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Abstract

In plant—pollinator communities many pollinators are potential generalists and their preferences
for certain plants can change quickly in response to changes in plant and pollinator densities.
These changes in preferences affect coexistence within pollinator guilds as well as within plant
guilds. Using a mathematical model, we study how adaptations of pollinator preferences influence
population dynamics of a two-plant—two-pollinator community interaction module. Adaptation
leads to coexistence between generalist and specialist pollinators, and produces complex plant
population dynamics, involving alternative stable states and discrete transitions in the plant com-
munity. Pollinator adaptation also leads to plant—plant apparent facilitation that is mediated by
changes in pollinator preferences. We show that adaptive pollinator behavior reduces niche overlap
and leads to coexistence by specialization on different plants. Thus, this article documents how
adaptive pollinator preferences for plants change the structure and coexistence of plant—pollinator
communities.
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The pedigree of honey

Does not concern the bee;

A clover, any time, to him

Is aristocracy.

Poems (1890) — Emily Dickinson

1. Introduction

Many mutualistic interactions feature direct resource-for-resource (e.g., plant—-mycorrhizae,
lichens), or resource-for-service (e.g., pollination, seed dispersal) exchanges between species, but
this fact was not explicitly considered by the first models of mutualism based on the Lotka—Volterra
equations (Gause and Witt, 1935; Vandermeer and Boucher, 1978). As a result, positive feedbacks
between mutualists predicted infinite population growth. Later models considered negative density
dependence at high population densities (Boucher, 1988; Hernandez, 1998; Gerla and Mooij, 2014)
that stabilizes population dynamics. Increased awareness about the consumer—resource aspects of
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mutualisms (Holland and DeAngelis, 2010) provides some mechanistic underpinnings for density
dependence (e.g., mutualistic benefits saturate, just like plant growth saturates with nutrients or
predator feeding saturates with prey). More recently, differentiation between non-living mutualistic
resources (e.g., mineral nutrients, nectar, fruits) and their living providers (e.g., fungi, plant) led to
several mechanistic models (Benadi et al., 2012; Valdovinos et al., 2013; Revilla, 2015). These are
very relevant for studies of plant—-animal mutualisms, like pollination and seed dispersal, for two
reasons. First, competition between animals for nectar or fruits can be treated using concepts from
consumer-resource theory (Grover, 1997). Second, competition between plants for pollination or
seed dispersal can result from plants influencing the preferences of animals, according to optimal
foraging theory (Pyke, 2016).

In an earlier work (Revilla and Kfivan, 2016) we analyzed coexistence conditions for two plants
competing for a single pollinator. If the pollinator is a generalist, plants can facilitate each other by
making the pollinator more abundant. Facilitation is an example of an indirect density-mediated
interaction (sensu Bolker et al., 2003) between the two plants. However, if pollinators have adap-
tive preferences, a positive feedback between plant abundance and pollinator preferences predicts
exclusion of the rare plant, which gets less pollination as pollinators specialize on the common
plant. In other words, when pollinator preferences respond to plant densities, plants will expe-
rience competition for pollination services (in addition to competition for other factors such as
nutrients, light or space) because an increase in pollination of one plant exerts a negative effect
on the other plants that gets less pollination. In Revilla and Kfivan (2016) we found that plant
coexistence depends on the balance between plant facilitation via increasing abundance of the com-
mon pollinator, and competition for pollinator preferences, which adapt in response to the relative
abundance of plant resources. Pollinator preferences were described by the ideal free distribution
(IFD; Fretwell and Lucas, 1969) that predicts pollinator distribution between the two plants in
such a way that neither of the two plants provides pollinators with a higher payoff. For a single
pollinator, the IFD is also an evolutionarily stable strategy (ESS, Kiivan et al., 2008), i.e., once
adopted by all individuals no mutant with a different strategy can invade the resident population
(Maynard Smith and Price, 1973).

In many real life settings however, plants compete for pollination services provided by several
pollinator species, which in turn compete for plant resources. Pollinator preferences for plants
respond not only to plant abundances, but also to inter- and intra-specific competition between
pollinators. Simulations of large plant—pollinator communities indicate that plant coexistence is
promoted when generalist pollinators specialize to reduce competition for resources, i.e., to decrease
niche overlap (Valdovinos et al., 2013, 2016). This is the classic competitive exclusion principle
which states that n competing species (i.e., pollinators) cannot coexist at a population equilibrium
if they are limited by less than n limiting factors (i.e., plants) (Levin, 1970).

In this article we study a mutualistic-competitive interaction module consisting of two plants
and two pollinators where pollinators behave as adaptive foragers that maximize their fitness
depending on plant resource quality and abundance. This means that depending on plant and pol-
linator densities, pollinators switch between generalism and specialism. These behavioral changes
also change the topology of the interaction network. Thus, we focus on two questions: Under
what conditions the two plants and two pollinators can coexist at an equilibrium, and what are
the corresponding community network configurations.

