Corso di Programmazione ad Oggetti - a.a. 2013/2014
Corso di laurea in Ingegneria e Scienze Informatiche - Universita di Bologna

Documentation about the Engineering of CINA: a public/private
multi-client chat.

Belli Stefano, Francesco Cozzolino

CryptoChat

Secure Socket
Lavy/er

1 Problem Analysis

Due to the increased role of privacy in the everyday life and the request of non-traceability in the real world,
users needings come to the creation of a multi-client chat that could guarantee a crypted and anonymous
conversation between two (or more) clients.

More specifically, the above noted chat would guarantee:
- A public multi-clients chat
- An encrypted private chat
- The possibility to send or receive files.
- The ability to know which users are connected to the chat
- The confidentiality of every user identity.

From the WebServer side, the chat environment would guarantee:
- The ability to close connection of a client remotely
- An asynchronous handling of every event in the chat
- The management of user interaction with other users

Obviously, the integrity of every user identity is a key part of this application.
In fact, every interaction client to client should be handled with care, and with the agreement of every user
involved.

From this application profile, it's clear that a clean, asynchronous GUI it's needed to get the chat to work.
Also, a private chat framework based in algorithm of some type will be needed.

Last but not least, a public chat management will be needed, so a Web Application of some type will gets the
work done.

2 Architectural design

From the architectural side, the application it has been build with the MVC pattern.

More precisely, only the chat Jframes (public or private it makes no difference) are been implemented with the
MVC pattern, but that's because the application heavily relies on those frames: in fact, roughly the 80% of the
application lifecycle relies beside the MVC pattern.

Anyway, some others minor jframes (like Credits, or Downloaded) are not based on MVC pattern because they are
relatively easy to manage.

Almost all commands that involve the chat’s GUI are completely asynchronous, in order to ensure the reactivity of
the GUI itself and to avoid some boring idle times for the user.

In the next pages, some UML diagrams of the project will be shown: please be aware that some methods are not
called directly from the code itself, but are automatically invoked from the websocket threads.
More info about this management it's located below, on section 5.7.

<<Java Interface>>

3 Modelinterface
mainC hat

@ sendMessage(String, String):void
@ showDownloads() void

@ showPreterences():void

@ sendFile(String, String):void

@ addNickName(String, String,inf) :void
@ removeNickName(String):void
@ addlp(String,int, String):void

@ removelp(String,int) :void

@ closeAll) void

@ exist(String):String

@ existlp(String,int): String

@ attachViewObserver(ViewObserver):void

<<lava Interface=>

9 ViewObserver
mainChat

@ commandSendMessage(String, String) :void

@ commandShowDownloads():void

@ commandShowPreferences():void

@ commandCloseTab(ActionEvent) void

@ commandCreate Tab{String,int, String, String):void
@ commandReceiveMessage(String, String) void
@ commandRemaoveUser(String) void

@ commandRefusedChat(String) void

@ commandCloseAll]) void

@ showMessageMain(String):void

@ notityClosing():void

@ notifyChatUser(String) void

@ notifyChatUser|p(String,int int):void

@ notitySendFileUser(String, String):void

-controller

<<Java Interface>>

& Viewinterface
manC hat

@ attachViewObserver(ViewObserver) void

@ sendMessage():String

@ showMessage(String, String):void

@ showMessageMain(String):void

@ createTaby(String):void

@ closeTab(ActionEvent):void

@ gefTabindex():int

@ gefTabName():String

@ buildC hoiceMessageBox(String, String, Object]],int) int

@ appendUser(String):void

@ removeUser(String):boolean
@ playSound(SFX):void

@ closeChat():void

@ isConnect(String inti:boolean "“‘;‘“f‘ o buidChoice) tring[):int
@ closeClient{String):void " @ coseChat():void
@ closeServer(String) void @ setView(View|nterface) void
@ connectToServer(String,int, String, String):void @ setModel(Modelinterface) void
@ getDownloaded(): Downloaded
4
=<Java Class=>
(3 Model
mainChat
o download: Downloaded (éJ;uaCLas;;)
o dlient: ManageClient m:rl::ts '

o SErver: Server

o keyStoreServer: KeyStoreServer
o peopleChat: Map<String, String>
o peoplelp: Map<String, String>

o lockPeopleChat: Object

o lockPeoplelp: Object

& Model)

@ sendMessage(String, String) void
@ sendFile(String, String): void

@ showDownloads() :void

S USER_DISCONNECTED: String
o lockMotification: Object

gcCuntmIiel[)

