
Labs
Wiring Dependencies using XML
In this lab you will learn to use the Spring container to inject dependencies. Dependency 
Injection can be configured using XML or annotations. In this lab you will use XML.

Step 1 - Creating a project
The labs are available in Mercurial. Open a terminal and enter the following commands to 
open the project.

hg	  clone	  http://bitbucket.org/paulbakker/spring
cd	  spring
hg	  update	  0

Open STS, choose a workspace location, and import the project as an existing Maven 
project. You should now have two project: lab1 and parent.

All Spring dependencies are included in the POM file of the parent project. This is the 
preferred way to work with Spring dependencies, so explore the POM file to understand 
how the project is configured.

First add a Spring Bean Configuration File using the context menu in STS. Name the 
configuration file “applicationContext.xml”. Add a new class with a main method. In the 
main method you will bootstrap the Spring container from code. To bootstrap Spring youʼll 
have to create an ApplicationContext. Use the following code to do so.

ApplicationContext	  applicationContext	  =	  new	  
	  	  	  	  ClassPathXmlApplicationContext("applicationContext.xml");

Step 2 - Adding a service
Create a new Java interface “PrinterService” with a single method:

void	  print(String	  message);

Create a new class “ConsolePrinter” and implement the PrinterService interface. Now add 
a bean definition in the applicationContext.xml:

	  <bean id="printer" class="lab1.ConsolePrinter"/>

Test your configuration by looking up the printer bean in the applicationContext in the main 
class: 

" " 1
"

http://bitbucket.org/paulbakker/springcourse
http://bitbucket.org/paulbakker/springcourse


ApplicationContext	  applicationContext	  =	  
	   new	  ClassPathXmlApplicationContext("applicationContext.xml");
PrinterService	  printer	  =	  
	   applicationContext.getBean(PrinterService.class);
printer.print("Hallo!");

Step 3 - Wiring dependencies
Now youʼll add more beans that will depend on each other to see the different forms of 
dependency injection. Start by adding a new class “SetterDI” to the project. Add a property 
(private field and setter method) of type PrinterService to the class. This dependency must 
be wired by the Spring container, youʼll do that in a minute. Also add a method “sayHello” 
to the class that uses the PrinterService to print a message to the console. 

Now add the new class to the Spring configuration as you did in the previous step. Test the 
project by looking up the setterDI bean from the main method of the project and calling the 
sayHello method. This should result in a NullPointerException because the PrinterService 
is not wired to the Hello bean yet. 

To wire the PrinterService dependency you will use the most basic form of dependency 
injection by configuring the dependency in XML. Change your bean definition as follows:

<bean	  id="setterDI"	  class="lab1.SetterDI">
	   <property	  name="printer"	  ref="printer"/>
</bean>

This is setter injection. Spring will use the setPrinter method to inject the printer bean into 
the hello bean. 

Step 4 - Constructor injection
Instead of using setter injection you could use constructor injection. Add a new class to the 
project named “ConstructorDI”. Add a private field “printer” of type PrinterService but omit 
get/set methods. Add a constructor with an argument of type PrinterService to the class 
and initialize the printer field using this argument. Again, add a method “sayHello” that 
uses the printer.

Add a bean declaration to the configuration for the new class. To wire the PrinterService 
dependency youʼll now have to use a constructor-arg.

<bean	  id="constructorDI"	  class="lab1.ConstructorDI">
	   <constructor-‐arg	  ref="printer"/>
</bean>

Test the new class again by looking it up in the container from the main method. 

" " 2
"



Step 5 - AutoWiring
In this step youʼll try out AutoWiring of dependencies. AutoWiring can be enabled on a 
whole applicationContext, but in this case you will enable AutoWiring for a single bean. 
Add a new class “AutoWireDI” to the project and add a private field of type PrinterService, 
a setter method for this field and a sayHello method.

Add the bean configuration to the applicationContext. Instead of wiring the dependency to 
the PrinterService explicitly you will autowire this dependency using the following 
configuration: 

<bean	  id="autowiringDI"	  class="lab1.AutoWireDI"	  autowire="byType"/>

Add code to the main method to test the new bean. Also try out the different modes of 
autowiring (byType, byName etc.).

Step 6 - Factory methods
In this step you will use a factory method to initialize a bean. Create a new class 
“FactoryMethodInstantiation” to the project. Add a private no-arg constructor so you can be 
sure Spring will not call this constructor. Also add two private fields, a PrinterService and a 
String.

Now add a factory method. A factory method must be static and return an instance of the 
class itʼs part of. The factory method should have two arguments, a PrinterService 
instance and a String. Make sure the method looks as follows:

public	  static	  FactoryMethodInstantiation	  createInstance(
	   	   	   	   	   PrinterService	  printer,	  String	  value)	  {
	   FactoryMethodInstantiation	  instance	  =	  
	   	   new	  FactoryMethodInstantiation();
	   instance.printer	  =	  printer;
	   instance.value	  =	  value;
	   return	  instance;
}

Add a printValue method to the class that uses the printer instance to print the value field 
to the console.

Configure the new bean in the application context. To pass arguments to a factory method 
youʼll have to use constructor-args (although itʼs not really a constructor). 

<bean	  id="factoryMethodInstantiation"	  
class="lab1.FactoryMethodInstantiation"
	   factory-‐method="createInstance">
	   <constructor-‐arg	  index="0"	  ref="printer"	  />
	   <constructor-‐arg	  index="1"	  value="MyTest"	  />
</bean>

" " 3
"



Test the bean again from the projectʼs main method.

Step 7 - Factory beans
The factory approach can be taken a step further by implementing the factory-method on a 
separate factory-bean instead of in the class itself. This is similar to the distinction of the 
Factory Method and Abstract Factory pattern. You can also use factory beans to 
instantiate and fill lists of data for example. Thatʼs what youʼll do in this step.