To gain insight, we study separately plant population dynamics at fixed pollinator densities, and
pollinator population dynamics at fixed plant densities, respectively. In both cases we compare
population dynamics for inflexible pollinators with those for adaptive pollinators. Under fixed
pollinator preferences (section 2), stable coexistence of plants, or pollinators, is possible at a
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unique equilibrium. It is also possible that at this population equilibrium both pollinators are
generalists. Both these predictions change when pollinator preferences for plants are adaptive
(section 3). First, when pollinator densities are fixed, plants can coexist at alternative stable states
characterized by different interaction topologies given by pollinator strategy. However, there is no
plant stable coexistence when both pollinators are generalists. Second, when plant densities are
fixed, pollinators can coexist at an equilibrium only if they specialize on different plants (section
3.3). We show how these conclusions can explain some recent experimental and simulated results,
as well as predict the effects of pollinator adaptation in real communities.

2. Population dynamics when pollinator preferences for plants are fixed

Consider two plant populations P1 and P2 interacting with two pollinator populations A1 and
A2. Mutualism is mediated by resources R1 and R2 produced by plants P1 and P2, respectively.
We assume that pollination is concomitant with pollinator resource consumption. Since resources
like nectar or pollen have much faster turnover dynamics (hours, days) than plants and pollinators
(weeks, months), we assume they attain a quasi-steady-state at current plant and animal densities
(Revilla, 2015). As a result, population dynamics follow the Revilla and Ktivan (2016) model for
a single pollinator, extended for two pollinators

dPy  (ay(riuibii Ay + rigv1bia Ay) P+ Py
= 1l————— ) —my | P (1a)
dt w1y + U1b11A1 + U1b12A2 K1
dPs _ <a2(7"21u2b21A1 + 799U2b22 As) (1 B P+ C1P1> B m2) P, (1b)
dt Wy + Uabo1 Ay + V2boa Ag K,
dA by P, boy P
1 _ ( a1€11U1011 171 4 A2€91U2021 172 B d1) A, (1c)
dt wy + b1 Ay + 010124y Wo + usbay Ay 4 v2bao Ag
dA b P boo P
2 _ ( a1€12V1012171 T A2€22U2022179 B d2) A, (1d)
dt w1 + U1b11A1 + 'U1b12A2 Wo + UgbglAl + U2b22A2

where P, (i = 1,2) is plant Pi population density, and A; (j = 1,2) is pollinator Aj population
density. Here a; is a plant resource production rate, w; is its spontaneous decay rate, and b;; is a
pollinator specific consumption rate. In the plant equations (1a,1b), pollinator consumption rates
translate into seed production rates with efficiency 7;;. Plant growth is reduced by intra-specific
competition, with carrying capacity K;, and by inter-specific competition, where ¢; is the relative
effect of plant ¢ on the other plant. In the absence of pollinators, plants die with per-capita rates
m;, so plants are obligate mutualists. In the pollinator equations (1c,1d), consumption translates
into growth with efficiency ratios e;;. Without plants, pollinators die with per-capita rates d;, so
pollinators are obligate mutualists too.

Pollinator A1 (A2) preferences are u; (vq) for plant P1 and uy = 1 — u; (vy = 1 — vy) for
plant P2. Preferences can be interpreted as fractions of foraging time that individual pollinators
spend on plant P1 or P2, or the proportion of a pollinator population which is visiting P1 or P2
at a given time. Preferences allows us to categorize pollinators as generalists or specialists. For
example, if (uy,u2) = (3/4,1/4) and (vy,v2) = (0,1), then Al is a generalist (biased towards P1)
and A2 is a P2 specialist. In this section we assume that pollinator preferences for plants are fixed
and we derive conditions for plant stable coexistence that are compared in section 3 with the case
where pollinator preferences are adaptive. Unfortunately, the many variables and parameters of
model (1) do not allow us to analyze it at this generality. In order to gain insights, we assume
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that either plants or pollinators are kept at fixed densities and employing isocline analysis (Case,
2000) we characterize coexistence between plants (1a,1b), or between pollinators (1c,1d).

2.1. Plant coexistence

First, we consider plant-only dynamics. Let us consider a community consisting of a single
plant Pi (i = 1,2) and two pollinators. At fixed pollinator densities A; and Aj, the necessary
condition for plant Pi to survive is that its pollinator-dependent per-capita birth rate is higher
than its mortality rate, i.e.,

az‘(Tz'luibilAl + ?”1'21)1;5@'2142)
w; + uibir Ay + vibig As

Ty = > mg, (2)

in which case the plant will attain its pollinator-dependent carrying capacity

Hi:Ki<1—@). (3)

Ty

Inequality (2) shows that if both pollinators have low preferences for plant Pi (i.e., both u; and
v; are small), the plant cannot achieve a positive growth rate and cannot invade when rare. To
invade, a plant must be attractive enough for at least one of the two pollinators.

