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Abstract

In plant–pollinator communities many pollinators are potential generalists and their preferences
for certain plants can change quickly in response to changes in plant and pollinator densities.
These changes in preferences affect coexistence within pollinator guilds as well as within plant
guilds. Using a mathematical model, we study how adaptations of pollinator preferences influence
population dynamics of a two-plant–two-pollinator community interaction module. Adaptation
leads to coexistence between generalist and specialist pollinators, and produces complex plant
population dynamics, involving alternative stable states and discrete transitions in the plant com-
munity. Pollinator adaptation also leads to plant–plant apparent facilitation that is mediated by
changes in pollinator preferences. We show that adaptive pollinator behavior reduces niche overlap
and leads to coexistence by specialization on different plants. Thus, this article documents how
adaptive pollinator preferences for plants change the structure and coexistence of plant–pollinator
communities.
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The pedigree of honey

Does not concern the bee;

A clover, any time, to him

Is aristocracy.

Poems (1890) – Emily Dickinson

1. Introduction

Many mutualistic interactions feature direct resource-for-resource (e.g., plant–mycorrhizae,2

lichens), or resource-for-service (e.g., pollination, seed dispersal) exchanges between species, but
this fact was not explicitly considered by the first models of mutualism based on the Lotka–Volterra4

equations (Gause and Witt, 1935; Vandermeer and Boucher, 1978). As a result, positive feedbacks
between mutualists predicted infinite population growth. Later models considered negative density6

dependence at high population densities (Boucher, 1988; Hernandez, 1998; Gerla and Mooij, 2014)
that stabilizes population dynamics. Increased awareness about the consumer–resource aspects of8
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mutualisms (Holland and DeAngelis, 2010) provides some mechanistic underpinnings for density
dependence (e.g., mutualistic benefits saturate, just like plant growth saturates with nutrients or10

predator feeding saturates with prey). More recently, differentiation between non-living mutualistic
resources (e.g., mineral nutrients, nectar, fruits) and their living providers (e.g., fungi, plant) led to12

several mechanistic models (Benadi et al., 2012; Valdovinos et al., 2013; Revilla, 2015). These are
very relevant for studies of plant–animal mutualisms, like pollination and seed dispersal, for two14

reasons. First, competition between animals for nectar or fruits can be treated using concepts from
consumer–resource theory (Grover, 1997). Second, competition between plants for pollination or16

seed dispersal can result from plants influencing the preferences of animals, according to optimal
foraging theory (Pyke, 2016).18

In an earlier work (Revilla and Křivan, 2016) we analyzed coexistence conditions for two plants
competing for a single pollinator. If the pollinator is a generalist, plants can facilitate each other by20

making the pollinator more abundant. Facilitation is an example of an indirect density-mediated
interaction (sensu Bolker et al., 2003) between the two plants. However, if pollinators have adap-22

tive preferences, a positive feedback between plant abundance and pollinator preferences predicts
exclusion of the rare plant, which gets less pollination as pollinators specialize on the common24

plant. In other words, when pollinator preferences respond to plant densities, plants will expe-
rience competition for pollination services (in addition to competition for other factors such as26

nutrients, light or space) because an increase in pollination of one plant exerts a negative effect
on the other plants that gets less pollination. In Revilla and Křivan (2016) we found that plant28

coexistence depends on the balance between plant facilitation via increasing abundance of the com-
mon pollinator, and competition for pollinator preferences, which adapt in response to the relative30

abundance of plant resources. Pollinator preferences were described by the ideal free distribution
(IFD; Fretwell and Lucas, 1969) that predicts pollinator distribution between the two plants in32

such a way that neither of the two plants provides pollinators with a higher payoff. For a single
pollinator, the IFD is also an evolutionarily stable strategy (ESS, Křivan et al., 2008), i.e., once34

adopted by all individuals no mutant with a different strategy can invade the resident population
(Maynard Smith and Price, 1973).36

In many real life settings however, plants compete for pollination services provided by several
pollinator species, which in turn compete for plant resources. Pollinator preferences for plants38

respond not only to plant abundances, but also to inter- and intra-specific competition between
pollinators. Simulations of large plant–pollinator communities indicate that plant coexistence is40

promoted when generalist pollinators specialize to reduce competition for resources, i.e., to decrease
niche overlap (Valdovinos et al., 2013, 2016). This is the classic competitive exclusion principle42

which states that n competing species (i.e., pollinators) cannot coexist at a population equilibrium
if they are limited by less than n limiting factors (i.e., plants) (Levin, 1970).44

In this article we study a mutualistic–competitive interaction module consisting of two plants
and two pollinators where pollinators behave as adaptive foragers that maximize their fitness46

depending on plant resource quality and abundance. This means that depending on plant and pol-
linator densities, pollinators switch between generalism and specialism. These behavioral changes48

also change the topology of the interaction network. Thus, we focus on two questions: Under
what conditions the two plants and two pollinators can coexist at an equilibrium, and what are50

the corresponding community network configurations.
To gain insight, we study separately plant population dynamics at fixed pollinator densities, and52

pollinator population dynamics at fixed plant densities, respectively. In both cases we compare
population dynamics for inflexible pollinators with those for adaptive pollinators. Under fixed54

pollinator preferences (section 2), stable coexistence of plants, or pollinators, is possible at a
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unique equilibrium. It is also possible that at this population equilibrium both pollinators are56

generalists. Both these predictions change when pollinator preferences for plants are adaptive
(section 3). First, when pollinator densities are fixed, plants can coexist at alternative stable states58

characterized by different interaction topologies given by pollinator strategy. However, there is no
plant stable coexistence when both pollinators are generalists. Second, when plant densities are60

fixed, pollinators can coexist at an equilibrium only if they specialize on different plants (section
3.3). We show how these conclusions can explain some recent experimental and simulated results,62

as well as predict the effects of pollinator adaptation in real communities.

2. Population dynamics when pollinator preferences for plants are fixed64

Consider two plant populations P1 and P2 interacting with two pollinator populations A1 and
A2. Mutualism is mediated by resources R1 and R2 produced by plants P1 and P2, respectively.66

We assume that pollination is concomitant with pollinator resource consumption. Since resources
like nectar or pollen have much faster turnover dynamics (hours, days) than plants and pollinators68

(weeks, months), we assume they attain a quasi-steady-state at current plant and animal densities
(Revilla, 2015). As a result, population dynamics follow the Revilla and Křivan (2016) model for70

a single pollinator, extended for two pollinators

dP1

dt
=

(
a1(r11u1b11A1 + r12v1b12A2)

w1 + u1b11A1 + v1b12A2

(
1− P1 + c2P2

K1

)
−m1

)
P1 (1a)

dP2

dt
=

(
a2(r21u2b21A1 + r22v2b22A2)

w2 + u2b21A1 + v2b22A2

(
1− P2 + c1P1

K2

)
−m2

)
P2 (1b)

dA1

dt
=

(
a1e11u1b11P1

w1 + u1b11A1 + v1b12A2

+
a2e21u2b21P2

w2 + u2b21A1 + v2b22A2

− d1
)
A1 (1c)

dA2

dt
=

(
a1e12v1b12P1

w1 + u1b11A1 + v1b12A2

+
a2e22v2b22P2

w2 + u2b21A1 + v2b22A2

− d2
)
A2, (1d)

where Pi (i = 1, 2) is plant Pi population density, and Aj (j = 1, 2) is pollinator Aj population72

density. Here ai is a plant resource production rate, wi is its spontaneous decay rate, and bij is a
pollinator specific consumption rate. In the plant equations (1a,1b), pollinator consumption rates74

translate into seed production rates with efficiency rij. Plant growth is reduced by intra-specific
competition, with carrying capacity Ki, and by inter-specific competition, where ci is the relative76

effect of plant i on the other plant. In the absence of pollinators, plants die with per-capita rates
mi, so plants are obligate mutualists. In the pollinator equations (1c,1d), consumption translates78

into growth with efficiency ratios eij. Without plants, pollinators die with per-capita rates dj, so
pollinators are obligate mutualists too.80

Pollinator A1 (A2) preferences are u1 (v1) for plant P1 and u2 = 1 − u1 (v2 = 1 − v1) for
plant P2. Preferences can be interpreted as fractions of foraging time that individual pollinators82

spend on plant P1 or P2, or the proportion of a pollinator population which is visiting P1 or P2
at a given time. Preferences allows us to categorize pollinators as generalists or specialists. For84

example, if (u1, u2) = (3/4, 1/4) and (v1, v2) = (0, 1), then A1 is a generalist (biased towards P1)
and A2 is a P2 specialist. In this section we assume that pollinator preferences for plants are fixed86

and we derive conditions for plant stable coexistence that are compared in section 3 with the case
where pollinator preferences are adaptive. Unfortunately, the many variables and parameters of88

model (1) do not allow us to analyze it at this generality. In order to gain insights, we assume
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that either plants or pollinators are kept at fixed densities and employing isocline analysis (Case,90

2000) we characterize coexistence between plants (1a,1b), or between pollinators (1c,1d).