Add a new class “NameFactory” to the project. Add a non-static method createNameList to 
the class that returns a java.util.List of names.

For this approach youʼll need two bean configurations in the applicationContext. One of 
the bean that represents the list of names, and one for the factory.

<bean	  id="nameFactory"	  class="lab1.NameFactory"/>
	  
<bean	  id="names"	  factory-‐bean="nameFactory"	  
	   factory-‐method="createNameList"/>

Test the configuration by looking up the names bean from the main method and print it to 
the console.

Step 8 - Scopes
So far you have only used the default singleton scope. To understand the difference 
between singleton and prototype scope, and to understand method injection youʼll 
experiment with those in this step. First of all create a new class “HitCounter” to the project 
and add a field “hits” of type int to it. Also add a void method “increment” that increments 
the hits field. Configure the class as a bean in the applicationContext.

Add another class “Hitter” to the project. This class should have a dependency to the 
HitCounter class. Add a void method “hit” to the class that calls the HitCounterʼs increment 
method. Now add two bean definitions for the Hitter class (meaning two instances of the 
same class). The configuration should now be as follows.

<bean	  id="hitCounter"	  class="lab1.HitCounter"/>
	  
<bean	  id="hitter1"	  class="lab1.Hitter">
	   <property	  name="counter"	  ref="hitCounter"/>
</bean>

<bean	  id="hitter2"	  class="lab1.Hitter">
	   <property	  name="counter"	  ref="hitCounter"/>
</bean>

Retrieve both hitter1 and hitter2 from the applicationContext in the projectʼs main method. 
Call the hit method twice on both hitters. Call and print the getHits on hitter1. You should 
see 4 hits, because at this point the HitCounter is shared (itʼs a singleton) by the two 
hitters. 
" " 4
"



Change the scope of the hitCounter bean to prototype. Test again. How many hits do you 
see? Each bean that references the hitCounter gets itʼs own instance now. 

What if you would want a new hitCounter instance on each call to the hitterʼs hit method? 
This would not be very useful in this example, but itʼs interesting anyway. You could use 
method injection for this. Add a new class “DynamicHitter” to the project and give it an 
abstract method “getHitCounter”, a “hit” and “getHits” method. 

public	  abstract	  class	  DynamicHitter	  {
	   public	  void	  hit()	  {
	   	   getHitCounter().increment();
	   }
	  
	   public	  int	  getHits()	  {
	   	   return	  getHitCounter().getHits();
	   }
	  
	   public	  abstract	  HitCounter	  getHitCounter();
}

The abstract method will be implemented at runtime by Spring. To enable this youʼll need 
some extra configuration in the bean definition.

<bean	  id="hitter3"	  class="lab1.DynamicHitter">
	   <lookup-‐method	  name="getHitCounter"	  bean="hitCounter"/>
</bean>

Test the new bean by calling the hit method multiple times and asking for getHits after that. 
The result should be 0 hits, because a HitCounter is created by Spring each time the 
getHitCounter method is called.

" " 5
"



Wiring Dependencies using annotations
In this lab you will learn to use Dependency Injection using the different annotations 
available in the Spring framework. You will implement a simple MovieLister class that uses 
multiple MovieCatalogs to list movies.

Step 1 - Create the project
Create a new Maven module in STS. Choose simple-project in the wizard.  Add a 
applicationContext.xml file. There are two steps in enabling an annotation based 
approach: Enable annotation configuration and enable component scanning. Component 
scanning scans the classpath for @Component annotated classes that will be added to 
the context. Annotation configuration is in the “context” namespace. The full configuration 
file is as follows:

<beans	  xmlns="http://www.springframework.org/schema/beans"
	   xmlns:xsi="http://www.w3.org/2001/XMLSchema-‐instance"	  	  
	   xmlns:context="http://www.springframework.org/schema/context"
	   xsi:schemaLocation="http://www.springframework.org/schema/beans	  
	   http://www.springframework.org/schema/beans/spring-‐beans-‐3.0.xsd
	   	  http://www.springframework.org/schema/context
	  	  	  	  	  	  	  	  	  	  	  http://www.springframework.org/schema/context/spring-‐
context-‐3.0.xsd">

	   <context:annotation-‐config	  />
	   <context:component-‐scan	  base-‐package="lab2"/>
</beans>

Create a Tester class with a main method that bootstraps the Spring container.

Step 2 - A simple movie lister
Youʼll start with some basic annotation based dependency injection. First create a new 
class MovieLister. Add a void method listMovies to the class. Annotate the class with 
@Component to make it a Spring bean.

Add an interface MovieCatalog with a single method getCatalog that returns a 
List<String>. Implement the interface in a class GeneralMovieCatalog and return a few 
movies and annotate this class too with @Component. Go back to the MovieLister class. 
Add a private field of type MovieCatalog, and use this field to print the list of movies 
returned by the getCatalog movie. To wire the dependency to the MovieCatalog you can 
use the @AutoWire annotation. 

@Autowired
private	  MovieCatalog	  movieCatalog;

This is dependency injection by type, so there may only be one implementation of the 
MovieCatalog interface. Test if the dependency is wired correctly.

" " 6
"

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/context/spring-context-3.0.xsd


Step 3 - Qualifiers
Create another implementation of the MovieCatalog interface named ActionMovieCatalog. 
When you try to start the application again the container should give an error telling that 
there is no unique bean of type MovieCatalog. The container canʼt know which of the two 
implementations of the MovieCatalog interface should be injected. By using qualifiers you 
can bind a specific implementation class to an injection point, while still programming to 
interfaces at the Java level (itʼs still easy to unit test). 