Provided that (2) holds for both plants, the plant sub-system (1a,1b) is the Lotka-Volterra
competition model. Plant coexistence depends on inter-specific competition coefficients (c1, cz),
and the carrying capacities given by (3). Figure 1 shows all generic qualitative plant isocline
configurations and their outcomes for plant coexistence. Panel (a) shows the non-competitive case
(¢; = cg = 0) where both plants attain their pollinator-dependent carrying capacities H;. Under
direct competition (¢, ce > 0) plant equilibrium densities at coexistence are lower than H; (panels
b, ¢). If

H H
< F? and ¢y < F:’ (4)

isoclines intersect in the positive quadrant at the globally stable equilibrium (panel b)

(P17P2)=<

If opposite inequalities hold in (4), the coexistence equilibrium is unstable (panel c), with one
plant outcompeting the other plant depending on the initial conditions. If the isoclines do not
intersect in the first quadrant the species with the highest (i.e., the one which is above the other)
isocline always wins (i.e., plant P1 in panel d). The height of a plant’s isocline depends on its
carrying capacity H;. Given that H; increases with w; and v; (since r; in (2) increases with u;
and v;), the more preferred a plant is, the more numerous will it be under conditions of stable
coexistence, or more likely it will exclude the other plant.

Hy —coHy Hy — C1H1>

1—0162 ’ 1 — C1C2

2.2. Pollinator coexistence

Second, we consider pollinator-only dynamics. For fixed plant densities P; (i = 1,2), the
pollinator sub-system (1c,1d) is the resource competition model of Schoener (1978). Appendix A
shows that there are three qualitatively different pollinator equilibria. The equilibrium where both
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Figure 1: Qualitative configurations of plant isoclines (P1 in black and P2 in gray) when pollinator preferences
for plants and densities are fixed. Filled (open) circles represent stable (unstable) equilibria. Circles on the axes
correspond to pollinator-dependent carrying capacities H; given by (3).

pollinators are extinct (A;, Ay) = (0,0) is unstable if one or both pollinators is viable. Viability
conditions for pollinator A1 and A2 are, respectively,

a1 Prejiurbiiwy + ag Poegyusboywy > diwiws (5&)

a1P1€12U1b12w2 + &2P2€22?)2b22wl > dgwlwz. (5b>

If neither of the above inequalities holds, both pollinators go extinct. If only one inequal-
ity holds then the corresponding pollinator is viable, and for each viable pollinator there is a
corresponding single species equilibrium (A;,0) or (0, As). As we see, pollinator viability implies
minimum resource requirements (Grover, 1997).

Appendix A shows that there can be at most one pollinator coexistence equilibrium (1211, /12)
Such an equilibrium is locally asymptotically stable (Appendix A) if

(Ulbllvzbm - U1512U2521)(611U1511€22U2522 - 61221117126211/&521) > 0. (6)

The interpretation of condition (6) is similar to that given by Leén and Tumpson (1975)
for two consumers competing for two substitutable resources: “.. the competitors coexist if at
equilibrium each of them removes at a higher rate that resource which contributes more to its own
rate of growth.” To see why this is so, let us assume that plant P1 is better for the growth
of Al (e;; > e9) and P2 is better for the growth of A2 (e > ej2). Then, if pollinator Al
interacts comparatively more strongly with plant P1 than with P2 (u3b1; > usbsy), and pollinator
A2 interacts comparatively more strongly with plant P2 than with P1 (vobey > v1b12), inequality
(6) holds.

Provided both pollinators are viable (5a and 5b hold), Figure 2 shows all generic pollinator
isocline configurations corresponding to different interaction topologies (except symmetries). The
top row of this figure is analogous to Figure 1 for plants. Panel (a) shows the case where pollinators
specialize on different plants (u; = 1,v; = 0). The Al isocline is vertical, the A2 isocline is
horizontal, and their intersection corresponds to stable pollinator coexistence since pollinators do
not compete. Panels (b,c,d) display isoclines for two generalist pollinators (i.e., 0 < u; < 1,
0 < v, < 1), i.e., both pollinators share both plants. Notice that the isoclines of generalist
pollinators are curved and intersect both axes. In (b) an isocline intersection exists and the
equilibrium between generalists is globally stable because (6) holds. In (c) an isocline intersection
exists but the corresponding equilibrium between generalists is unstable because (6) does not hold

5
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Figure 2: Pollinator isocline configurations (Al in black and A2 in gray) and qualitative dynamics (arrows), at
fixed pollinator preferences. Filled (open) circles represent stable (unstable) equilibria. Isocline shapes depend on
interaction topology (inset graphs).

and either A1 or A2 wins the competition depending on the initial conditions. In panel (d) the
isoclines do not intersect and the pollinator with the highest isocline always wins. In other words
condition (6) is irrelevant for coexistence in this case. This outcome happens if e.g., Al has a
much lower mortality and/or higher conversion efficiencies than A2. This case is like the case of
competitive dominance between plants (Figure 1d), except that for the plants the isoclines are
linear.

