
MPCTools Cheat Sheet

1 Functions Reference
Here we present some of the most useful functions from MPCTools. These descriptions are not intended to be complete, and
you should consult the documentation within the Python module for more details.

Obtaining MPCTools. The latest files can be found on
https://bitbucket.org/rawlings-group/mpc-tools-casadi. Click
“Downloads” on the left side of the page, and choose the
appropriate MPCTools-*.zip for your Python version. No
specific installation is required beyond Python (3.5+ or 2.7)
and CasADi, but note that CasADi must be at least Version
3.0.

Getting Started. Functions are arranged in a package
called mpctools. Typically, everything you need can be found
in the main level, e.g.,

import mpctools as mpc

Many functions have optional arguments or default values
that aren’t listed below. Consult the docstrings throughout
MPCTools to see what options are available.

Simulating Nonlinear Systems. To facilitate nonlinear
simulations, we provide the DiscreteSimulator class, which
is a wrapper a CasADi Integrator object. To initialize, the
syntax is

model = DiscreteSimulator (ode ,Delta , argsizes )

where ode is a Python function that takes a fixed number
of arguments whose lengths are given (in order) in the list
argsizes.

Once the object has been built, one timestep can be sim-
ulated using

xnext = model .sim(x,u)

Note that the number of arguments will vary based on
how many entries you supplied in argsizes.

Building CasADi Functions. To simplify creation of
CasADi functions, there are a few convenience wrappers.
getCasadiFunc(f,argsizes,argnames)

Takes a Python function and sizes of arguments to build
a CasADi SXFunction object. Note that the original func-
tion f should return a single numpy vector (e.g., by calling
np.array before returning). The input argnames is optional,
but it should be a list of strings that give variable names.
This helps make things self-documenting.

Optional arguments are available to return a Runge-Kutta
discretization. For this, you must specify rk4=True and also
provide arguments Delta with the timestep and M with the
number of steps to take in each interval. Example usage is
shown below.

import mpctools as mpc

# 2 states and 1 control .

def ode(x,u):
dxdt = [x [0]**2 + u[0] , x[1] - u[0]]
return np. array (dxdt)

ode = mpc. getCasadiFunc (ode , [2 ,1] , ["x","u"])

Delta = 0.5 # Set timestep .
ode_rk4 = mpc. getCasadiFunc (ode , [2 ,1] , ["x","u"],

rk4=True , Delta =Delta , M=1)

See Section 2 for some additional information about func-
tion semantics.
getCasadiIntegrator(f,Delta,argsizes,argnames)

Returns an Integrator object to integrate the Python
function f from time 0 to Delta. argsizes and argnames
are the same as in getCasadiFunc, but the differential vari-
ables (i.e., x in dx/dt = f(x, y, z)) must come first.

Solving MPC Problems. For regulation problems, the
function nmpc should be used.
nmpc(f,l,N,x0)

f and l should be individual CasADi functions to describe
state evolution and stage costs. N is a dictionary that holds
all of the relevant sizes. It must have entries "x", "u", and "t",
all of which are integers. x0 is the starting state. Additional
optional arguments are given below.

• Pf: a single CasADi function of x to use as a terminal
cost.

• lb, ub, guess: Dictionaries with entries "x" and/or "u",
to define box constraints or an initial guess for the opti-
mal values of x and u. Entries for x should be a numpy
array of size N["t"]+1 by N["x"], and for u, entries should
be N["t"] by N["u"]. Note that the time dimensions can
be omitted if the bounds are not time-varying.

• uprev: Value of the previous control input. If pro-
vided, variables ∆u will be added to the control prob-
lem. Bounds for ∆u can be specified as "Du" entries in
lb and ub.

• funcargs: A dictionary of lists of strings specifying the
arguments of each function for nonstandard inputs. For
example, "Du" can be included in funcargs["l"] if you wish
to use rate-of-change penalties for u in the stage cost.

• verbosity: an integer to control how detailed the solver
output is. Lower numbers give less output.