Youʼll create a fully type-safe qualifier instead of relying on Strings. While this is slightly 
more work, it can prevent errors. Create a new annotion named Action and annotate it as a 
Qualifier.

@Target({ElementType.TYPE,	  ElementType.FIELD,	  ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public	  @interface	  Action	  {	  }

Add the newly created @Action both on the ActionMovieCatalog class definition and the 
field where you want to inject the movie catalog.

@Autowired	  
private	  MovieCatalog	  movieCatalog;

Test the application again. Only action movies should be listed now.

Step 4 - Multiple catalogs
In some cases you want to get all implementation of a certain interface. You can do that by  
injecting into a List or Map of that interface. 

Add another field to the MovieLister that contains all movie catalogs including their bean 
names:

@Autowired
private	  Map<String,	  MovieCatalog>	  allCatalogs;

public	  void	  listMovies()	  {
	   for(String	  key	  :	  allCatalogs.keySet())	  {
	   	   System.out.println(key);
	   	   for(String	  title	  :	  allCatalogs.get(key).getMovieCatalog())	  {
	   	   	   System.out.println("-‐"	  +	  title);
	   	   }
	   }
}

" " 7
"



AOP
In this lab you will learn AOP within Spring. You can use the project from the previous lab 
as a starting point. There are two types of AspectJ usage. You can use Spring AOP or full 
AspectJ. To use full AspectJ you would need to introduce the AspecJ compiler/weaver into 
your build. This is not the case for Spring AOP, but the possibilities are more limited. For 
example, only Spring beans can be advised. In many cases you will not need the more 
advanced options of AspectJ, and Spring AOP is a much easier in that case. For this lab 
youʼll only use Spring AOP. 

Step 1 - A trace log aspect
One of the most obvious cases for using AOP is trace logging. Itʼs easy to log before and 
after each method call without changing any existing code. First youʼll have to enable 
annotation based AOP in your Spring configuration.

<aop:aspectj-‐autoproxy/>

Now create a new class called TraceLogAspect and annotate it with @Aspect and 
@Component. The latter annotation is necessary because Spring will now scan the 
classpath for aspects, so a class has to be a Spring bean before itʼs recognized as an 
aspect.

A tracelog can easily be implemented using an @Around advice. Add a method called 
trace to the Aspect class and annotate it with an inline pointcut.

@Around("execution(public	  *	  *(..))")
public	  Object	  trace(ProceedingJoinPoint	  jp)	  throws	  Throwable	  {
	   long	  curTime	  =	  System.currentTimeMillis();
	   Object	  result	  =	  jp.proceed();
	   long	  time	  =	  System.currentTimeMillis()	  -‐	  curTime;
	   System.out.println(
	   	   jp.getStaticPart().getSignature().getName()	  +	  "	  "	  +	  time);
	   return	  result;
}

Run the application again and see if the Aspect works. 

Step 2 - Retry after exception
Sometimes services you depend upon can be unreliable. In some cases itʼs useful to “just 
try again” after a failure. This is easy to implement using AOP. Add a new method to one of 
the classes in the project, and add code that throws an exception at random (use 
Math.random for example). Implement an aspect that catches the exception, write a log to 
the console, and try the action again until it succeeds. 

" " 8
"



Using JPA
In this lab you will start using JPA. First by using JPA standalone to explore the API and 
later integrated with Spring. 

Step 1 - Project Configuration and first test
Open a terminal and enter the following commands:

cd	  spring
hg	  update	  jpa

Import the newly created project “webshop” in STS. The project already contains some 
classes and a persistence.xml. Open the persistence.xml and check the settings. Now 
open the Book class. It contains an id and a name, but is not an Entity yet. Now open the 
StandaloneJpaTest in the test folder. This test class already contains a test method that 
checks if a Book can be persisted. Try to run it, it should fail at this moment. The reason 
the test fails is because Book is not an Entity yet. Fix Book so that the test passes.

Step 2 - Finding books
Add a new test method to test retrieval of a book using the find method. The tables are 
recreated before every test, so you can be sure to have a clean database in every test. 
This does mean the table is empty! Insert some books to be able to find books. Your test 
could look as follows.

@Test
	  	  	  	  public	  void	  testFind()	  throws	  Exception	  {
	  	  	  	  	  	  	  	  createTestBooks();

	  	  	  	  	  	  	  	  Book	  book	  =	  em.find(Book.class,	  1L);
	  	  	  	  	  	  	  	  assertNotNull(book);
	  	  	  	  	  	  	  	  assertThat(book.getTitle(),	  is("Angels	  and	  demons"));
	  	  	  	  }

	  	  	  	  private	  void	  createTestBooks()	  {
	  	  	  	  	  	  	  	  em.getTransaction().begin();
	  	  	  	  	  	  	  	  em.persist(new	  Book("Angels	  and	  demons"));
	  	  	  	  	  	  	  	  em.persist(new	  Book("Digital	  Fortress"));
	  	  	  	  	  	  	  	  em.persist(new	  Book("The	  Da	  Vinci	  code"));
	  	  	  	  	  	  	  	  em.persist(new	  Book("The	  Lost	  Symbol"));
	  	  	  	  	  	  	  	  em.persist(new	  Book("Deception	  Point"));
	  	  	  	  	  	  	  	  em.getTransaction().commit();

	  	  	  	  	  	  	  	  em.close();
	  	  	  	  	  	  	  	  em	  =	  emf.createEntityManager();
	  	  	  	  }

" " 9
"



Step 3 - Editing managed books
Create another test that test if managed books can be edited. Always use a new 
EntityManager and transaction to test for database changes!

Step 4 - Editing detached books
Retrieve a book using the find method and detach it by closing the EntityManager. Try if 
changes to the instance or not persisted to the database. Now use the merge method to 
synchronize the changes with the database.

Step 5 - Listing books
Write a simple query to select all books. 

