The Tutorial Book

g e

OWERED BY JAL

Have fun with PIC microcontrollers, Jal v2 and Jallib

2008 2010 Jallib Group
Step by step tutorials, covering basic features of PIC
microcontrollers, using jalv2 compiler and jallib libraries. (version 0.4)

2| Jalib Tutorias | Introduction

Jallib Tutorials| TOC | 3

Contents
Chapter 1: Back t0 DASICS.......ccouviieiececce e 5
IS = o) o S 7
GELLING SLAMEO.e ettt et b e e b e bt e bbbt bt b et e b et b et e b et b et et ese bt st ene e 9
Blink A Led (YOUr FIrSt PrOJECE).......ctieirieirieiite sttt 13
Seria Port and RS-232 for COMMUNICELION.ccueieeieieeeeeire e e e sresse e 21
Chapter 2: PIC INtEIrNAIS........ccceeiie et 31
ADC - Analog-to-Digital CONVEISION......cc.ciueieeeieieeeeetesesesteseseesaes e stesaeeesee e e e ssessessessessessessessesseseens 33
12C (Part 1) - Building an [2C Save + THEOMY.......ccccvcieeeeceeere et 39
12C (Part 2) - Setting up and checking an [2C DUS...........cccoveicecinc e 40
12C (Part 3) - Implementing an 12C STAVE........coccicecieeee et resnesre s 44
PWM Intro - Pulse Width MOGUIBLTON...........ccoiiiriieese ettt 50
PWM (Part 1) - Dimming aled With PWM.........coocecse et snens 52
PWM (Part 2) - Sound and Frequency With PIe€Z0 BUZZEX............cccccvveeeieiisese e 55
ST I 11 0o [F o 1 o o TSRS TS 58
Chapter 3: Experimenting with external parts........ccccccevceviennnnieeiennnen. 63
[I DT ES S 1] = IO 65
IR Ranger With Sharp GP2D02....... ..o eb bbbt e st 77
LCD Display - HD44780-COMPELIDIE.......ccoiiiiiiiiie et et 82
MeEMOrY With 23K256 SIAIM.......cciiiiiiitirierie sttt st b bt bbb s e e e e e e e e et e e et e e ebeenesaeeaeas 89
RC Servo Control & RC Motor Speed CONtIOL.........cccoeiirireriniesie e 94
SD MEMOIY CBIUS.....ceeitiieititeite ettt ettt et b e et e e et et ehe e st eaeebesbesaeebebeseeseense e e e eneenenaeene 100
Chapter 4: PIC SOftWar €......cccveeieeiiecie e see e eneee s 109
L/ o 0 = | P 111
N I oY £ [o 114
Y 0] 0= 00| GO SRR PRPRRTR 127
Materials, tools and other additional NOW-TOS..........c..coveeiiiiir et 128
Building a serial port board with the max232 deviCe...........cocoveireiieinee e 129
[N CirCUIt ProgramiMing.........ccoeerueerieesteneeteseereseeteseete s seeseseesessesesse e ssesesseseesesessesessesesseseas 133
B o= = 1= o 1 PSP 136
CNBNGEIOQ. ...ttt b et b e bbbt ekt e bt e st et bt r e 137

4| Jalib Tutorials| TOC

Chapter

1

Back to basics...

Topics:

Installation

Getting Started

Blink A Led (Your First
Project)

Serial Port and RS-232
for communication

Thisisabrief introduction to exploring the basic tutorials. As a beginner, we recommend
that you should experiment with and fully understand these first steps before going any
further. If you're a more advanced user, these tutorials may help you with the testing of
new chips, or... when things go wrong and you can't figure out why, by guiding you "back
to basics’.

Don't worry, everything's gonna be aright...

6 | Jallib Tutorials | Back to basics...

Installation

Jallib Tutorials | Back to basics... | 7

JALV2 & Jdlib installation guide

Getting Jallib

Jallib Group
Jallib Group

The Jallib repository is maintained at http://code.google.co/p/jallib/downloads/list. It's safer to ignore the

" Automated weekly build..." filesin this download directory (these, as the prefix implies, are updates to the repository
automatically compiled by the server and are probably untested). Look instead for the latest version of the release file
which has the annotation "Don't know which to choose? Take this onel™. These are the tested releases and, while we
can't guarantee that there won't be any bugs at all, will provide a reasonably trouble-free installation.

Therelease filesare all ZIP archives, which can be easily unpacked on most modern operating systems (Windows/
Linux/MacOSX). Jallib releases also all come compl ete with a pre-compiled binary version of the JALv2 compiler for
both Windows and Linux in the top-level compiler directory and afull set of documentation (including a copy of this
tutorial) in the top-level doc directory, so there's nothing to stop you getting started straight away.

Windows Install:

1. Download jalpack (installer executable) from http://jaledit.googlecode.com/filesyJALPack 2.4 0.4 0.6.1.0.exe,
Thiswill install JALv2 + Jal Edit
2. Update your installation (very important) - Download jallib-pack or jallib-pack-bee from http://code.google.conv

p/jallib/downloads/list, copy the .zip contentsinto your Jallib installation directory.

3. Runthe setup file
4. Run JalEdit.exe from the "jaledit” directory
5. (optional) Click Tools Menu -> Environment Options -> Programmer, Then Set the Programmer Executable Path

Y ou should see something like this under Windows:

& jalvz FEX

File Edt Yiew Favortes Took Help O
- »
& ok - s) search (- Folders
Address |23 Crjjalve v Eg o
Name Slze Type
bootinader File Folder
Cicomplar File Falder
doc File Falder
Cjaledit Fil Falder
Cilb Filz Falder
Lprofect File Foldsr
[Jsample Filx Falder
taok File Falder
| = cHamcELOG TEE Fila
E LICEMSE, bsd 2KB B5DFile
[LicemisE. 2lb LKE ZLIBFile
| = pEADME i KB Fila
I.;i' REACME. bink, 2 KB BLINE Fie
| = urinsooo.dat 32KE DATFle
A= unins 000, ez 667 KB Application
[versice LKE File
bl p— X
16 objects 09 KB My Camputar

http://code.google.co/p/jallib/downloads/list
http://jaledit.googlecode.com/files/JALPack_2.4_0.4_0.6.1.0.exe
http://code.google.com/p/jallib/downloads/list
http://code.google.com/p/jallib/downloads/list

8| Jallib Tutorials | Back to basics...

Linux Install
Note: All instances of filenames or paths within square bracketsbelow (eg:- [fi | enane. tar. gz])
" are for illustration only. Y ou will need to change these examples to suit your specific installation. Do not
just copy and paste the examples!

Note: Two commands (t ar / unzi p) are shown below for unpacking the Jallib file. Y ou only need to
i use one or the other, not both. Which one you use depends upon the suffix of the file. If the filename ends
in".tar.gz", usethet ar command. If the filename endsin ".zip", use theunzi p command.

1. Go to http://code.google.conVp/jallib/downloads/list and select the link for the latest, stable version of Jallib (see:-
Getting Jallib, above)
2. Changedirectory ("cd [/target/directory]")tothelocation whereyou intend to install JALv2

3. Download the package with: $ wget [l ink location of the jallib-pack] orsimply useyour
favorite browser to download the package and then move it into your chosen installation directory.

4. Either untar the packagewith: $ tar xzf [fil enane.tar. gz]
5. Or unzip the package with: $ unzi p [fil enane. zi p]

Y ou should see something like this under Linux:

LICENZE.=1ikh EREALDME.bhlink cowmpiler 1lib satp le
RELDME WERS IO doc project

http://code.google.com/p/jallib/downloads/list

Jallib Tutorials | Back to basics... |9

Getting Started

Matthew Schinkel
Jallib Group

Guide to getting started with PIC microcontrollers JALv2 & Jallib

So, you've heard all the hype about PIC microcontrollers& JALv2 and want to hear more?

Why use PIC microcontrollers, JALv2, and this book?
Simple usage:

Y es, that’ s right, microcontrollers are simple to use with the help of this open source language JAL. Not only are
microcontrollers simple to use, but many other complex external hardware is made easy such as. USB, Analog to
digital conversion (ADC), serial communication, Hard Disks, SD Cards, LCD displays, sensors and many more.

All you will need isasmall amount of knowledge about general electronics. We will teach you the rest you need to
know!

If you already know about how to setup and use microcontrollers, | suggest you start with the "Blink a led" tutorial,
then read the "Jallib Starters Guide". The starters guide will give you more detailed information about the language
JalV2 and Jallib. It also has some more advanced technical information and examples. It can be download from:
http://code.google.com/p/jallib/downl cads/list

Circuit Simplicity:
Would you like to reduce the size of your circuits? What are you currently using to build your digital circuits?

When | got started, | liked to use things like the 74L S series, ssimple CMOS gate chips, 555 timers etc. You can
build just about anything with these simple chips, but how many will you need to complete your project? One of
the projects | built some time ago used five 74ls chips. With a microcontroller, | can now reduce my circuit to 1
microcontroller.

Bigger Projects.

When | say bigger, | mean cooler projects! Thereis no limit to what you can build! Choose from our small projectsto
build alarge project of your own. What functionality do you need for your project? Check out our tutorial section for
acomplete list of compatible features you can use for your circuit.

What do | need to get started?
Y ou will need the following:

PIC microcontroller chip

PIC programmer

Programming language (JALVv2) + Libraries (JALLIB) + Editor, see our installation guide.
Computer (preferably one with a serial port)

PIC programming / burning software

Regular electronic stuff such as breadboard, resistors, wire, multimeter etc.

Oscilloscope is not required but suggested for some advanced projects.

No o A~wWDdNE

Follow our Installation Guide for free programming language, libraries & text editor

http://code.google.com/p/jallib/downloads/list

10 | Jallib Tutorials | Back to basics...

How much will it cost?

Y es, getting started with microcontrollers hasit’s price. A microcontroller can cost you anywhere between $1 to $10
USD, and a programmer will cost $20 to $50. But you can't put a price on FUN!

The programming language JALV2 is FREE, other languages will cost you somewhere between $200 and $2000.

When you compare this price to the price you are currently spending on those many 1C’s you currently require to
build your circuits, this may be cheaper. Y ou will not need many of your smaller IC’s, and some specialty chips can
be replaced. Of course you' re going to save time and breadboard space as well!

Asan example... Instead of buying a UART chip for serial communication, you can now use the microcontroller’s
internal UART for communication to your PC or other projects.

What PIC microcontroller should | buy?

40-Pin PDIP

PIC16F8T4A/BTTA

g
g
g
d
=
g
g
d
g
g
d
g
g
u|
g
g
g
g
g
g

PIC16F877 or PIC16F877A seem to be the most popular mid-range PIC at the moment (in the image above). You
should be able to find them at your local electronics store for around $10. This microcontroller has many features and
agood amount of memory. It will be sufficient for most of your projects. We will build our first project on this chip.

| warn you however, you may eventually want to move to an 18F PIC for more memory, for example, you can run a
SD Card, but you cannot use FAT32. | only suggest 16f877A because it will be easy to find at a store.

There are many low-end PIC’ s to choose from, PIC16F84, PIC16F88 are smaller chips for around $5. There are also
very low end 8 pin PIC's such as 12F675 for $1.

If you're looking for speed, functionality, and awhole lot of memory space, you can go with a PIC18Fxxx chip. |
suggest one of the following: 18f452, 18F4620, 18F4550. These PIC' swill al'so work in our getting started “blink a
led” tutorial with the same circuit diagram. If you can, get a 18F PIC. My current favorite is the 40 pin 18f4620.

Y ou will notice that the better 18F series chips are actually cheaper then the outdated 16F chips.