@ setView(Viewlnterface) void

@ setModel(Modelinterface):void

@ commandShowDownloads():void
@ commandShowPreferences():void

@ sendFile(String, String) :void

@ commandSendMessage(String, String) :void

@ showPreferences():void

@ addNickName(String, String, inf):void

@ removeNickName(String):void

@ add|p(String,int, String):void

@ removelp(String,int):void

@ connectToServer(String,int, String, String):void
@ getDownloaded(): Downloaded

@ exist(String):String

@ existlp(String,int): String

@ isConnect(String,int):boolean

@ closeAll()void

@ closeClient(String) void

@ closeServer(String):void

m deleteFile(File):void

@ attachViewObserver(ViewObserver):void
@ createKeyStore(String, String):String

<<Java Enumeration>>

(3 MessageBoxReason
mainChat

EH)FREQUEST PRIVATE_CHAT. MessageBoxReason

SoFﬁEgUEST RECEIVE FILE: MessageBoxReason

%F ALERT_CLOSING_WINDOW: MessageBoxReason
% FILESIZELIMIT: MessageBoxReason

gc MessageBoxReason()

@ commandCloseTab(ActionEvent):void

@ commandCreate Tab{String,int, String, String):void
@ commandReceiveMessage(String, String) void

@ commandRemaoveUser(String) void

@ commandRefusedChat(String) void

| —2 & commandCloseAl):void

@ exist(String):String

@ existlp(String,int) :String

@ showMessageMain(String):void
@ appendUser(String):void

@ removeUser(String):boolean
@ notityClosing():void

@ buildCI

tring[J):int

@ notifyChatUser(String) void

@ notifyChatUser|p(String,int,int):void
@ notitySendFileUser(String, String):void
@ closeChat():void

<<Java Class>>
(3 View
mainChat

S TITLE: String

S WIDTH: int

%S HEIGTH: int

“of HGAP: int

Sf VGAP: int
SFWIDTH_USERJLIST: int
& prefs: Preferences

o tabView: JTabbedPane
o enter: JButton

o send: JButton

o chooser: JFieChooser

a menu_chat: JMenu

o menu_options: JMenu

a menu_help: IMenu

o icon_path: String

o frame_title: String

o texilist: List<JTextArea>
o chatlist: List<JTextArea>
o usersllist: JList<String>
o usersList: DefaultListModel<String>

<<Java Class>>

(3 CustomWindowAdapter
manChat

a window: JFrame

&view()

@ buidGUI():void

@ closeTab(ActionEvent):void

@ createTab(String):void

@ sendMessage():String

@ showMessage(String, String) :void

@ showMessageMain(String):void

@ setAction():void

m getActionListener() :ActionListener

= getMouseListener(): MouseAdapter
= getkeyListener():KeyListener

@ attachViewObserver(ViewObserver) void
= getMyScroli(JTextArea):JScrollPane
m getMyText() JTextArea

= getTiteTab(): String

@ getTabName(): String

@ getTabindex():int

@ checkTab{String):int

@ buildChoiceMessageBox(String, String, Object] int):int
@ appendUser(String):void

& removeUser(String):boolean

@ pk d(SFX):void

fc ustomWindowAdapter(JFrame)
@ windowClosing(WindowEvent):void

@ closeChat():void
@ sendFile(boolean):void
@ privateChat() :void

/

<<J)ava Class»>
©Popup

mainChat

o anltem: JMenultem

& Popup()
@ doPop(MouseEvent,int int):void

<<Java Enumeration>>
BSFX
mainC hat

% REQUEST: SFx

% PLAIN_TEXT: SFX

& SFXD)

The Controller class is the core of the application; for instance, when any kind of event in the GUI it's requested (or in the data structure too), the
corespective method in the Controller class it's invoked. Those request can come from the user itself (with his actions) or by other classes such as the

WebSocketHandler.

In the next UML is shown the basic interactions between the GUI and the classes for private chat:

<<Java Class=>
@ Client

eneryptChat

= ssiSocketFactory: SSLSocketFactory
o ssiSocket: SSLSocket

a gos: ObjectOutputStream
o ois: ObjectnputStream

5 ip: String

o port: int

© nameClient: String

@ nameServer: String

o resetTime: boolean

o stop: boolean

a downioad: Downloaded
a latch: CountDownLatch
5 lock: Object

o lockAl Object

o id: int

@ Client(String.int, String, String, View Observer Modelnterface, String)
@ run():void

@ sendFile(String):void

@ sendilessage(ManagementFies byte]] int)void
© sendilessage(String)void

@ ciosa():void

&F ObtainKeyStore(String int, String} String

@ getip() String

® isConnected(}:bookean

@ isClosed():boolean

© getameServer():String

<<Java Interfaces=>
€ ViewObserver

mainChat

@ commandSendMessage(String, String)void
© commandShowDownloads():void

© commandShowPreferences():void

® commandCloseTab(ActionEvent):void

© commandCreateTab(String, nt,String, String):void
© commandRecsivellessags(String String):void
@ commandRemovelsar(String) void

@ commandRefusedChat(String) void

@ commandCloseAll() void

© showMessagelain(String):void

_controller | @ notifyClosing():void

® notifyChatUser(String):void

© notifyChatUserlp(String, nt int):void

@ notifySendFileliser(String, String):void

4

@ buidc tring[Jy:int

@ closeChat():void
@ setView(Viewinterface)void
@ setiodel(Modelnterface):void

<<Java Interfaces==
€@ Modelinterface

mainChat

@ sttachViswObserver(ViewObserver):void
@ sendiessage(String, String):void
@ showDownloads():void