Panels (e,f) display isoclines when pollinator A1 is a generalist and A2 is a P2 specialist (i.e.,
0 <wu; < 1,v; =0). Like in panels (b,c,d) the isocline of the generalist is curved, but the specialist
isocline is linear. Under these condition, condition (6) is trivially satisfied (because v; = 0). Thus,
if both isoclines intersect, the corresponding coexistence equilibrium is always globally stable like
in panel (e), and if they do not intersect the species with the highest isocline always wins (e.g.,
Al in panel (f)). In other words, competition between a generalist and a specialist pollinator does
not admit the bi-stable case (i.e., panel c).

Finally, in panel (g) both pollinators specialize on plant P1, (e.g., u1 = v; = 1). In this
case both pollinators have parallel linearly decreasing isoclines, and the pollinator with the higher
isocline (i.e., Al in this case) excludes the other pollinator. This case is like the case of competitive
dominance between plants (Figure 1d), except that for the plants the isoclines are not required to
be parallel.

3. Population dynamics when pollinator preferences for plants are adaptive

In this section we assume that pollinator preferences adaptively change as plant and pollinator
densities change. First (section 3.1), we use a game theoretic approach (Ktivan et al., 2008) to
derive optimal pollinator preferences at given plant and pollinator densities. Second (section 3.2),



168

170

172

174

176

178

180

182

184

186

188

190

192

we analyze competition between plants at fixed pollinator densities. Third (section 3.3), we analyze
competition between pollinators at fixed plant densities.

3.1. Optimal pollinator preferences

Let us consider a mutant pollinator Al with preference 4; € [0,1] for the first plant and
a mutant pollinator A2 with preference o, € [0,1] in a resident population of pollinators with
average preferences u; and vp, respectively. The payoff a pollinator obtains when pollinating
plant ¢ (i = 1,2) is given by the per-capita pollinator birth rate. For example, from (1c) the
payoff of a pollinator A1 when pollinating plant P2 is o +u3§2@fg’ﬁf - As the resident pollinator
distribution between the two plants is the same as are their preferences we see that payoffs depend
on the distribution of pollinators between the two plants. Fitnesses of Al and A2 mutants are

defined as their mean payoffs

F (71 - ) _ areibi Py i+ a2€21b21 Py i (7&)
I wy + urb11 Ay + v1b12 A9 ! W + Ugbay Ay + Vobaa As >
b, P boo P
FQ(@l;UhUl) _ a1€12012171 ~ A2€22092179 ~ (7b)

U1 + Va.
wy + urb1 Ay + v1b12 A9 ! Wy + ugbai Ay + vabaa Ag ?

Throughout the rest of this article we assume that pollinator A1 grows comparatively faster
on plant P1 than on P2, and that pollinator A2 grows comparatively faster on plant P2 than on
P1, i.e.,

(611511)(622522) > (621521)(612512). (8>

We want to find pollinator preferences for plants that are evolutionarily stable (Hofbauer and
Sigmund, 1998). Interestingly, Appendix B shows that there is no evolutionarily stable prefer-
ence/strategy where both pollinator species behave as generalists (i.e., preference (uy,v;) where
0 <u < 1land 0 < vy < 1). In other words, the interaction topology in Figure 2b,c,d does
not exist when pollinators preferences are adaptive. In fact either both species are specialists, or
one species is a generalist and the other specializes on the plant that makes it grow faster. Table
1 lists all possible ESSs as a function of plant and pollinator population densities. Transitions
between ESSs in plant phase space occur along four lines P, = Q;P; (i = a,b,¢,d), called isolegs
(Rosenzweig, 1981; Pimm and Rosenzweig, 1981; Kfivan and Sirot, 2002), where

arbyrens (wa + bag Ay + by As)

A Ay) =
Qa(A1, As) (aba €110 ) (9a)
arbyrers (wa + bag As)
A, Ay) = , 9b
@ol 4, 4o) asboreor (wy + b1 Ay) (9b)
arbze12(wy + bag As)
(Aq, As) = , 9¢
@ ( ! 2> a2522622(w1 + b11A1) ( )
arbiaepw
Qu( Ay, Ay) = 1012€12W2 (9d)

asbasean(wy + b11 Ay + b2 As)’