Step 6 - Mapping books
Add the following fields to Book:
-Date releaseDate (Date in the database)
-Enum Category
-String summary (should be a longtext in the datase)

Also make the title unique.

Add mapping configuration to make sure that the correct datatypes are used in the 
database. 

Step 7 - Deleting books
Use the remove method to remove a book. 

Step 8 - One to One Promotion
Create a new class Promotion. A promotion can be a temporarily lowered price for a 
limited amount of time. Add the following properties.
-String description
-BigDecimal newPrice
-Date beginDate
-Date endDate

Map a bi-directional relationship between Book and Promotion. Test if saving fetching from 
both sides work. Use cascading to be able to save a new book with a new promotion 
without persisting the promotion explicitly. Write tests to test bi-directional behavior and to 
test cascading remove.

Step 9 - One to Many reviews
Create a new class Review and map a bi-directional one-to-many relation with Book. Add 
the following properties to Review.
-String reviewerName
-Date reviewDate
-int rating
-String text

Test adding, cascading, lazy loading and bi-directional behavior. Also test cascading 
remove. Create a separate test to test a join fetch query for explicit eager loading.
" " 10
"



Step 10 - Many to Many authors
Create a new class Author and configure a bi-directional Many-to-Many relation with Book 
with cascading persist. Test if persisting and retrieval works correctly.

Step 11 - Inheritance and ElementCollections
Create a new class EBook and a new enum EBookFormat. The EBookFormat represents 
formats such as EPUB and PDF. An EBook is a subclass of Book and contains a List of 
available EBookFormats. To map the List youʼll need an @ElementCollection mapping. 
Test if EBooks can be persisted correctly.

Step 12 - Details embeddable
Create a new class Details with the following properties.
-int pages
-int isbn10
-int isbn13
-String language

Make Details @Embeddable and add a reference to it in Book. Make sure you initialize an 
empty details by default in Book, otherwise itʼs impossible to save a book without Details. 
Create a test to check if Details are persisted correctly on a Book.

Step 13 - Query for books written by more than one author
Write and test a JPQL query to retrieve books that are written by at least two authors. 
Donʼt forget to insert some test data first!

Step 14 - Query for the average rating for each Author
Write and test a JPQL query to retrieve the average rating for each author. The results 
should be returned as a value object Rating.

public	  class	  Rating	  {
	  	  	  	  private	  String	  authorName;
	  	  	  	  private	  double	  avgRating;

	  	  	  	  public	  Rating(String	  authorName,	  double	  avgRating)	  {
	  	  	  	  	  	  	  	  this.authorName	  =	  authorName;
	  	  	  	  	  	  	  	  this.avgRating	  =	  avgRating;
	  	  	  	  }

	  	  	  	  public	  String	  getAuthorName()	  {
	  	  	  	  	  	  	  	  return	  authorName;
	  	  	  	  }

	  	  	  	  public	  double	  getAvgRating()	  {
	  	  	  	  	  	  	  	  return	  avgRating;
	  	  	  	  }
}

Donʼt forget to add some authors and ratings before executing the query!

" " 11
"



Step 15 - Criteria API
Write and test a method that accepts a title and author name filter. If both arguments are 
empty, all books should be returned, including books without an author. If both are non-
empty, an AND filter should be used and if only one argument is non-empty only that field 
should be filtered. The method should use the Type Safe Criteria API to build this dynamic 
query. Order results ascending by title. 

Step 16 - Bean validation
Add bean validation to the Book class to make sure books always have a title. Write a test 
that expects a ConstraintViolationException.

Step 17 - Custom validator
Write a new bean validator annotation and implementation class to disallow certain words 
in a title. The annotation should be configurable:

@NotExplicit(filter	  =	  {"sex",	  "drugs",	  "rock	  &	  roll"})
private	  String	  title;

" " 12
"



Spring JPA
Now that you have some experience with JPA you can integrate with Spring. First update 
the project with Mercurial in a terminal.

cd	  spring
hg	  update	  spring_jpa

Besides the persistence.xml configuration youʼll also need some Spring configuration now. 
First of all youʼll need a database connection. Open dao-context.xml and add the following 
configuration.

<bean	  id="dataSource"	  class="org.apache.commons.dbcp.BasicDataSource"	  
destroy-‐method="close">
	  	  	  <property	  name="driverClassName"	  value="${jdbc.driverClassName}"/>
	  	  	  <property	  name="url"	  value="${jdbc.url}"/>
	  	  	  <property	  name="username"	  value="${jdbc.username}"/>
	  	  	  <property	  name="password"	  value="${jdbc.password}"/>
</bean>

<context:property-‐placeholder	  location="classpath:jdbc.properties"/>

The property-placeholder reads the jdbc.properties file for the actual connection 
properties.

Now create a transaction manager that can be used with JPA. 

<bean	  id="transactionManager"	  class="...JpaTransactionManager">
	   <property	  name="entityManagerFactory"	  ref="myEmf"	  />
</bean>

<bean	  id="myEmf"	  class="...LocalContainerEntityManagerFactoryBean">
	   <property	  name="dataSource"	  ref="dataSource"	  />	   	  
</bean>

Thatʼs all configuration needed for JPA/Hibernate. The EntityManagerFactory could now 
be used to create EntityManager instances, or the @PersistenceContext annotation can 
be used to let Spring create shared transaction scoped EntityManagers.