@ showPreferences()void

@ sendFile(String String):void

@ addNickName(String,String,int):vold
@ removeNickName(String):void

® addip(String, nt String):void

@ removelp(String int):vois

@ closeAl():void

@ exist(String):String

& existp(String int) String

@ isConnect(String, int):boolean

@ closeClent(String)void

@ closeServer(String):void

@ getDownioaded():Downloaded

® connectToServer(String, nt String String :void

0.1

—controller

07

<<Java Class»>
& Server
encyptChat

o ssiServerSocket: S5LServerSocket

& Server(ViewObserver, Modelinterface String)
@ sendMessage(String,String)-boolean

® sendFie(String,String) boolean

@ isConnect(String):boolean

® close()void

@ closeClient(String):void

-client 0}.*

==Java Class=>
(& MessageFromToClient
encryptChat

o ois: Objectinputstream
o oos: ObjectOutputStream
o ssiSocket: SSLSocket

o nameClient: String

o ip: String

o id: int

o port int

o lock: Object

o ciose: boolean

o download: Downloaded

@ MessageFromToClent(SSLSocket ViewObserverModelnterface)
-model @ run()void
@ sendFile(String)void

© sendilessage(String):void

@ sendilessage(iianagemntFizs,byta int):void
@ gethameClient():String

@ getip(kString

@ isCennected()boolean

@ isClosed{):boolean

KeyStoreServer : this class instantiate a server socket that's able to exchange the user's keystore with other
users who would like to have a private chat.

SendReceiveFile : This abstract class provides a schema for send and receive files and defines two abstract

methods to send a message.

Server and Client : The main purpose of Server class it's to implement a SSLServerSocket.The Client class,instead,

implements a SSLSocket.

Those classes allows to have an encrypted (SSL protocol) private chat between two users. They both extend the

SendReceiveFile class.

ManagementFiles : Permits to set some informations about a file and store these information with an
implementation of Serializable interface.

ModelIlnterface and Model : Interface and Implementation of data structure used from the application

<<Java Class>>
(2 Downloaded
additionalFrames

o fileReferences: Map<String, JPanel>
annI_main: JPanel

of frame: JFrame

o clearbutton: JButton

o background_color: boolean

o LIGHT_LIGHT_GRAY: Color

o ALMOST_WHITE: Color

o frameSize: Dimension

o maxframeSize: Dimension

@ Downloaded()
= buikdFilePanel{ String,int).JPanel

& updateProgressBar(String, int,int):boolean

@ addFile(String,int, String, int) :void
@ showFrame(boolean) boolean
@ resizeFrame():void

= clear():woid

@ isVisible().boolean

<<Java Class>>

(& Prefs
additionalFrames

o frame: JFrame

of TITLE: String
ciframeSize: Point

o Ibl_download_loc: JLabel
o chk_sounds: JCheckBox

o txt_defaultnick: JTextarea
o chk_visibility: JCheckBox

=<Java Class>>
(® SplashScreen

sdditicnalFrames

o tt_defaultdownloadioc; JTextArea

& Prefs()

<<Java Class>>

(9 Credits
additionalFrames

o frame: JFrame

o°TITLE: String

of INVALID_NICKNAME_MESSAGE: String
sSNICKNAME_ALREADY USED_MESSAGE: String
ciframeSize: Point

sicmb_channel: JComboBox<Siring>
sichannelist: DefaultComboBoxModel=String>
o pnl_main; JPanel

oflbl_channel: JLabel

oflbl_nickname: JLabel

citt_nickname: JTextArea

&obitn in: JButton

ochb visible: JCheckBox

o loadingCircle: JLabel

o icon_path: String

cicente rscaling: int

o FRAME_SIZE; Dimension

o FRAME_TITLE: String

o CREDITS_TXT: String

o SPECIAL_THANKS_TXT: String

@ Credits()

< addStylesToDocument(Styled Document) woid
VscreateImageloun[Stling,Str ing):Imagelcon

{)ESplashS«creen[)

@ CenteredX({Component).int

@ disposeFrame():void

@ buildChoiceMessageBox(String, String, Object]] int):int
@ setVisibilityLoadingCircle(boolean) void

@ nickname!|nvalid{):woid

@ setFrameEnabled(boolean) vwoid

Downloaded: Shows the “Downloaded” frame and handles all the incoming (and outgoing) files for the client. Be
advised: an integration with the model class it's needed, but it's not shown in this diagram for semplicity.

Credits: Shows the “Credits” frame centered on the screen. A JTextPane it has been used as main view
component.

Prefs: Shows a preferences frame on screen. This frame it's needed due to some basic needings of

personalization the user.

SplashScreen: One of the core classes of this application. Shows an initial login screen where user can select
some basic options, such as his own nickname and his visibility. It is heavily dependent to the Application class.