This function returns a ControlSolver object (see “Re-
peated Optimization” below for more details). If you simply
want to solve a single instance, pass the return value to the
callSolver function, and you will receive a dictionary. En-
tries include "x" and "u" with optimal trajectories for x and
u. These are both arrays with each column corresponding to
values at different time points. Also given are "obj" with the
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optimal objective function value and "status" as reported by
the optimizer.

For continuous-time problems, there are a few options.
To use Runge-Kutta methods, you can convert your function
ahead of time (e.g., with rk4=True as above). To use colloca-
tion, you can add an entry "c" to the argument N to specify
the number of collocation points on each time interval. This
also requires specifying the sample time Delta. Note that
if you want a continuous-time objective function (i.e., inte-
gral of `(x(t), u(t)) instead of a sum), then you can specify
discretel=False as an argument. Note that this is only sup-
ported with collocation.

State Estimation. For nonlinear state estimation, we pro-
vide a moving-horizon estimation function and an Extended
Kalman Filter function.
nmhe(f,h,u,y,l,N)

Solves a nonlinear MHE problem. As with nmpc, argu-
ments f, h, and l should be individual CasADi functions. f
must be f(x, u, w), h must be h(x), and l must be `(w, v).
u and y must be arrays of past control inputs and measure-
ments. These arrays must have time running along rows so
that y[t,:] gives the value of y at time t.

Different from nmpc, the input N must be a dictionary
of sizes. This must have entries "t", "x", "u", and "y". Note
that N["t"] gives the number of time intervals, which means u
should have N["t"] data points, while y should have N["t"] + 1

data points. It may also have a "w" entry, but this is set equal
to N["x"] if not supplied. Note that for feasibility reasons, N["v"]

is always set to N["y"] regardless of user input. Additional op-
tional arguments are given below.

• lx, x0bar: arrival cost for initial state. lx should be a
CasADi function of only x. It is included in the objec-
tive function as `x(x0−x0), i.e., penalizing the difference
between the value of the variable x0 and the prior mean
x0.

• lb, ub, guess: Dictionaries to hold bounds and a guess
for the decision variables. Same as in nmpc.

• verbosity: same as in nmpc.
The return value is the same as in nmpc.

ekf(f,h,x,u,w,y,P,Q,R)
Advances one step using the Extended Kalman Filter. f

and h must be CasADi functions. x, u, w, and y should be the
state estimate x̂(k|k− 1), the controller move, the state noise
(only its shape is important), and the current measurement.
P should be the prior covariance P (k|k − 1). Q and R should
be the covariances for the state noise and measurement noise.
Returns a list of

[P (k + 1|k), x̂(k + 1|k), P (k|k), x̂(k|k)].

Steady-State Targets. For steady-state target selection,
we provide a function sstarg as described below.
sstarg(f,h,N)

Solves a nonlinear steady-state target problem. f must be
f(x, u) and h must be h(x) As with the other functions, the

input N must be a dictionary of sizes. This must have entries
"x", "u", and "y". Additional arguments are below.

• phi, funcargs: Objective function for if the solution is
non-unique. phi must be a CasADi function with the
arguments as given in funcargs["phi"]. Other functions
(e.g., "f" or "h") can be included in funcargs as well.

• lb, ub, guess: Dictionaries to hold bounds and a guess
for the decision variables. Each entry must be a 1 by
n array, i.e., with a dummy "time" dimension first to
match nmpc and nmhe. Note that if you want to force
outputs y to a specific value, you should set equal lower
and upper bounds for those entries.

• verbosity: same as in nmpc.