Thereʼs still a problem though. With the current configuration the transaction manager 
configured for JPA is not available for JDBC. This means itʼs not possible to run JDBC and 
JPA code in the same transaction. That also means you canʼt use countRowsInTable in 
your tests for example. With some additional configuration you can enable JDBC to use 
JPA transactions. Youʼll need to configure a JpaDialect for this to work. The full 
configuration is as follows.
" " 13
"



<bean	  id="transactionManager"	  class="...JpaTransactionManager">
	   <property	  name="entityManagerFactory"	  ref="myEmf"	  />
</bean>

<bean	  id="jpaDialect"	  class="...HibernateJpaDialect"/>

<bean	  id="myEmf"	  class="...LocalContainerEntityManagerFactoryBean">
	   <property	  name="dataSource"	  ref="dataSource"	  />
	  	  	  	  	  <property	  name="jpaDialect"	  ref="jpaDialect"/>
</bean>

Step 2 - Implement a JPA Dao
Youʼll create a dao for managing books. The Book entity from the previous lab can be used 
again.

Implement the BookDao interface completely. When working with JPA youʼll need an 
EntityManager. Spring can inject a transaction scoped EntityManager into a bean. Based 
on the EntityManager you can easily query for Entities. Donʼt forget to make the dao 
implementation a Spring bean and transactional.

@PersistenceContext
EntityManager	  em;

@Override
@SuppressWarnings("unchecked")
@Transactional(readOnly=true)
public	  List<Book>	  listBooks()	  {
	   Query	  q	  =	  em.createQuery("select	  b	  from	  Book	  b");	  
	   return	  q.getResultList();
}

Step 3 - Testing the Dao
Create a new Test Case class for the BookDao. Extend from 
AbstractTransactionalJUnit4SpringContextTests to bootstrap the container and 
activate transaction management in the tests.

@ContextConfiguration("classpath:dao-‐context.xml")
public	  class	  JpaBookDaoImplTest	  extends	  
AbstractTransactionalJUnit4SpringContextTests	  {

First you need some test data. Create another class TestDataInserter in the test folder. 
Add a method that adds a few books using JPA. This method should first delete all existing 
books. Now there is a small problem. If the test data is re-inserted before each test the 

" " 14
"



generated ids are incremented each test. You can prevent this by resetting the index 
before each test.

private	  void	  removeBooks()	  {
	  	  	  	  em.createQuery("delete	  from	  Book	  b").executeUpdate();
	  	  	  	  simpleJdbcTemplate.update("ALTER	  TABLE	  book	  AUTO_INCREMENT	  =	  1");
}

Now write a test for each DAO method. Remember that the transaction is rolled back after 
each test so you should not see any changes in the database. That also means that some 
JPA operations, such as a remove, should be flushed explicitly to execute. This can be 
done in the test, the production code should not change.

@Test
public	  void	  testRemoveBookById()	  throws	  Exception	  {
	  	  	  bookDao.removeBook(1);
	  	  	  em.flush();
	  	  	  assertThat(countRowsInTable("book"),	  is(4));
}

Step 4 - Simple JDBC Template
Create a new class BookStatsDao. This class uses a SimpleJdbcTemplate to do some 
“advanced” queries. Add a method to count books. Remember to use JDBC, not JPA! Test 
the method in a new test method. 

" " 15
"



Controllers and pages
In this lab you will learn to use Spring 3 style annotation based controllers. You can extend 
the project of the previous lab.

Step 1 - Configure the project
The project already has a Maven webapp structure, but thereʼs no Spring Web MVC 
configuration yet. Youʼll first have to configure the Spring Dispatcher Servlet in the web.xml 
file. The Dispatcher Servlet acts as a front controller in a Spring web project.

By default youʼll need a Spring context configuration file called [servlet name]-servlet.xml, 
so in the following example youʼll need a spring-servlet.xml file. It is common to have all 
the web related configuration in a separate context (configuration file) then the middle-tier 
configuration. To initialize another context (e.g. the context of the previous lab) you need to 
add a context-param and listener to the web.xml.

<context-‐param>
	   <param-‐name>contextConfigLocation</param-‐name>
	   <param-‐value>classpath:dao-‐context.xml</param-‐value>
</context-‐param>

<listener>
	  	  	  	  	  <listener-‐class>
	   	   org.springframework.web.context.ContextLoaderListener
	   </listener-‐class>
</listener>

<servlet>
	   <servlet-‐name>spring</servlet-‐name>
	   <servlet-‐class>
	   	   org.springframework.web.servlet.DispatcherServlet
	   </servlet-‐class>
	   <init-‐param>
	  	  	  	  	  	  	  	  <param-‐name>contextConfigLocation</param-‐name>
	  	  	  	  	  	  	  	  	  <param-‐value>classpath:spring-‐servlet.xml</param-‐value>
	  	  	  	  	  	  </init-‐param>	   	  
	   <load-‐on-‐startup>1</load-‐on-‐startup>
</servlet>

<servlet-‐mapping>
	   <servlet-‐name>spring</servlet-‐name>
	   <url-‐pattern>/spring/*</url-‐pattern>
</servlet-‐mapping>

Now create a new configuration file in the main/resources folder named spring-servlet.xml. 
This context will only keep configuration related to the web application. The example 
configuration enables annotation configuration, component scanning and it configures a 
view resolver. As you can see, JSP files will be placed in the WEB-INF/jsp folder.
" " 16
"

http://web.xml
http://web.xml
http://web.xml
http://web.xml
http://web.context.ContextLoaderListener
http://web.context.ContextLoaderListener
http://web.servlet.DispatcherServlet
http://web.servlet.DispatcherServlet


<context:component-‐scan	  base-‐package="webshop.controllers"	  />
<context:annotation-‐config	  />

<bean	  id="jspViewResolver"
	  
class="org.springframework.web.servlet.view.InternalResourceViewResolver
">	  
	   <property	  name="viewClass"
	   	   value="org.springframework.web.servlet.view.JstlView"	  />
	   <property	  name="prefix"	  value="/WEB-‐INF/jsp/"	  />
	   <property	  name="suffix"	  value=".jsp"	  />
</bean>

Step 2 - Creating a controller
Create a new class webshop.controllers.BookController. Annotate the class @Controller 
and @RequestMapping(“books”). Add a method listBooks that returns a ModelAndView 
and annotate it @RequestMapping(method=RequestMethod.GET). This method will be 
executed when a user visits the URL /spring/books.