3 Package organization

The application has been divided into the following packages :

mainChat : contains all the source codes that encapsulates the GUI and all commands related to it
encryptChat : contains all source codes that encapsulates the private chat between two users.

webSocket : contains all source codes that encapsulates all the comunication algorithms with the webserver.

preferences : contains all source code that encapsulates the information of a user. Those information are stored
via the config.conf file or the Java Preferences.

additionalFrames : contains all source code related to some minor frames. Those includes the Credits class,
Preferences and Downloaded.

4 Subdivision of the Application

The project it has been divided to two distinct parts: the public chat part and the private one.

All the interaction with the public (websocket) part has been implemented by Stefano Belli.

The websocket management involved all the types of messages exchanged with the server, and every type of
handshake (like the INITIALIZE one).

Of course, the deployment of the server it's also one of his works.

Also, Stefano Belli implemented the whole Preferences, Credits and SplashScreen classes.

The private chat has been implemented by Francesco Cozzolino, also has implemented the exchange of keystores
between the users (necessary for chat with SSL protocol),the automatic creation of keystore (window and linux
0.S.), and the management of the private chat request avoiding the use of web server.

For reason of integration of the code, some parts have been developed together as the classes
model,view,controller and the management of some messages from the web server

5.1 Detailed Engineering: Stefano Belli’'s work

As mentioned above in the section No. 2, Stefano Belli's work relies heavily on the public chat part.

One of the main class (from the client perspective) of this management is surely the WebSocketHandler class.
The main scope of this class is to handle (as the name suggest) all the communications via the websocket
protocol with the webserver.

For a better understanding of this class, here's shown some methods of this class with a brief explanation (please
notice: some of those methods indentations are in POJO format, as the websocket standard for java requires)

this method handles the initial handshake with the server.
For example, here the availability of the nickname in the channel is checked.

this method handles all the (decoded) messages incoming from the webserver.
The messages are decoded in a ChatMessage instance by the MessageDecoder class.

this method is mostly occurred when the connection is closed remotely by the server.

SendMex(ChatMessage mex) : this method it's used to actually send messages to the server.
In the sending sequence, an istance of MessageEncoder it's automatically called.

Here's a simplified schema that describes the relationships between those 3 classes(MessageDecoder,

Message is now encoded. Incoming message from
Sending funclions are now wabserver.
imminants, Message goes to decode
functions
El MessageEncodear — MessageDecoder
-E" Strng encode| ChalMessage messags : | -ﬁ Chalkiess ages decode{ Sinng gonblessage :)
& Jaomarray ParamTolsondaray] Chaties s age B bockean wil Decode])
message . | & Param Jaomerray TaPnrsm|.) sanammy
Eondray |)
{optional) & new message has been Measage I dacoded. Now It goss
crealed 1o respond o WebSockeiHandler for adequate
—) handling.
It goes to encoding functions for
proper sending.
HwebSsocketHandler

Ed Session chentSesson @ [0_1)]

ﬂ EOrODen] Sessinn Session |)

§ 90nMesaage(ChalMessage mescage |, 5855100 session)
SOnCkea|Session seaskan |, CossRARSON clnsaResson |)
& SendMas[ChasMRsSAge Messagn ;)

WebSocketHandler and MessageEncoder) on a request of private chat :

Please note the webserver has an identical processing algorithm for every message sent or received.
The WebSocketHandler class is based on the Singleton pattern.
That's because it represents the connection with the webserver, which is unique. A singleton pattern is perfect
for those needings, because from every section of the project the websockethandler class could be retrieved
with that single, unique istance.

The actual datas sent over the network are encoded in JSON strings.

Once they are received, they are decoded in a “ChatMessage” object, which enables to have a better abstraction
and handling of every circumstances.

Here's an UML diagram of this essential class:

H chatmessage
[Ed Type messageType : [1f
il Param sdditional Params - [0..1]

[CL Siring messane | [0..1]

ED
I"=' Param & Chathles sagel Siring Message | | Type l: Type
— - messageType -) Il INITIALIZE (1]
E String nickname . [0.1] ﬂ Chathbes Sage Siring messaoe | | Type] CONNECTIONGRANTED : [2]

2, boolean visibiity | String [0..1) message Type -, Param addiionalParams :)

B4 ArrayList<Stringe userList : [0..1) i Pasam IsParamsSet)
£ stingip: [0.1] i setType(Type type :)

£ String fename © J0..1] 8 Tvoe getTypel)

= TEXT: [1]
=] MEWUSER - [1]
I USERDNSCONMECTED : [1]
1] USERLIST : [1)

E2L String S5LPort : [0..1)

EQ String KEYPort : [0..1)

@ seNickname]Sting nick |)

{#§ Sting getNickname()

setvisibilty[bookean visible ;)
{§ boolean getvisibdiy()

ﬁ appendUser|String UserMicknams |)
{#§# ArrayList<Sing> getUsersLisi()
i setiP{String ip:)

ﬁ- String getl P

) setFieNama{Siring fiahams)
i Swring getFieName()

{§ setSSUPo]Sting port :)

@ swing ge1SSLPeA)

i setkeyPort|String port ©)

{#§ String getkeyPort)

Why json format?