2.1. Plant coexistence92

First, we consider plant-only dynamics. Let us consider a community consisting of a single
plant Pi (i = 1, 2) and two pollinators. At fixed pollinator densities A1 and A2, the necessary94

condition for plant Pi to survive is that its pollinator-dependent per-capita birth rate is higher
than its mortality rate, i.e.,96

ri =
ai(ri1uibi1A1 + ri2vibi2A2)

wi + uibi1A1 + vibi2A2

> mi, (2)

in which case the plant will attain its pollinator-dependent carrying capacity

Hi = Ki

(
1− mi

ri

)
. (3)

Inequality (2) shows that if both pollinators have low preferences for plant Pi (i.e., both ui and98

vi are small), the plant cannot achieve a positive growth rate and cannot invade when rare. To
invade, a plant must be attractive enough for at least one of the two pollinators.100

Provided that (2) holds for both plants, the plant sub-system (1a,1b) is the Lotka-Volterra
competition model. Plant coexistence depends on inter-specific competition coefficients (c1, c2),102

and the carrying capacities given by (3). Figure 1 shows all generic qualitative plant isocline
configurations and their outcomes for plant coexistence. Panel (a) shows the non-competitive case104

(c1 = c2 = 0) where both plants attain their pollinator-dependent carrying capacities Hi. Under
direct competition (c1, c2 > 0) plant equilibrium densities at coexistence are lower than Hi (panels106

b, c). If

c1 <
H2

H1

and c2 <
H1

H2

, (4)

isoclines intersect in the positive quadrant at the globally stable equilibrium (panel b)108

(P1, P2) =

(
H1 − c2H2

1− c1c2
,
H2 − c1H1

1− c1c2

)
.

If opposite inequalities hold in (4), the coexistence equilibrium is unstable (panel c), with one
plant outcompeting the other plant depending on the initial conditions. If the isoclines do not110

intersect in the first quadrant the species with the highest (i.e., the one which is above the other)
isocline always wins (i.e., plant P1 in panel d). The height of a plant’s isocline depends on its112

carrying capacity Hi. Given that Hi increases with ui and vi (since ri in (2) increases with ui
and vi), the more preferred a plant is, the more numerous will it be under conditions of stable114

coexistence, or more likely it will exclude the other plant.

2.2. Pollinator coexistence116

Second, we consider pollinator-only dynamics. For fixed plant densities Pi (i = 1, 2), the
pollinator sub-system (1c,1d) is the resource competition model of Schoener (1978). Appendix A118

shows that there are three qualitatively different pollinator equilibria. The equilibrium where both
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Figure 1: Qualitative configurations of plant isoclines (P1 in black and P2 in gray) when pollinator preferences
for plants and densities are fixed. Filled (open) circles represent stable (unstable) equilibria. Circles on the axes
correspond to pollinator-dependent carrying capacities Hi given by (3).

pollinators are extinct (A1, A2) = (0, 0) is unstable if one or both pollinators is viable. Viability120

conditions for pollinator A1 and A2 are, respectively,

a1P1e11u1b11w2 + a2P2e21u2b21w1 > d1w1w2 (5a)

a1P1e12v1b12w2 + a2P2e22v2b22w1 > d2w1w2. (5b)

If neither of the above inequalities holds, both pollinators go extinct. If only one inequal-122

ity holds then the corresponding pollinator is viable, and for each viable pollinator there is a
corresponding single species equilibrium (A1, 0) or (0, A2). As we see, pollinator viability implies124

minimum resource requirements (Grover, 1997).
Appendix A shows that there can be at most one pollinator coexistence equilibrium (Â1, Â2).126

Such an equilibrium is locally asymptotically stable (Appendix A) if

(u1b11v2b22 − v1b12u2b21)(e11u1b11e22v2b22 − e12v1b12e21u2b21) > 0. (6)

The interpretation of condition (6) is similar to that given by León and Tumpson (1975)128

for two consumers competing for two substitutable resources: “... the competitors coexist if at
equilibrium each of them removes at a higher rate that resource which contributes more to its own130

rate of growth.” To see why this is so, let us assume that plant P1 is better for the growth
of A1 (e11 > e21) and P2 is better for the growth of A2 (e22 > e12). Then, if pollinator A1132

interacts comparatively more strongly with plant P1 than with P2 (u1b11 > u2b21), and pollinator
A2 interacts comparatively more strongly with plant P2 than with P1 (v2b22 > v1b12), inequality134

(6) holds.
Provided both pollinators are viable (5a and 5b hold), Figure 2 shows all generic pollinator136

isocline configurations corresponding to different interaction topologies (except symmetries). The
top row of this figure is analogous to Figure 1 for plants. Panel (a) shows the case where pollinators138

specialize on different plants (u1 = 1, v1 = 0). The A1 isocline is vertical, the A2 isocline is
horizontal, and their intersection corresponds to stable pollinator coexistence since pollinators do140

not compete. Panels (b,c,d) display isoclines for two generalist pollinators (i.e., 0 < u1 < 1,
0 < v1 < 1), i.e., both pollinators share both plants. Notice that the isoclines of generalist142

pollinators are curved and intersect both axes. In (b) an isocline intersection exists and the
equilibrium between generalists is globally stable because (6) holds. In (c) an isocline intersection144

exists but the corresponding equilibrium between generalists is unstable because (6) does not hold
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Figure 2: Pollinator isocline configurations (A1 in black and A2 in gray) and qualitative dynamics (arrows), at
fixed pollinator preferences. Filled (open) circles represent stable (unstable) equilibria. Isocline shapes depend on
interaction topology (inset graphs).

and either A1 or A2 wins the competition depending on the initial conditions. In panel (d) the146

isoclines do not intersect and the pollinator with the highest isocline always wins. In other words
condition (6) is irrelevant for coexistence in this case. This outcome happens if e.g., A1 has a148

much lower mortality and/or higher conversion efficiencies than A2. This case is like the case of
competitive dominance between plants (Figure 1d), except that for the plants the isoclines are150

linear.
Panels (e,f) display isoclines when pollinator A1 is a generalist and A2 is a P2 specialist (i.e.,152

0 < u1 < 1, v1 = 0). Like in panels (b,c,d) the isocline of the generalist is curved, but the specialist
isocline is linear. Under these condition, condition (6) is trivially satisfied (because v1 = 0). Thus,154

if both isoclines intersect, the corresponding coexistence equilibrium is always globally stable like
in panel (e), and if they do not intersect the species with the highest isocline always wins (e.g.,156

A1 in panel (f)). In other words, competition between a generalist and a specialist pollinator does
not admit the bi-stable case (i.e., panel c).158

Finally, in panel (g) both pollinators specialize on plant P1, (e.g., u1 = v1 = 1). In this
case both pollinators have parallel linearly decreasing isoclines, and the pollinator with the higher160

isocline (i.e., A1 in this case) excludes the other pollinator. This case is like the case of competitive
dominance between plants (Figure 1d), except that for the plants the isoclines are not required to162

be parallel.

3. Population dynamics when pollinator preferences for plants are adaptive164

In this section we assume that pollinator preferences adaptively change as plant and pollinator
densities change. First (section 3.1), we use a game theoretic approach (Křivan et al., 2008) to166

derive optimal pollinator preferences at given plant and pollinator densities. Second (section 3.2),
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we analyze competition between plants at fixed pollinator densities. Third (section 3.3), we analyze168

competition between pollinators at fixed plant densities.

3.1. Optimal pollinator preferences170

Let us consider a mutant pollinator A1 with preference ũ1 ∈ [0, 1] for the first plant and
a mutant pollinator A2 with preference ṽ1 ∈ [0, 1] in a resident population of pollinators with172

average preferences u1 and v1, respectively. The payoff a pollinator obtains when pollinating
plant i (i = 1, 2) is given by the per-capita pollinator birth rate. For example, from (1c) the174

payoff of a pollinator A1 when pollinating plant P2 is a2e21b21P2

w2+u2b21A1+v2b22A2
. As the resident pollinator

distribution between the two plants is the same as are their preferences we see that payoffs depend176

on the distribution of pollinators between the two plants. Fitnesses of A1 and A2 mutants are
defined as their mean payoffs178

F1(ũ1;u1, v1) =
a1e11b11P1

w1 + u1b11A1 + v1b12A2

ũ1 +
a2e21b21P2

w2 + u2b21A1 + v2b22A2

ũ2, (7a)

F2(ṽ1;u1, v1) =
a1e12b12P1

w1 + u1b11A1 + v1b12A2

ṽ1 +
a2e22b22P2

w2 + u2b21A1 + v2b22A2

ṽ2. (7b)

Throughout the rest of this article we assume that pollinator A1 grows comparatively faster
on plant P1 than on P2, and that pollinator A2 grows comparatively faster on plant P2 than on180

P1, i.e.,

(e11b11)(e22b22) > (e21b21)(e12b12). (8)

We want to find pollinator preferences for plants that are evolutionarily stable (Hofbauer and182

Sigmund, 1998). Interestingly, Appendix B shows that there is no evolutionarily stable prefer-
ence/strategy where both pollinator species behave as generalists (i.e., preference (u1, v1) where184

0 < u1 < 1 and 0 < v1 < 1). In other words, the interaction topology in Figure 2b,c,d does
not exist when pollinators preferences are adaptive. In fact either both species are specialists, or186

one species is a generalist and the other specializes on the plant that makes it grow faster. Table
1 lists all possible ESSs as a function of plant and pollinator population densities. Transitions188

between ESSs in plant phase space occur along four lines P2 = QiP1 (i = a, b, c, d), called isolegs
(Rosenzweig, 1981; Pimm and Rosenzweig, 1981; Křivan and Sirot, 2002), where190

Qa(A1, A2) =
a1b11e11(w2 + b21A1 + b22A2)

a2b21e21w1

, (9a)

Qb(A1, A2) =
a1b11e11(w2 + b22A2)

a2b21e21(w1 + b11A1)
, (9b)

Qc(A1, A2) =
a1b12e12(w2 + b22A2)

a2b22e22(w1 + b11A1)
, (9c)

Qd(A1, A2) =
a1b12e12w2

a2b22e22(w1 + b11A1 + b12A2)
. (9d)

At fixed pollinator densities isolegs delineate five regions (denoted as I-V in Table 1) in the
first quadrant of the P1P2 plane where pollinators behave as specialists or generalists. Appendix192
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Region Conditions ESS (u1, v1) Description
I Qa(A1, A2)P1 < P2 (0, 0) A1 & A2 specialize on P2
II Qb(A1, A2)P1 < P2 < Qa(A1, A2)P1 (u∗1, 0) A1 generalist, A2 specializes on P2
III Qc(A1, A2)P1 < P2 < Qb(A1, A2)P1 (1, 0) A1 specializes on P1, A2 specializes on P2
IV Qd(A1, A2)P1 < P2 < Qc(A1, A2)P1 (1, v∗1) A1 specializes on P1, A2 generalist
V P2 < Qd(A1, A2)P1 (1, 1) A1 & A2 specialize on P1

Table 1: Dependence of evolutionarily stable pollinator preferences on plant (P1, P2) and pollinator densities
(A1, A2). Thresholds Qi (i = a, b, c, d) are given by (9) and u∗

1 and v∗1 by (10).