Here' s aprice chart from the manufacturer’ s sales website:

PIC Price USD
16F877 $5.92
16F877A $5.20
16F84 $5.01
12F88 $1.83
18F675 $1.01
18F452 $4.14
18F4550 $4.47
18F2550 $4.51
18F4620 $4.27

What programmer should | buy?

Any pic programmer will do. The only suggestions | have isto make sureit can program awide variety of PIC’'s such
asthe ones listed above, and make sureit has al CSP port for future use. ICSPisfor in-circuit programming.

Jallib Tutorials | Back to basics... | 11

Here are some images of programmers we use:

1CSP PORT USB FOR POWER ONLY

USB PORT

ICSP PORT

4

What editor should | use?

Any text editor isfine, but if you are on awindows machine. We suggest the free editor “JAL Edit” which
will highlight & color important text as well as compile your JAL program to a hex file for burning to your
microcontroller. If you followed our installation guide, you will already have this editor.

JAL Edit - E:\jalvZ\sample\1 6877_sd_card, jal [(=1(E3]
File Edit Search Yiew Compile Tools Help
Do || x| [al® s 0 & |=l@)] o | ~|o|o] b [%]5) Al el A
420 [Active JAL File is E:Yjak2isampleh16F877_sd_card jal
1
Press F5 to Refresh 1l —— Title: Library for communicating with 5D memory cards ~
P U — 2 -- Author: Matthew Schinkel - borantechi.com, copyright (c) 2009, a1l righi
- L 3 -- Adapted-by:
By Procedurss i
Sy Functons 4 - Compiler: »=2.41 L
B Coretarts e
o |l Varables 6 —— This file is part of jallib (http://jallib.googlecode.com)
9 -— Released under the BSD license (http://www.opensource.org/licenses/bsd-
.
9 -- Description: this library provides functions for SD memory cards.
10 --
1l -- Sources:
12 -- SanDisk Secure Digital Card - http:/ www. cs.ucr.edn/~amitra/sdecard/Pro
13 -- How to use MMC/SDC - http://forums.parsllax.com/forums/attach. aspx?a=3i:
14 ——
15
16 -- compiler dependant device deflnitions
17 include 16£877
18 rinclude 1658772
19 rinclude 185452 v
Corrpile Results I x
Code Usage
0%
Dala Usage
0%
Hardware Stack.
[

What programming/burning software should | use?

Did your programmer come with software? There are many to choose from so use whatever you prefer. | use
“Micropro” from http://www.oztronics.comymicropro.html. It's afree, open source software for programming awide

http://www.ozitronics.com/micropro.html

12 | Jallib Tutorials | Back to basics...

range of PIC’s. However, it will most likely not support your programmer. | suggest you use the software that came
with your programmer. Y ou may see this programmer in other tutorials for demonstration only.

++ DIY K149-BC v141204 <1Bf452_mp3_decader_sta015. hex> EEE

File Programmer Options Help

=
= ROM DATA
0000:| FFFF FFFF EF4A FOOO OEZO0 eF2C 30Dg 27282 CEr o B
00lo0:| 3782 3784 378B 2008 3780 3781 3782 3783] 0
00Z0:| AOQRS EFLE FOOD 5184 Z788 5185 2382 5186 o} (5}
0030:| 238A 5187 238B 2F8C EF0& FOOO 0012 OE10 E E
nn4n:| &FaC ABBEZ SBE3 90D8 3786 3787 30D& 3780 jar [l
ansn: | 3781 3782 3783 5183 EDES A4D3 EF3Z FOOO 0O (=
Q0g0:| El22 SD84 B4DE EF22 FOOO EOD2 EF40 FOOO E E
2 Q070:| 20D2 5182 5584 €FS8Z E£183 E£E8E €F22 2126 jir C
b Q0g0:| ZF2C EFZ3 FOOOD 001Z €EFE 0100 E18F &EFA E E
0020:| E12E 6EF2 EACZ OEO7 €ECL 0100 OEC4 &F20 SR & [
Q0AQ:| 0E42 6F81 OEOE €FS2Z ZFS8Z EFE4 FOOO ZF21 c.. () |
QOEO:| EFSZ FOOO ZFE20 EFE0 FOOO 0000 EFS4 FOOO B.. E E
00CO:| 0EZ0 SEAF O4AC 001Z ECS0 FOOO SASD 283D B B
00DO0:| B8AAC DESO GEAB D012 0100 6F94 AG9E EFGE SR E E
O0E0:| FOOO 5194 SEAD 0012 0100 5180 0100 &F99 [el
., |con = Deady
e LIRS Chip Selector
= Load ‘ Merge | AL Program | 23 Verify | | ,ﬁm
Refrzsh I & 5ave | S Fead I [Blank I =% Fuses | X Cancel |
o | = s 1EEEAM o

OK, enough of this boring stuff, lets build something! Start with the Blink A Led Tutorial.

Jallib Tutorials | Back to basics... | 13

Blink A Led (Your First Project)

Matthew Schinkel
Jallib Group

In thistutorial we are going to learn how to connect our first circuit and blink our first led.

Where to we start?
Let’smake aled blink on and off, how fun is that!

So, you' ve followed the install ation guide and now have a Programming language (JALV2) + Libraries (JALLIB) +
Editor. We will be using JALEdIt for our first example.

Setup your workspace

Start by getting out your programmer and connect it to your PC. Some connect by serial port, some connect via USB.
| actually use a serial port programmer attached to a USB-to-Serial adapter to free up my serial port for other projects.

If you are using a serial port programmer you need to check that you have aregular seria cable and isnot anull
modem cable. Using your multimeter, check that each pin of your serial cable matches, if pins7 & 8 are crossed, itis

anull modem cable.

Get out your PIC microcontroller (we will now refer to it asaPIC). You can use PIC' s 16f877, 16f877A, 18F2550 ,
18F452 or 18F4550 for this project since the port pin outs are the same for al of them. | will use 16f877A for this
blink aled project.

Now check PC connectivity to your programmer. Open your programming software on your PC, check the settings
within your software to change the serial port number and programmer type (if available). Y our programmer software
may tell you that your board is connected, if not, put your PIC in your programmer and do some basic tests such as
“read chip”, “blank / erase chip”

14| Jallib Tutorials | Back to basics...

If you are using Micropro, click on “file’ ->“port”, and “file” -> “programmer” -> (your programmer type). If you
do not know the programmer type, you will have to guess until Micropro says something like “K149-BC board
connected”, Put your PIC in your programmer and choose your PIC type from the “ Chip Selector” text box. Now do
some basic read/erase tests.

'+ DIY K149-BC v141204

File Programmer Options Help

= j @

o e

[Load | terge | | 4 Program | | '7{: Werify | EALIR | mﬁ.ﬂ
Hefreshrl & Save | | F Aead | i [Blank | =} Fuses l |

Build your circuit

Well, it looks like we're all set to go, so grab your breadboard and other components, put together the following
circuit:

SMITEHY
.

0.uf

GHD

XTALZOmAz

i

Larvep RE7PCD
ranio RESPOC
e RES
Fazivzrimer. RB4
FasnmErs RB3PGM
Faamocki RE2
Fasionarss RE1
REORDIANS REDANT
e mmians VoD

20 Reeocsiany 9P ves

11 Koo ROTPSPT

12 ROBPSPS

13 Boscacuian RDSPSPS

1 MnseorcLiour RDAIPSP4

25 Kecominsomicia RETRXIDT

28 _Kecamiosiccrz REBITXICK

R RESSD0

.

2 Keposro RDAPEPE

2 Heppsre RD2(PEP2

@ la g e (g 2|9 lg 8 |a
LR E R B S RE

wiln eyl
RO E RS EEE

Jallib Tutorials | Back to basics... | 15

And here’ swhat it looks like. Notice the additional orange wire to the left of my PIC, this ensuresthat | always put

my PIC in the correct position after programming. Do not connect your power 5v supply till your circuit is complete
and checked over at least twice. Y ou will burn your PIC if power is on while building your circuit. Y ou will want an
on/off switch for your power supply.

Your circuit isdone, and it looks pretty, but it doesn’t do anything :o(..

Understand the jalv2 directory structure

First take alook at your jalv2 installation directory on your PC, wherever you installed it.

16 | Jallib Tutorials | Back to basics...

& jalvz FEX

File Edt Yiew Favortes Took Help O
- »
ek -) - (T) search [Folders
Address |23 Crjjalve v Eg o
Name Slze Type
bootinader File Folder
Cicomplar File Falder
doc File Falder
L jaledit File Falder
b Fils Falder
Lprofect File Foldsr
[Jsample Filx Falder
Chtaok File Falder
| = cHamcELOG TEE Fila
|| LIEmSE. bsd 2KE BSDFie
@ LICEMSE. 2kb 1l KB ZLIEFil=
| = pEADME i KB Fila
[READHE. bink 2KE BLINK Fil
| = urinsooo.dat 32KE DATFle
o unins 000, exe 667 KB &pplication
[versice LKE File
& o ¥
1& obijects 709 KB 'y My Comguter

compiler —holds the jalv2.exe compiler program to convert your JAL code to microcontroller hex code
JALEdIt — JAL text editor where you will write your code

lib — A set of libraries to make things work

sample — Working examples.

Create yourself afolder called workspace, and in that folder create afolder called blink_a led (eg. C:
\jalv2\workspace\blink_a led\)

Setup your editor & .jal file

Open up your favorite text editor. | will use JALEdIt. Run jaledit.exe from the JALEdIt directory. Start a new
document, and saveit in jalv2\workspace\blink_a led\ and nameit blink_a led.jal (eg: C:\jav2\workspace
\blink_a led\blink_a led.jal)

Let’s write some code

So now we're going to write the code that will make our led blink. All code will be in highlighted text. Y ou can read
more about JAL language usage here: http://www.casadeyork.convjalv2/language.html

Title & Author Block

Start out by writing a nice title block so everyone know's who created it. Here' s an example Title block from Rob
Hamerling' s working 16f877a_blink.jal blink aled examplein the sample directory. Every PIC has at least one
working sample. Y ou can see that two dashes “-* declare a comment so your notes get ignored by the compiler. The
character “;” can aso be used for comments. We will comment our code as we go along so it iseasier for us to read
our own code.

-- Title: Blink-a-led of the Mcrochip picl6f877a

-- Author: Rob Hanerling, Copyright (c) 2008..2009, all rights reserved.

-- Adapt ed- by:

http://www.casadeyork.com/jalv2/language.html

Jallib Tutorials | Back to basics...

-- Conpiler: 2.4l

-- This file is part of jallib (http://jallib.googlecode.com

-- Rel eased under the BSD |license (http://ww.opensource.org/licenses/bsd-
I i cense. php)

-- Description:

-- Sanpl e blink-a-1ed programfor M crochip PlICl6f877a.
-- Sources:

-- Not es:

-- - File creation date/tine: 14 Cct 2009 20: 24: 20.

Choose your PIC
Write the following code to choose the PIC you are using, change 16f877ato whatever PIC you have:
i ncl ude 16f877a -- target PICmicro

Choose your crystal speed

Write the following code according to the speed of the crystal you are using in your circuit. | suggest 20mhz for
16f877. Y ou can check your chip’s datasheet for it’s max speed. Higher speeds may not work the way you want them
to on atemporary breadboard.

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSC1L and OSC2.
pragma target clock 20_000_000 -- oscillator frequency

Configure PIC Settings

The following code sets some of the PIC’ sinternal settings, called fuses. A OSC setting of HStellsthe PIC thereisan
external clock or crystal oscillator source. Y ou must disable analog pins with enable_digital_io() , you don’t need to
worry about the others.

-- configuration nenory settings (fuses)

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabled -- no Low Vol tage Programi ng
enabl e_digital _io() -- disable analog 1/0O (if any)

Choose an output pin

Let’s choose an output pin to control our led. Asyou can see from the circuit, our led is connected to pin #2. Let’s
check our datasheet to find the pin name from the pin out diagram.