Custom Constraints. In case you need to add custom
constraints to an optimization problem beyond what is avail-
able via the e argument of nmpc, you have the option to add
CasADi expressions as additional constraints in the optimiza-
tion problem. Optimization variables and parameters can be
accessed via the varsym and parsym attributes of ControlSolver, and
the expressions can be added as constraints via addconstraints.
For example, suppose you wish to constrain u(5) = u(0) and
u(15) = u(10), you would use

solver = mpctools .nmpc (...) # Build controller .
u = solver . varsym ["u"] # Get u symbolic variables .
solver . addconstraints ([u[0] - u[5] , u[15] - u [10]])

Note that addconstraints can take a single CasADi vector con-
straints, or a list of vector constraints. By default, all con-
straints are added as equality constraints, but inequality con-
straints can be specified as described in the docstring for
addconstraints. Consult the CasADi documentation for more
details on working with symbolic variables and expressions.

Repeated Optimization. If you plan to be solving the
same optimization repeatedly, speed can be improved by us-
ing the ControlSolver class. The easiest way to build one
of these objects is by calling False in nmpc, nmhe, or sstarg.
Below we list the useful methods for this class.
fixvar(var,t,val)

Fixes the variable named var to take on the value val at
time t. This is most useful for changing the initial conditions,
e.g., with

solver . fixvar ("x" ,0,x0)

which allows for easy re-optimization. You can also
specify a fourth argument inds, if you only want
to set a subset of indices for that variable (e.g.,
solver.fixvar("y",0,ysp[contVars],contVars) to only fix the values of
y for controlled variables).
solve()

Solves the optimization problem. Some stats (including
solver success or failure) is stored into the solver.stats
dictionary, and the optimal values of the variables are in
the solver.var struct (e.g., solver.var["x",t] gives the optimal
value of x at time t).
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saveguess()
Takes the current solution and stores the values as a guess

to the optimizer. By default, time values are offset by 1. This
is done so that

solver . solve ()
if solver . stats [" status "] == " Solve_Succeeded ":

solver . saveguess ()
solver . fixvar ("x" ,0, solver .var["x" ,1])

prepares the solver for re-optimization at the next time point
by using the final N − 1 values of the previous trajectory as a
guess for the first N−1 time periods in the next optimization.
The guess for the final time point will be filled with the guess
for the second-to-last time point.

Plotting. For quick plotting, we have the mpcplot func-
tion. Required arguments are x and u, both 2D arrays with
each row giving the value of x or u at a given time point, and
a vector t of time points. Note that t should have as many
entries as x has rows, while u should have one fewer rows.

Linear MPC Functions. There are no specific functions
to handle linear problems. However, if you are using the

ControlSolver class, then you can use solver.isQP = True to
let the solver know that the constraints are linear and the
objective function quadratic, which can potentially speed up
solution.

To linearize nonlinear systems, we provide a useful func-
tion.
util.getLinearizedModel(f, args, names)

Evaluates the derivatives of the CasADi function f at the
point indicated in args (which should be a Python list of vec-
tors) and returns a dictionary. names should be a list of keys
to use in the returned dictionary. Optionally, you can specify
a Delta keyword argument to discretize the returned matrices.

For convenience, we have also included a few simple
control-related functions from Octave/Matlab.
util.dlqr(A,B,Q,R), util.dlqe(A,C,Q,R)

Discrete-time linear-quadratic regulator and estimator.
util.c2d(A,B,Delta)

Converts continuous-time model (A, B) to discrete time
with sample time Delta.

2 User-Defined Functions
MPCTools is written so that users can define functions that operate on “native” numeric data types and have them properly
converted to CasADi functions via getCasadiFunc. For these purposes, we consider NumPy arrays to be the native type. Thus, by
default, when you call getCasadiFunc(f, ...), the function f will be passed NumPy arrays of CasADi SX scalar symbolic variables,
and it is expected to return either a single scalar (e.g., for objective functions) or a NumPy vector (e.g., for ODE right-hand
sides). This behavior should cover the majority of use cases.

In some cases, NumPy compatibility may not be necessary, and you may prefer to write your functions to use the
CasADi symbolic types directly (keeping in mind their slightly different semantics). For this case, you can pass numpy=False

to getCasadiFunc(), which will pass the CasADi symbols directly to f without wrapping them as NumPy arrays. (Note that
previous versions of MPCTools used scalar=False for this functionality. The name scalar has been deprecated in favor of numpy

to better reflect its function. For backward compatibility, scalar is still accepted as a synonym, but a deprecation warning is
issued.)