B shows that when pollinator A1 is a generalist and A2 specializes on P2 (region II in Table 1),
the ESS of A1 is194

u∗1 =
e11b11a1P1(w2 + b21A1 + b22A2)− e21b21a2P2w1

b11b21(e11a1P1 + e21a2P2)A1

, (10a)

and when A2 is a generalist and A1 specializes on P1 (region IV in Table 1), the ESS of A2 is

v∗1 =
e12b12a1P1(w2 + b22A2)− e22b22a2P2(w1 + b11A1)

b12b22(e12a1P1 + e22a2P2)A2

. (10b)

In the next section we use isolegs and isoclines to study plant–plant competition.196

3.2. Plants compete for pollinator preferences

Here we use isocline analysis to study the dynamics of the plant sub-system at fixed pollinator198

densities A1 and A2, when pollinators are adaptive. Unlike in the case with fixed preferences,
pollinator isolegs partition the P1P2 plane into five regions listed in Table 1. Isolegs P2 = QiP1200

(i = a, b, c, d; see (9)) are rays passing through the origin (dashed lines in Figures 3 and 5).
Inequality (8) implies that the slopes of isolegs satisfy Qd < Qc < Qb < Qa and, consequently,202

regions I, II, III, IV and V are ordered in a clockwise sequence (Figure 3). As a result of this
partition of the positive quadrant, plant isoclines are defined piece-wise, and they are considerably204

more complex when compared to the situation where pollinators have fixed preferences (cf. Figure
3 vs. Figure 1). Plant isoclines in regions I, III, and V are easy to describe analytically (Appendix206

C). However, in regions II and IV, plant isoclines are highly non-linear and although they can be
calculated using some computer algebra software (e.g., Mathematica), the resulting expressions208

are too complex and they are not useful for further mathematical analysis.
In what follows we will assume that each plant monoculture is viable, i.e., for P1210

a1(r11b11A1 + r12b12A2)

w1 + b11A1 + b12A2

> m1, (11a)

and for P2

a2(r21b21A1 + r22b22A2)

w2 + b21A1 + b22A2

> m2. (11b)

This means that each plant equilibrates with pollinator densities when alone (section 2.1).212

Then plant isoclines have the following general properties:
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1. Isoclines consist of four connected segments, as shown by e.g., Figure 3a. The isocline of214

plant P1 (P2) intersects the P1 (P2) axis at the origin and at its pollinator-dependent carrying
capacity in region V (I). These boundary equilibria216

(P1, P2) =

(
K1

(
1− m1(w1 + b11A1 + b12A2)

a1(r11b11A1 + r12b12A2)

)
, 0

)
(12a)

and

(P1, P2) =

(
0, K2

(
1− m2(w2 + b21A1 + b22A2)

a2(r12b21A1 + r22b22A2)

))
, (12b)

are shown as filled circles on the axes of Figures 3 and 5. Appendix C shows that provided218

these boundary equilibria exist (i.e., they are positive), they are locally asymptotically stable.

2. The isoclines are linear in regions I, III and V, in which both pollinators are specialists.220

Within these regions, u1 and v1 remain fixed at 0 or 1. If c2 = 0 (c1 = 0) the isocline of plant
P1 (P2) is vertical (horizontal), as shown in Figure 3 (cf., Figure 1a). If c2 > 0 (c1 > 0) the222

isocline of plant P1 (P2) is negatively sloped within these regions, as shown in Figure 5 (cf.,
Figure 1b,c,d).224

3. The isoclines are non-linear in regions II and IV, in which one pollinator is generalist and
the other specialist. The segment of the plant P1 (P2) isocline which is in region II (IV)226

passes through the origin.

4. The isocline of plant P1 (P2) does not cross region I (V). This is because in region I (V),228

plant P2 (P1) has two pollinators, but P1 (P2) has none and goes extinct in this region.

5. The population density of plant P1 (P2) increases in the region below (to the left) its isocline,230

and decreases in the region above (to the right).

While there can be at most one interior plant equilibrium when pollinator preferences for plants232

are fixed (section 2.1), there can be multiple interior equilibria when preferences are adaptive,
because isoclines intersect in multiple points.234

In the rest of this section we consider two particular scenarios that illustrate the complexities
of plant population dynamics under adaptive pollinator preferences:236

• Scenario I: Plant population dynamics along the gradient in pollinator A1 density. In this
scenario the density of pollinator A2 is kept fixed and both pollinators are equally good for238

each plant (r11 = r12, r21 = r22). Plants do not compete for factors external to pollination
(c1 = c2 = 0).240

• Scenario II: Plant population dynamics along the gradient in plant inter-specific competition
for external factors. In this scenario we assume that plant inter-specific competition is242

symmetric and we set c = c1 = c2. We also assume that A1 (A2) is the best pollinator of
plant P1 (P2) (r11 > r12, r22 > r21).244

Both scenarios are parameterized so that plant boundary equilibria (12a) and (12b) exist, i.e.,
pollinator densities are high enough so that each plant can achieve a positive growth rate when246

alone.
The main purpose of scenario I is to explore how relative changes in pollinator densities influence248

plant community composition. An important motivation is the growing interest in the consequences
of alien pollinator invasions (Traveset and Richardson, 2006), and the management of pollinator250

populations (Geslin et al., 2017). To focus solely on plant competition for pollination services,
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we remove the effect of competition for other factors (by setting competition coefficients equal to252

zero).
In Scenario II we explore how competition for external factors (e.g., space, nutrients) influences254

competition between plants for pollinator preferences. Because of condition (8), this scenario also
assumes that P1 (P2) and A1 (A2) are better for one another. Such matching can be due to256

matching in plant and pollinator morphologies (Fontaine et al., 2005).

3.2.1. Scenario I. Effects of changes in pollinator composition: Alternative plant stable states258

Figure 3 illustrates plant population dynamics for scenario I. Panel (a) shows the situation
where pollinator A1 density is the same as pollinator A2 density. Plant isoclines intersect in region260

IV, and the vector field indicates that the corresponding equilibrium is unstable. Thus, there
is bi-stability: depending on initial conditions either plant P1 or P2 is excluded, and the plant262

community becomes a monoculture. As density of pollinator A1 increases (panel b), the single plant
equilibria (12a) and (12b) increase too. As a result, there are three isocline intersections in regions264

II, III and IV. The equilibrium in region III is stable (because (4) holds, see Appendix C) and the
equilibria in regions II and IV are unstable. Again, plant coexistence depends on initial conditions:266

if one plant is initially too rare plant population dynamics will converge to a monoculture of the
other plant, but if the two plants are initially abundant enough, stable coexistence follows. At268

the coexistence equilibrium pollinators specialize on different plants (see Table 1). In panel (c)
pollinator A1 is more abundant than pollinator A2, and two additional equilibria occur in region270

II, one stable and the other unstable. Thus, there are two stable coexistence equilibria now (one
in region II and the other in region III). At the stable equilibrium that is in region II, pollinator272

A1 is a generalist and A2 is a plant P2 specialist. As in panel (b), at the equilibrium that lies
in region III, pollinators specialize on different plants. Finally, in panel (d), further increase in274

pollinator A1 leads to a single coexistence equilibrium in region II where A1 is a generalist and
A2 plant P2 specialist.276

Overall, the main effect of increasing pollinator A1 density with respect to A2, is the reduction
of region III where both pollinators specialize on different plants, in favor of region II where A1 is278

a generalist and A2 a specialist. Here we see (Figure 4) that along the gradient in A1 density, the
topology of the interaction web changes. When population density of A1 is low, both pollinators280

specialize on different plants. As population density of A1 increases, A1 becomes a generalist. We
also observe that plant P2 experiences hysteresis : the stable equilibrium in region III jumps to282

the stable equilibrium in region II at A1 ≈ 11.7 as pollinator density A1 increases, but the stable
equilibrium moving along branch II jumps back to the stable equilibrium moving along branch III284

at A1 ≈ 8.7 when pollinator density A1 decreases. Another important consequence of pollinator
A1 increase is that region I (V), in which P1 (P2) always decreases, become smaller. This makes286

easier for plants to invade one another and achieve coexistence.
In summary, scenario I shows that: (i) adaptive foraging preferences can lead to alternative288

plant coexistence stable states and (ii) continuous changes in pollinator composition (i.e., A1 : A2

ratio) produce discontinuous changes in plant–pollinator interaction structure.290