The PDF datasheet for this PIC and for all others can be downloaded from the microchip website. Here isthe
datasheet for this PIC http://ww1.microchip.con/downl oads/en/DeviceDoc/30292¢.pdf , and here is the pin out
diagram from the datasheet:

|17

http://ww1.microchip.com/downloads/en/DeviceDoc/30292c.pdf

18 | Jallib Tutorials | Back to basics...

40-Pin PDIP
MCLRNVer —=[C]1 /40 <— RB7PGD
RANAND «—w [2 39] «—es RBEPGC
RATANY =—e113 38 [] =—= RBES
RA2IANZAREP/C\VREF - 4 37 j -—+ B4
RAVANYVRsF+ <. [5 35) «—s RBYPGM
RA4/TOCKICIOUT <—s [6 35] «—= RB2
RASIAN4SSSIC20UT =—[]7 < 34[]+—= RBI1
REO/RDIANS <[] 8 g 33 [] =—= RBO/NT
RE1AIANG =—e8 2 32 e— Voo
RE2CSIANT e—e 10 & 311 o— Vas
veo —- 11 5 30 <— ROPSP?
(11 — E 12 % 29 3 - RDOEPSPE
OSCUCLKl —= 13 = 28] «—e RDS/PSPS
OSCUCLKO «—[14 2 27]« RD4PSPS
RCOMOSOMICK! e—s [15 28] «—= RCTRXDT
RCAT10SICCP2 =— [16 25 [] «—s RCBITXICK
RC2/CCP1 =— [17 24 1 «—» RCS/SDO
RC3/SCK/SCL ~— [] 18 23] =—= RCH/SDVSDA
ROWPSFD -—[] 19 22 [] «=—» RD3IFSF3
RO1PSFE] -—= [20 21 [e ROFSEZ

Asyou can see, we are using the pin RAO/ANO at pin #2. RAOQ is the pin name we are looking for. ANO is another
name for this same pin (used in the analog to digital tutorial), but we can ignoreit in thistutorial. In the JAL language
RAO iswritten aspin_AO

Now let’s read the details of this pin in the datasheet on page 10. Asyou can see RAOisa TTL Digital 1/O pin. We
are checking this to make sure it is not a open drain output. Open drain outputs (like pin RA4) require a pull-up
resistor from the pinto V+

TABLE 1-3: PIC16F874A/877A PINOUT DESCRIPTION
; PDIP | PLCC | TQFP | QFN Lop Buffer e
‘ Pin Name ‘ Pin# | Pin# | Pin# | Pin# | Type Type Description ‘
[PORTA is a bidirectional /O port.

RADAND 2 3 19 19 TTL

RAQD o Digital 1f0.

ANO | Analog input 0.

Legend: | =input O = output 10 = inputioutput P = power
—=Notused TTL=TIL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Now write code for pin AO. We are writing an “alias’ only because in the future we can refer to pin 2 (AQ) as“led”.
This way we no longer need to remember the name of the pin (except for the directional register in the next line of
code we will write).

-- You may want to change the sel ected pin:
alias | ed is pin_A0

Jallib Tutorials | Back to basics... | 19

Configure the pin as an input or output

Now we must tell the PIC if thisis an input or an output pin. The directiona setting is always named (pin_ +
pinname_ + direction). Since we are writing data to the port, to turn the led on, it is an output.

pi n_AO_direction = output

We could make an alias for thisaswell: “aiasled_directionis pin_A0_direction”, then write “led_direction =
output”. This way, we can change it from output to input in the middle of the program without knowing the pin name.
But in this case, we will only use pin_AQ_direction once in our program so there is no need to make an alias.

Write your program
So, now that we have the led under our control, let’s tell it what to do.
We will want our led to continue doing whatever we want it to do forever, so we'll make aloop

forever | oop

It is good practice to indent before each line within the loop for readability. 3 spaces before each lineis the standard
for Jalib.

In thisloop, we will tell the led to turn on.
led = ON
now have some delay (250ms) a quarter of a second so we can see the led on.
_usec_del ay(250000)
turn the led off again
led = OFF
and have another delay before turning it back on again
_usec_del ay(250000)
close our loop, when the PIC gets to thislocation, it will go back to the beginning of the loop

end | oop

And that’sit for our code. Save your file, It should look something like this:

-- Title: Blink-a-l1ed of the Mcrochip picl6f877a

-- Author: Rob Hanerling, Copyright (c) 2008..2009, all rights reserved.
-- Adapt ed- by:

-- Conpiler: 2.4l

-- This file is part of jallib (http://jallib.googl ecode.com

-- Rel eased under the BSD license (http://ww.opensource.org/licenses/bsd-
I i cense. php)

-- Description:

-- Sanple blink-a-1ed programfor M crochip Pl Cl6f877a.
-- Sources:

-- Notes:

-- - File creation date/tinme: 14 Oct 2009 20: 24: 20.

20| Jallib Tutorias | Back to basics...

i ncl ude 16f877a -- target PICrmicro

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSCL and OSC2.

pragma target clock 20_000_000 -- oscillator frequency

-- configuration nenory settings (fuses)

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabled -- no Low Vol tage Programi ng
enabl e_digital _io() -- disable analog 1/0O (if any)

-- You may want to change the sel ected pin:
alias | ed is pin_AO0
pin_AO direction = output

forever | oop
led = on
_usec_del ay(250000)
led = of f
_usec_del ay(250000)
end | oop

Compile your code to .hex

Now let’s get this beautiful code onto our PIC. Y our PIC cannot understand JAL, but it does understand hex, thisis
what the compiler is for. The compiler takes people readable code and converts it to code your PIC can understand.

If you are using JAL EdIt, click the compile menu at the top and choose compile.

If you are using your own text editor in windows, you will need to open windows command prompt. Click start -> run
and type cmd and press OK. Now type (path to compiler) + (path to your .jal file) + (-s) + (path to JALLIB libraries)
+ (options) Here' s an example:

C:\jav2\compiler\jalv2.exe "C:\jalv2\workspace\blink_a led\blink_a _led.jal" -s"C:\jalv2\lib" -no-variable-reuse
The option -no-variable-reuse will use more PIC memory, but will compile faster.

If al thiswent ok, you will now have ablink_a led.hex located in the same directory asyour blink_a led.jal, If there
where errors or warnings, the compiler will tell you.

A error means the code has an problem and could not generate any .hex file. If there isawarning, the hex file was
generated ok and may run on your PIC but the code should be fixed.

Write the hex file to your PIC

Take your PIC out of your circuit and put it in your programmer. With your programming software, open the
blink_a led.hex file. Y ou should see that hex dataloaded in your software. Now click the Write button. Y our
software will tell you when it is done.

Let's Try It

Put your PIC back into your circuit, double check your circuit if you haven't already, and make sure your PIC is
facing the correct direction. Apply power to your circuit.

It'salive! You should see your led blinking! Congratulations on your first JALvV2 + JALLIB circuit!
Here's ayoutube video of the result: http://mww.youtube.com/watch?v=PYuPZO7isoo

| strongly suggest you do thistutorial next: Serial Port & RS-232 for communication.

http://www.youtube.com/watch?v=PYuPZO7isoo

Jallib Tutorials | Back to basics... | 21

Serial Port and RS-232 for communication

Matthew Schinkel
Jallib Group

In this tutorial we are going to learn how use TX & RX pinsfor serial communication to your PC, and also learn
communicate with another PIC or external device viaRS-232.

What is a serial port?

Y ou may have forgotten about this important part of history "The seria port”. Y ou have forgotten because you
have been too up-to-date on all the new technologies such as USB and Bluetooth, but you have left the good old
technologies in the past. Well, now it's time to put that funny looking port on the back of your PC to some good use!
If you don't have a seria port on your PC, you can get a USB to serial converter/adapter.

5 1
9 6

At onetime, there was awide range of devices that used the serial port such as a mouse, keyboard, old GPS, modems
and other networking.

In our case, we will use aserial port to send datato our PC, or to send data a second PIC. | find it most useful for
troubleshooting my code, and for sending other readable information to my PC without the use of additional hardware
suchasaLCD. LCDs & displays can be an expensive addition to your circuit.

What is RS-232?

RS-232 isthe data transfer standard used on serial ports. Basically thisis composed of one start bit, some data bits,
parity bit, and one or two stop bits. The transfer speed as well as the number of start, stop and data bits must match for
both the transmitter and receiver. We will not need to cover the way in which it is transferred since the PIC doesiit for
us. We will only need to know the following:

1. The number of start bits (always 1)
2. The Parity (usually no parity)

3. The number of data hits (usually 8)
4. The number of stop bits (1 or 2)

5. The data transmission speed

6. The port number on your PC

Y ou will be able to choose the transmission speed yoursalf. The Jallib library we will be using will use 1 start bit, 8
data bits, no parity, and 1 stop bit. Y our other device, such as your PC will also need to know this information.

What do | need?
In the first part of thistutoria | will show you how to hook your seria port up to your PC. | will show you how to
connect it to another PIC later on in thistutorial. | feel that connectivity to your PC is quite important. Y ou will need:

1. A PIC that has TX and RX Pin names. Most PIC's have them. Check your pinout diagram in the PIC's datasheet.

22 | Jallib Tutorials | Back to basics...

MR —e[] 1 o [T =— RETPED
FRAVAND a—a [2 35 [] =—e REEPEC
RAlANT =—e[12 3§ [] =—= RES

RAZAMIN - a—e [37 [=—s RBL
RAANINNLF - a—e [T = 35 [=— REVFEM
RALTOCK] HE E 35 j-..—.— REZ

RASIANATEE =—e[]7 3 [T =—s RE1
REDFDANS =+—=[]& ; 33 [J =—= REQINT
RE1.T'F|.'.*NE~ -l'——]: g5 j Dl

1

1

RETEANT —— []
VOO - E
wss, o M

OICATLHN —]

OSCHCLNOUT —-— |
RCATIOSOTICK] e []
RCUTICSICGFE = []
RCMCCP we o []
RCABCREIL =—= [
ROLFEFD e [
ROUPEF] w7

[T —— wiss
[] s+ ROTFIFT

~—s ROEFIFS
7 [q

ﬁ

FIC16F

23 [] =—= RC4EOVE0A
23 j - ROIPIFI
21 [T =—= RDZFEFZ

Baa

2. A serial port board. Y ou can buy one on the net, or build your own. See Here for more information. A serial port
board is needed for voltage conversion. Serial ports output voltages up to 12v and go lower than Ov.

3. A regular RS-232 Cable (make sure it is not a null modem cable, they ook the same). Y ou can check what type of
cable you have with your multimeter. Put your multimeter on each pin of your cable starting with pin 1. Check for a
zero ohm reading. Thiswill check that the pins are the same at both ends. Null modem cabl es have some pins crossed.

K‘g

The circuit will be quite simple, you can take your blink aled circuit, and attach your seria port board. Here'sa
schematic with 16F877. We will be using the TX and RX pins:

Build your circuit

SWITCHT

ACLRAFPP

RAQAND

IR AN
[RaziaNZIVREF-
RazAREF+

RadTOCKI

IRASIANAISS
IRED/RD/ANS

IR E 1 AR NG
Rezicsmny 19T
VDD

GND

Test your circuit

ml

ATALZOmhz

SCUCLKIN

SCHCLKOUT

——JRCOTI0STITICK

RC1/T10SHCCPZ

——QRC2/CCP1

IRCa/SCRISCL

——JRDO/PSFO
= JRD VPSP

REF/PGD

RBE/FGC B
LR i

RB4 &

RE3/PGM &——

rEz &2

RE1 &=

RBO/INT §——

DD
W55

Jallib Tutorials | Back to basics... | 23

RD7/PSP7 B——

RDE/PSPE 8=

RDS/PSPS B——

RD4/PEPa B =0

RCT/RXDT
RCE/TAICK

RCE/EDO B

RCHSDUSDA

RD2/PSP3

RDZ/PSPZ B

Serial Port

g]
= 1
E3) 0.1uf il
30, £
- ay
8
27 GHD
I B
25
24
| 23
| 22
21
Board
v
= —

Before you write your own code, you should make sure your circuit actually works.