§ sewndditionalParams (Param params |)
i Param getAddiionalParams()
i seiMessage(Siring message ;

| ﬂ- String gethMessage)

=] DISCONNECTING : [1]

Dl REQUESTPRIVATECHAT : [1]
I YESPRIVGTECHAT : [1]

5] MOPRIMATECHAT : [1]

=] MICKNAMEUNAVALABLE : [1]
I REQUESTSENDFILE ! [1]
£l REQUESTEDSENDEILE : [1]
= YESSEMDFILE : [1]

=] NOSENDFILE - [1]

I RESETFLAG : [1]

] PING : [1]

JSON encoding has been chosen due to its flexibility and because it's pretty familiar with Stefano Belli's

knowlnedge .

In addition, some required fields (like the users list in USERLIST chatmessage type) which involved

the transmission of array-type variables can be actually easily stored in a JSONArray instance, which simplifies

the transmission itselfs.

Last but not least, JSON it's a standard. It's always a good point, isn't it?

Why the above UML diagrams have missing methods/parameters?

The above uml diagrams were made before the actual implementation of this project (except for the “Type”
enum).

In fact, they are missing many methods and parameters in relation with their “real” counterpart because they
were a simple prototype of those classes.

Why you have used monitor(s) ?
Well, that's the tricky part.
When an istance of websockethandler is created through the ClientManager.connectToServer() calling, an
independent, asynchronous thread it's automatically created.
The above thread handles the three main methods of the class: @0nMessage, @0nOpen and @0OnClose.
In fact, the user which used the connectToServer() method has no control over this thread, because it has no
reference for it.
So, the synchronization between the Application class (which handles the starting of the application and the
drawing of the main chat) and the WebSocketHandler one become very difficult.
The monitor made the trick.

Used Libraries:
BaloonTip 11: a simple library which enables to create lightweight, fast “ToolTip” components by specifying
only two parameters (the actual message to show, and the component to attach to).

In this project it's has been used in the splashscreen frame, were a tooltip in the nickname field it's pretty good
looking.

Junite 21: This is a very handy library which limits the number of concurrents instances of an application by a
specified number.

In this project it has been used mainly because duplicate istances of CryptoChat may cause some serious
troubles with the encrypted chat, causing exceptions to be thrown due to the same socket ports used twice.

5.2 Detailed Engineering: Francesco Cozzolino’s work

Francesco Cozzolino's work is focused on creation of private chat with SSL protocol and all management between
the GUI and the handling of sends/receives messages/files. Obviously the main classes of this management are
the Client and Server classes; they use a template method.

Here's the correspective UML diagram of this classes:

El SendReceiveFile

48 SendReceiveFie()

s,, sendFile(File file : , String name : |, ManagementFiles managementFile : |
* Downloaded download ¥

ﬁ- sendMessage(String message @)

8% sendFile(ManagementFiles managementFile : , byte [] buffer : |, int step :)

receiveFie(Object o : | String name : | ObjectinputStream ois : | Downloaded

ﬁ;‘* download : , Map<integer,DownloadFile> fileReceive :)

= server

CL, S5LServerSocket sslServerSocket @ [1]

[EL List=MessageFromToClient= client : [1]

ﬁ Server(WiewObserver controller : , Modelinterface
model : | String password : }

£y sendMessage : boolean(String message : |, String
name : }

48 sendFile : boolean(String path : , String name : }

ﬁ isConnect : beolean(String ip : }

& close()

| §# closeClient(String ip -)

servers[*]

E Client

E4 S5l SocketFactory sslSocketFactory @ [1]

E4 S5LSocket sslSocket : [1]

EL ObjectOutputStream oos @ [1]

[E4 ObjectinputStream ois : [1]

E4 ViewObserver controller @ [1]

EQ String ip: [1]

=L int port : [1]

[EZ, String nameClient : [1]

[E&, String nameServer : [1]

[E4 boclean resetTime @ [1]

E4 boolean stop @ [1]

E4 Downloaded download : [1]

EA CountDownlLatch latch : [1]

EL Object lock : [1]

[E4 Object lockad @ [1]

L, intid : [1]

=4 Modelinterface model : [1]
Client(String ip : , int port : | String name : , String password : |

48 ViewObserver controlier : | Modelinterface model : |, String
keyStore : }

42 run()

488 sendFile(String path : }

‘ﬁ} sendMessage(ManagementFiles managementFile : |, byte [J buffer : |
int step :)

48 sendMessage(String message :)

& close()

ﬂ- ObtainkKeyStore(String ip : |, int port : , String sender : }

% getlp : String(}

48 i=Connected : boolean()

488 isClosed : boolean()

ﬂ- getMameServer | String(}

MessageFromToClient[*]