3.2.2. Scenario II. Effects of plant competition for external factors: Trait-mediated apparent facil-
itation292

Plant dynamics for scenario II are illustrated in Figure 5. The isolegs (dashed lines, (9))
and boundary equilibria (12a) and (12b) do not change across panels (a–d), because they are294

independent of the competition coefficient c = c1 = c2. Within regions I, III and V the isoclines
are linear while in regions II and IV they are non-linear.296
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Figure 3: Isoclines of plants P1 (black) and P2 (gray), isolegs (dashed lines), and vector field of plant population
dynamics (arrows), under adaptive pollinator preferences and increasing pollinator A1 density (A1, scenario I).
Filled (open) circles represent stable (unstable) equilibria. Regions of pollinator preference are defined in Table
1, and corresponding interaction topologies are indicated at the bottom. Parameters: rij = 0.1, m1 = 0.01,
m2 = 0.0075, ci = 0, ai = 0.4, wi = 0.25, bij = 0.1, e11 = e22 = 0.2, e21 = e12 = 0.1, Ki = 50, A2 = 1. Note: parts
of the isoclines are not shown in (c,d), but these parts do not intersect at any equilibrium.
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When plant inter-specific competition is low (Figure 5a), plant population dynamics are qualita-
tively similar to panels (b,d) in Figure 3 of scenario I, i.e., plants can coexist at a stable equilibrium.298

However, there is an important qualitative difference here: At the coexistence equilibrium both
plants attain higher density when compared with their monoculture densities (boundary equi-300

libria). In other words, when inter-specific plant competition is weak, we observe mutual plant
facilitation. Let us consider the plant P1 boundary equilibrium in region V. In this region P1302

is pollinated by both pollinators. However, when A2 is a poor pollinator for P1 (i.e., r11 > r12
as assumed in Figure 5), P1 can achieve a higher birth rate when it is pollinated by A1 only.304

So, if there is an invasion of plant P2 from outside which moves the plant densities in region III,
pollinator A1 specializes on plant P1 and plant P2 is pollinated by its best pollinator A2 only.306

Consequently, the P1 population equilibrium increases above its monoculture level. Appendix C
shows that the necessary condition for this facilitation of plant P1 by the presence of P2 to happen308

is that r11/r12 > 1 + w1/(b11A1), which means that pollinator A1 density must be high enough.
In addition, such a facilitation can happen only when inter-specific competition between plants310

is not too high. We remark that this facilitation is not the usual one (Revilla and Křivan, 2016)
where an increase in one plant density increases the pollinator density which, in turn, increases the312

other plant density. This mechanism cannot operate in the current model that assumes pollinator
population densities are fixed. The facilitation that we observe here is due to changes in pollinator314

preferences, where by increasing plant P2 density, pollinator A2 switches from pollinating plant
P1 to pollinating P2, which leads to an increase of P1 population density. To distinguish this316

mechanism from density mediated facilitation caused by increase in pollinator density, we call this
mechanism indirect trait-mediated facilitation (sensu Bolker et al., 2003).318

As inter-specific competition increases, plant equilibrium population densities in region III will
be decreasing below those they achieve in a monoculture (boundary equilibria). When plant inter-320

specific competition is strong so that c > 1, the equilibrium in region III becomes unstable (i.e.,
(4) does not hold, see also Appendix C), but plants can still coexist at alternative stable states.322

In Figure 5b, the local dynamics around the unstable equilibrium in region III is like in Figure 1c,
where perturbations cause either plant P1 to displace P2 or vice versa. Like in scenario I, we have324

two alternative stable states at which both plants coexist. The most abundant plant in each state
is the one pollinated by both pollinators. Further increase of the competition coefficient eliminates326

all equilibria in region IV, but the stable equilibrium in region II remains, with pollinator A1 a
generalist and A2 specialized on P2 (Figure 5c). Finally, if competition is too strong there are no328

equilibria in regions II and IV and we have mutual exclusion (Figure 5d) where, depending on the
initial conditions, one plant outcompetes the other plant (cf. Figure 1c).330

Figure 6 shows the corresponding bifurcation plot for scenario II. As competition for extrinsic
factors (i.e., not for pollination) gets stronger, both plant equilibrium densities tend to decrease,332

even in the region of alternative stable states (1 > c > 1.3) where P1 can be either abundant (stable
IV branch) or rare (stable II branch). There is only a small region where plant P1 increases334

with competition (0.9 > c > 1), i.e., where the combined effects of exploitative competition
and competition for pollination (i.e., trait-mediated plant facilitation) is more favorable for P1336

than for P2 (which decreases, not shown). Notice that in comparison to Figure 4 which shows
transitions between two stable interaction topologies, Figure 6 shows transitions between three338

stable interaction topologies.
In summary, scenario II shows that: (i) adaptive foraging preferences can result in indirect340

trait-mediated plant–plant facilitation, by matching plants with their best pollinators; (ii) contin-
uous changes in competition for factors external to pollination can produce discontinuous changes342

in interaction structure and coexistence for plants competing for pollination services; and (iii)
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Figure 5: Isoclines of plants P1 (black) and P2 (gray), isolegs (dashed lines), and vector field of plant population
dynamics (arrows), under adaptive pollinator preferences and with increasing plant competition (ci, scenario II).
Filled (open) circles represent stable (unstable) equilibria. Regions of pollinator preference are defined in Table 1,
and corresponding interaction topologies are indicated at the bottom. Parameters: r11 = r22 = 0.5, r12 = r21 = 0.1,
mi = 0.02, ai = 0.1, wi = 0.1, bij = 0.1, e11 = e22 = 0.2, e21 = e12 = 0.1, Ki = 50, A1 = 11, A2 = 10. Note: parts
of the isoclines are not shown in (a), but these parts do not intersect at any equilibrium.
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Region Conditions ESS (u1, v1) Description
I A2 < SaA1 + Ia (0, 0) A1 & A2 specialize on P2
II SaA1 + Ia < A2 < SbA1 + Ib (u∗1, 0) A1 generalist, A2 specializes on P2
III SbA1 + Ib < A2 < ScA1 + Ic (1, 0) A1 specializes on P1, A2 specializes on P2
IV max{ScA1 + Ic , SdA1 + Id} < A2 (1, v∗1) A1 specializes on P1, A2 generalist
V A2 < SdA1 + Id (1, 1) A1 & A2 specialize on P1

Table 2: ESS as a function of pollinator densities. Isoleg slopes Si(P1, P2) and intercepts with the A2 axis Ii(P1, P2)
(i = a, b, c, d) are given by (13), and u∗

1 and v∗1 by (10).

plants can coexist even when inter-specific competition is stronger than intra-specific competi-344

tion for factors other than pollination. In the next section we use isolegs and isoclines to study
pollinator–pollinator competition.346

3.3. Pollinators compete for plant resources

In this section we analyze population dynamics of adaptive pollinators at fixed plant densities.348

Unlike in the case of fixed preferences (Figure 2), now we must partition the first quadrant of
the pollinator plane A1A2 into different regions using isolegs (Figure 7), according to Table 2 (see350

Appendix D). The isolegs are linear in A1 and they are given by A2 = Si(P1, P2)A1 + Ii(P1, P2)
(where i = a, b, c, d) where slopes and intercepts are352

Sa(P1, P2) = − b21
b22
, Ia(P1, P2) = a2b21e21P2w1−a1b11e11P1w2

a1b11b22e11P1
,

Sb(P1, P2) = a2e21b21P2

a1e11b22P1
, Ib(P1, P2) = a2b21e21P2w1−a1b11e11P1w2

a1b11b22e11P1
,

Sc(P1, P2) = a2e22b11P2

a1e12b12P1
, Ic(P1, P2) = a2b22e22P2w1−a1b12e12P1w2

a1b12b22e12P1
,

Sd(P1, P2) = − b11
b12
, Id(P1, P2) = a1b12e12P1w2−a2b22e22P2w1

a2b22b12e22P2
.

(13)

Compared to isolegs in the plant plane (Figures 3 and 5), in the pollinator plane isolegs neither
pass through the origin, nor all have positive slopes. Thus, for given parameter values and plant354

population densities not all regions from Table 2 exist in the positive quadrant. In general:

1. Regions II, III and IV always occur (see Figure 7). They are separated by the isoleg-b356

(A2 = SbA1+Ib) and the isoleg-c (A2 = ScA1+Ic) with positive slopes Sb and Sc, respectively.
These isolegs do not intersect in the first quadrant of the A1A2 plane (Appendix D).358

2. Because of (8) the isoleg-c separating IV and III is steeper than the isoleg-b separating III
and II (Sc > Sb). Thus, regions II, III and IV are ordered in a counter-clockwise sequence in360

the positive A1A2 plane.

3. Regions I and V are separated from regions II and IV, respectively, by isoleg-a and isoleg-d362

with negative slopes Sa and Sd. Appendix D shows that at most one of these two regions
can exist for given parameters and plant population densities. E.g., in Figure 7a neither of364

the two regions exist, while in 7b region I exists.