Go into the sample directory within your jalv2/jalib installation. Find your pic, and look for a serial hardware sample
such as 16f877a_serial_hardware.jal. Then compileit and burn it to your PIC. Don't turn on your circuit yet, we are

not ready.

On your PC, you will haveto install some serial communications program such as Real Term. Real Term is free and
open source. | will use Real Term for this tutorial. Y ou can download it here:

http://realterm.sour ceforge.net/

Open Rea Term and click on the "Port" tab, we need to select the port & speed, etc to the following values:

1. The Parity = no parity
2. The number of data bits= 8

3. The number of stop bits=1
4. The data transmission speed = 115200

5. The port number on your PC

http://realterm.sourceforge.net/

24 | Jdlib Tutorias | Back to basics...

“:_ RealTerm: Serial Capture Program 2.0.0.57

Display Port ‘Eapture} Pins 1 Send I Echo Folt} 12c ‘ 12C-2] IZCMlscl Misc 1 m Clear| Freeze J
Status
Baud [T15200 | port 1 =] per| 5oyl [e | _| Connected
Parity Deta Bits| ~Stop Bits Softyaie Floal Contioh —— ?i:g [lé]]
% None | @ Bhits| & 16k 2bis A A IcTs @
- Ddd | € 7bits | Hardware Flow Coniol [Transmi Xoff Char. |19 _IDED (1)
bk | Bbits| & None (RTS/CTS IDSRE)
¢ Space | (" Bhits| | ¢ DTR/DSR© RS4851s o~ JRing(9)
& _|BREAK
| Enoe
‘fou have ta dlickin terminal window before you can type any chars out Char Count:0000000 CPS:0 Port: Closed
n U H H n H n H H H H
Now press "Open" in Real Term and turn on your circuit. If you now see "Hello serial world...... showing in within

Real Term on your PC, you are able to receive data.

Display Port | Capture| Pins | Send | EchoPort| 12 | 1202 | 12CMisc | Misc | Freeze| |
= Statug
Baud [115200 =] port [4 =l [gpen Spy| o Change ¥ _| Disconnect
IR
Software Flow Control
Parity Data Bits | [Stop Bits = X 7 | THD (3
© Mone | @ Bhits| & 1Bt (" 2bis Ll o] 1075 (@)
o . = 152
- pdd | This | Hardware Flow Corkol ™ Transmil Xoff Char |13 o)
Wb || © Bbis|| @ None ¢ RTS/CTS _IDSA B
¢ Space | { Bhits| | O DTR/DSA " RS485s ~ I Ring)
g _|BREAK
| Enor
‘fou can use Active automation to cantral me! Char Counk:74 P50 Port: 4 115200 8M1 None

If your circuit doesn't work, your serial port board may have TX and RX switched (you can try switching your TX/
RX wires around), or you may have selected the wrong port number, some PCs have more than one seria port.

Now click on Real Term's "send" tab, type in the number "65" in the first box and press " Send Numbers'. If it sent ok,
the PIC will echo this value back to you. Y ou will see the ASCII character "A", which is the same as decimal 65. You
can see afull ASCII chart at asciitable.com.

ello serial wor

A._AR.AA.A.AR.AR

Send |EchoPart| 120 | 1202 | 12CMise | Misc | An| Clear| Freeze| |

Status

EOL | :
=5] - J
[e5 | |BendHumberd| Gend i F || 1 etoe ,,{gignlﬂ;;ect

+LI
[=] SendNumbers| Sendagei [+CR| [Al D3
[o] el e — [AP | e =] _icis

Figpeats > [~ Literal [ShipSpaces [+oic 1DED (1)

Display | Port | Capture | Pins

Dump File to Fart | D5A (5]
[cxtemphcapture ot | J SendFile | 3 Step | Delas[0 2|0 = | Riing (4)
_|BREAK

Repsats [T 2] [0 2] | Enr
¥ou have to dlick in terminal window before you can type any chars out Char Count: 1066 CP3:10 Port: 4 115200 8M1 None

Now please change your Real Term settings to receive decimal numbers by clicking on the "Display" tab, and choose
"int8" under "Display As" at the left side. Y ou will now continuously see the number "46" come in, and try sending
the number "65" again. Y ou will get the same humber back on your screen.

http://asciitable.com

Jallib Tutorials | Back to basics... | 25

int8 - shows integer numbersin Real Term
Ascii - shows ascii text

Hex[space] - shows hex numbers with a space between each

% RealTerm: Serial Capture Program 2.0.0.57

Dlsplaﬂ Paort 1 Eapture} Pins Send IEcho Folt} 12c 1 12C-2] IZCMlscl Misc 1 m Clear| Freeze J
ol = Status

I3 ~||Send Humberi| SendaSCH |- +CR | Disconnect
= el idties ZIRAD (2]
| | SendNumbers| Gend 4501 ; +E§ il |10 13)
= < A [weus e =] |CTS (8
0] 7tf 1F| mgpeats [T 2] [Lieal [~ GhipSpaces | +e1c W{DED[[WI]
Durp File to Port _|DSR 6]
\: “temphoapture bt j J Send File X Stop | Delaps |0 2o 3 _|Ring[9)
_ | BREAK

Beoeats [T 2] [0 2] | Enar

Chars sent aren't displayed when half-duplex is sst Char Count:52 CP5i0 Port: 4 115200 8N1 Mone

Write code to send data from PIC to PC

Sincethisis one of thefirst circuits you will be building, | will try to give you detailed information so you can get
some programming experience. We will continue with your code from "Blink aled". We will modify it to send data
to your PC, Here's your original code:

i ncl ude 16f877a -- target PICmicro

-- This program assunes a 20 MHz resonator or crystal
-- Is connected to pins OSC1L and OSC2.

pragma target clock 20_000_000 -- oscillator frequency

-- configuration nenory settings (fuses)

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabled -- no Low Vol tage Programi ng
enabl e_digital _io() -- disable analog 1/0O (if any)

-- You may want to change the sel ected pin:
alias | ed is pin_AO0
pin_AO direction = output
forever | oop
led = on
_usec_del ay(250000)
led = of f
_usec_del ay(250000)
end | oop

First we need to add serial functionality, | got the following code from 16f877a_seria _hardware.jal

-- ok, now setup serial;

const serial _hw baudrate = 115 200
i ncl ude serial _hardware

serial _hw init()

So, now copy and past thisinto your code, | would put it somewhere after the line "enable digital_io", and
somewhere before your main program which starts at "forever loop".

26 | Jallib Tutorias | Back to basics...

This code will set your baudrate (speed), it will include the correct library file "serial_hardware”, and it will initialize
the library with "serial_hw_init()". Y ou can change the speed if you wish, but you must change the speed in
Real Term as well.

Now we can put some code that will send data to your PC. If you want to send the number 65 to your PC, you must
use this code:

serial _hw data = 65

This code works because it is a procedure/function within serial_hardware.jal, and you have aready included the
serial_hardware library. serial_haredware.jal can be found in the "lib" folder of your jalib installation. Y ou can open
that file and read notes within it for more information and for other usable variables, functions and procedures.

Let's make your code send the number 65 when the led turns on, and send the number 66 when your led turns off. Just
place your code after your "led = on", and after "led = off"

forever | oop

led = on
serial _hw data = 65 -- send 65 via serial port
_usec_del ay(250000)
led = of f
serial _hw data = 66 -- send 66 via serial port
_usec_del ay(250000)

end | oop

Or, if you wish to send Ascii lettersto your PC instead, you could use the following:
forever | oop

led = on
serial _hw data = "A" -- send letter A via serial port
_usec_del ay(250000)
led = off
serial _hw data = "B" -- send letter B via serial port
_usec_del ay(250000)

end | oop

Both of the above loops will continuously send the decimal number's 65 and 66 via your serial port each time your led
turns on or off. Y our completed code should look like this:

i ncl ude 16f877a -- target PICmicro

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSCL and OsC2.

pragma target clock 20 _000_000 -- oscillator frequency

-- configuration nmenory settings (fuses)

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabl ed -- no wat chdog

pragma target LVP disabl ed -- no Low Vol tage Progranmi ng
enabl e digital io() -- disable analog 1/0O (if any)

-- ok, now setup serial;@allib section serial
const serial _hw baudrate = 115 200

i ncl ude serial _hardware

serial _hw init()

-- You may want to change the sel ected pin:
al i as | ed is pin_AO0
pi n_AO_direction = output

forever | oop
led = on
serial _hw data = 65 -- send 65 via serial port
_usec_del ay(250000)
led = of f

Jallib Tutorials | Back to basics... | 27

serial _hw data = 66 -- send 66 via serial port
_usec_del ay(250000)
end | oop

Compile and burn your code to your PIC, then turn on your circuit. Y ou should get this while your led is blinking:

" RealTerm: Serial Capture Program 2.0.0.57

65 66 65 66 65 66 65 bbb 65 66 65 66 65 66 65 66 65 b6 65 66 65 b6 65 66 65 66 65
66 65 66 65 66 65 66 65 66 65 66 65 66 65 66 65 66 65 66

Display | Port | Capture| Pins | Send | EchoPart| 120 | 1202 | 120Misc | Mise | An| Clear| Freeze| |
%lsplay Ay % [~ Half Duplex Binary Sync Chary e Status
sl I newline made BBCD o _ | Disconnect

C Angi = a3 | @ None

" Hesfspace] | | InvertData _IRxD [2)
(rf Hew +Azen | 7 :' HOR | st I THD (3
o (i Dists Fraress =] AND | Humber _IcTa
" Hex Bytes |2 3 | DD (1)
Uil I Singe) o Chenge [{ieinnbie _|DSA)
" Asi _|Ring(3)
. Binary Rows _Cols | BREAK
& i Teminal Fort| [16° 2] [B0 3] [Scrollback JEnor

‘fou can use Active automation to cantral me! Char Counk:92 CPS:0 Port: 4 115200 8M1 None

Awesome, now that you can send data to your pc! Thiswas an important step since it will greatly help you with your
troubleshooting by sending you readable information such as text, numbers and other types of data.

If you feel your programming skills are not as good as they should be, practice practice practice! Continue using the
language reference at http://www.casadeyor k.convjalv2/jalv2/index.html

Write code to send data from PC to PIC

In the beginning, you may not have a use for sending data from your PC to your circuit, so you may skip this and go
onto other things.

Here we are going to get the PIC to receive data from the PC. We will write some code that will only start blinking a
led when you send data to the PIC. Also we will tell the PIC to send the number 65 to the PC once per second.