= MessageFromToClient

=i ViewObserver controller : [1]

E3, Modelinterface model : [1]

=1, ObjectinputStream ois @ [1]

EL ObjectOutputStream ocos @ [1]

=L SSLSocket sslSocket @ [1]

=4, String nameClient : [1]

=4 String ip : [1]

tid : [1]

=L Object lock : [1]

EL boolean close @ [1]

=i Downloaded download : [1]

'ﬁ MessageFromToClient{SSLSocket sslSocket : | WiewObserver
controller - | Modelinterface model :)

4@ run(y

% sendFile(String path : }

-ﬁ- sendMessage(String message ©)

'ﬁ' sendMessage(ManagementFiles managementFiles : |, byte [
buffer : , int etep: }

8 getMNameClient : String()

88 oetlp : String()

4§ isConnected : boolean(})

% isClosed : boolean()

How does it work a private chat ?

Forwards the reguest

—

RE‘.E] uest response

 —

Send request private chat

Forwards the responsa

 —

Client & Client B

s B W omoE

Reguest type from Client A :Type REQUESTPRIVATECHAT
Response type from Chant B : Type YESPRIVATECHAT
Type NOPRIVATECHAT

If the answer is affermative

Connect to client B for

exchange keystore E ::
Client A Client B

Exchange keysioras

Connect to client B with 551
profocol

—

(for some details about the messages involved with the webserver, see point 5.1)

In order to establish a connection between two users, is necessary to exchange their keystores.

When the client “A” wants to talk with the client “B",it sends a request of private chat to the webserver, that
forwards the request to the client “B".

Client B then receives the forwarded message from the webserver: a JOptionPane with “Yes” or “No" is shown as
result.

When client “B” answers, it sends the “answer” message (YESPRIVATECHAT or NOPRIVATECHAT) to the
webserver,that forwards again the response to the other client.

If the answer is of type YESPRIVATECHAT, the IP and router’s socket ports of the sender is included.

If client “A” receives an affermative type response, it tries to connect to the server of user “B” (with the provided
ip) to exchange their keystores. If the exchange is successful, client “A” tries to connect to the server of client “B"
with SSL protocol and finally they can chat.

The same routine happens with the option “Chat to” with the difference that the webserver isn't involved.
In fact, in this option the user inserts directly the ip to connect to.

As result, user “A” directly tries to connect to the server of “B” to exchange keystores (obviously, an user prompt
of “yes” or “no” is also shown here).

When the connection is established, the user that is, in fact, a client (it does not hosts the connection) starts a
timer; if it records an inactivity (no messages received or sent) for one minute or over,the connection is
automatically closed. When one of the two clients would like to chat after the timeout connection, the “private
chat” handshake shown above will not be necessary to be run again: a map structure stored in the model class
takes trace of all connected users in the session, and stores their informations such as Ip and socket ports;
However, if a client close normally the chat, all of its informations are deleted.

For this type of connection each users need to have two router’s socket ports open.

One is used for the socket to be able to exchange keystores, the other one is in order to receive an SSL
connection.

In addition to sending/receiving messages, it's possible to send and receive files. If there is no connection
between two users the same mechanism mentioned before is needed in order to send or receive files; in other
words, a private chat must be established to be able to send or receive files.

Since the stream for I/0 is the same for both string messages and files, to avoid starvation the files are sent in
chunks of bytes.In both sides the users are advised with a message which tells the starting (or finishing) of the
stream.

In addition, a JProgressBar it has been implemented in order to see asynchronously the progress of the stream
(in the “Downloaded” frame).

What is a keystore ?

“A Java KeyStore (JKS) is a repository of security certificates, either authorization certificates or public key
certificates used for instance in SSL encryption”[3] (source : Wikipedia)

Like mentioned before, to have an encrypted chat is necessary to have the public key of the client who wants to
chat and his own keys. Those keys are created automatically with a .bat or .sh script (depends from the 0.S.) that
contains some information of user. For improved security, scripts and the keystores are created automatically at
every session; the keystores are protected with a random alphanumeric password.

6 Testing

CryptoChat has passed many tests before this (early) release.
althoughit needs some other other important fixes, the main functions of this application are perfectly working.
However, the correct setup of this application is really important and it should not be ignored:

1. Check if you have a working (and binded, with JAVA PATH) JDK version 1.7 on your system.

2. Please user the given .jar file of the application within the given resources directories: in other words,
extract the application .rar and leave it (and use it, of course) as it is.

3. Be sure that wherever you extract your application you have all the writing rights needed for your user
(i.e.in linux set your main directory as 777).

Please also apply “executable” rights on the provided jar.

4. Before to launch the application, be sure to have two router’s ports open or the private chat will not work
correctly. For set which router’s ports use for private chat, go to ../ClientChat/config/ and open the file
“config” with any text editor and set the router’s ports you want to actually use. If the file doesn't exist, at
the first running of application , the config file will be created automatically with default ports 9998 and
9999

5. Ifyou are encountering some issues with a linux machine, run the provided jar from shell with java -jar
command.

Please note: doing a “usual” JUnit test would have been really difficult to perform in this project.

