MPC with Casadi/Python

Michael Risbeck

June 10, 2015

Michael Risbeck MPC with Casadi/Python June 10, 2015 1/16

What's in mpc-tools-casadi?

A Python package: mpctools!
You should put the mpctools folder somewhere on your Python path.

In Python, use import sys; print sys.path to see what folders are on
your path.

A cheatsheet (in the doc folder).
Should get you started writing your own code.

Compares plain CasADi vs. CasADi + mpctools.

A bunch of example files, e.g.,
nmpcexample.py: Example of linear vs. nonlinear MPC.

cstr_startup.py: startup and a setpoint change (with no
disturbances) for the CSTR system from Example 1.11.

!See install.pdf for detailed installation instructions.

Michael Risbeck MPC with Casadi/Python June 10, 2015

Why did we write this code?

We plan to solve nonlinear MPC problems.

CasADi is more robust than our mpc-tools

However, setting up an MPC problem in CasADi takes a fair bit of
code

Everyone copy/pasting their own code is bad.

A simpler interface means we (and others) can save a lot of time.

Michael Risbeck MPC with Casadi/Python June 10, 2015

3/16

From official CasADi Examples

For all collocation points: eq 10.4 or 10.17 in Biegler's book
Construct Lagrange polynomials to get the polynomial basis at
the collocation point
for j in range(deg+1):

L =1
for j2 in range(deg+1):
if §2 1= j:

L *= (tau-tau_root[j2])/(tau_root[jl-tau_root[j2])

1fcn = SXFunction([taul,([L])
lfcn.init ())
Evaluate the polynomial at the final time to get the We dOn t Want

coefficients of the continuity equation R
1fcn.setInput (1.0) everyone writing

1fcn.evaluate () this themselves!
D[j]l = 1lfcn.getOutput ()

Evaluate the time derivative of the polynomial at all
#collocation points to get the coefficients of the
#continuity equation
tfcn = lfcn.tangent ()
tfcn.init ()
for j2 in range(deg+1):

tfcn.setInput (tau_root[j2])

tfcn.evaluate ()

C[jl1[j2] = tfcn.getOutput ()

Michael Risbeck ith Casadi/Python June 10, 20

Python Basics

For our purposes Python+Numpy isn’t that much different from
Octave/MATLAB.

Octave/MATLAB Python+Numpy

A = zeros(3,2); A = np.zeros((3,2))

x = ones(2,1); %2D. x = np.ones((2,)) #1D.
y = Axx; y = A.dot(x)

z = y.”2; ’, Elementwise. z = y**2 # Elementwise.

A(1,1) = 2; % One-based. A[0,0] = 2 # Zero-based.

A(2,:) = [3,4]; Al1,:] = np.array([3,4])
s = struct('field',1); s = {"field" : 1}
disp(s.field); print s["field"]

Michael Risbeck MPC with Casadi/Python June 10, 2015

General Tips

Remember that indexing is 0-based.

Use NumPy's array instead of matrix.
Despite what Octave/MATLAB says, everything is not a matrix
of doubles
Have to use A.dot(x) instead of A*x
However, indexing is MUCH easier with arrays

Use bmat ([[A,B], [C,D]1).A to assemble matrices from blocks.
Equivalent to [A, B; C, D] in Octave/ MATLAB
Trailing .A casts back to array type from matrix

Use scipy.linalg.solve(A,b) to compute A~1h.

Michael Risbeck MPC with Casadi/Python June 10, 2015

System Model

Start by defining the system model as a Python function.

def ode(x,u,d):
Grab the states, controls, and disturbance.
[c, T, h] = x[:Nx]
[Tc, F1 = ul:Nul
[FO] = d[:Nd]

Now create the right-hand side function of the ODE.
rate = kO*c*np.exp(-E/T)

dxdt = [
FO*(cO - c¢)/(np.pi*r**2xh) - rate,
FO*(TO - T)/(np.pi*r**2xh)
- dH/(rho*Cp)*rate
+ 2xU/(r*rho*Cp)*(Tc - T),
(FO - F)/(np.pi*r**2)
]

return np.array(dxdt)

Michael Risbeck i June 10, 2

System Simulation

The nonlinear system can be simulated using CasADi integrator objects
with a convenient wrapper.

Turn into casadi function and simulator.
ode_casadi = mpc.getCasadiFunc (ode,
[Nx,Nu,Nd],["x","u","d"], funcname="ode")
cstr = mpc.DiscreteSimulator (ode, Delta, [Nx,Nu,Ndl, ["x","u","d"])

Simulate with nonlinear model.

x[n+1,:] = cstr.sim(x[n,:] + xs, uln,:] + us, d[n,:] + ds) - xs

Michael Risbeck

June 10, 2

Calls to LQR and LQE

The functions d1qr and dlge are also provided in mpc-tools-casadi.

% Get LQR. # Get LQR.
[K, Pi] = dlqr(A, B, Q, R); [K, Pi] = mpc.util.dlqr(A,B,Q,R)
% Get Kalman filter. # Get Kalman filter.
[L, M, P] = dlge(Aaug, ... [L, P] = mpc.util.dlqe (Aaug,

eye (naug), Caug, Qw, Rv); Caug, Qw, Rv)
Lx = L(1:n,:); Lx = L[:Nx,:]
Ld = L(n+1l:end,:); Ld = L[Nx:,:]

. .