Use the BookCatalog from the previous lab to retrieve a list of books and add it to the 
ModelAndView. Set the viewName property of the ModelAndView to books/index. Now 
create a new JSP file WEB-INF/jsp/books/index.jsp. Iterate over the list of books to display 
them.

<%@	  taglib	  prefix="spring"	  uri="http://www.springframework.org/tags"	  %>
<%@	  taglib	  prefix="form"	  uri="http://www.springframework.org/tags/form"	  
%>
<%@	  taglib	  prefix="c"	  uri="http://java.sun.com/jsp/jstl/core"	  %>
<%@	  taglib	  prefix="fmt"	  uri="http://java.sun.com/jsp/jstl/fmt"	  %>

<html>
	  	  <head><title>Books</title></head>
	  	  <body>
	  	  	  	  <table>
	  	  	  	  	  	  	  	  <tr>
	  	  	  	  	  	  	  	  	  	  	  	  <th>Title</th>
	  	  	  	  	  	  	  	  </tr>

	  	  	  	  	  	  	  <c:forEach	  items="${books}"	  var="book">
	  	  	  	  	  	  	  	  <tr>
	  	  	  	  	  	  	  	  	  	  	  	  <td>${book.title}</td>
	  	  	  	  	  	  	  	  </tr>
	  	  	  	  	  	  	  </c:forEach>
	  	  	  	  	  	  	  	  </table>
	  	  </body>
</html>

" " 17
"

http://web.servlet.view.InternalResourceViewResolver
http://web.servlet.view.InternalResourceViewResolver
http://web.servlet.view.JstlView
http://web.servlet.view.JstlView
http://www.springframework.org/tags
http://www.springframework.org/tags
http://www.springframework.org/tags/form
http://www.springframework.org/tags/form
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/fmt


Test if the list of books is rendered correctly.

Step 3 - Lazy loading with JPA
Dealing with lazy loading can be quite a difficulty in a web application. You should already 
have a many-to-many relationship between book and author.

Try to render a list of authors for every book on the page you just created. So within the 
forEach loop for books add the following:

	  <c:forEach	  items="${book.authors}"	  var="author">
	  	  	  	  	  <li>${author.name}</li>
</c:forEach>

Try reloading the page. It breaks on a LazyInitializationException! The problem is that the 
authors list should be lazily fetched, but at the time the JSP is rendering, the JPA entity 
manager is closed already. There are two solutions for this problem, using JPQL to fetch a 
certain collection eagerly or keep the entity manager open until the view is rendered. The 
latter solution requires less work, but has a technical downside. The disadvantage is that 
this will not work when the transactional layer and the view layer are running on separate 
JVMs. A second, more conceptual, disadvantage of this approach is that itʼs easy to 
accidentally create a view with the n+1 select problem. This is solved by carefully 
monitoring the queries going to the database and tuning fetching strategies whenever 
necessary. For this lab youʼll configure entity managers to be kept open the entire request. 
Add the following configuration to spring-servlet.xml.

<mvc:annotation-‐driven/>

<mvc:interceptors>
	  	  	  	  	  <bean	  class=”...OpenEntityManagerInViewInterceptor">
	  	  	  	  	  	  	  	  	  <property	  name="entityManagerFactory"	  ref="myEmf"/>
	  	  	  	  	  </bean>
</mvc:interceptors>

This installs an interceptor that binds an EntityManager to the thread that handles the 
request. Transaction managers will pick this up automatically. Try reloading the page 
again. There should be no errors.

Step 4 - Adding a form
Add a new JSP page jsp/books/edit.jsp that contains a form using the Springʼs form tag 
library. At this point, only add a form:input field for the bookʼs title. 

Add a new method to the BookController that displays the new page when a user 
requests /books/edit. This method will only display the form, not handle itʼs submit. Within 
the method, instantiate a new book and add it to the model. Test if the form can be 
displayed correctly.

" " 18
"



Step 5 - Handling form submits
Add another method to the controller that accepts POST requests, and a ModelAttribute 
argument containing the posted book. 

@RequestMapping(value	  =	  "edit",	  method	  =	  RequestMethod.POST)
public	  String	  saveBook(Book	  book)	  {

Write code to store the new book in the database using the Hibernate Dao. The method 
should return a String. This String should be a view name. Use the redirect keyword within 
the String to send a redirect to the view.

return	  "redirect:/spring/books";

Step 6 - Bean Validation
Spring integrates nicely with the Bean Validation API. If a Bean Validation implementation, 
such as Hibernate Validator, is found on the classpath itʼs enabled by default when the 
mvc:annotation-config is enabled.

First add some validation annotations to the Book entity. For example, use the @NotEmpty   
annotation on the title field to make sure a book always has a title. Now change the 
controller to validate the book after form submission. 

@RequestMapping(value	  =	  "edit",	  method	  =	  RequestMethod.POST)
public	  String	  saveBook(@Valid	  Book	  book,	  BindingResult	  result)	  {
	  	  	  	  if	  (result.hasErrors())	  {
	  	  	  	  	  	  	  	  return	  "books/edit";
	  	  	  	  }	  else	  {
	  	  	  	  	  	  	  	  bookCatalog.saveBook(book);
	  	  	  	  	  	  	  	  return	  "redirect:/spring/books";
	  	  	  	  }
}

Check if the form is re-displayed when an empty title is submitted. Of course there should 
be some error messages telling the user that there is a problem. You can display an error 
message for a specific field on a command object using the form:errors tag. 