A manual series of test have been made to understand if the application really work, and a small part of it it's
documented here)

Here's some testing of the actual encryption of the messages sent:

wlan0 [Wireshark 1.8.2] + -9 X
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
S i & BAXES BeeyF2EE - cREEm= 6
oom in
Filter: ¥ |Expression... Clear Apply Salva
Nao. Time Source Destination Protocol | Length | Info =
30 10.495922000192.168.1.18 87.10.244.193 TCP 66 53183 > http-alt [ACK] Seq=153 Ack=457 Win=980 L
31 10.497322000(87.10.244.193 192.168.1.18 TCP 66 http-alt > 53183 [ACK] Seq=457 Ack=153 Win=318 L
32 11.60725400(87.10.244.193 192.168.1.18 HTTP 180 Continuation or non-HTTP traffic

n=980 L

33 11.60732400(192.168.1.10 87.10.244.193 TCP 66 53183 > http-alt [ACK] Seq=153 Ack=571 Wi
3 ! ! 5510 Cont ation ¢ I

7.108.24

35 i } 3 CP 531
36 11.60797900087.10.244.193 192.168.1.108 HTTP

180 Continuation or non-HTTP traffic

37 11.608003000192.168.1.10 87.10.244.193 TCP 66 53183 > http-alt [ACK] Seg=153 Ack=685 Win=980 L-
Ll 3
b Frame 32: 180 bytes on wire (1440 bits), 180 bytes captured (1440 bits) on interface @ b

b Ethernet II, Src: Technico 98:c2:c4 (58:98:35:98:c2:c4), Dst: Azurewav Bf:5e:e® (80:25:d3:8f:5e:e@)

h FTatmemndt Aentrarmral Haerliaa A4 Comeme OF A MAA AR [OT A4 SAA AA30N Ped . 1A% 9£06 4 A8 FAAM 9£06 4 AA)N =
Be88 08 25 d3 8f 5e ed 58 98 35 98 c2 cd 08 00 45 28
GBle 00 a6 19 1b 40 00 3e 86 15 99 57 Ba f4 cl cO a8 = L d h
ge28 01 @a 1f 98 cf bf 38 51 e3 bf dl 91 dl ed 80 18 /......80 -

030 01 36 e4 ae A0 00 01 @1 A8 Ba 01 2c c8 fO 80 1b . A Non encrvpte c at
ge48 a2 1d 81 78 7b 22 54 79 78 65 22 3a 22 54 45 58
Be58 54 22 2c 22 4d 65 73 73 61 67 65 22 3a 22 73 65
Qe60 20 6c 65 67 67 6f 20 71 75 65 73 74 6f 20 6d 6
ae7e 73 73 61 67 67 69 6 20 6cC 61 28 63 68 61 74 20
0080 6e 6f 6e 20 c3 a8 20 63 72 69 78 74 61 74 61 22
8898 2c 22 61 64 64 58 61 72 61 6d 73 22 3a S5b Tb 22
BBad 4e 69 63 6b 6e 61 6d 65 22 3a 22 43 6f 7a 7a 6f
G0bd 22 7d 5d 7d

uesto me
ssaggio la chat
non .. ¢ riptata"
, “addPar ams":[{"
Nickname ":"Cozzo

-

wlan0 [Wireshark 1.8.2] + -0 X
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

B @l e BAxXxEe Re»¥FEEEleouR @EMEE

Filter: ¥ | Expression... Clear Apply Salva

No. Time Source Destination Protocol Length | Info =
12 1.895779000 192.168.1.10 82.61.183.211 TCP 54 cslistener > 610891 [ACK] Seq=1 Ack=367 Win=913 L
13 1.896850000 87.10.244.193 192.168.1.10 TCP 66 http-alt > 53183 [ACK] Seg=1 Ack=40 Win=327 Len=
14 3.004065000 82.61.183.211 192.168.1.18 TCP 176 61891 = cslistener [PSH, ACK] Seq=367 Ack=1 Win=
15 3.009638000 192.168.1.10 82.61.183.211 -ijmm TCP 54 cslistener > 61091 [ACK] Segq=1 Ack=489 Win=913
16 4.000057000 B82.61.183.211 192.168.1.10 TCP 176 61891 = cslistener [PSH, ACK] Seq=489 Ack=1 Wins=
17 4.000241000 192.168.1.10 82.61.183.211 TCP 54 cslistener > 61891 [ACK] Seq=1 Ack=611 Win=913
18 4.169552000 192.168.1.10 74.125.232.143 TCP 66 36817 > http [ACK] Seg=1 Ack=1l Win=913 Len=0 TS\
19 4.171760000 82.61.183.211 192.168.1.10 TCP 176 61091 = cslistener [PSH, ACK] Seg=611 Ack=1 Win=