At fixed pollinator densities isolegs delineate five regions (denoted as I-V in Table 1) in the
first quadrant of the P; P, plane where pollinators behave as specialists or generalists. Appendix
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Region Conditions ESS (uy,v1) Description

I Qa(A1, As) P < Py (0,0) A1l & A2 specialize on P2
II Qu(A1, A) Py < Py < Qu(A1, As) Py (uf,0) Al generalist, A2 specializes on P2

I11 Qc(A1, A2) Py < Py < Qu(Ay, Ag) Py (1,0) A1 specializes on P1, A2 specializes on P2

1AY Qa(A1, A) P < Py < Qc(Ay, A2) Py (1,07) A1 specializes on P1, A2 generalist
\Y Py < Qu(Aq, As) Py (1,1) Al & A2 specialize on P1

Table 1: Dependence of evolutionarily stable pollinator preferences on plant (P, P;) and pollinator densities
(A1, Az). Thresholds Q; (i = a,b,c,d) are given by (9) and u} and v by (10).

B shows that when pollinator Al is a generalist and A2 specializes on P2 (region II in Table 1),
the ESS of Al is

e11b11a1 P (wa + boy Ay + bao Ag) — ea1boras Powy
bi1bo1(e11a1 P + ea1a9Py) Ay

and when A2 is a generalist and A1 specializes on P1 (region IV in Table 1), the ESS of A2 is

*

ul:

: (10a)

£ _ e12b12a1 Py (wa + bag As) — eaabasas Py(wy + by1Ay)
! 512522(612G1P1 + 622CL2P2)A2 '

In the next section we use isolegs and isoclines to study plant—plant competition.

(10b)

3.2. Plants compete for pollinator preferences

Here we use isocline analysis to study the dynamics of the plant sub-system at fixed pollinator
densities A; and A,, when pollinators are adaptive. Unlike in the case with fixed preferences,
pollinator isolegs partition the P; P, plane into five regions listed in Table 1. Isolegs P, = Q; P,
(1 = a,b,c,d; see (9)) are rays passing through the origin (dashed lines in Figures 3 and 5).
Inequality (8) implies that the slopes of isolegs satisfy Qy < Q. < @y < @, and, consequently,
regions I, II, III, IV and V are ordered in a clockwise sequence (Figure 3). As a result of this
partition of the positive quadrant, plant isoclines are defined piece-wise, and they are considerably
more complex when compared to the situation where pollinators have fixed preferences (cf. Figure
3 vs. Figure 1). Plant isoclines in regions I, III, and V are easy to describe analytically (Appendix
C). However, in regions II and IV, plant isoclines are highly non-linear and although they can be
calculated using some computer algebra software (e.g., Mathematica), the resulting expressions
are too complex and they are not useful for further mathematical analysis.

In what follows we will assume that each plant monoculture is viable, i.e., for P1

a1(r11b1141 + r12b12As)
wy + b1 Ay + b2 A

my, (11a)
and for P2

aa(r91b91 Ay + 192092 Ag)
wy + ba1 Ay + by Ao
This means that each plant equilibrates with pollinator densities when alone (section 2.1).
Then plant isoclines have the following general properties:

> Mmaoy. (11b)
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1. Isoclines consist of four connected segments, as shown by e.g., Figure 3a. The isocline of
plant P1 (P2) intersects the P, (P,) axis at the origin and at its pollinator-dependent carrying
capacity in region V (I). These boundary equilibria

my(wy + b1 Ay + 512142)) )
PLP) =K (1- 0 12a
SR ( ' ( a1(r11b11 Ay + riabi2As) (122)
and
ma(wy + bar Ay + b22A2)> )
P,P)=(0,Ky(1— , 12b
S ( ? ( as(712b91 A1 + roobag As) (12b)

are shown as filled circles on the axes of Figures 3 and 5. Appendix C shows that provided
these boundary equilibria exist (i.e., they are positive), they are locally asymptotically stable.

2. The isoclines are linear in regions I, III and V, in which both pollinators are specialists.
Within these regions, u; and v; remain fixed at 0 or 1. If ¢ = 0 (¢; = 0) the isocline of plant
P1 (P2) is vertical (horizontal), as shown in Figure 3 (cf., Figure 1a). If ¢ > 0 (¢; > 0) the
isocline of plant P1 (P2) is negatively sloped within these regions, as shown in Figure 5 (cf.,
Figure 1b,c,d).

3. The isoclines are non-linear in regions II and IV, in which one pollinator is generalist and
the other specialist. The segment of the plant P1 (P2) isocline which is in region II (IV)
passes through the origin.

4. The isocline of plant P1 (P2) does not cross region I (V). This is because in region I (V),
plant P2 (P1) has two pollinators, but P1 (P2) has none and goes extinct in this region.