A related concept is the two different CasADi symbolic types, SX and MX. In general, you can think of SX symbolics as
arrays of scalar variables that are pulled apart and used in algebraic expressions, while MX symbolics are vectors or matrices
that are always operated on as a whole. Note that while CasADi allows you to index or split MX variables, such operations will
be significantly slower than the corresponding SX operations, and thus SX would be preferred if possible. However, SX symbols
cannot be used in certain instances, e.g., if your function calls some type of solver (integrator, root finder, etc.) internally.
To provide flexibility, getCasadiFunc() has a casaditype keyword argument that can be either "SX" or "MX" to choose which type to
use. Consult the CasADi documentation for more details about SX vs. MX.

3 Common Mistakes
Below we list some common issues that may cause headaches.

• NumPy arrays versus matrices.
As the matrix data type plays second fiddle in NumPy, all of the functions have been written expecting arrays and
it is suggested that you do the same. Any matrix multiplications within mpc_tools_casadi.py are written as A.dot(b)

instead of A*b as would be common in Octave/Matlab.
For quadratic stage costs, we provide mtimes (itself, just a wrapper of CasADi’s mul), which multiplies an arbitrary
number of arguments.
If you encounter errors such as “cannot cast shape (n,1) to shape (n,)” or something of that nature, be careful
about whether you are working with 1D arrays, vectors stored as matrix objects, etc. This may mean adding
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np.newaxis to your assignment statements or using constructs like np.array(x).flatten() to force your data to have the
right shape.

• NumPy data types
Most NumPy array functions will make arrays of floats (float64, to be precise). E.g., x = np.ones((1,1)); print x.dtype

will print dtype('float64'). However, if you build your own arrays, then numpy may infer a different data type, e.g.,
x = np.array([[1]]); print x.dtype gives dtype('int64'). This means that any assignments will be cast to that data type,
e.g., x[0,0] = 1.5; print x will truncate 1.5 and return [[1]]. Since NumPy arrays are used as the entries of lb, ub, etc., in
various functions, be aware of this issue.
One more subtle case is x0 for the nmpc function. Because the initial condition are handled internally by setting the lower
and upper bounds equal to the given value, x0 will be cast to the data types of lb and ub. Thus, if both bounds have
dtype('int64'), then x0 will be cast to an integer (by truncating), or if the two bounds have different types, then it may
not be strictly enforced. Note that mpctools.util.array is available as a wrapper to numpy.array that forces dtype('float64')
by default, which may be preferable to NumPy’s type inference.

• Poor initial guesses to solvers.
By default, all variables are given guesses of 0. For models in deviation variables, this makes sense, but for general
models, these values can cause problems, e.g., if there are divisions or logarithms any where. Make sure you supply
an initial guess if the optimal variables are expected to be nowhere near 0, and it helps if the guess is consistent with
lower and upper bounds. For difficult problems, it may help to solve a series of small problems to get a feasible starting
guess for the large overall problem.

• Tight state constraints.
Although the solvers allow constraints on all decision variables, tight constraints on the state variables (e.g., that the
system terminate at the origin) can be troublesome for the solver. Consider using a penalty function first to get a
decent guess and then re-solving with hard constraints from there.

4 Example File
Below, we present an example file to show how much code is saved by using MPCTools. On the left side, we show the the
script written using the pure casadi module, while on the right, we show the script rewritten to use MPCTools.

