Binary I/0O Streams v0.1
for Kotlin

Alexander Kornilov 2018

Table of content

BasSiC INfOrMAtioN.......oveeeiiiccceceee e e e e e e e e e e e eear e e e eeeeanans
MaAIN FEALUIES....eeeeeeieiiieeeeeeeeeeereeeee et eee e e e e e e eeeeeannes
COAE EXAMPIES. ..o e et e e e e e
Class AIABIam.....eeeeeeeiiiiicieeeeeeeeeeeeeeeeeeeeeeererr i eeeeeeeeeeeeeeeessssnneeeessssnnnnnnns

(O T TN (Yol] 0] o) 1 TR

Basic information

The BinaryStreams library is intended for 1/0 on Kotlin language.
The library has some advantages over Java I/0.
About all the features of the BinaryStreams please read in the next chapter.

Name BinaryStreams

Type Library (JAR)

Version 0.1

Language Kotlin

Artifactld binary-streams

Package loggersoft.kotlin.streams

Project URL

https://bitbucket.org/akornilov/binary-streams

API documentation

https://akornilov.bitbucket.io/doc/binary-streams

This document

https://bitbucket.org/akornilov/binary-streams/downloads/binary-streams.pdf

Gradle

compile 'org.bitbucket.akornilov.kotlin:binary-streams:0.1'

Maven central

https://repo.maven.apache.org/maven2/org/bitbucket/akornilov/kotlin/binary-streams/0.1/

Author

Alexander Kornilov (mailto:akornilov.82 @gmail.com)

License

Apache v2.0 (http://www.apache.org/licenses/LICENSE-2.0)

https://bitbucket.org/akornilov/binary-streams
http://www.apache.org/licenses/LICENSE-2.0
mailto:akornilov.82@gmail.com
https://repo.maven.apache.org/maven2/org/bitbucket/akornilov/kotlin/binary-streams/0.1/
https://bitbucket.org/akornilov/binary-streams/downloads/binary-streams.pdf
https://akornilov.bitbucket.io/doc/binary-streams

Main features

Extended support of data streams with configurable byte-order.

The size of an integer in bytes is arbitrary for data streams.

Integers with a size larger than 64-bit are supported using the Biginteger.
Possibility to choose signed or unsigned representation of an integer.
Unsigned integer (64-bits and more) using the Biginteger.

Float and Double with specified byte order.

Hint about fetch ability.

Read or write an arbitrary number of bits from the BitStream.

Can seek to a specified bit in the BitStream.

Build-in support of string encoding: ASCII, UTF-8, UTF-16LE, UTF-16BE, UTF-
32LE, UTF-32BE.

Detection and writing BOM for text files.

Reading chars as code points at all.

Reads all lines from a text file in ".useLines" Kotlin style.

String encoding and byte order might be set for all stream or specified in
place.

Input or output buffering on the fly with a specified buffer size.

Stream implementation for random access file with reading and writing
buffering.

Stream implementation to read or write from kotlin.ByteArray.

Adapters for java.io.InputStream and java.io.OutputStream.

Helpful tools to make easy work with bits, code-points and other binary

operations in StreamUtils.kt.

Code examples

// Creates stream over java.io.InputStream with default stream byte order
big-endian and default buffer size 4096.

FileInputStream("file.bin").toBinaryBufferedStream(byteOrder =
ByteOrder .BigEndian).use { stream ->

// Reads byte as unsigned integer
stream.readByteUnsigned()

// Reads Double with specified in place byte-order
stream.readDouble(ByteOrder.LittleEndian)

// Skips ten bytes
stream.skip(10)

// Reads BigInteger with size 10 bytes and unsigned representation
stream.readLong(10, false)

// Can read three bytes?
stream.canRead(3)

// Reads UTF-16 string contains 20 code points
stream.readString(StringEncoding.UTF16, 20)

// Creates stream over java.io.OutputStream with native byte order and
default string encoding UTF-8

FileOutputStream("file.bin").toBinaryStream().use { stream ->

// Writes single byte
stream.writeByte(33)

// Writes long value using += operator
val longValue = OXFE30023L
stream += longValue

// Flushes data
stream.flush()

// Write code point 65 in UTF32 encoding
stream.writeChar (65, StringEncoding.UTF32)

// Writes BOM in current stream encoding
stream.writeBom()

// Writes line in current stream encoding
stream.writeLine("Hello")

// Writes double value
stream.writeDouble(33.3)

// Creates stream for random access file for read/write and default read
buffer 4096:

File("file.bin").openBinaryStream(false).use { stream ->

// Try detect BOM
if (stream.tryDetectBom()) {
// The BOM was detected and default stream encoding and byte order
were updated.

}

// Seeks to last 20 bytes of the file.
stream.position = stream.size - 20L

// Reads Int value from the stream
val intvalue: Int = stream.read()

// Writes Int value
stream.write(intVvalue)

// Seeks to begin of the file
stream.position = 0

// Reads signed integer with size 3 bytes.
stream.readInt(3, true)

// Reads all lines to the end of file
stream.forLines {
for (line in it) {
println(line)
}

}

// Reads all lines from file in UTF-32

FileInputStream("file urf32.txt").toBinaryBufferedStream(encoding =
StringEncoding.UTF32).uselLines {
for (line in it) {
println(line)
}

}

// Opens BitStream and read/write bits.
BitStream(File("file.bin").openBinaryStream(false)).use { stream ->

// Seeks to 99 byte
stream.position = 99

// Seeks to 3rd bit in 99 byte
stream.offset = 3

// Seeks to 451 bit
stream.bitPosition = 451L

// Reads byte
stream.readByte()

// Read bit
stream.readBit ()

// Read 33 bits as signed integer

stream.readBits(33, true)

// Write bit 1
stream += true

// Write bit 0
stream += false

// Write 4 bits
stream.write(0b1101, 4)

// Read 128 bits to BigInteger as unsigned
stream.readBigInteger (128, false)

}

// Creates stream over ByteArray
val byteStream = StreamByteArea(ByteArea(16))

// Reads Short
byteStream.readShort()

// Seek in stream
byteStream.position = 10

// Etc, working with stream as well...

Class diagram

<<LUSe > <<|se > << psg > “LuseFE
4 ~
| |

Pawarad By Yisual Paradigm Commurity Ediian €¥
o

Classes description

Class name

Description

BasicStream

Root interface of inheritance: contains the most generic properties
of any stream.

StreamInput

Represents streams for reading.

StreamOutput Represents streams for writing.

Stream Represents input and output stream.

AbstractStream This class is recommended as the base for any Stream
implementations.

StreamAdapter Provides Stream interface from java.io.lnputStream and

java.io.OutputStream.

BufferedStreaminput

The decorator of Streaminput for buffering.

BufferedStreamQOutput The decorator of StreamOutput for buffering.
ProxyStreaminput Provides StreamInput interface from Stream.
ProxyStreamOutput Provides StreamOutput interface from Stream.
StreamAdapterinput Provides Stream interface from Streamlinput.
StreamAdapterOutput Provides Stream interface from StreamOutput.
StreamFile Implementation of the Stream for random access file (with optional
buffering).
StreamByteArea Implementation of the Stream for ByteArea (in fact for any
ByteAreaBased objects).
ByteArea Represents area inside byte array with specified offset and size (*).
BitStream Bit access over Stream.
BytehArea
Offset P Size
< e >
ByteArray

	Table of content
	Basic information
	Main features
	Code examples
	Class diagram
	Classes description