5. The population density of plant P1 (P2) increases in the region below (to the left) its isocline,
and decreases in the region above (to the right).

While there can be at most one interior plant equilibrium when pollinator preferences for plants
are fixed (section 2.1), there can be multiple interior equilibria when preferences are adaptive,
because isoclines intersect in multiple points.

In the rest of this section we consider two particular scenarios that illustrate the complexities
of plant population dynamics under adaptive pollinator preferences:

e Scenario I: Plant population dynamics along the gradient in pollinator A1 density. In this
scenario the density of pollinator A2 is kept fixed and both pollinators are equally good for
each plant (r1; = ri2,791 = r22). Plants do not compete for factors external to pollination
(Cl = Cy = O)

e Scenario II: Plant population dynamics along the gradient in plant inter-specific competition
for external factors. In this scenario we assume that plant inter-specific competition is
symmetric and we set ¢ = ¢; = ¢o. We also assume that Al (A2) is the best pollinator of
plant P1 (P2) (r13 > ria, 722 > 791).

Both scenarios are parameterized so that plant boundary equilibria (12a) and (12b) exist, i.e.,
pollinator densities are high enough so that each plant can achieve a positive growth rate when
alone.

The main purpose of scenario I is to explore how relative changes in pollinator densities influence
plant community composition. An important motivation is the growing interest in the consequences
of alien pollinator invasions (Traveset and Richardson, 2006), and the management of pollinator
populations (Geslin et al., 2017). To focus solely on plant competition for pollination services,

9
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we remove the effect of competition for other factors (by setting competition coefficients equal to
Z€r0).

In Scenario IT we explore how competition for external factors (e.g., space, nutrients) influences
competition between plants for pollinator preferences. Because of condition (8), this scenario also
assumes that P1 (P2) and Al (A2) are better for one another. Such matching can be due to
matching in plant and pollinator morphologies (Fontaine et al., 2005).

3.2.1. Scenario I. Effects of changes in pollinator composition: Alternative plant stable states

Figure 3 illustrates plant population dynamics for scenario I. Panel (a) shows the situation
where pollinator A1 density is the same as pollinator A2 density. Plant isoclines intersect in region
IV, and the vector field indicates that the corresponding equilibrium is unstable. Thus, there
is bi-stability: depending on initial conditions either plant P1 or P2 is excluded, and the plant
community becomes a monoculture. As density of pollinator Al increases (panel b), the single plant
equilibria (12a) and (12b) increase too. As a result, there are three isocline intersections in regions
I1, 1T and IV. The equilibrium in region III is stable (because (4) holds, see Appendix C) and the
equilibria in regions II and IV are unstable. Again, plant coexistence depends on initial conditions:
if one plant is initially too rare plant population dynamics will converge to a monoculture of the
other plant, but if the two plants are initially abundant enough, stable coexistence follows. At
the coexistence equilibrium pollinators specialize on different plants (see Table 1). In panel (c)
pollinator A1 is more abundant than pollinator A2, and two additional equilibria occur in region
I, one stable and the other unstable. Thus, there are two stable coexistence equilibria now (one
in region II and the other in region III). At the stable equilibrium that is in region II, pollinator
A1l is a generalist and A2 is a plant P2 specialist. As in panel (b), at the equilibrium that lies
in region III, pollinators specialize on different plants. Finally, in panel (d), further increase in
pollinator A1 leads to a single coexistence equilibrium in region II where Al is a generalist and
A2 plant P2 specialist.

Overall, the main effect of increasing pollinator Al density with respect to A2, is the reduction
of region III where both pollinators specialize on different plants, in favor of region II where A1 is
a generalist and A2 a specialist. Here we see (Figure 4) that along the gradient in A; density, the
topology of the interaction web changes. When population density of Al is low, both pollinators
specialize on different plants. As population density of Al increases, A1 becomes a generalist. We
also observe that plant P2 experiences hysteresis: the stable equilibrium in region III jumps to
the stable equilibrium in region II at A; ~ 11.7 as pollinator density A; increases, but the stable
equilibrium moving along branch II jumps back to the stable equilibrium moving along branch III
at A; ~ 8.7 when pollinator density A; decreases. Another important consequence of pollinator
AT increase is that region I (V), in which P1 (P2) always decreases, become smaller. This makes
easier for plants to invade one another and achieve coexistence.

In summary, scenario I shows that: (i) adaptive foraging preferences can lead to alternative
plant coexistence stable states and (ii) continuous changes in pollinator composition (i.e., Ay : A
ratio) produce discontinuous changes in plant—pollinator interaction structure.