The partition of the pollinator plane results in pollinator isoclines that are more complex than366

in the case of fixed preferences, but considerably simpler than plant isoclines in section 3.2. The
isoclines consist of three (e.g., Figure 7a) or two connected segments (e.g., the pollinator A2 isocline368

in Figure 7b). Regions I and V contain no isocline segments. The segments within regions II and IV
are linearly decreasing, and both isoclines are parallel in these two regions (see Appendix D). Thus,370
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Figure 7: Isoclines of pollinators A1 (black) and A2 (gray), isolegs (dashed lines), and dynamics (vector field), under
adaptive pollinator preferences. Filled (open) circles represent stable (unstable) equilibria. Regions of pollinator
preference are defined in Table 2, and corresponding interaction topologies are indicated at the bottom. Parameters:
ai = 0.4, bij = 0.1, d1 = 0.1, d2 = 0.12, P1 = P2 = 20 in all panels; (a) e11 = e22 = 0.2, e12 = e21 = 0.1, wi = 0.1;
(b) e11 = e21 = e12 = 0.2, e12 = 0.1, w1 = 0.7, w2 = 0.2.
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generically, pollinators cannot coexist within regions II or IV. This is unlike the case with fixed
preferences, where the specialist has a linear isocline and the generalist a curved isocline (Figure372

2e,f). Finally, the segments of isoclines in region III are vertical for A1 and horizontal for A2,
because pollinators specialize on different plants (like in Figure 2a). Thus, pollinator coexistence374

can only occur in region III when the vertical segment of A1 and the horizontal segment of A2
intersect, as shown in Figure 7a. Given (8), Appendix D demonstrates that pollinator coexistence376

by mutual invasion requires

b21e21
b22e22

<
d1
d2

<
b11e11
b12e12

, (14)

leading to a stable equilibrium in region III. If d1/d2 is too low to meet above inequalities, pollinator378

A2 goes extinct as shown in Figure 7b, and if d1/d2 is too large A1 goes extinct instead. The
coexistence scenario in Figure 7a is called the ghost of competition past (Connell, 1980), because380

competition between pollinators causes selection for different plants which ends competition in the
long term. What happens here is that the preference trade-off ( u1+u2 = 1 and v1+v2 = 1) causes382

disadvantage for the generalist when combining its best and worst resources. This is not the case
for the specialist that fully commits to its best resource. Thus, in region II (IV), selection drives384

A1 (A2) individuals to increase preference towards its preferred plant P1 (P2). As a consequence,
pollinators specialize on different plants.386

In summary, the results show that population dynamics of two adaptable pollinators competing
for two plants do not allow stable coexistence between two generalists, one generalist and one388

specialist, and two specialists on the same plant. In other words, coexistence demands absolute
niche segregation where each pollinator has its own plant.390

4. Discussion

In this article we study how pollinator adaptation affects coexistence in a community module392

consisting of two plants and two pollinators. We assume that pollinators preferences for plants are
adaptive and they correspond to evolutionarily stable strategies (ESS) at given plant and pollina-394

tor densities. Such strategies cannot be invaded by any other mutants with different strategies.
We prove that the strategy where both pollinators are generalists is never evolutionarily stable.396

Then we study plant–plant and pollinator–pollinator population dynamics. We observe that at
fixed pollinator densities, adaptive pollinator preferences for plants lead to complex plant dynamics398

characterized by alternative stable states. Such alternative states do not exist when interaction
strengths between pollinators and plants are fixed. We also observe a trait-mediated facilitation400

(sensu Bolker et al., 2003) between plants due to changes in pollinator preferences where introduc-
tion of an alternative plant can increase population density of the original plant, without increasing402

pollinator density. When plant densities are fixed, our analysis of pollinator–only dynamics shows
that a stable coexistence of a generalist and a specialist pollinator is not possible when both pol-404

linators are adaptive foragers. Thus, at the pollinator coexistence equilibrium, each plant must
have its own pollinator.406

Our analyses combine an evolutionary approach with population dynamics. The evolutionary
approach is based on isolegs (Rosenzweig, 1981; Pimm and Rosenzweig, 1981; Křivan and Sirot,408

2002) analysis. Isolegs split the plant (or pollinator) phase space into several regions that are
characterized by pollinator specialization or generalism. The population dynamic approach is410

based on isocline analysis. When compared to standard models of population dynamics, the case
where pollinators are adaptive foragers leads to isoclines that are defined piece-wise depending412
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on the pollinator optimal strategy. For example, when interaction strengths between pollinators
and plants are fixed (i.e., pollinators are inflexible foragers), plant–plant dynamics follow the414

Lotka–Volterra competition model with isoclines being straight lines (Figure 1, top row). However,
when pollinators are adaptive foragers, plant isoclines are highly non-linear (e.g., Figure 3). It is416

this emerging non-linearity that shows striking consequences of adaptive pollinator behavior in the
interaction web studied in this article.418

In order to get insights on plant and pollinator coexistence, we assume that one mutualistic
guild, the plants or the pollinators, stays at constant densities, while the other undergoes popula-420

tion dynamics. This is a limitation, but such conditions are not uncommon in nature. E.g., plants
can be long lived trees or shrubs, while pollinators can be comparatively short lived, e.g., insects.422

The assumption of pollinator densities being constant while plants undergo population dynamics
can represent situations where plants are short lived (e.g., grasses or forbs), while pollinator den-424

sities are mainly controlled by factors other than mutualism (e.g., pollinators may be limited by
availability of artificial beehives or tree holes). Another possibility is that plant dynamics take426

place in a small locality or a patch, and this patch has a certain pollinator carrying capacity which
is rapidly filled by visiting pollinators (Feldman et al., 2004) coming from a much larger region.428

This can be the case of massively introduced managed pollinators, spilling over from mass flowering
crops into wild plant communities (Geslin et al., 2017).430

4.1. Adaptive pollinator preferences

When two pollinators compete for resources provided by two plants, we predict five qualita-432

tively different pollinator preferences that are evolutionarily stable (Table 1). These strategies
are characterized either as full specialization of a pollinator on a single plant or generalism. We434

proved that the situation where both pollinators are generalists is never evolutionarily stable and
it should not be observed in nature. The distribution of pollinator preferences is similar to the436

ideal free distribution (IFD) of two consumers using two resource patches (Křivan, 2003).
Pollinator preferences were derived under conditions of low species diversity (only four species),438

and constant population densities. Interestingly, such conditions are approximated in the experi-
ments of Fontaine et al. (2005). These authors used two plant groups: plants with open (P1), and440

tubular (P2) flowers; and two pollinator groups: syrphid flies (A1), and bumblebees (A2). Each
group consisted of three species. This diversity ensures that each pollinator group can use each442

plant group. However, syrphid flies are morphologically better adapted to open flowers, whereas
bumblebees are better adapted to tubular flowers. Plants and pollinators interacted at fixed444

densities within cages. One experiment found that when alone, each pollinator group displayed
generalism. However, when together, syrphids tended to visit open flowers almost exclusively,446

whereas bumblebees tended to maintain their generalism. This observation corresponds with our
partially mixed ESS with one specialist and one generalist pollinator. Further experimentation,448

with controlled variation of P1:P2 and A1:A2 abundance ratios, will be necessary to test our
predictions (Table 1).450

4.2. How adaptive preferences change plant coexistence

Analysis of plant dynamics when pollinator densities are fixed indicates that pollinator pref-452

erences can modify the plant community to a large extent. Under fixed pollinator preferences,
plant population dynamics are described by the Lotka–Volterra competition model. Thus, plants454

either coexist at an equilibrium, or one plant is outcompeted by the other plant (Figure 1). In
the bi-stable case when initial conditions determine the outcome of competition (Figure 1c), the456
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preferred plant that survives has a larger domain of attraction so it is expected to win more fre-
quently. When pollinator preferences are adaptive, initial conditions have major effects on plant458

coexistence for three main reasons. First, since pollination is obligatory for both plants, coexis-
tence requires that no plant is initially too rare, because otherwise positive feedbacks make the460

rare plant less preferred and the common plant more preferred (the rich get richer and the poor get
poorer situation), causing the rare plant extinction. The same feedbacks prevent invasion of rare462

plants, unless invaders start above minimum density thresholds. Second, pollinator adaptation
enables alternative stable states in plant coexistence. Third, plants can coexist even when their464

inter-specific competition is so strong that one plant would be outcompeted when pollinators were
inflexible foragers.466

Many mutualistic models predict critical transitions in community composition as a result of an
environmental stress (e.g., warming, habitat fragmentation, changes in phenology). These critical468

transitions can lead to states of very low diversity, or community collapse when mutualism is oblig-
atory. In large communities, critical transitions are preceded by a gradual accumulation of species470

extinctions that cause interaction loss (e.g., simulated by random species removal, Jelle Lever
et al., 2014). On a much smaller scale (only four species) our scenario I, where the density of472

pollinator A1 increases while the density of the second pollinator A2 is kept fixed, demonstrates
critical transitions (i.e., discontinuous changes both in numbers and the interaction topology) due474

to interaction loss. In this scenario, transitions between single and alternative stable states in the
plant community are due to switches in one pollinator (A1) strategy. When the pollinator is rare476

it specializes on the best plant (Fig. 3b). As its population increases the pollinator switches to
a generalist (Fig. 3c), in response to increased competition. We do not have empirical evidence478

for transitions like in scenario I, but we can hypothesize one of practical importance. Consider
a managed pollinator (e.g., A1 = honeybees) coexisting with wild pollinators (e.g., A2 = bum-480

blebees). We assume that managed pollinators start with high densities e.g., thanks to artificial
beehives. Because of competition for plants this large population will generalize (Fontaine et al.,482

2008), pollinating many plants and maintaining high plant diversity (in Figure 4 this corresponds
to pollinator A1 above A1 ≈ 8.7 and plant P2 density given by the solid curve labeled by II). A484

parasite infestation will cause the managed pollinator population to collapse to much lower densi-
ties (Guzmán-Novoa et al., 2010) (below A1 ≈ 8.7 in Figure 4). Competition between pollinators486

for plants will be lower and they will specialize (pollinator A1 specializes on P1 in Figure 4).
This will lead to a critical transition in the plant community where P2 density drops to P2 ≈ 17488

(solid line labeled by III). In order to revert back to the condition where P2 had a higher density
(P2 ≈ 27 and larger, solid line labeled by II), pollinator A1 must become generalist again, but due490

to hysteresis the density of this managed pollinator must be raised to levels higher than before the
collapse (i.e., A1 must reach population density above A1 ≈ 11.7 in Figure 4), e.g., by providing492

additional beehives. This hypothetical scenario could be tested using semi-closed experimental
plant communities, by controlling the access of massively introduced managed pollinators living494

nearby (Geslin et al., 2017).
Competition for pollinator preferences can result in plant coexistence at densities that are496

smaller (scenario I, Figure 3, specially for P2) or larger (scenario II, Figure 5a) than the den-
sities when each plant is alone. The first prediction was widely confirmed empirically (Chittka498

and Schürkens, 2001; Aizen et al., 2014). Regarding the second prediction, the experiments of
Fontaine et al. (2005) discussed before indicate that plant facilitation is a potentially realistic500

outcome. In that experiment, plants with open flowers (P1) were better adapted to syrphid flies
(A1) and vice-versa, whereas plants with tubular flowers (P2) were better adapted to bumblebees502