We will now learn to use the following variables from serial _hardware.jal:

serial_hw_data_available - If the PIC received data, this variable will equal TRUE, otherwise FALSE
serial_hw_data - If datais available, this variable will contain the data

So let's modify your current loop:

forever | oop

led = on
serial _hw data = 65 -- send 65 via serial port
_usec_del ay(250000)
led = of f
serial _hw data = 66 -- send 66 via serial port
_usec_del ay(250000)

end | oop

First changeit so it will send the number 65 to your PC every one second:

forever | oop
_usec_del ay(1_000_000) -- one second del ay
serial _hw data = 65 -- send 65 via serial port
end | oop

We now can add an if statement to find out if there is seria data available;

forever | oop
_usec_del ay(1_000_000) -- one second del ay
serial _hw data = 65 -- send 65 via serial port

http://www.casadeyork.com/jalv2/jalv2/index.html

28| Jdlib Tutorias | Back to basics...

if serial _hw data available then -- check if there is data avail able
end if
end | oop

Y ou will need to create avariable "x" before your "forever loop", this variable will hold the data when you want to
receiveit:

var byte x

Now you have a place to store the data, so you may now write aline within your "if" statement to get the data:
X = serial_hw data

Then build afor loop after that to blink the led "X" number of times

for x | oop -- loop (x nunber of times) using data received on serial port

led = on

_usec_del ay(250000)

led = of f

_usec_del ay(250000)
end | oop

Here is your completed code:
i ncl ude 16f877a -- target PICmicro

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSCl1L and OSC2.

pragma target clock 20_000_000 -- oscillator frequency

-- configuration nenory settings (fuses)

pragnma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabled -- no Low Vol tage Progranm ng
enabl e_digital _io() -- disable analog 1/0O (if any)

-- ok, now setup serial;@allib section serial
const serial_hw baudrate = 115 200

i ncl ude serial _hardware

serial _hw init()

-- You may want to change the sel ected pin:
alias | ed is pin_AO0
pin_AO direction = output

var byte x

forever | oop -- continue forever
_usec_del ay(1_000 _000) -- one second del ay
serial _hw data = 65 -- send 65 via serial port
if serial _hw data_available then -- check if data is ready for us
x = serial_hw data -- get the data
for x | oop -- loop "x" nunber of tines
led = on -- turn the led on
_usec_del ay(250000) -- 250ns del ay
led = of f -- turn the led off
_usec_del ay(250000) -- 250ns del ay
end | oop -- loop
end if -- end the if statenent

end | oop

Asyou can see, this code will do the following:

Jallib Tutorials | Back to basics... | 29

1. delay 1 second

2. send the number 65 via serial port

3. seeif there isdatawaiting for us, if so, get it and blink the led (the number of times of the data received)
4. loop back to the start

So, turniit on, you will start getting decimal numbers: "65 65 65 65 65" or ascii: "AAAAAA" in Rea Term. Now send
your PIC the number 5, you will see your led blink 5 times. Now isn't that awesomel!

PIC to PIC communication via serial port

Sending datato your PC is not the only use. If you have an extra PIC laying around, we can get two PIC'sto talk to
each other. And it's quite easy too!

| think you can do this on your own by now, you know how to make one PIC send data, and how to make aPIC
receive data, so all you have to do is write some sending code on one PIC and receiving code on the other.

Build another circuit the same as your current one, then do the following:
1. connect the TX pin from PIC # 1 to the RX pin of PIC # 2
2. connect the RX pin from PIC # 1 to the TX pin of PIC #2

On one of your PIC's, make it send data every one second, like we did before at Write code to send data from PIC to
PC.

On the other PIC, make it loop continuously. Put an if statement in the loop that will seeif thereis data available, and
if there is, make the led blink once, like we did at Write code to send data from PC to PIC.

Y ou should then see your led blinking on your second PIC.

Wow, that was alot, now | think you know your stuff!

Your Next Step

Now that you know how serial works, | suggest you take alook at the print and format libraries which will help you
format numbers and stringsin an easy & readable. Check out this tutorial:

Print & Format

30| Jallib Tutorials | Back to basics...

Chapter

2

PIC internals

Topics:

* ADC - Analog-to-Digital
Conversion

e [2C (Part 1) - Building an
I2C slave + Theory

* [2C (Part 2) - Setting up
and checking an 12C bus

e [2C (Part3) -
Implementing an 12C

Slave

e PWM Intro - Pulse Width
Modulation

* PWM (Part 1) - Dimming
a led with PWM

* PWM (Part 2) - Sound
and Frequency with
Piezo Buzzer

e SPI Introduction

This chapter covers main and widely used PIC microcontroller internals (also referred as
PIC peripheralsin datasheets), like PWM, ADC, etc... For each section, you'll find some
basic theory explaining how things works, then area-life example.

32| Jdlib Tutorials | PIC internals

Jallib Tutoridls | PIC internals | 33

ADC - Analog-to-Digital Conversion

Sébastien Lelong
Jallib Group

Analog-to-Digital Conversion isyet another nice feature you can get with aPIC. It's basically used to convert a
voltage as an analog source (continuous) into adigital number (discrete).

ADC with water...

To better understand ADC, imagine you have some water going out of a pipe, and you'd like to know how many
water it goes outside. One approach would be to collect all the water in a bucket, and then measure what you've
collected. But what if water flow never ends ? And, more important, what if water flow isn't constant and you want to
measure the flow in real-time ?

The answer is ADC. With ADC, you're going to extract samples of water. For instance, you're going to put alittle
glassfor 1 second under the pipe, every ten seconds. Doing the math, you'll be able to know the mean rate of flow.

The faster you'll collect water, the more accurate the rate will be. That is, if you're able to collect 10 glasses of water
each second, you'll have a better overview of the rate of water than if you collect 1 glass each ten seconds. Thisisthe
process of making a continous flow a discrete, finite value. And thisis about resolution, one important property of
ADC (and thisis aso about clock speed...). The higher the resolution, the more accurate the results.

Now, what if the water flow is so high that your glass gets filled before the end of the sample time ? Y ou could use
abigger glass, but let's assume you can't (scenario need...). This means you can't measure any water flow, this one
has to be scaled according to your glass. On the contrary, the water flow may be so low samples you extract may not
be relevant related to the glass size (only few drops). Fortunately, you can use a smaller glass (yes, scenario need) to
scale down your sample. That is about voltage r efer ence, another important property.

Leaving our glass of water, many PICs provide severa ADC channels. pinsthat can do this process, measuring
voltage asinput. In order to use this peripheral, you'll first have to configure how many ADC channels you want.
Then you'll need to specify the resolution, usually using 8 bits (0 to 255), 10 bits (0 to 1024) or even 12 hits (0 to
4096). Findlly, you'll have to setup voltage r efer ences depending on the voltage spread you plan to measure.

ADC with jallib...

Asusual, Microchip PICs offers awide choice configuring ADC:

* Not all PICshave ADC module(...)

« Anaog pins are dispatched differently amongst PICs, still for user's sake, they have to be automatically
configured as input. We thus need to know, for each PIC, where analog pins are...

« Some PICs have their analog pins dependent from each other, and some are independent (more on this later)

e Clock configuration can be different

» Aspreviously stated, some PICs have 8-bits low resolution ADC module, some have 10-bits high resolution
ADC module!

« Some PICs can have two exter nal voltage r efer ences (VRef+ and VRef-), only one voltage reference (Vref+ or
Vref-) and some can't handle exter nal voltage referencesat all

e (and probably other differences | can't remember :)...

Luckily most of these differences are transparent to users...

Dependent and independent analog pins

OK, let'swrite some code ! But before this, you have to understand one very important point: some PICs have their
anal og pins dependent from each other, some PICs have their analog pinsindependent from each other. "What isthis
suppose to mean ?' | can hear...

Let's consider two famous PICs. 16F877 and 16F88. 16F877 datasheet explains how to configure the number of
analog pins, and vref, setting PCFG bits:

http://en.wikipedia.org/wiki/Analog-to-digital_converter

34 | Jallib Tutorials | PIC internals

PCFG3: | AN7(" | AN6(™ | AN5(" | AN4 AN3 | ANZ | AN1 | ANO o CHAN/
PCFGO | RE2 | RE1 REO | RAS RA3 RA2 | RA1 | RAQ Refs@
0000 A A A A A A A A Voo Vss 8/0
0001 A A A A VREF+ A A A RA3 Vss "
0010 D D D A A A A A Voo Vss 5/0
0011 D D D A VREF+ A A A RA3 Vss 41
0100 D D D D A D A A Voo Vss 3/0
0101 D D D D VREF+ D A A RA3 Vss 21
011x D D D D D D D D Voo Vss /0
1000 A A A A VREF+ | VREF- A A RA3 RA2 6/2
1001 D D A A A A A A Voo Vss 6/0
1010 D D A A VREF+ A A A RA3 Vss 5/1
1011 D D A A VREF+ | VREF- A A RA3 RA2 4/2
1100 D D D A VREF+ | VREF- A A RA3 RA2 3/2
1101 D D D D VREF+ | VREF- A A RA3 RA2 2/2
1110 D D D D D D D A Voo Vss: 1/0
1111 D D D D VREF+ | VREF- D A RA3 RA2 1/2

: A = Analog input D = Digital 'O
Figure 1: 16F877 ADC channels are controlled by PCFG bits

Want 6 analog pins, no Vref ? Then PCFG bits must be set to 0b1001. What will then be the analog pins ? RAO,
RA1, RA2, RA3, RA5 and REO. "What if | want 7 analog pins, no Vref ?" Y ou can't because you'll get aVref pin, no
choice. "What if | want 2 analog pins being RE1 and RE2 ?" Y ou can't, because there's no such combination. So, for
this PIC, analog pins are dependent from each other, driven by a combination. In this case, you'll have to specify:

» thenumber of ADC channelsyou want,
e and amongst them, the number of Vref channels

Now, let's consider 16F88. In this case, there's no such table:

bit 6-0 ANS<6:0>: Analog Input Select bits
Bits select input function on corresponding AN<6:0> pins.
1 = Analog /0(1:2)
0 = Digital O
Note 1: Setting a pin to an analog input disables the digital input buffer. The corresponding
TRIS bit should be set to input mode when using pins as analog inputs. Only AN2 is
an analog |/0, all other ANXx pins are analog inputs.
2: See the block diagrams for the analog I/O pins to see how ANSEL interacts with the
CHS bits of the ADCONO register.
i

Figure 2: 16F88 ADC channels are controlled by ANS bits

Mmmbh... OK, there are ANS bits, one for each analog pins. Setting an ANS hit to 1 sets the corresponding pin to
analog. Thismeans | can set whatever pin | want to be analog. "I can have 3 analog pins, configured on RAQ, RA4
and RB6. Freedom "

Analog pins are independent from each other in this case, you can do what you want. As a consequence, since

it's not driven by a combination, you won't be able to specify the number of ADC channels here. Instead, you'll use
set _anal og_pi n() procedure, and if needed, thereverseset _di gi tal _pi n() procedure. These procedures
takes a analog pin humber as argument. Say analog pin AN5 ison pin RB6. To turn this pin as analog, you just have
towriteset _anal og_pi n(5), because thisis about analog pin AN5, and not RB6.

@ Remember: as aconsequence, these procedures don't exist when analog pins are dependent asin our first
case.

. Caution: it's not because there are PCFG bits that PICs have dependent anal og pins. Some have PCFG
=3 bits which act exactly the same as ANS hits (like some of recent 18F)

Tip: how to know if your PIC has dependent or independent pins ? First have alook at its datasheet, if
you can atable like the one for 16F877, there are dependent. Also, if you configure a PIC with dependent
pinsasif it was one with independent pins (and vice-versa), you'll get an error. Finaly, if you get an error
like: "Unable to configure ADC channels. Configuration is supposed to be done using ANS bits but it
seems there's no ANShits for this PIC. Maybe your PIC isn't supported, pleasereport !", or the like, well,
thisis not anormal situation, so as stated, please report !

Once configured, using ADC iseasy. You'll findadc_read() andadc read low_res() functions, for respectively
read ADC in high and low resolution. Because low resolution is coded on 8-bits, adc_r ead() returnsabyt e as
theresult. adc read_low_res() returnsawor d.

Example with 16F877, dependent analog pins

Jallib Tutoridls | PIC internals | 35

The following examples briefly explains how to setup ADC module when analog pins are dependent from each other,

using PIC 16F877.

