How Game Works

Human vs. AI

· Choose a new game
· Choose any AI player and any human player
· Game creation:
· Creates a new Game object with two PlayerStates, one HumanPlayer and one AIPlayer
· The game will then call the generateMove method from the appropriate PlayerState
· HumanPlayer generateMove:
· The program asks for standard input from the player
· ‘display’ will show the board on standard output
· ‘moves’ will output a list of possible moves
· ‘save filename.format’ will save the current game to a file, e.g. “save quoridor_game.txt” will save the game to a .txt file in the quoridor game folder
· ‘undo ’ and ‘redo’ allows the user the retract their last move or redo a retracted move, though this only works against AI
· ‘up’, ‘down’, ‘left’ and ‘right’ will move the pawn in the respective direction if possible
· ‘help’ will allow the user to query the function any of the commands
· A standard quoridor pawn move or wall move command
· An inputted move will be passed to the BoardState method, isMoveValid, where it will check that the move is legal
· If the move is not legal, the board will not play the move and the user must input a legal move again
· AIPlayer generateMove:
· See specific AI class info sheet
· After a valid move has been created or read in generateMove, BoardState will apply the move with the applyMove method
· After every move the game will swap the PlayerStates so players can take turns
· Does this continuously until the game is won, where a player has reached the opposite side of their starting position
Move Validation

· Our program has a Validator class which checks if a single move or sequence of moves are valid
· For a string of moves, the MoveStringParser class is used to separate the string into single moves
· Moves are then passed to the BoardState isMoveValid method
BoardState

· Contains the position of walls on the board
· Contains a list of wall moves previously made on the board
· Handles applying moves on the board
· Handles actual validity of moves
· Determines all possible pawn and wall moves for AI and validation check
· Displays the board
· Finds the shortest path for a pawn to its goal
· Checks if the game is over
PlayerState

· Stores and controls the number of walls a player has left
· Stores player number

Move

· Contains row and column of a move

· Converts a move to a pawn or wall move (depending on the move)
Artificial Intelligence
· DumbAIPlayer

· Returns the first possible move generated, regardless how effective it is
· RandomAIPlayer

· Randomly selects a move and returns it
· SimpleAIPlayer

· Checks the shortest path cost of all current possible moves with respect to the shortest path of the opposing player
· Returns the move which yields the lowest cost
· Smart DepthAISearch
· Implements the NegaMax search algorithm which looks ahead into the search tree of possible moves and returns the move which is connected to the best sequence of winning moves
· NegaMax compares the negative maximum of the opponents best choice against the positive maximum of the current player’s choice
· DepthAISearch is limited by how deep into the search graph the AI can look to compute the best possible move
· Smart TimeAISearch
· Also uses the NegaMax search algorithm but it is called iteratively at increasing depths until the time limit set by the user is reached