Michael Risbeck MPC with Casadi/Python June 10, 2015 9/16

Controller Simulation

Octave/ MATLAB Python+Numpy

for i = 1l:ntimes for n in range(Nsim + 1):
% Take plant measurement. # Take plant measurement.
y(:,i) = C*x(:,1i) + v(:,i); yIn,:] = C.dot(x[n,:]) + vn,:]
% Update state estimate with measurement. # Update state estimate with measurement.
ey = y(:,i) - C*xhatm(:,i) -Cd*dhatm(:,i); err[n,:] = (y[n,:] - C.dot(xhatm[n,:])
xhat (:,i) = xhatm(:,i) + Lx*ey; - Cd.dot(dhatm[n,:1))
dhat (:,i) = dhatm(:,i) + Ld*ey; xhat[n,:] = xhatm[n,:] + Lx.dot(err([n,:])

dhat[n,:] = dhatm[n,:] + Ld.dot(err([n,:])
% Steady-state target.
H =[100; 00 1]; # Make sure we aren't at the last timestep.
G = [eye(n)-A, -B; , zeros(size(H,1), m)]; if n
qs = G\[Bd*dhat (:

Nsim: break

Hx(target.yset- Cd*dhat(,i)1; # Steady-state target.
xss = gs(1:n); rhs = np.concatenate ((Bd.dot (dhat([n,:]),
uss = gs(n+l:end); H.dot(yspln,:] - Cd.dot(dhat[n,:1))))
gsp = linalg.solve(G,rhs) # i.e. G\rhs.
% Regulator. xsp = gspl:Nx]
u(:,i) = K*(xhat(:,i) - xss) + uss; usp = qspl[Nx:]
if (4 ntimes) break; end
Regulator.
% Simulate with nonlinear model. uln,:] = K.dot(xhat[n,:] - xsp) + usp
t = [time(i); mean(time(i:i+1)); time(i+1)];
20 = x(:,i) + zs; FO = p(:,i) + Fs; # Simulate with nonlinear model.
Tc = u(l,i) + Tecs; F = u(2,i) + Fs; x[n+1,:] = cstr.sim(x[n,:] + xs,
[tout, z] = odel5s(@massenbal, t, z0, opts); uln,:] + us, dln,:] + ds) - xs
x(:,i+1) = z(end,:)' - zs;
Advance state estimate.
% Advance state estimate. xhatm[n+1,:] = (A.dot(xhat([n,:])
xhatm(:,i+1) = A*xhat(:,i) ... + Bd.dot(dhat[n,:]) + B.dot(uln,:1))
+ Bd*dhat(:,i) + B*u(:,i); dhatm[n+1,:] = dhat([n,:]
dhatm(:,i+1) = dhat(:,i); y
end
v
Michael Risbeck MPC with Casadi/Python June 10, 20 0/16

o878
Z 086
osm 20 Eooma 30025
© 1w @ w0 % 2
s £ 30000
20975,
]]
a2 29950
S 20925,
g 358] 10 20 30 40 50
20 oa7s,
3245 01150
e e o [h A S & wm o
Time. £ 01100
o7 £
3 01075
on gO0% < 01050
on Tom 0025,
01000,
o7
H 066 00975,
o8 3 o % B @ % [] D
086 Time (min) Time (i)
o84 4
]
Time
o’

Michael Risbeck Casadi/

June 10, 20

What can we do with mpc-tools-casadi?

Discrete-time linear MPC

Discrete-time nonlinear MPC
Explicit models
Runge-Kutta discretization
Collocation

Discrete-time nonlinear MHE
Explicit models
Runge-Kutta discretization
Collocation

Basic plotting function

Example scripts
Linear
Solution of linear as nonlinear
Periodic linear

Example 2-8
Simple collocation
mple 1-11

Xa
Michael Risbeck MPC with Casadi/Python June 10, 2015

Example: Van der Pol Oscillator

For this problem, nonlinear MPC performs slightly better.

The computation isn't much more time-consuming because of the
power of Casadi.

The problem isn't difficult to set up because of mpc-tools-casadi.

Linear MPC Nonlinear MPC

0.0 pm-------—p==== 08 0.0 p======y<=== 1w
-0.1 ~ 06 o
e s o 02 s
o g F- R 5 0.
4o £o4 2 £os0
& -o. s & s
8 8
02 Coa 025
08 — System — system
--- Setpoint 0.0 --- Setpoint 0.00
00 25 50 7.5 100 00 25 50 75 100 00 25 50 75 100 00 25 50 75 100
Time Time Time Time
1.0 —— System 1.00 —— System
=== Setpoint === Setpoint
@e s 075 s
~
£ 0.50
£
@
0.25
0.00
00 25 50 7.5 100 00 25 50 75 100
Time. i
V. V.

Michael Risbeck i June 10, 2015 13 /16

More Complicated Example

Using mpc-tools-casadi, we can replace the LQR and KF from Example
1.11 with nonlinear MPC and MHE.
cstr_startup.py shows basic structure and a setpoint change.
cstr_nmpc_nmhe.py shows steady-state target finding and NMHE.

See the cheatsheet for important functions and syntax.

Michael Risbeck MPC with Casadi/Python June 10, 2015 14 /16

cstr_startup.py

Here, nonlinear MPC knows to be less aggressive.

320
075 B ;
g
3 0.50 310
E
S 025 -
< 300
0.00 <
[10 15 20 25
290
500
< 400 280
X 0 5 10 15 20 25
b
300 [0.12
[10 15 20 25 01
0.8 5
| ! £o010
4
gos <
= 0.09
0.4
0.08
[10 15 20 25 [5 10 15 20 25
Time (min) Time (min)
— Uncontrolled —— LMPC —— NMPC

Michael Risbeck

June 10, 2015

What can’t we do yet?

True continuous-time formulation

Continuous-time models with explicit time dependence are not
supported

Quadrature for continuous-time objective function is available via
collocation

DAE systems are possible in principle

Quality guess generation

Solve sequence of smaller problems
Use as initial guess for large problem
Must do “by hand”

Michael Risbeck MPC with Casadi/Python June 10, 2015 16 /16