3.2.2. Scenario II. Effects of plant competition for external factors: Trait-mediated apparent facil-
wtation
Plant dynamics for scenario II are illustrated in Figure 5. The isolegs (dashed lines, (9))
and boundary equilibria (12a) and (12b) do not change across panels (a—d), because they are
independent of the competition coefficient ¢ = ¢; = ¢5. Within regions I, III and V the isoclines
are linear while in regions II and IV they are non-linear.
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Figure 3: Isoclines of plants P1 (black) and P2 (gray), isolegs (dashed lines), and vector field of plant population
dynamics (arrows), under adaptive pollinator preferences and increasing pollinator Al density (A, scenario I).
Filled (open) circles represent stable (unstable) equilibria. Regions of pollinator preference are defined in Table
1, and corresponding interaction topologies are indicated at the bottom. Parameters: r;; = 0.1, m; = 0.01,

mo = 00075, C; = O, a; = 0.4, w; = 025, bij = 0.1, €11 = €92 = 0.2, €21 = €12 = 0.1, Ki = 50, AQ = 1. Note: parts
of the isoclines are not shown in (c,d), but these parts do not intersect at any equilibrium.
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Figure 4: Bifurcation plot for plant P2 in scenario I. Thin solid lines represent stable equilibria with one plant extinct.
Thick solid lines represent stable coexistence equilibria, next to corresponding interaction topology. Dashed lines
represent unstable equilibria. Roman numerals (I to V) indicate the location of equilibria within preference regions
given by the ESS (Table 1). Labels along the top of the plot correspond to panels in Figure 3.
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When plant inter-specific competition is low (Figure 5a), plant population dynamics are qualita-
tively similar to panels (b,d) in Figure 3 of scenario I, i.e., plants can coexist at a stable equilibrium.
However, there is an important qualitative difference here: At the coexistence equilibrium both
plants attain higher density when compared with their monoculture densities (boundary equi-
libria). In other words, when inter-specific plant competition is weak, we observe mutual plant
facilitation. Let us consider the plant P1 boundary equilibrium in region V. In this region P1
is pollinated by both pollinators. However, when A2 is a poor pollinator for P1 (i.e., r;; > rio
as assumed in Figure 5), P1 can achieve a higher birth rate when it is pollinated by Al only.
So, if there is an invasion of plant P2 from outside which moves the plant densities in region III,
pollinator A1l specializes on plant P1 and plant P2 is pollinated by its best pollinator A2 only.
Consequently, the P1 population equilibrium increases above its monoculture level. Appendix C
shows that the necessary condition for this facilitation of plant P1 by the presence of P2 to happen
is that r11/r12 > 1+ wy/(b11 A1), which means that pollinator A1 density must be high enough.
In addition, such a facilitation can happen only when inter-specific competition between plants
is not too high. We remark that this facilitation is not the usual one (Revilla and Kfivan, 2016)
where an increase in one plant density increases the pollinator density which, in turn, increases the
other plant density. This mechanism cannot operate in the current model that assumes pollinator
population densities are fixed. The facilitation that we observe here is due to changes in pollinator
preferences, where by increasing plant P2 density, pollinator A2 switches from pollinating plant
P1 to pollinating P2, which leads to an increase of P1 population density. To distinguish this
mechanism from density mediated facilitation caused by increase in pollinator density, we call this
mechanism indirect trait-mediated facilitation (sensu Bolker et al., 2003).

As inter-specific competition increases, plant equilibrium population densities in region IIT will
be decreasing below those they achieve in a monoculture (boundary equilibria). When plant inter-
specific competition is strong so that ¢ > 1, the equilibrium in region III becomes unstable (i.e.,
(4) does not hold, see also Appendix C), but plants can still coexist at alternative stable states.
In Figure 5b, the local dynamics around the unstable equilibrium in region III is like in Figure 1c,
where perturbations cause either plant P1 to displace P2 or vice versa. Like in scenario I, we have
two alternative stable states at which both plants coexist. The most abundant plant in each state
is the one pollinated by both pollinators. Further increase of the competition coefficient eliminates
all equilibria in region IV, but the stable equilibrium in region II remains, with pollinator Al a
generalist and A2 specialized on P2 (Figure 5¢). Finally, if competition is too strong there are no
equilibria in regions IT and IV and we have mutual exclusion (Figure 5d) where, depending on the
initial conditions, one plant outcompetes the other plant (cf. Figure 1c).

Figure 6 shows the corresponding bifurcation plot for scenario II. As competition for extrinsic
factors (i.e., not for pollination) gets stronger, both plant equilibrium densities tend to decrease,
even in the region of alternative stable states (1 < ¢ < 1.3) where P1 can be either abundant (stable
IV branch) or rare (stable II branch). There is only a small region where plant P1 increases
with competition (0.9 < ¢ < 1), i.e., where the combined effects of exploitative competition
and competition for pollination (i.e., trait-mediated plant facilitation) is more favorable for P1
than for P2 (which decreases, not shown). Notice that in comparison to Figure 4 which shows
transitions between two stable interaction topologies, Figure 6 shows transitions between three
stable interaction topologies.

