed the spectral gap. Apply this to your favourite
Hamiltonian, and take the zero-range limit. You should find that the
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minimum has U = 0 (there is no self-energy correction in the unitary
limit) and that ∆ must be chosen to satisfy the “gap” equation

−m∆

4πaS
= ∫ d̄3k⃗

⎛
⎜
⎜
⎜
⎝

∆

2

√

(
 h2k2

2m
−µ)

2
+ ∣∆∣2

−
m∆

 h2k2

⎞
⎟
⎟
⎟
⎠

. (p-8.7)

This always has a “normal” solution at ∆ = 0, but also has a non-trivial
superconducting solution ∆ ≠ 0. The second piece may be obtained
by exchanging the coupling constant g for the scattering length using
the solution to the two-body scattering problem, which, for a delta-
function interaction with momentum cutoff, has the form

1−
gm

4πaS
= −

g

2
∫ d̄3k⃗

2m

 h2k2
= −

mgkc

2π2 h2
. (p-8.8)

The resulting expression is finite – the divergences in both terms
exactly cancel – and one obtains a cutoff-independent result. (See
also [76] for an approach that uses dimensional regularization).

Here are some points about the mean-field model:
1 This theory applies throughout the bcs/bec crossover (just choose the

appropriate aS), thereby providing a qualitative understanding for the
crossover.

2 There is no phase transition as aS goes to ±∞ at unitarity. The relevant
parameter a−1S behaves smoothly, as does the solution. This is the
meaning of “crossover”. The Cooper pairs on the bcs side evolve
smoothly into the tightly bound, but coherent, dimers on the bec side.

3 Solving the gap equation shows that the binding becomes tight enough
somewhere on the bec side of the crossover that no chemical potential
µ = 0 is needed to maintain a finite density. Deeper in, the attraction is
so strong that a negative chemical potential is required to maintain a
given density. The point at which µ = 0 plays an interesting role in the
discussion of polarized phases. See [16] for details.

4 Note, however, that a negative chemical potential does not mean
that clouds will be self-bound. In particular, after scaling out the
appropriate dimensions, one will find that 1/kFaS is the appropriate
parameter. A density of a cloud will fall towards the outside, so for
fixed aS, this means that the outer part of the cloud approaches the
unitary limit 1/kFas →∞. In particular, at some point, one will cross
this transition point where µ becomes positive, and without a trapping
potential to supply an effective positive µ, the cloud would evaporate,
thereby reducing the density in the core, bring more of the cloud
toward the unitary regime.
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5 In the deep bec regime, the mean-field model gets the correct dimer
binding energy EB =  h2/ma2S, but fails to capture the behaviour of the
fermion-dimer and dimer-dimer scattering lengths.

6 Formally, the mean-field theory has no Hartree-Fock terms in the zero
range limit. These appear in (p-8.2) as gnanb where the densities
na and nb are finite. The pairing term, on the other hand appears
as g ⟨ba⟩∗ ⟨ab⟩ where the expectation values ⟨ab⟩ diverge. The zero-
range limit is obtained when g→ 0 in such a way that −g ⟨ab⟩→ ∆ is
finite. Hence, the pairing contribution remains, but the Hartree (and
Fock) terms vanish. At weak coupling, one can sum ladder diagrams
to restore the appropriate power-counting, obtaining a Hartree term
of the form 4πaSnanb that remains, even in the zero-range limit.
However, the resummation destroys the variational property of the
method (energies are no-longer guaranteed to be an upper bound for
example).

7 The missing Hartree terms lead the mean-field model to completely
miss some important physics. For example, the polaron would have
zero-binding energy in the mean-field model (see problem p-7).
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