‘l M A ATANREIANN 1N 180 1 10 0% £ 167 %11 T TN eA 13-4 £annt racl e A A, T3 I|‘n_ﬂ1ﬁdE

P Frame 15: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface @

b Ethernet II, Src: Azurewav Bf:5e:e@ (00:25:d3:8f:5e:e@), Dst: Technico 98:c2:c4 (58:98:35:98:c2:c4)

I Internet Protocol Versiom 4, Src: 192.168.1.10 (192.168.1.108), Dst: 82.61.183.211 (82.61.183.211)

I Transmission Control Protocol, Src Port: cslistener (9008 5 Pert; 61091 (61891), Seqg: 1, Ack: 489, Len: @

B0OAO 58 98 35 98 c2 c4 00 25 d3 8f 5e e0 08 00 45 @ - e
0010 ©0 28 19 ca 40 00 40 86 55 43 cO a8 01 Ga 52 3d (..@.@.R= .
0020 b7 d3 23 28 ee a3 85 40 23 0b 11 74 e0 cb 50 10 Encrypted Chat:

0630 83 91 cb dd GO GO N ... No data is visible

Here's another test that describes what happens when an user uses the option “Chat to” and tries to connect to
an ip address not currently connected :

(2] Chat to ||

If any ServerSocket instance at the specified address

Ip: B7.12.123.321 . . .
s | | [cnat | exists (or the socket ports are closed) an exception will
Keystore port : [g020 be t'h !’own. . ' '

Obliviously, this exception will be caught for the user as
SSL port: BOG1 a simple error message.

= CryptoChat

Chat Options Help

The user has refused the request of private chat or an invalid ip address has b 4|
een entered

7 Final Considerations

In the workflow of this application, a small initial part it has been implemented before the agreement in the
easi.polocesena.unibo forum.

More precisely, a first basic connection between client and webserver (and a first basic private chat too) were
implemented to test the real practicability of the application.

No GUI were implemented in this part, it was all by Console messages.

Anyway, all the workflow within the requested 100 hours has its start from the first commit on the HG repository.

7.1 In-development changes
The workflow of the application got's a small number of radical changes from its start.
A noticeable example can be the IP communication from client to client: on the beginning of this
development,Stefano Belli thought the IP would be easily extracted from the web server referencing a to his
client connection (using Session object instance).
In fact, this capability was offered by default by webserver like tomcat.
However, the developers found that with a glassfish server this capability was not only not present, but even
impossible to implement.
This issue were resolved with a direct exchange of the ip by the client: now it's the client itself that provides his
own IP.

Another istance can be the open ports issue: due to the needing of publishing this project to a commision
without the possibility to test the application in a real-world simulation (without, in other words, test it with
different connections and opened socket ports for each connection) the developers needed to make some deep
changes in the private communications: now a client can specify which socket ports wants to use and they are
directly communicated to the correspective client they want to chat to.

7.2 Workgroup Interactions
The workgroup was formed by two members with some experience with each other : they already worked
together in about 2-3 project before and so no interaction problem occured.
All the suggestions, bugfixes and request were handled at the same level from the two members, feeling free to
comment each other work, or criticize something (with care, obviously).

The works were well separated on its task: Stefano Belli, for example, knows very little about the core code of
Cozzolino, like all the private chat “actual” communication.

Besides, Cozzolino knows very little about the server infrastructure and public communication.

However, some code were completely shared due to similar needings.

7.3 The future of Cryptochat
It's developers intention to publish this project on some web hosting repository for open-source code like

github or sourceforge.
This mostly because it's quiet hard to find documentation, tutorials or even some example code based on the

technologies used in this project, and it would be useful in case of needings (or at least we hope so).

We are actually sorry of the complicated setup needed to make this application able to work normally.
Our goal on the future “commits” it's to make this application simpler.

Also, the developers hopes to finish some project’s details like a multi-channel communication for public chat (a
user should be able select which channel connect to) and also a multi-client support for the private chat.

Even if the application was designed as a exam project for OOP, the project’s technologies involved are not
casual: we believe that this has been a good chance to understand some interesting (and new) technologies

such as the websocket.

8 Bibliografy & Credits

[1] BalloonTip: https://balloontip.java.net/
[2]1 JUnique: http://opensource.openjar.net/java/general-purpose/junique

[3] See http://en.wikipedia.org/wiki/Keystore

Thanks to user A43 of www.freesound.org for sound Toc 02.wav.

http://www.freesound.org/people/A43/sounds/9448/
All the credits related goes to user A43.

Thanks to user cameronmusic of www.freesound.org for sound Notification 3 (bad).wav.

http://www.freesound.org/people/cameronmusic/sounds/138413/

All the credits related goes to user cameronmusic.

https://balloontip.java.net/
http://www.freesound.org/people/cameronmusic/sounds/138413/
http://www.freesound.org/
http://www.freesound.org/people/A43/sounds/9448/
http://www.freesound.org/
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://en.wikipedia.org/wiki/Keystore
http://opensource.openjar.net/java/general-purpose/junique