The following diagram is here to help knowing where analog pins (blue) are and where Vr ef pins (red) are:

"Pin Diagram
PDIP

l\J 40 || =—s RE7/PGD
39 [| =+— RBEFGC
3B [| =—= AB5

37 [] -— FAB4

36 [| =—= RB3/PGM
35] - FBZ

34 [| =—= AB1

33 || =—= RBO/INT
32 [] =—— VoD

31 [=-—— Vss

30 [] =—== AD7/PSF7
29 || =—= RDB/FPSFE&
28 [] +—= HADS/PSPS
27 [[] =—= RD4/FSP4
2§ [] -—s RCTRWDT
25 [-—» ACBTWCK
24 [[] -—w RC5/5D0
23 [] =—= RAC4/SDISDA |
22 [] -—a RAD3/PSP3 |
21 [| -=—= RD2/FSP2

MCLR/VPP ——= [
FRANAND -—]

RAT/ANT —e |
RA2/ANZIVREF- ¢ []

RAJ/ANIVREF+ =—=[]
AA4TOCK! a— []
RAS/AN4/SE -— [|
HEO/AD/ANS =+—[]
AE1/WR/ANG =+—=[]
REZ2/CE/ANT — [|
VDD —— []

(i ——

OSC1/CLKIN —=[]
OSC2/CLKOUT g—vo[]
ACOTIOSOTICK] -— [
RC1/TIOSI/CCP2 -a— [
RC2/CCP1 a— [}
RC3/SCK/SCL ~—[]
RDO/PSP0 w— []
RD1/PSP1 =+—=[|

e =] o O W =

w

PIC16F877874

=]

P el
2 0 w

Figure 3: Analog pins and Vref pins on 16F877
Example 1: 16F877, with only one analog pin, no external voltage reference

-- beginning is about configuring the chip
-- this is the sane for all exanples for about 18F877
i ncl ude 16f877

-- setup clock runni ng @OMiz

pragma target OSC HS

pragma target clock 20 _000_000

-- no wat chdog

pragma target WDT disabled

pragma target LVP disabled

enabl e_digital _io()

i ncl ude del ay

-- ok, now setup serial, we'll use this
-- to get ADC neasures

const serial _hw baudrate = 19 200

i ncl ude serial _hardware

serial _hw_ init()

-- ok, now let's configure ADC
-- we want to neasure using | ow resolution

-- (that's our choice, we could use high resolution as well)

const bit ADC H GH RESOLUTI ON = fal se
-- we said we want 1 anal og channel ..
const byte ADC NCHANNEL = 1

-- and no external voltage reference

36 | Jallib Tutorials | PIC internals

const byte ADC NVREF = ADC NO EXT VREF

-- now we can include the library

-- note it's now naned "adc", not "adc_hardware" anynore
i ncl ude adc

-- and run the initialization step

adc_init()

-- will periodically send those chars
var byte neasure
forever | oop
-- get ADC result, on channel O
-- this means we're currently reading on pin RAO/ANO !
measure = adc_read_| ow res(0)
-- send it back through serial
serial _hw wite(neasure)

-- and sleep a litte to prevent flooding serial..
del ay_1mns(200)
end | oop

Example 2: 16F877, with 5 analog pins, 1 external voltage reference, that is, Vref+

Thisisamost the same as before, except we now want 5 (analog pins) + 1 (Vref) =6 ADC channéls (yes, | consider
Vref+ pin asan ADC channel).

The beginning is the same, here's just the part about ADC configuration and readings:

const bit ADC H GH RESOLUTION = fal se

-- our 6 ADC channel

const byte ADC NCHANNEL = 6

-- and one Vref pin

const byte ADC NVREF = ADC VREF PGS

-- the two paraneters could be read as:

-- "l want 6 ADC channel s, anmpngst which 1 will be
-- reserved for Vref, and the 5 renmi ning ones will be
-- anal og pins"

i ncl ude adc

adc_init()

-- will periodically send those chars
var byte neasure
forever | oop
-- get ADC result, on channel O
-- this means we're currently reading on pin RAO/ANO !
measure = adc_read | ow res(0)
-- send it back through seri al
serial _hw wite(nmeasure)

-- sanme for pin RAL/ANL
measure = adc_read | ow res(1)
serial _hw wite(neasure)

-- same for pin RA2/ AN2
nmeasure = adc_read_| ow_res(2)
serial _hw wite(nmeasure)

-- pin RA3/AN3 can't be read, since it's Vref+
-- same for pin RA5/ AN

-- 4 is fromfrom"AN4" !

measure = adc_read_| ow res(4)

serial _hw wite(nmeasure)

-- same for pin REL10/ AN5

nmeasure = adc_read_| ow_res(5)
serial _hw wite(nmeasure)

Jallib Tutorials | PIC internals | 37

-- and sleep a litte to prevent flooding serial...

del ay_1ns(200)
end | oop

Example with 16F88, independent analog pins

The following example is about setting up ADC module with PIC 16F88, where analog pins are independent from

each other.

The following diagram is here to help knowing where analog pins (blue) are and where Vref pins (red) are:

Pin Diagram
18-Pin PDIP, SOIC

RAZ/ANZ2/CVREF/

vrer. = 4 18[] == RA1/AN1
RAaxANSag1HCE)E+T.-“ - [17[] == RAQ/ANO
RAGANATOCK! . 5 16[] =— RA7/OSC1/CLKI
RASMCLRIVFF —» [4 @ 15[] —= RA6/OSC2/CLKO
Vss —= 5 :‘I': 14[]1 =— VDD
RBOANT/CCP1" <= [& E 13[] == ??S@NS’PGDJ
RB1/SDI/SDA == [7 12+ HOSENSE G/
RB2/SDO/RXDT == []8 11[] == RB5/SS/TX/CK
RBaPGMICCP1M == [] 9 10[] == RB4/SCK/SCL

Note 1: The CCP1 pin is determined by the CCPMX bit in

Configuration Word 1 register.

Figure 4: Analog pins and Vref pins on 16F88

Example 1: 16F88, analog pins on RAO/ANO, RA4/AN4 and RB6/ANS. No external voltage reference.

-- beginning is about configuring the chip
i ncl ude 16f 88

-- We'll use internal
pragma target CLOCK
pragma target OSC
OSCCON_I RCF = Ob_111

oscill ator.
8 000_000
| NTOSC_NOCLKOUT

pragma target WDT di sabl ed
enabl e digital io()
-- ok, now setup serial, we'll use this

-- to get ADC neasures
const serial _hw baudrate =
i ncl ude serial hardware
serial_hw init()

19 200

-- now configure ADC

const bit ADC H GH RESOLUTION = fal se

const byte ADC NVREF = ADC_NO EXT_VREF

-- we can't specify a nunmber of ADC channel
-- or we'll get an error !

It work @ 8MHz

her e,

38| Jallib Tutorias | PIC internals

i ncl ude adc

adc_init()

-- now we declare the pin we want as anal og
set _anal og_pin(0) -- RAO/ANO

set _anal og_pin(4) -- RA4/ AN4

set _anal og_pin(5) -- RB6/AN5

-- reading is then the sane
var byte neasure
forever | oop

measure = adc_read_| ow res(0)
serial _hw wite(nmeasure)

nmeasure = adc_read_ | ow res(4)
serial _hw wite(neasure)

measure = adc_read_| ow res(5)
serial _hw wite(nmeasure)

end | oop

Whether you would want to turn RB6/ANS into adigital pin again, you'd just call:
set _digital _pin(5)

Jallib Tutorials | PIC internals | 39

|2C (Part 1) - Building an I2C slave + Theory

Sébastien Lelong
Jallib Group

i2cisanice protocol: it is quite fast, reliable, and most importantly, it's addressable. This meansthat on asingle 2-
wire bus, you'll be able to plug up to 128 devices using 7hits addresses, and even 1024 using 10bits address. Far
enough for most usage... | won't cover i2c in depth, as there are plenty resources on the Web (and | personally like
this page).

A few words before getting our hands dirty...

i2c isfound in many chips and many modules. Most of the time, you create a master, like when accessing an
EEPROM chip. Thistime, in this three parts tutorial, we're going to build a slave, which will thus respond to master's
requests.

The slave side is somewhat more difficult (as you may have guess from the name...) because, as it does not initiate the
talk, it hasto listen to "events’, and be as responsive as possible. Y ou've guessed, we'll use interrupts. I'll only cover
i2c hardware slave, that is using SSP peri pheralz. Implementing an i2c software slave may be very difficult (and |
even wonder if it's reasonable...).

There are different way implementing an i2c slave, but one seems to be quite common: defining afinite state
machine. Thisimplementation is well described in Microchip AppNote AN734. It is highly recommended that you
read this appnote, and the i2c sections of your favorite PIC datasheet as well (I swear it's quite easy to read, and well
explained).

Basically, during an i2c communication, there can be 5 distinct states:

1. Master writes, and last byte was an address: to sum up, master wants to talk to a specific slave, identified by
the address, it wants to send data (write)

2. Master writes, and last byte was data: thistime, master sends data to the lave

3. Master read, and last byte was an addr ess: amost the same as 1., but this time, master wants to read something
from the salve

4. Master read, and last byte was data: just the continuation of state 3., master has started to read data, and still
wants to read more data

5. Master sendsa NACK: basically, master doesn't want to talk to the slave anymore, it hangs up...

™ Note: inthei2c protocol, one slave has actually two distinct addresses. Oneis for read operations, and it
"" ends with bit 1. Another is for write operations, and it ends with bit O.

Example: consider the following address (8-bits long, last bit is for operation type)
0x5C => 0Ob_0101_1100 => wite operation

The same address for read operation will be:

0x93 => 0b_0101 1101 => read operation

™ Note: jallib currently supportsup to 128 deviceson ai2c bus, using 7-bits long addresses (without the
"" 8th R/W bits). There's currently no support for 10-bits addresses, which would give 1024 devices on the
same bus. If you need it, please let us know, we'll modify libraries as needed !

OK, enough for now. Next time, we'll see how two PICs must be connected for i2c communication, and we'll check
thei2c busisfully working, before diving into the implementation.

2 some PICs have MSSP, this means they can also be used as i 2¢ hardware Master

http://en.wikipedia.org/wiki/I2c
http://www.google.com/search?q=i2c
http://www.esacademy.com/faq/i2c/index.htm
http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Finite_state_machine
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011798

40 | Jallib Tutorias | PIC internals

12C (Part 2) - Setting up and checking an I2C bus

Sébastien Lelong
Jallib Group

In previous tutorial, we saw a basic overview of how to implement an i2c slave, using a finite state machine
implementation. Thistime, we're going to get our hands alittle dirty, and starts connecting our master/slave together.

Checking the hardware and the i2c bus...

First of al, i2cis quite hard to debug, especialy if you don't own an oscilloscope (like me). So you have to be
accurate and rigorous. That's why, in this second part of this tutorial, we're going to setup the hardware, and just make
sure thei2c busis properly operational.

Connecting two PIC together through i2c is quite easy from a hardware point of view. Just connect SDA and SCL
together, and don't forget pull-upsresistors. There are many differents values for these resistors, depending on how
long the busis, or the speed you want to reach. Most people use 2.2K resistors, so let's do the same ! The following
schematicsis here to help:

!
:

In this circuit, both PIC have a LED connected, which will help us understand what's going on. On a breadboard, this
looks like that:

o
1

Decoupling caps
near microcontroller

it
T

%WTTM

Jallib Tutorials | PIC internals | 41

The master is on the right side, the slave on the left. I've put the two pull-ups resistors near the master:

42 | Jlib Tutorials | PIC internals

Green and orange wires connect the two PICs together through SDA and SCL lines:

The goa of thistest issimple: check if thei2c busis properly built and operational. How ? PIC 16F88 and its SSP
peripheral is able to be configured so it triggers an interrupts when a Start or Stop signal is detected. Read this page
(part of an nice article on i2c, from previous tutorial's recommandations).