(A2). Bumblebees are generalists and they are slightly better at using tubular flowers. When the
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four groups were placed together, competition forced syrphids to concentrate on open flowers and504

bumblebees to prefer tubular flowers. At the end of experiment each plant group was taken care
of by its best pollinator group, and ended up producing more seeds. This experiment and our506

predictions demonstrate that given enough functional diversity, i.e., differences in plant and polli-
nator functional traits, adaptive pollination can improve not only pollinator coexistence but also508

plant coexistence to the point where plants can end up facilitating one another indirectly. We note
that this facilitation between plants can be due to changes in pollinator densities (indirect density-510

mediated facilitation), or due to changes in trait (indirect trait-mediated facilitation, Bolker et al.,
2003) which is caused by changes in pollinator preferences for plants. The interplay between such512

indirect effects with direct competition between plants for other factors (e.g., space or nutrients,
described by competition coefficients), can give rise to alternative stable coexistence states (Figure514

5b) (Hernandez, 1998; Gerla and Mooij, 2014; Zhang et al., 2015; Holland and DeAngelis, 2009;
Holland et al., 2002).516

4.3. How adaptive preferences change pollinator coexistence

The analysis of pollinator population dynamics described by equations (1c,1d) predicts that518

adaptation of pollinator preferences results in competitive outcomes that are similar to those with
fixed preferences: both pollinators can coexist, one always excludes the other, or initial conditions520

determine which pollinator survives and which goes extinct. In particular, there are no alternative
stable states such as we see in the plant sub-system. There are, however, important qualitative522

differences in the community interaction topology. We already know that the case where both
pollinators are generalists is not evolutionarily stable and it cannot occur. However, pollinator524

population dynamics also exclude pollinator stable coexistence in the case where one pollinator
is a specialist and the other a generalist. Thus, when pollinators adapt their foraging preferences526

with changing population numbers, only pollinators that specialize on different plants can coexist
(Figure 7a). As a result, both pollinators stop to compete (the ghost of competition past, Connell,528

1980).
We get similar conclusions from numerical simulations of the full four species system (1) with530

adaptive pollinator preferences (Table 1 or 2): pollinators either specialize on different plants, or
specialist pollinators are excluded by generalists (Appendix E shows representative simulations).532

These results suggest that plant coexistence at alternative states is unlikely when both plant and
pollinator dynamics operate on similar time scales.534

These conclusions have important implications for systems containing many pollinator species.
Most real plant–pollinator interaction networks are nested (Bascompte and Jordano, 2007). This536

means that a minority of generalist pollinators can interact with many plants, but a majority of
more specialized pollinators interact with a few plants only, typically subsets of the plants used538

by the generalists. This causes a disadvantage for specialized pollinators that have to compete
for resources with generalist competitors. Numerical simulations show that adaptive foraging540

tends to reduce the effect of nestedness on pollinator diet overlap (Valdovinos et al., 2016). As
a consequence, specialist pollinators experience less competition, pollination for plants with less542

pollinators becomes more efficient, and more plants and pollinators can coexist in the long term.
We observe the same mechanism in our two-pollinator–two-plant interaction module. For example,544

consider a generalist pollinator A1 and a specialist A2 (i.e., 0 < u1 < 1, v1 = 0) as a caricature
of a nested network. Such interaction topology can be dynamically stable when preferences of546

generalist pollinators are fixed (Figure 2e), but not when preferences adapt in which case either (i)
both pollinators specialize on different plants (Figure 7a) or (ii) the specialist goes extinct (Figure548

7b). In the first case nestedness is eliminated as the pollinator A1 becomes a specialist.
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4.4. Conclusions550

As the take-home-message, our analysis of a two-plant–two-pollinator interaction web demon-
strates that adaptation of pollinator preferences for plants causes important changes in the struc-552

ture and dynamics of plant and pollinator communities. First, when pollinator preferences are
fixed, interactions between plants follow the Lotka–Volterra competitive dynamics when pollina-554

tor densities are held constant. When plant densities are fixed, coexistence of generalist pollinators
is possible. Second, when pollinator preferences adapt in order to maximize fitness, plant competi-556

tive dynamics become more complex and plant coexistence at alternative stable states and indirect
plant–plant facilitation is possible, if pollinator densities are held constant. At fixed plant densities558

competition between adaptive pollinators requires pollinators specialize on different plants.
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Křivan, V., 2003. Ideal free distributions when resources undergo population dynamics. Theoretical
Population Biology 64, 25–38.614
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Appendix A. Coexistence conditions for pollinators with fixed preferences

We set αij = aiPieij and βi1 = uibi1, βi2 = vibi2 and re-write the pollinator sub-system (1c, 1d)648

as

dA1

dt
=

{
α11β11

w1 + β11A1 + β12A2

+
α21β21

w2 + β21A1 + β22A2

− d1
}
A1

dA2

dt
=

{
α12β12

w1 + β11A1 + β12A2

+
α22β22

w2 + β21A1 + β22A2

− d2
}
A2. (A.1)

Model (A.1) has the trivial equilibrium (A1, A2) = (0, 0). When A2 = 0, the per-capita pop-650

ulation growth rate dA1/(A1dt) of pollinator A1 decreases monotonically with A1. Provided the
per capita birth rate of pollinator 1 when A1 = A2 = 0 is larger than is its per capita population652

death rate, i.e.,
α11β11w2 + α21β21w1 > d1w1w2 (A.2)

there is exactly one A1-only equilibrium654

(A1, 0) =

(
−b+

√
b2 − 4ac

2a
, 0

)
,

where a = d1β11β21, b = d1(w2β11+w1β21)−(α11+α21)β11β21 and c = d1w1w2−w2α11β11−w1α21β21.
If the opposite inequality in (A.2) holds, the per-capita population growth rate of pollinator 1656

is always negative and the pollinator goes extinct. By symmetry, if

α12β12w2 + α22β22w1 > d2w1w2 (A.3)

there is a unique A2-only equilibrium.658

Provided β11β22 − β12β21 6= 0, d2α11β11 − d1α12β12 6= 0, and d2α21β21 − d1α22β22 6= 0, model
(A.1) has at most one coexistence equilibrium660

Â1 =
w2β12 − w1β22 + (α11α22β11β22−α12α21β12β21)[d1(α12+α22)β12β22−d2(α21β12β21+α11β11β22)]

(d2α11β11−d1α12β12)(d2α21β21−d1α22β22)

β11β22 − β12β21

Â2 =
w1β21 − w2β11 + (α11α22β11β22−α12α21β12β21)[d2(α11+α21)β11β21−d1(α12β12β21+α22β11β22)]

(d2α11β11−d1α12β12)(d2α21β21−d1α22β22)

β11β22 − β12β21
(A.4)

if Â1 > 0 and Â2 > 0.
Now we study the local asymptotic stability of the equilibria. The jacobian of (A.1) is662

J =

 G1 − A1

(
α11β2

11

W 2
1

+
α21β2

21

W 2
2

)
−A1

(
α11β11β12

W 2
1

+ α21β21β22
W 2

2

)
−A2

(
α12β11β12

W 2
1

+ α22β21β22
W 2

2

)
G2 − A2

(
α12β2

12

W 2
1

+
α22β2

22

W 2
2

)  (A.5)

where

G1(A1, A2) =
α11β11

w1 + β11A1 + β12A2

+
α21β21

w2 + β21A1 + β22A2

− d1 (A.6)

G2(A1, A2) =
α12β12

w1 + β11A1 + β12A2

+
α22β22

w2 + β21A1 + β22A2

− d2 (A.7)
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and664

W1(A1, A2) = w1 + β11A1 + β12A2 (A.8)

W2(A1, A2) = w2 + β21A1 + β22A2. (A.9)

At the trivial equilibrium the jacobian is diagonal and its eigenvalues are λ1 = G1(0, 0) and
λ2 = G2(0, 0). Thus, the trivial equilibrium is unstable if any of (A.2) or (A.3) hold. At the666

A1-only equilibrium G1(A1, 0) = 0 and the eigenvalues are668

λ1 = −A1

(
α11β

2
11

W 2
1

+
α21β

2
21

W 2
2

)
, λ2 = G2(A1, 0).

Thus, stability depends on the sign of G2(A1, 0). If G2(A1, 0) < 0 pollinator 1 is stable against
invasion by pollinator 2, if G2(A1, 0) > 0 pollinator 1 can be invaded by pollinator 2. G2(A1, 0) can670

be evaluated explicitly, but the resulting expression is quite complex and we do not give it here.
By symmetry, the A2-only equilibrium is stable against invasion by pollinator 1 if G1(0, A2) < 0672

and unstable if G1(0, A2) > 0.
Provided that the coexistence equilibrium exists (i.e., Â1 > 0, Â2 > 0 in A.4), thenG1(Â1, Â2) =674

G2(Â1, Â2) = 0 by definition. Thus the trace of the jacobian is negative, which means that stability
depends on the sign of the jacobian determinant, which is676

∆ =
Â1Â2

(W1W2)2
(β11β22 − β12β21)(α11α22β11β22 − α12α21β12β21). (A.10)

If ∆ > 0 the equilibrium is locally stable, if ∆ < 0 it is unstable. If we replace back the definitions
of α’s and β’s in (A.10) the stability condition reads678

(u1b11v2b22 − v1b12u2b21)(e11e22u1b11v2b22 − e12e21v1b12u2b21) > 0.