<form:errors	  path="title"/>

It would also be useful to show a common message like “there are validation errors” on top 
of the page. You can use the spring:hasBindErrors tag for this. 

Step 7 - Handling Ajax requests
Spring MVC doesnʼt include any Ajax support. With the RESTful Web Service support itʼs 
easy to use any JavaScript library however. First, youʼll need a JavaScript library. Any 
JavaScript library would do, but for this lab youʼll use jQuery. Download jQuery and import 
the library on your page.
" " 19
"



<script	  type="text/javascript"	  
src="/path/to/jquery.js"></script>

Spring MVC makes it easy to support both Content Centric Ajax and Data Cenric Ajax. 
Content Centric Ajax is easier but less flexible. In this lab you will use Ajax to filter the list 
of books while typing. Add a text field on the page and the following jQuery code.

<script	  type="text/javascript">
	  	  	  	  $(function()	  {
	  	  	  	  	  	  	  	  $("#filter").keyup(function()	  {
	  	  	  	  	  	  	  	  	  	  	  	  	  $("#booktable").load("books/booktable",	  
	   	   	   {"filter":	  $("#filter").val()}
	   	   	  	  );
	  	  	  	  	  	  	  	  });
	  	  	  	  });
</script>

Refactor the books table to a separate include file. This makes it possible to use the 
include file as the view for the Ajax call. Implement the new controller method and test the 
filtering.

" " 20
"



RESTful Web Services
Building RESTful Web Services in Spring is very similar to creating web applications. The 
only difference is the type of content sent to the client. In this lab youʼll implement a simple 
service for listing and adding books.

Step 1 - JAXB mapping
The Book service will support representations in XML. This mean youʼll have to tell how a 
Book should be serialized to XML. A number of XML libraries are supported by Spring, in 
this lab youʼll use JAXB2. First open the Book class and annotate it with 
@XmlRootElement. Because the service also need to return a list of books youʼll need to 
create a new class BookList and annotate this class @XmlRootElement too. Add a 
property List<Book> to it.

@XmlRootElement
public	  class	  BookList	  {
	  	  	  	  private	  List<Book>	  books;

	  	  	  	  public	  BookList()	  {
	  	  	  	  }

	  	  	  	  public	  BookList(List<Book>	  books)	  {
	  	  	  	  	  	  	  	  this.books	  =	  books;
	  	  	  	  }

	  	  	  	  public	  List<Book>	  getBooks()	  {
	  	  	  	  	  	  	  	  return	  books;
	  	  	  	  }

	  	  	  	  public	  void	  setBooks(List<Book>	  books)	  {
	  	  	  	  	  	  	  	  this.books	  =	  books;
	  	  	  	  }
}

Step 2 - Implementing the controller
Code for implementing RESTful services is very similar to normal controller code. There 
are different strategies in Spring to select a controller method to handle a request. 

1. Content negotiation
You can use the same method to output HTML and XML depending on the requested 
content-type by the client. Clients can use the Accept header to specify which content-type 
they want to receive. The controller method returns a Model objects just like normal, but 
the Model will be rendered according the content-type using a 
ContentNegotiatingViewResolver. You only have to write the controller code once to 
support a number of content-types, but this is also the downside. In many cases you want 
to execute different code for generating different content-types.

2. Use the headers property in the @RequestMapping annotations
" " 21
"



The headers property can be used to select a controller method on the value of a given 
header property. If you would have two methods, one annotated @RequestMapping
(headers = “accept=application/xml”) and one @RequestMapping(headers = “accept=text/
html”) the correct method would be chosen depending on the accept header. This is a very 
good approach, the only problem is that it might return the wrong content type for some 
browsers because the accept header canʼt be influenced here.

3. Use a URL extension
While not completely RESTful this is a much used approach. Each supported content-type 
gets itʼs own URL, for example /books.xml. The accept header is not used to select the 
right controller method. This is the approach best fit for this lab.

Add a new method to the controller that is selected for /books.xml and returns a BookList 
instance. To serialize model objects to the client you have to annotate the return type 
@ResponseBody.

@RequestMapping(method	  =	  RequestMethod.GET,	  value	  =	  "books.xml")
public	  @ResponseBody	  BookList	  listBooksXml()	  {
	  	  	  	  List<Book>	  books	  =	  bookCatalog.listBooks();
	  	  	  	  return	  new	  BookList(books);
}

Step 3 - Posting new books
Implement a method to save new books using a POST. Use the Firefox plugin Poster to 
send a POST to the server.

Step 4 - Creating a client
Create a new project with a simple main class that uses the RestTemplate to use the Book 
Service. 

" " 22
"



Spring Security
In this lab you will secure the web application using Spring Security. While Spring Security 
is not part of the core Spring framework, itʼs used in many Spring web projects.

Step 1 - Setting up Spring Security
Youʼll first have to configure the Spring Security filter in web.xml. Itʼs common to place all 
security configuration in a separate configuration file, so this file should also be added to 
the list of configuration files in the context-params. 

<context-‐param>
	  	  	  	  <param-‐name>contextConfigLocation</param-‐name>
	  	  	  	  <param-‐value>/WEB-‐INF/applicationContext.xml
	  	  	  	  	  	  	  	  /WEB-‐INF/applicationContext-‐security.xml
	  	  	  	  </param-‐value>
</context-‐param>

<filter>
	  	  	  	  <filter-‐name>springSecurityFilterChain</filter-‐name>
	  	  	  	  <filter-‐class>org.springframework.web.filter.DelegatingFilterProxy</
filter-‐class>
</filter>
<filter-‐mapping>
	  	  	  	  <filter-‐name>springSecurityFilterChain</filter-‐name>
	  	  	  	  <url-‐pattern>/*</url-‐pattern>
</filter-‐mapping>

Step 2 - Security configuration
There is a basic configuration file available at the root of the project. Copy the contents of 
security-starterconfig.xml to a new file WEB-INF/applicationContext-security.xml. This file 
enables security with an in-memory authentication provider. All pages starting with /spring 
require a logged in user. /spring/books/edit requires a user with ROLE_SUPERVISOR. 
Start the application and test if it works as expected.