How are we gonnatest this ? The idea of thistest issimple:

1. On power, master will blink aLED alittle, just to inform you it'saive

2. Onthe sametime, slave is doing the same

3. Once master has done blinking, it sends ai2c frame through the bus

4. If thebusis properly built and configured, slave will infinitely blink its LED, at high speed

Note master will send itsi2c frame to a specific address, which don't necessarily need to be the same as the slave one
(and | recommand to use different addresses, just to make sure you understand what's going on).

What about the sources ? Download latest jallib pack, and check the following files (either inl i b or sanpl e
directories):

e i2c_ hw_davejal: maini2c library
« 16f88 i2c_sw _master_check busjal: code for master
» 16f88_i2c_hw_slave check busjal: code for dave

The main part of the slave code is the way theinitialization is done. A constant is declared, telling the library to
enable Start/Stop interrupts.

const SLAVE ADDRESS = 0x23 -- whatever, it's not inportant, and can be
-- different fromthe address the nmaster wants
-- to talk to

-- with Start/Stop interrupts

const bit i2c_enable start_stop interrupts = true

-- this init automatically sets gl obal/peripherals interrupts

i 2c_hw_sl ave_i ni t (SLAVE_ADDRESS)

http://www.esacademy.com/faq/i2c/busevents/i2cstast.htm
http://code.google.com/p/jallib/downloads/list
http://jallib.googlecode.com/svn/trunk/include/peripheral/i2c/i2c_hw_slave.jal
http://jallib.googlecode.com/svn/trunk/sample/16f88_i2c_sw_master_check_bus.jal
http://jallib.googlecode.com/svn/trunk/sample/16f88_i2c_hw_slave_check_bus.jal

And, of course, the Interrupt Service Routine (ISR):

procedure i2c_isr() is

pragma i nterrupt

if ! PIRL_SSPIF then
return

end if

-- reset flag

PIRL_SSPIF = fal se

-- tnp store SSPSTAT

var byte tnpstat

tnmpstat = SSPSTAT

-- check start signals

if (tnpstat == 0b_1000) then

Jallib Tutorials | PIC internals | 43

-- If we get there, this means this is an SSP/|12C interrupts

-- and this nmeans i2c bus is properly operational

while true | oop
led = on
_usec_del ay(100000)
led = of f
_usec_del ay(100000)
end | oop
end if

end procedure

The important thing isto:

check if interrupt is currently a SSPinterrupts (12C)

reset the interrupt flag,
analyze SSPSTAT to seeif Start bit is detected
if so, blinks 'til the end of time (or your battery)

Now, go compile both samples, and program two PICs with them. With a correct i2c bus setting, you should see the
following:

http: //mww.youtube.com/watch?v=Nal AKRhFP-s

On this next video, I've removed the pull-ups resistors, and it doesn't work anymore (slave doesn't high speed blink its
LED).

http: //mww.youtube.com/watch?v=cNK_cCgWectY

Next time (and last time on this topic), we'll see how to implement the state machine using jallib, defining callback
for each states.

http://www.youtube.com/watch?v=NalAkRhFP-s
http://www.youtube.com/watch?v=cNK_cCgWctY

44 | Jallib Tutorias | PIC internals

[2C (Part 3) - Implementing an I12C Slave

Sébastien Lelong
Jallib Group

In previous parts of thistutorial, we've seen alittle of theory, we've also seen how to check if thei2c busis
operational, now the time has come to finally build our i2¢ slave. But what will slave will do ? For this example, slave
is going to do something amazing: it'll echo received chars. Oh, I'm thinking about something more exciting: it will
"amost" echo chars:

e if yousend"a', it sends"b"
e ifyousend"b", it sends"c"
« if yousend"z", it sends"{"®

Building the i2c master

Let's start with the easy part. What will master do ? Just collect characters from a serial link, and convert themtoi2c
commands. So you'll need a PIC to which you can send data via serial. | mean you'll need aboard with serial com.
capabilities. | mean we won't do this on a breadboard... There are plenty out there on the Internet, pick your choice.

If you're interested, you can find one on my SirBot site: dedicated to 16f88, serial com. available, and i2c ready (pull-
ups resistors).

It looks like this:

http://sirbot.org/sirbot-modules/main_board/
http://sirbot.org/

Jallib Tutorials | PIC internals | 45

Two connectors are used for earch port, PORTA and PORTB, to plug daughter boards, or a breadboard in our case.

Thei2c initialization part is quite straight forward. SCL and SDA pins are declared, we'll use a standard speed,
400K Hz:

-- 12Cio definition

var volatile bit i2c_scl is pin_b4

var volatile bit i2c_scl _direction is pin_b4 direction
var volatile bit i2c_sda is pin_bl

var volatile bit i2c_sda direction is pin_bl direction
-- 12c setup

const word _i2c_bus_speed = 4 ; 400kHz

const bit _i2c_level = true ; 12c levels (not SMB)

i ncl ude i2c_software
i2c_initialize()

Well aso usethelevel 1i2clibrary. The principle is easy: you declare two buffers, one for receiving and one for
sending bytes, and then you call procedure specifying how many bytes you want to send, and how many are expected
to be returned. Joep has written a nice post about this, if you want to read more about this. We'll send one byte at a
time, and receive one byte at atime, so buffers should be one byte long.

const single byte tx buffer = 1 -- only needed when length is 1
var byte i2c_tx_buffer[1]

var byte i2c_rx_buffer[1]

i nclude i2c_levell

What's next ? Well, master also has to read chars from a seria line. Again, easy:

const usart_hw serial = true
const serial hw baudrate = 57_600
i ncl ude serial _hardware

serial _hw_init()

-- Tell the world we're ready !
serial_hw wite("!'")

So when the master is up, it should at least send the "!" char.

Then we need to specify the slave's address. Thisis a 8-bits long address, the 8th bits being the bit specifying if
operation isaread or write one (see part 1 for more). We then need to collect those chars coming from the PC and
sends them to the Slave.

The following should do the trick (believe me, it does:))
var byte icaddress = 0x5C -- sl ave address

http://jallib.blogspot.com/2008/12/i2c-master.html

46 | Jallib Tutorias | PIC internals

forever | oop
if serial_hw read(pc_char)
t hen
serial_hw wite(pc_char) -- echo
-- transmt to slave
-- we want to send 1 byte, and receive 1 fromthe sl ave
i 2c_tx_buffer[0] = pc_char
var bit _trash = i2c_send receive(icaddress, 1, 1)
-- receive buffer should contain our result
ic_char = i2c_rx_buffer[0]
serial _hw wite(ic_char)
end if
end | oop

The whole program is available on jallib SV N repository here.

Building the i2c slave

So thisisthe main part ! As exposed on first post, we're going to implement afinite state machine. jallib comes with
alibrary where all the logic is already coded, in alSR. You just have to define what to do for each state encountered
during the program execution. To do this, we'll have to define several callbacks, that is procedures that will be called
on appropriate state.

Before this, we need to setup and initialize our save. i2c address should exactly be the same as the one defined in
the master section. Thistime, we won't use interrrupts on Start/Stop signals; wel'll just let the SSP module triggers an
interrupts when the i2c address is recognized (no interrupts means address issue, or hardware problems, or...). Finally,
since lave is expected to receive a char, and send char + 1, we need a global variable to store the results. This gives:

i ncl ude i 2c_hw sl ave

const byte SLAVE ADDRESS = 0x5C
i 2c_hw_sl ave_i ni t (SLAVE_ADDRESS)

-- will store what to send back to master

-- soif we get "a", we need to store "a" + 1
var byte data

Before this, let's try to understand how master will talk to the slave (italic) and what the slave should do (underlined),
according to each state (with code following):

e state 1. master initiates a write operation (but does not send data yet). Since no datais sent, slave should just do...
nothing (slave just knows someone wants to send data).

procedure i2c_hw slave on_state 1(byte in _trash) is
pragme inline
-- _trash is read frommaster, but it's a dummy data
-- usually (always ?) ignored

end procedure

« dtate 2: master actually sends data, that is one character. Slave should get this char, and processit (char + 1) for
further sending.

procedure i2c_hw slave on_state 2(byte in rcv) is
pragme inline
-- ultimate data processing... :)
data =rcv + 1

end procedure

« dtate 3: master initiates a read operation, it wants to get the echo back. Slave should send its processed char.

procedure i2c_hw slave on_state 3() is
pragme inline
i 2c_hw sl ave write i2c(data)

end procedure

http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_i2c_sw_master_echo.jal

Jallib Tutorials | PIC internals | 47

* state4: master still wants to read some information. This should never occur, since one char is sent and read at a
time. Slave should thus produce an error.

procedure i2c_hw slave on_state 4() is
pragme inline
-- This shouldn't occur in our i2c echo exanple
i 2c_hw sl ave_on_error ()

end procedure

» dtate 5: master hangs up the connection. Slave should reset its state.

procedure i 2c_hw slave on_state 5() is
pragme inline
data = 0

end procedure

Finally, we need to define a callback in case of error. Y ou could do anything, like resetting the PIC, and sending log/
debug data, etc... In our example, we'll blink forever:
procedure i2c_hw slave_on_error() is
pragme inline
-- Just tell user user sonething's got wong
forever | oop
led = on
_usec_del ay(200000)
led = of f
_usec_del ay(200000)
end | oop
end procedure

Once callbacks are defined, we can include the famous ISR library.
i ncl ude i 2c_hw sl ave i sr
So the sequenceis:

1. includei2c_hw_dave, and setup your dave
2. defineyour callbacks,
3. includethe ISR

Thefull codeis available from jallib's SVN repository:

* i2c_hw_davejal

e i2c_ hw dlave isrjal

e 16f88 i2c_sw_master_echo.jal
« 16f88 i2c_hw_dave echo.jal

All those files and other dependencies are also available in latest jallib-pack (seejalib downloads)

Connecting and testing the whole thing...

As previously said, the board | use is ready to be used with aseria link. It'saso i2c ready, I've put the two pull-ups
resistors. If your board doesn't have those resistors, you'll have to add them on the breadboard, or it won't work (read
part 2 to know and see why...).

| use a connector adapted with a PCB to connect my main board with my breadboard. Connector's wires provide
power supply, 5V-regulated, so no other powered wires it required.

http://code.google.com/p/jallib/source/browse/trunk/include/peripheral/i2c/i2c_hw_slave.jal
http://code.google.com/p/jallib/source/browse/trunk/include/peripheral/i2c/i2c_hw_slave_isr.jal
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_i2c_sw_master_echo.jal
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_i2c_hw_slave_echo.jal
http://code.google.com/p/jallib/downloads/list

48| Jlib Tutorias| PIC internals

Connector, with power wires

L

Everything isready...

Crime scene: main board, breadboard and battery pack

Jallib Tutorials | PIC internals | 49

Once connected, power the whole and use aterminal to test it. When pressing "a", you'll get a"a" as an echo from the
master, then "b" as result from the slave.

sirloon@storm
sirloon@storm - cu -1 fdev/ttyUSB8 -s 57600

Connected.
abbccddeefxyyzz{011l2

What now ?

We've seen how to implement asimple i2c hardware slave. The ISR library provides al the logic about the finite state
machine. You just have to define callbacks, according to your need.

i2c isawidely used protocol. Most of the time, you access i2c devices, acting as a master. We've seen how to be

on the other side, on the slave side. Being on the slave side means you can build modular boards, accessible with a
standard protocol. For instance, I've built a DC motor controller daughter board using this. It'samodule, a unit on its
own, just plug, and send/receive data, with just two wires.

http://sirbot.org/sirbot-modules/dc-motor-controller-board

50 | Jallib Tutorials | PIC internals

PWM Intro - Pulse Width Modulation

Sébastien Lelong
Jallib Group

In the following tutorials, we're going to (try to) have some fun with PWM. PWM stands for Pulse Width Modulation,
and is quite weird when you first face this (thiswas at least my first feeling). So here's a brief explanation of what it is
about.