The above results can be used to study coexistence of specialized pollinators. First, we consider
specialized pollinators pollinating a single plant. For example, let us assume that both pollinators680

pollinate plant P1 only, i.e., u1 = v1 = 1. Then β11 = β12 = 0 and substituting these values
in (A.1) shows that the two isoclines are parallel lines, i.e., generically, there is no equilibrium.682

The same conclusion holds in the case where both pollinators specialize on plant P2. Thus, two
specialist pollinators cannot survive on a single plant.684

Second, we consider two pollinators that specialize on different plants (either β12 = β21 = 0 or
β11 = β22 = 0). For example, when β12 = β21 = 0 the interior equilibrium (A.4) is686

(Â1, Â2) =

(
α11

d1
− w1

β11
,
α22

d2
− w2

β22

)
and stability condition (A.10) holds. The case where β11 = β22 = 0 is similar.

Appendix B. ESS and Nash equilibria688

Throughout this appendix we assume that inequality (8) holds. From (7a) and (7b), for a given
pollinator distribution (u1, v1) ∈ [0, 1] × [0, 1], pollinator A1 payoffs when pollinating exclusively690

plant P1 or plant P2 are

V1(u1, v1) =
a1e11b11P1

w1 + u1b11A1 + v1b12A2

, V2(u1, v1) =
a2e21b21P2

w2 + (1− u1)b21A1 + (1− v1)b22A2

.
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Similarly, pollinator 2 payoffs are692

W1(u1, v1) =
a1e12b12P1

w1 + u1b11A1 + v1b12A2

, W2(u1, v1) =
a2e22b22P2

w2 + (1− u1)b21A1 + (1− v1)b22A2

.

First, we consider ESS at which both pollinators are specialists. We start with the case where
both pollinators specialize on plant 1. Strategy (u1, v1) = (1, 1) is an ESS provided V1(1, 1) >694

V2(1, 1) and W1(1, 1) > W2(1, 1). These inequalities are equivalent to P2 <
a1b11e11w2

a2b21e21(w1+b11A1+b12A2)
P1

and P2 < QdP1, where Qd is given in (9d). Inequality (8) implies that Qd <
a1b11e11w2

a2b21e21(w1+b11A1+b12A2)
.696

Consequently, for P2 < QdP1 strategy (u1, v1) = (1, 1) is the ESS. Now we consider the case where
pollinator 1 specializes on plant 1 and pollinator 2 on plant 2. Strategy (u1, v1) = (1, 0) is an ESS698

provided V1(1, 0) > V2(1, 0) and W2(1, 0) > W1(1, 0). These inequalities are equivalent to QbP1 >
P2 > QcP1 where Qb is given in (9b). Now we consider the case where both pollinators specialize700

on plant 2. Strategy (u1, v1) = (0, 0) is an ESS provided V2(0, 0) > V1(0, 0) and W2(0, 0) >
W1(0, 0). These inequalities are equivalent to P2 > QaP1 where Qa is given in (9d) and P2 >702

a1b12e12(w2+b21A1+b22A2)
a2b22e22w1

P1. Inequality (8) implies that Qa >
a1b12e12(w2+b21A1+b22A2)

a2b22e22P2w1
. Consequently,

for P2 > QaP1 strategy (u1, v1) = (0, 0) is the ESS. Now we consider the case where pollinator 1704

specializes on plant 2 and pollinator 2 on plant 1. Strategy (u1, v1) = (0, 1) is an ESS provided
V2(0, 1) > V1(0, 1) and W1(0, 1) > W2(0, 1). These inequalities are equivalent to P2 > QbP1 and706

P2 < QcP1. Inequality (8) implies that Qb > Qc. Consequently, (u1, v1) = (0, 1) is never an ESS.
Second, we consider ESSs when the first pollinator is a generalist while the second pollinator708

is a specialist. Let us assume that the second pollinator specializes on plant 2, i.e., we seek ESS
in the form (u1, 0) where 0 < u1 < 1. Such a strategy must satisfy V1(u1, 0) = V2(u1, 0) and710

W2(u1, 0) > W1(u1, 0). Equality V1(u1, 0) = V2(u1, 0) leads to

u∗1 =
a1b11e11P1(w2 + b21A1 + b22A2)− a2b21e21P2w1

A1b11b21(a1e11P1 + a2e21P2)
.

This value is between 0 and 1 provided QbP1 < P2 < QqP1. Inequality (8) implies that W2(u
∗
1, 0) >712

W1(u
∗
1, 0). Thus, (u∗1, 0) is a Nash equilibrium. To prove it is also an ESS, we need to verify its

stability. Because functions Vi (i = 1, 2) are non-linear in u1, we use the local ESS condition714

(Hofbauer and Sigmund, 1998) u∗1V1(u1, 0)+u∗2V2(u1, 0) > u1V1(u1, 0)+u2V2(u1, 0) for every (u1, u2)
(u1 + u2 = 1, u1 > 0, u2 > 1) close to (but different from) (u∗1, u

∗
2). This condition is equivalent to716

(a2b11e11P1(A2b22 + A1(b21 − b21u1) + w2))
2

A1b11b21(a1e11P1 + a2e21P2)(A1b11u1 + w1)(A2b22 + A1(b21 − b21u1) + w2)
> 0. (A.1)

The numerator is positive and the denominator equals to 0 for u1 = − w1

A1b11
< 0 and u1 =

A1b21+A2b22+w2

A1b21
> 1. Because the denominator is a quadratic function and its graph is an upside718

down parabola, inequality (A.1) holds for all 0 < u1 < 1. This shows that (u1, v1) = (u∗1, 0) is an
ESS.720

Now we assume that the second pollinator specializes on plant 1, i.e., we seek ESS in the form
(u1, 1) where 0 < u1 < 1. Such a strategy must satisfy V1(u1, 1) = V2(u1, 1) and W1(u1, 1) >722

W2(u1, 1). The equality leads to

u∗1 =
a1b11e11P1(w2 + b21A1)− a2b21e21P2(w1 + b12A2)

A1b11b21(a1e11P1 + a2e21P2)
.
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Then724

W1(u
∗
1, 1) =

b12b21e12(a1e11P1 + a2e21P2)

b21e11(A1b11 + A2b12 + w1) + b11e11w2

W2(u
∗
1, 1) =

b11b22e22(a1e11P + a2e21P2)

b21e21(A1b11 + A2b12 + w1) + b11e21w2

and inequality (8) implies that W2(u
∗
1, 1) > W1(u

∗
1, 1) and thus (u∗1, 1) is never an ESS.

Third, we consider ESSs when the first pollinator is a specialist while the second pollinator726

is a generalist. Let us assume that the first pollinator specializes on plant P1, i.e., we seek ESS
in the form (1, v1) where 0 < v1 < 1. Such a strategy must satisfy V1(1, v1) > V2(1, v1) and728

W1(1, v1) = W2(1, v1). The equality leads to

v∗1 =
a1b12e12P1(w2 + b22A2)− a2b22e22P2(w1 + b11A1)

A2b12b22(a1e12P1 + a2e22P2)
.

This value is between 0 and 1 provided QdP1 < P2 < QcP1. Inequality (8) implies that V1(1, v
∗
1) >730

V2(1, v
∗
1). The local ESS condition requires v∗1W1(1, v1) + v∗2W2(1, v1) > v1W1(1, v1) + v2W2(1, v1)

for every (v1, v2) (v1 + v2 = 1, v1 > 0, v2 > 1) close to (but different from) (v∗1, v
∗
2). This condition732

is equivalent to

(a1b12e12P1(A2b22(v1 − 1)− w2) + a2b22e22P2(A1b11 + A2b12v1 + w1))
2

A2b12b22(w2 − A2b22(v1 − 1))(a1e12P1 + a2e22P2)(A1b11 + A2b12v1 + w1)
> 0. (A.2)

The numerator is positive and the denominator equals to 0 for v1 = −A1b11+w1

A2b12
< 0 and v1 =734

w2

A2b22
+ 1 > 1. Because the denominator is a quadratic function and its graph is an upside down

parabola, inequality (A.2) holds for all 0 < v1 < 1. This shows that (u1, v1) = (1, v∗1) is an ESS.736

Now we assume that the first pollinator specializes on plant P2, i.e., we seek ESS in the form
(0, v1) where 0 < v1 < 1. Such a strategy must satisfy V2(0, v1) > V1(0, v1) and W1(0, v1) =738

W2(0, v1). The equality leads to

v∗1 =
a1b12e12P1(w2 + b21A1 + b22A2)− a2b22e22P2w1

A2b12b22(a1e12P1 + a2e22P2)
.

However, inequality (8) implies that V1(0, v
∗
1) > V2(0, v

∗
1) so that no ESS in the form (0, v1) exists.740

Fourth, we consider the case where both pollinators are generalists. This situation corresponds
to ESS of the form (u1, v1) with 0 < u1 < 1 and 0 < v1 < 1. Such an ESS must satisfy742

V1(u1, v1) = V2(u1, v1) and W1(u1, v1) = W2(u1, v1). These equalities are equivalent to

a1e11b11P1(w2 + u2b21A1 + v2b22A2) = a2e21b21P2(w1 + u1b11A1 + v1b12A2)

a1e12b12P1(w2 + u2b21A1 + v2b22A2) = a2e22b22P2(w1 + u1b11A1 + v1b12A2).