# Control of the Van der Pol # Control of the Van der Pol

# oscillator using pure casadi . # oscillator using mpc_tools_casadi .

import casadi import mpctools as mpc

import casadi . tools as ctools import numpy as np

import numpy as np

import matplotlib . pyplot as plt

# Define model and get simulator . # Define model and get simulator .

Delta = .5 Delta = .5

Nt = 20 Nt = 20

Nx = 2 Nx = 2

Nu = 1 Nu = 1

def ode(x,u): def ode(x,u):

dxdt = [ dxdt = [

(1 - x[1]*x [1])* x[0] - x[1] + u, (1 - x[1]*x [1])* x[0] - x[1] + u,

x[0]] x[0]]

return np. array (dxdt) return np. array (dxdt)

# Define symbolic variables . # Create a simulator .

x = casadi .SX.sym("x",Nx) vdp = mpc. DiscreteSimulator (ode ,

u = casadi .SX.sym("u",Nu) Delta , [Nx ,Nu], ["x","u"])

# Make integrator object .

ode_integrator = dict(x=x,p=u,

ode=ode(x,u))

intoptions = {
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" abstol " : 1e-8,

" reltol " : 1e-8,

"tf" : Delta ,

}

vdp = casadi . integrator (" int_ode ",

" cvodes ", ode_integrator , intoptions )

# Then get nonlinear casadi functions # Then get casadi function for rk4

# and rk4 discretization . # discretization .

ode_casadi = casadi . Function ( ode_rk4_casadi = mpc. getCasadiFunc (ode ,

"ode" ,[x,u],[ ode(x,u)]) [Nx ,Nu], ["x","u"], funcname ="F",

rk4=True , Delta =Delta , M=1)

k1 = ode_casadi (x, u)

k2 = ode_casadi (x + Delta /2*k1 , u)

k3 = ode_casadi (x + Delta /2*k2 , u)

k4 = ode_casadi (x + Delta *k3 ,u)

xrk4 = x + Delta /6*( k1 + 2* k2 + 2* k3 + k4)

ode_rk4_casadi = casadi . Function (

" ode_rk4 ", [x,u], [xrk4 ])

# Define stage cost and terminal weight . # Define stage cost and terminal weight .

lfunc = ( casadi . mtimes (x.T, x) def lfunc (x,u):

+ casadi . mtimes (u.T, u)) return mpc. mtimes (x.T,x) + mpc. mtimes (u.T,u)

l = casadi . Function ("l", [x,u], [ lfunc ]) l = mpc. getCasadiFunc (lfunc ,

[Nx ,Nu], ["x","u"], funcname ="l")

Pffunc = casadi . mtimes (x.T, x)

Pf = casadi . Function ("Pf", [x], [ Pffunc ]) def Pffunc (x): return 10* mpc. mtimes (x.T,x)

Pf = mpc. getCasadiFunc (Pffunc ,

[Nx], ["x"], funcname ="Pf")

# Bounds on u. # Bounds on u.

uub = 1 lb = {"u" : -.75* np.ones ((Nu ,))}

ulb = -.75 ub = {"u" : np.ones ((Nu ,))}

# Make optimizers . # Make optimizers .

x0 = np. array ([0 ,1]) x0 = np. array ([0 ,1])

N = {"x":Nx , "u":Nu , "t":Nt}

# Create variables struct . solver = mpc.nmpc(f= ode_rk4_casadi ,N=N,

var = ctools . struct_symSX ([( verbosity =0,l=l,x0=x0 ,Pf=Pf ,

ctools . entry ("x",shape =(Nx ,), repeat =Nt +1) , lb=lb ,ub=ub)

ctools . entry ("u",shape =(Nu ,), repeat =Nt),

)])

varlb = var(-np.inf)

varub = var(np.inf)

varguess = var (0)

# Adjust the relevant constraints .

for t in range (Nt ):

varlb ["u",t ,:] = ulb

varub ["u",t ,:] = uub

# Now build up constraints and objective .

obj = casadi .SX (0)

con = []

for t in range (Nt ):

con. append ( ode_rk4_casadi (var["x",t],

var["u",t]) - var["x",t+1])

obj += l(var["x",t], var["u",t])

obj += Pf(var["x",Nt ])
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# Build solver object .