In summary, scenario II shows that: (i) adaptive foraging preferences can result in indirect
trait-mediated plant—plant facilitation, by matching plants with their best pollinators; (ii) contin-
uous changes in competition for factors external to pollination can produce discontinuous changes
in interaction structure and coexistence for plants competing for pollination services; and (iii)
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Figure 5: Isoclines of plants P1 (black) and P2 (gray), isolegs (dashed lines), and vector field of plant population
dynamics (arrows), under adaptive pollinator preferences and with increasing plant competition (¢;, scenario II).
Filled (open) circles represent stable (unstable) equilibria. Regions of pollinator preference are defined in Table 1,
and corresponding interaction topologies are indicated at the bottom. Parameters: r1; = 190 = 0.5, r12 = 191 = 0.1,

m; = 0.02, a; = 0.1, w; = 0.1, bij = 0.1, e11 = e99 = 0.2, e91 = €12 = 0.1, K; = 50, A = 11, As = 10. Note: parts
of the isoclines are not shown in (a), but these parts do not intersect at any equilibrium.
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Region Conditions ESS (u1,v1) Description

I Ay < S A1+ 1, (0,0) Al & A2 specialize on P2
II S, A+ 1, < Ay < SpAy + 1, (uj,0) Al generalist, A2 specializes on P2
I11 SpAL + 1, < Ay < S AL+ 1, (1,0) A1 specializes on P1, A2 specializes on P2

1AY max{S.A; + I, SqA1 + 14} < Ay (1,07) A1 specializes on P1, A2 generalist
\Y Ay < S4A + 1, (1,1) Al & A2 specialize on P1

Table 2: ESS as a function of pollinator densities. Isoleg slopes S;(P;, P») and intercepts with the Ay axis I;(Py, Py)
(i = a,b,c,d) are given by (13), and u} and v} by (10).

plants can coexist even when inter-specific competition is stronger than intra-specific competi-
tion for factors other than pollination. In the next section we use isolegs and isoclines to study
pollinator—pollinator competition.

3.3. Pollinators compete for plant resources

In this section we analyze population dynamics of adaptive pollinators at fixed plant densities.
Unlike in the case of fixed preferences (Figure 2), now we must partition the first quadrant of
the pollinator plane A; A, into different regions using isolegs (Figure 7), according to Table 2 (see
Appendix D). The isolegs are linear in A; and they are given by Ay = S;(Py, P2)A; + L;( Py, P)
(where i = a, b, ¢, d) where slopes and intercepts are

_ b __ agboiesn Powr—aibiiern Prws
Sa(Pl’ PQ) T b2 ]a(Pl’ PQ) - ai1bi1bazer P ’

Sb(Pb p2) _ age21bai P [b<Pla PQ) — agbaieg1 Prwi—arbriern Prws

are11boa Py’ a1biibazerr Py ’
(13)
__ agexnb1 P __ agbosesa Powy—aibize;a Prws
SC(Pl’ P2) T areinbin Py’ [C(Pl’ PQ) o a1bioboze1a Py ’
_ by _ aibisein Prwa—asbasess Pow;
Sd(Pb P2> — T by Id(Pl’ P2> - azbaobioess Po ’

Compared to isolegs in the plant plane (Figures 3 and 5), in the pollinator plane isolegs neither
pass through the origin, nor all have positive slopes. Thus, for given parameter values and plant
population densities not all regions from Table 2 exist in the positive quadrant. In general:

1. Regions II, IIT and IV always occur (see Figure 7). They are separated by the isoleg-b
(As = SpA1+1,,) and the isoleg-c (Ay = S.A;+1..) with positive slopes S, and S, respectively.
These isolegs do not intersect in the first quadrant of the A; Ay plane (Appendix D).

2. Because of (8) the isoleg-c separating IV and III is steeper than the isoleg-b separating IIT
and II (S. > Sp). Thus, regions II, III and IV are ordered in a counter-clockwise sequence in
the positive A;As plane.

3. Regions I and V are separated from regions II and IV, respectively, by isoleg-a and isoleg-d
with negative slopes S, and S;. Appendix D shows that at most one of these two regions
can exist for given parameters and plant population densities. E.g., in Figure 7a neither of
the two regions exist, while in 7b region I exists.

The partition of the pollinator plane results in pollinator isoclines that are more complex than
in the case of fixed preferences, but considerably simpler than plant isoclines in section 3.2. The
isoclines consist of three (e.g., Figure 7a) or two connected segments (e.g., the pollinator A2 isocline
in Figure 7b). Regions I and V contain no isocline segments. The segments within regions IT and IV
are linearly decreasing, and both isoclines are parallel in these two regions (see Appendix D). Thus,
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