Because w1 + u1b11A1 + v1b12A2 > 0 and w2 + u2b21A1 + v2b22A2 > 0, inequality (8) implies that744

these two equations do not have any solution (u1, v1) ∈ [0, 1] × [0, 1]. Thus, it is impossible for
both pollinators to be generalists.746
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Appendix C. Plant dynamics in regions I, III and V

First we calculate plant P1 boundary equilibrium. From Table 1 it follows that this equilibrium748

is in region V where both pollinators pollinate P1. Substituting (u1, v1) = (1, 1) in (1a) and (1b),
and solving for equilibria when P1 6= 0 and P2 = 0 leads to equilibrium (12a).750

The plant population dynamics in region V are

dP1

dt
=

(
a1(r11b11A1 + r12b12A2)

w1 + b11A1 + b12A2

(
1− P1 + c2P2

K1

)
−m1

)
P1

dP2

dt
= −m2P2,

and provided plant 1 is viable (i.e., (11a) holds), equilibrium (12a) exists (is positive) and is752

locally asymptotically stable. Following the same steps above mutatis mutandis, leads to equation
(12b) for plant P2 boundary equilibrium in region I (where ESS is (u1, v1) = (0, 0), see Table 1).754

Analogously, if (11b) holds then (12b) exists and is locally asymptotically stable.
Now we consider plant population dynamics in region III. According to Table 1 the ESS strategy756

in this region is (u1, v1) = (1, 0), i.e., pollinator A1 (A2) interacts only with plant P1 (P2). Sub-
stituting these preferences in (1a) and (1b), plant population dynamics in region III are described758

by the Lotka–Volterra competition model

dP1

dt
= (s1 −m1)P1

(
1− P1 + c2P2

H1

)
dP2

dt
= (s2 −m2)P2

(
1− P2 + c1P1

H2

)
,

where760

s1 =
a1r11b11A1

w1 + b11A1

, s2 =
a2r22b22A2

w2 + b22A2

, H1 = K1

(
1− m1

s1

)
, H2 = K2

(
1− m2

s2

)
.

Plant population dynamics in region III depend on the position of plant isoclines

P1 + c2P2 = H1

P2 + c1P1 = H2.

Provided the plant isoclines intersect in region III, the coexistence equilibrium is762

(P̂1, P̂2) =

(
H1 − c2H2

1− c1c2
,
H2 − c1H1

1− c1c2

)
. (A.1)

For (A.1) to be in region III, it must satisfy QbP̂1 < P̂2 < QcP̂1, where Qb and Qc are given in
(9b) and (9c), respectively. Substituting Qb , Qc and (A.1) we get764

b21e21
b11e11

<
a1(w2 + b22A2)(H1 − c2H2)

a2(w1 + b11A1)(H2 − c1H1)
<
b22e22
b12e12

. (A.2)
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Provided (A.2) holds, the local stability of (A.1) depends on the competition coefficients. From
the Lotka–Volterra theory (A.1) is locally stable if c1c2 < 1. If c1c2 > 1, (A.1) is unstable, and766

trajectories will approach either isoleg-b and cross into region II, or approach isoleg-c and cross into
region IV depending on the initial conditions. If (A.2) does not hold there is no plant equilibrium768

in region III.
In the special case where c1 = c2 = 0, the stable equilibrium in region III is770

(P̂1, P̂2) = (H1, H2) =

(
K1(A1b11(a1r11 −m1)−m1w1)

a1A1b11r11
,
K2(A2b22(a2r22 −m2)−m2w2)

a2A2b22r22

)
.

At this equilibrium plant 1 density is higher than is the plant density at the boundary equilibrium
(12a) in region V iff772

r11
r12

> 1 +
w1

b11A1

.

This shows that provided r11 > r12 and pollinator A1 is abundant enough, plant P1 density at
the interior equilibrium in region III will be higher than is the plant P1 density at the boundary774

equilibrium. Analogous conclusions apply to plant P2.

Appendix D. Coexistence conditions for pollinators with adaptive preferences776

Using Table 1 in the main text, we rewrite isolegs characterizing regions I-V in terms of pol-
linator densities. For example, isoleg-a that separates regions I and II in the plant plane P1P2 is778

given by equation P2

P1
= Qa(A1, A2) = a1b11e11(w2+b21A1+b22A2)

a2b21e21w1
. Solving for A2 leads to isoleg-a in the

pollinator plane780

A2 = SaA1 + Ia = −b21
b22
A1 +

a2b21e21P2w1 − a1b11e11P1w2

a1b11b22e11P1

,

and the other isolegs in the pollinator plane A1A2 are obtained analogously and they are listed in
Table 2 in the main text.782

Isoleg-b and isoleg-c (which enclose region III) do not intersect in the positive part of the
A1A2 plane. Indeed, the intersection point is A1 = (Ic − Ib)/(Sb − Sc). From (13), Ic − Ib =784

a2P2w1

a1P1b2

(
e22b22
e12b12

− e21b21
e11b11

)
and Sb − Sa = a2P2

a1P1

(
e21b21
e11b11

− e22b22
e12b12

)
have different signs, thus isoleg-b and

isoleg-c intersection is non-positive.786

Now we show that for given parameters and plant population densities it is not possible that
both regions I and V co-exist. We observe that region I exists in the positive quadrant iff Ia > 0,788

because in this case isoleg-a intersects both A1 and A2 axes at positive values. Similarly, region V
exists in the positive quadrant iff Id > 0, because in this case isoleg-d intersects both A1 and A2790

axes at positive values. However, condition (8) rules out the possibility that both Ia and Id are
positive.792

We determine conditions for pollinator coexistence in regions I to V. Appendix A shows that
two pollinators specialized on the same plant (both u1 and v1 equal to 0 or 1) cannot coexist. This794

rules out coexistence in regions I and V. Now, let us consider region II where pollinator A1 is a
generalist and A2 specializes on plant P2. Thus 0 < u1 = u∗1 < 1, v1 = 0, and the A2 isocline is796

a2e22b22P2

w2 + (1− u∗1)b21A1 + b22A2

= d2. (A.1)
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Because the payoff of pollinator A1 when pollinating plant P1 is the same as when pollinating
plant P2, the A1 isocline is798

a2e21b21P2

w2 + (1− u∗1)b21A1 + b22A2

= d1. (A.2)

Substituting u∗1 (10a) in (A.1) and (A.2) shows that both these equalities define parallel lines in800

pollinator phase space. Thus, generically, there cannot be a coexistence equilibrium in region II.
Pollinator A2 will displace A1 if802

e22b22
e21b21

>
d2
d1
,

or A1 will displace A2 if the opposite inequality holds.804

In region IV, pollinator A2 is a generalist and A1 specializes on plant P1. Because of symmetry,
the last result applies mutatis mutandis. This means that either A1 will displace A2 if806

e11b11
e12b12

>
d1
d2
,

or A2 will displace A1 if the opposite inequality holds. If

e11b11
e12b12

>
d1
d2

>
e21b21
e22b22

, (A.3)

then A1 can be invaded by A2 and vice versa and coexistence by mutual invasion occurs.808

Finally, let us consider region III, in which pollinator A1 specializes in plant P1 (u1 = 1), and
A2 specializes in P2 (v1 = 0). The pollinator isoclines intersect at810

(Â1, Â2) =

(
a1e11P1

d1
− w1

b11
,
a2e22P2

d2
− w2

b22

)
. (A.4)

To be a coexistence equilibrium however, (Â1, Â2) must lie between isolegs SbA1+Ib and ScA1+Ic,
i.e., SbÂ1 + Ib < Â2 < ScÂ1 + Ic. Substituting (A.4) in these inequalities leads to812

b21e21
b22e22

<
d1
d2

<
b11e11
b12e12

,

which are the conditions for mutual invasion (A.3). Thus, a coexistence equilibrium within region
III is locally stable. Since there are no coexistence equilibria within regions II and IV, we conclude814

that if (A.3) holds there is a single stable coexistence equilibrium within region III.

Appendix E. Combined plant–pollinator dynamics816

Figure A.1 illustrates the population dynamics of the four species system (1) when pollinator
preferences for plants are fixed (left panels) or adaptive (right panels). Panels in each row assume818

the same parameters and initial conditions. Initial preferences u1(0), v1(0) are calculated as the
ESS (Table 1 or 2) for the initial densities P1(0), P2(0), A1(0), A2(0). In the left column of Figure820

A.1 these preferences are kept fixed at their initial values (their time series remain horizontal),
while in the right column preferences track changes in population densities (ESS) instantaneously.822

In the top row (panels a,b) pollinator A1 starts as a generalist biased towards plant P1 (u1 ≈
0.6), and A2 as a P2 specialist (v1 = 0). In panel (a) these preferences remain fixed and all824

four species attain stable coexistence. In panel (b) preferences adapt and the four species attain
coexistence again, but pollinator A1 turns into a plant P1 specialist. Here adaptation leads to the826

end of competition between A1 and A2, which do not share any plant.
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Figure A.1: Dynamics of system (1). Preferences given according to: (a,c) ESS at t = 0 and kept fixed for t > 0;
(b,d) ESS at all times (t ≥ 0). Densities (left axes) represented by P1: green squares; P2: red diamonds; A1: pink
circles; A2: blue triangles. Plant 1 preferences (right axes) represented by u1: 5-pointed, v1: 6-pointed stars. Inset
graphs display final plant–pollinator interactions (dash stroke for extinct species). Parameters (a,b,c,d): ri = 0.1,
mi = 0.01, bij = 0.1, ai = 0.4, wi = 0.25, e11 = e22 = 0.2, d1 = 0.12, d2 = 0.1; (a,b): Ki = 50, e21 = 0.17, e12 = 0.1;
(c,d): K1 = 60,K2 = 30, e12 = 0.17, e21 = 0.1. Competition coefficients (a,b): ci = 0.2; (c,d): c1 = 0.4, c2 = 0.1.

The bottom row (panels c, d) uses a different parameter set, and the initial conditions make828

pollinator A1 a plant P1 specialist (u1 = 1) and A2 a P2 specialist (v1 = 0). Thus, A1 and A2
do not compete initially, and four species coexistence happens if preferences remain fixed (c). If830

preferences adapt, panel (d) shows that pollinator A2 becomes a generalist. As the preference for
P1 grows larger for A2, strong competition drives specialist pollinator A1 towards extinction.832
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