con = casadi . vertcat (* con)

conlb = np. zeros (( Nx*Nt ,))

conub = np. zeros (( Nx*Nt ,))

nlp = dict(x=var , f=obj , g=con)

nlpoptions = {

" ipopt " : {

" print_level " : 0,

" max_cpu_time " : 60,

},

" print_time " : False ,

}

solver = casadi . nlpsol (" solver ",

" ipopt ", nlp , nlpoptions )

# Now simulate . # Now simulate .

Nsim = 20 Nsim = 20

times = Delta *Nsim*np. linspace (0,1, Nsim +1) times = Delta *Nsim*np. linspace (0,1, Nsim +1)

x = np. zeros (( Nsim +1,Nx )) x = np. zeros (( Nsim +1,Nx ))

x[0 ,:] = x0 x[0 ,:] = x0

u = np. zeros (( Nsim ,Nu )) u = np. zeros (( Nsim ,Nu ))

for t in range (Nsim ): for t in range (Nsim ):

# Fix initial state . # Fix initial state .

varlb ["x" ,0,:] = x[t ,:] solver . fixvar ("x" ,0,x[t ,:])

varub ["x" ,0,:] = x[t ,:]

varguess ["x" ,0,:] = x[t ,:]

args = dict(x0=varguess ,

lbx=varlb ,

ubx=varub ,

lbg=conlb ,

ubg= conub )

# Solve nlp. # Solve nlp.

sol = solver (** args) solver . solve ()

status = solver . stats ()[" return_status "]

optvar = var(sol["x"])

# Print stats . # Print stats .

print ("%d: %s" % (t, status )) print ("%d: %s" % (t, solver . stats [" status "]))

u[t ,:] = optvar ["u" ,0,:] u[t ,:] = solver .var["u" ,0,:]

# Simulate . # Simulate .

vdpargs = dict(x0=x[t ,:] , x[t+1 ,:] = vdp.sim(x[t ,:] ,u[t ,:])

p=u[t ,:])

out = vdp (** vdpargs )

x[t+1 ,:] = np. array (

out["xf"]). flatten ()

# Plots . # Plots .

fig = plt. figure () fig = mpc. plots . mpcplot (x,u, times )

numrows = max(Nx ,Nu) mpc. plots . showandsave (fig ," comparison_mtc .pdf")

numcols = 2

# u plots . Need to repeat last element

# for stairstep plot.

u = np. concatenate ((u,u[ -1: ,:]))

for i in range (Nu ):

ax = fig. add_subplot (numrows ,

numcols , numcols *(i+1))
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ax.step(times ,u[:,i],"-k")

ax. set_xlabel ("Time")

ax. set_ylabel (" Control %d" % (i + 1))

# x plots .

for i in range (Nx ):

ax = fig. add_subplot (numrows ,

numcols , numcols *(i+1) - 1)

ax.plot(times ,x[:,i],"-k",label =" System ")

ax. set_xlabel ("Time")

ax. set_ylabel (" State %d" % (i + 1))

fig. tight_layout (pad =.5)

import mpctools . plots # Need to grab one function to show plot.

mpctools . plots . showandsave (fig ," comparison_casadi .pdf")

Even for this simple example, MPCTools can save a significant amount of coding, and it makes script files much shorter
and more readable while still taking advantage of the computational power provided by CasADi.

5 Disclaimer
Note that since CasADi is in active development, MPCTools will need to be updated to reflect changes in CasADi’s Python
API. Additionally, function internals may change significantly as we identify better or more useful ways to wrap the relevant
CasADi functions. This means function call syntax may change, although we will strive to maintain compatibility wherever
possible.

As mentioned previoiusly, the latest files can always be found on https://bitbucket.org/rawlings-group/mpc-tools-casadi.
For questions, comments, or bug reports, please open an issue on Bitbucket.

Michael J. Risbeck James B. Rawlings
risbeck@wisc.edu james.rawlings@wisc.edu

University of Wisconsin–Madison
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