Step 3 - Setting up a user database
The in-memory authentication provider is not very useful for real application. With a little 
extra work Spring Security can use a database to store users and roles. Thereʼs a 
database script “security-tables.sql”. Use it to create the required tables in the MySQL 
database. The tables follow the standard Spring Security model, but can be customized if 
necessary. Add a user to the user table. The password should be hashed using md5. Itʼs 
also required to give the user at least one role. 

Step 4 - Configuring the user database
Replace the existing authentication-manager with the following configuration.

<authentication-‐manager>
	  	  	  	  <authentication-‐provider	  >
	  	  	  	  	  	  	  	  <password-‐encoder	  hash="md5"/>
" " 23
"

http://web.xml
http://web.xml
http://web.filter.DelegatingFilterProxy
http://web.filter.DelegatingFilterProxy


	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  <jdbc-‐user-‐service	  data-‐source-‐ref="dataSource"	  />
	  	  	  	  </authentication-‐provider>
</authentication-‐manager>

Test the application again.

Step 5 - Securing page elements
The application is now secure, but not very user friendly. When logged in as a normal user 
youʼll still see the “new book” link, but you canʼt access it. It would be better to not render 
the link if the user isnʼt authorized for the page. Spring Security provides a JSP tag library 
for this. To hide the “new book” link you could for example use the following tag.

<%@	  taglib	  prefix="sec"	  
	   uri="http://www.springframework.org/security/tags"	  %>

<sec:authorize	  url="/spring/books/edit">
	  	  	  	  <a	  href="books/edit">New	  book</a>
</sec:authorize>

" " 24
"

http://www.springframework.org/security/tags
http://www.springframework.org/security/tags


JMX
In this lab you will a simple JMX management interface. 

Step 1 - Add the JMX bean
Create a new class and annotate it @Component to make it a Spring bean. Add some 
methods to display information about books. For example a method that returns the 
number of books in the database.

Step 2 - Configure the JMX exporter
Spring can use the JMX server which is by default available on Tomcat. The only thing you 
have to configure is a JMX exporter. 

<bean	  id="exporter"	  
	  class="org.springframework.jmx.export.MBeanExporter"	  lazy-‐init="false">
	  	  	  	  <property	  name="beans">
	  	  	  	  	  	  	  	  <map>
	  	  	  	  	  	  	  	  	  	  	  	  <entry	  key="bean:name=bookManager"	  
	   	   	  	  	  	  	  	  	  	  	  value-‐ref="jmxBookManager"/>
	  	  	  	  	  	  	  	  </map>
	  	  	  	  </property>
</bean>

Step 4 - Using JConsole
Open a command prompt and type jconsole. Connect to the catalina process and test your 
MBean on the MBeans tab.

" " 25
"



JMS
In this lab you will connect the Spring web application to an ActiveMQ JMS queue. 

Step 1 - Start ActiveMQ
Apache ActiveMQ is a much used JMS provider. Start it by opening a command prompt 
and type bin/activemq. After starting you can explore the management console at http://
localhost:8161/admin.

Step 2 - Configure a connection factory
Spring needs a ConnectionFactory implementation to connect to a JMS queue. Depending 
on the environment youʼre running in there are a number of ways to create a 
ConnectionFactory. For this lab youʼll use an ActiveMQ implementation directly. 

<bean	  id="connectionFactory"	  
	   class="org.apache.activemq.pool.PooledConnectionFactory"	  
	   destroy-‐method="stop">
	  	  	  	  <property	  name="connectionFactory">
	  	  	  	  	  	  	  	  <bean	  class="org.apache.activemq.ActiveMQConnectionFactory">
	  	  	  	  	  	  	  	  	  	  	  	  <property	  name="brokerURL">
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <value>tcp://localhost:61616</value>
	  	  	  	  	  	  	  	  	  	  	  	  </property>
	  	  	  	  	  	  	  	  </bean>
	  	  	  	  </property>
</bean>

Step 3 - Implementing a MessageListener
Create a new class that implements MessageListener and annotate it @Component to 
make it a Spring bean. Implement the onMessage method. You can cast the Message to a 
TextMessage to work with simple text based messages which are very common.

Step 4 - Configure the MessageListener
The last step is to connect the MessageListener implementation you just created to the 
queue. You can do that with the following configuration.

<jms:listener-‐container>
	   <jms:listener	  destination="queue.releases"	  ref="bookJmsListener"	  />
</jms:listener-‐container>

Test the receiving of messages by sending messages to the queue from ActiveMQʼs admin 
console.

" " 26
"

http://localhost:8161/admin
http://localhost:8161/admin
http://localhost:8161/admin
http://localhost:8161/admin


Scheduling tasks
In this lab you will learn to use the scheduling functionality provided by Spring.

Step 1 - Implement a task 
A task can just be implemented as a POJO. Create a new class and make it a Spring 
bean. Give it a method that should be scheduled.

Step 2 - Configure the scheduler
Using the task namespace itʼs very easy to implement a task scheduler. Youʼll need a 
scheduler and a scheduled-tasks configuration.

<task:scheduler	  id="scheduler"	  pool-‐size="10"/>

<task:scheduled-‐tasks	  scheduler="scheduler">
	  	  	  	  <task:scheduled	  ref="pingJob"	  method="ping"	  cron="*/5	  *	  *	  *	  *	  *"/>
</task:scheduled-‐tasks>

" " 27
"