How does PWM look like ?...

PWM is about switching one pin (or more) high and low, at different frequencies and duty cycles. Thisis a on/off
process. You can either vary:

« thefrequency,
< ortheduty cycle, that is the proportion where the pin will be high

I on

WMz same duty cycle, different frequencies

Both have a 50% duty cycle (50% on, 50% off), but the upper one's frequency is twice the bottom

Figure 5: PWM: same duty cycle, different frequencies.

1 n

I .
1 1 1T 1.

Fwiv: same frequency, different duty cycles

http://en.wikipedia.org/wiki/PWM

Three different duty cycle (10%, 50% and 90%), all at the same frequency

Figure 6: PWM: same frequency, different duty cycles

But what is PWM for ? What can we do with it ? Many things, like:

« producing variable voltage (to control DC motor speed, for instance)
» playing sounds: duty cycleis constant, frequency is variable
» playing PCM wave file (PCM is Pulse Code Modulation)

That said, we're now goind to experiment these two major properties.

Jallib Tutorias | PIC internals | 51

52 | Jdlib Tutorials | PIC internals

PWM (Part 1) - Dimming a led with PWM

Sébastien Lelong
Jallib Group

One PWM channel + one LED = fun

For now, and for thisfirst part, we're going to see how to control the brightness of a LED. If simply connected to a
pin, it will light at its max brightness, because the pin is"just” high (5V).

Now, if we connect this LED on a PWM pin, maybe we'll be able to control the brightness: as previously said,
PWM can be used to produce variable voltages. If we provide half the value (2.5V), maybe the LED will be half its
brightness (though | guess the relation between voltage and brightnessis not linear...). Half the value of 5V. How to
do this ? Simply configurethe duty cycleto be 50% high, 50% low.

But we also said PWM isjust about switching a pin on/off. That is, either the pin will be OV, or 5V. So how will we
be able to produce 2.5V ? Technically speaking, we won't be able to produce areal 2.5V, but if PWM freguency is
high enough, then, on the average, and from the LED's context, it's as though the pin outputs 2.5V.

Building the circuit

Enough theory, let's get our hands dirty. Connecting a LED to a PWM pin on a 16f88 is quite easy. This PIC has quite
anice feature about PWM, it's possible to select which pin, between RBO and RB3, will carry the PWM signals. Since
| use tinybootloader to upload my programs, and since tiny's fuses are configured to select the RBO pin, I'll keep using
this one (if you wonder why tinybootloader interferes here, read this post).

Connecting a LED to a PWM pin

L5V httpeifallib.googlecode. com

16F88

RAZANZ RA1/AN1
RAZANS RALAND
RA4/ANA RAT/OSCH
RASMCLR RABOSC2
YES YOD
RBO/IMNT RBFPGD
RB1/SDA RB&PGC
RB2/RX RB&STX
RBZ RB4/SCL

PIC16F88-DIP

alal=lz

I‘o‘ll‘ISIG\b

+5

GND

Figure 7: Connecting a LED to a PWM pin

On a breadboard, thislooks like this:

http://www.etc.ugal.ro/cchiculita/software/picbootloader.htm
http://jallib.blogspot.com/2009/01/common-pitfall-setting-up-registers.html

Jallib Tutorials | PIC internals | 53

LED is connected to RBO

Writing the software

For this example, | took one of the 16f88's sample included in jallib distribution (16f88_pwm led.jal), and just adapt
it soit runsat 8MHz, using internal clock. It aso select RBO as the PWM pin.

S0, step by step... First, as we said, we must select which pin will carry the PWM signals...

pragma target CCP1MJUX RBO -- ccpl pin on BO
and configure it as output

var volatile bit pin_ccpl direction is pin_bO_direction
pi n_ccpl_direction = out put
-- (sinply "pin_bO direction = output”" would do the trick too)

http://code.google.com/p/jallib/source/browse/trunk/sample/by_device/16f88/16f88_pwm_led.jal

54 | Jallib Tutorials | PIC internals

Then we include the PWM library.

i ncl ude pwm har dwar e

Few words here... Thislibrary is able to handle up to 10 PWM channels (PIC using CCP1, CCP2, CCP3, CCP4, ...
CCP10 registers). Using conditional compilation, it automatically selectsthe appropriate underlying PWM
libraries, for the selected target PIC.

Since 16f88 has only one PWM channel, it just includes "pwm_ccpl” library. If we'd used a 16f877, which has two
PWM channels, it would include "pwm_ccpl" and "pwm_ccp2" libraries. What isimportant isit's transparent to
users (you).

OK, let's continue. We now need to configure the resolution. What's the resolution ? Given a frequency, the number
of values you can have for the duty cycle can vary (you could have, say, 100 different values at one frequency, and
255 at another frequency). Have alook at the datasheet for more.

What we want here is to have the max number of values we can for the duty cycle, so we can select the exact
brightness we want. We also want to have the max frequency we can have (ie. no pre-scaler).

pwm nmax_resol ution(1)

If you read the jalapi documentation for this, you'll see that the frequency will be 7.81kHz (we run at SMHz).
PWM channels can be turned on/off independently, now we want to activate our channel:

pwril_on()

Before we dive into the forever loop, | forgot to mention PWM can be used in low or high resolution. On low
resolution, duty cycles values range from 0 to 255 (8 bits). On high resolution, values range from 0 to 1024 (10
bits). In this example, we'll use low resolution PWM. For high resolution, you can have alook at the other sample,
16f88_pwm led_highresjal. Asyou'll see, there are very few differences.

Now let's dive into the loop...

forever | oop
var byte i
i =0
-- loop up and down, to produce different duty cycle
while i < 250 | oop
pwnil_set dutycycl e(i)
_usec_del ay(10000)
i =i +1
end | oop
while i > 0 | oop
pwnil_set dutycycl e(i)
_usec_del ay(10000)
i =i -1
end | oop
-- turning off, the LED lights at max.
_usec_del ay(500000)
pwril_of f ()
_usec_del ay(500000)
pwnil_on()

end | oop

Quite easy right ? There are two main waves: one will light up the LED progressively (0 to 250), another will turn
it off progressively (250 to 0). On each value, we set the duty cycle with pwrl_set dut ycycl e(i) andwait a
little so we, humans, can see the result.

About the result, how does thislook like ? See this video: http://mww.youtube.com/watch?v=r9 TFEmUS0

"l wanna try, where are the files ?"

To run this sample, you'll need latest jallib pack (at least 0.2 version). You'll also find the exact code we used here.

http://jallib.googlecode.com/svn/trunk/doc/html/pwm_common.html
http://code.google.com/p/jallib/source/browse/trunk/sample/by_device/16f88/16f88_pwm_led_highres.jal
http://www.youtube.com/watch?v=r9_TfEmUSf0
http://code.google.com/p/jallib/downloads/list
http://code.google.com/p/jallib/source/browse/trunk/doc/dita/tutorials/code/blog_16f88_board_sl_pwm_led.jal

Jallib Tutorials | PIC internals | 55

PWM (Part 2) - Sound and Frequency with Piezo Buzzer

Sébastien Lelong
Jallib Group

In previous tutorial, we had fun by controlling the brightness of a LED, using PWM. Thistime, we're going to have
even more fun with a piezo buzzer, or asmall speaker.

If you remember, with PWM, you can either vary the duty cycle or the frequency. Controlling the brightness of a
LED, ie. produce a variable voltage on the average, can be done by having a constant frequency (high enough) and
vary the duty cycle. Thistime, thiswill be the opposite: we'll have a constant duty cycle, and vary the frequency.

What is a piezo buzzer ?

It'sa"component” with a material having piezoelectric ability. Piezoelectricity is the ability for amaterial to produce
voltage when it get distorted. The reverseis also true; when you produce a voltage, the material gets distorted. When
you stop producing a voltage, it gets back to its original shape. If you're fast enough with this on/off voltage setting,
then the piezo will start to oscillate, and will produce sound. How swest...

Constant duty cycle ? Why ?

So we now know why we need to vary the frequency. This will make the piezo oscillates more and less, and produces
sounds at different levels. If you produce a 440Hz frequency, you'll get anice A3.

But why having a constant duty cycle ? What is the role of the duty cycle in this case ? Remember: when making a
piezo oscillate, it's not the amount of volts which isimportant, it's how you turn the voltage on/off*:

« when setting the duty cycle to 10%: during a period, piezo will get distorted 10% on the time, and remain
inactive 90% on the time. The oscillation proportionislow.

« when setting the duty cycle to 50% : the piezo is half distorted, half inactive. The oscillation proportion is high,
because the piezo oscillates at the its maximal amplitude, it's half and equally distorted and inactive.

« when setting the duty cycle to 90% : the piezo will get distorted during 90% of a period, then nothing. The
oscillation proportion is low again, because the proportion between distortion and inactivity is not equal.

So, to summary, what is the purpose of the duty cyclein our case ? The volume! Y ou can vary the volume of the
sound by modifying the duty cycle. 0% will produce no sounds, 50% will be the max volume. Between 50% and
100% is the same as between 0% and 50%. So, when | say when need a constant duty cycle, it's not that true, it's just
that we'll set it at 50%, so the chances we hear something are high :)

Let's produce sounds !

The schematics will use is exactly the same as on the previous post with the LED, except the LED isreplaced with a
piezo buzzer, like this:

4 | guessthisis about energy or something like that. One guru could explain the maths here...

http://en.wikipedia.org/wiki/Piezoelectricity
http://en.wikipedia.org/wiki/A440

56 | Jallib Tutorials | PIC internals

By the way, how to observe the "duty cycle effect" on the volume ? Just program your PIC with the previous
experiment one, which control the brightness of a LED, and power on the circuit. | wanted to show avideo with
sounds, but the frequency istoo high, my camera can't record it...

Anyway, that's alittle bit boring, we do want sounds...

Writing the software

The software part has alot of similarities with the previous experiment. The initialization is the same, | let you have a
look. Only thef or ever | oop has changed:

var dword counter = 0
forever | oop

Jallib Tutorials | PIC internals | 57

for 100 _000 using counter | oop
pwm set frequency(counter)
-- Setting @0% gi ves max vol une
-- nmust be re-conputed each tine the frequency
-- changes, because it depends on PR2 val ue
pwnil_set percent _dutycycl e(50)

end | oop

end | oop
Quite straightforward:

* we"explore" frequencies between 0 and 100 000 Hz, using acount er

« weusepwm set frequency(counter) to setthefrequency, in Hertz. It takes a dword as parameter (ie.
you can explore alot of frequencies...)

- finally, aswe want a 50% duty cycle, and since its value is different for each frequency setting, we need to re-
compute it on each loop.

" Note: jalib's PWM libraries are coming from a"heavy refactoring” of Guru Stef Mientki's PWM library.
"" While integrating it to jallib, we've modified the library so frequencies can be set and changed during
program execution. This wasn't the case before, because the frequency was set as a constant.

So, how does this look like ? Hope you'll like the sweet melody :)
http: //www.youtube.com/watch?v=xZ90hQUKGtQ

"Where can | download the files ?"
Asusual, you'll need the latest jallib pack (at least 0.2 version). You'll aso find the exact code we used here.

http://www.youtube.com/watch?v=xZ9OhQUKGtQ
http://code.google.com/p/jallib/downloads/list
http://code.google.com/p/jallib/source/browse/trunk/doc/dita/tutorials/code/blog_16f88_pwm_sound.jal

58 | Jallib Tutorials | PIC internals

SPI Introduction

Matthew Schinkel
Jallib Group

Introduction to SPI - Seria Periphera interface

What is SPI?

SPI isaprotocol issimply away to send datafrom device to devicein aserial fashion (bit by bit). This protocol is
used for things like SD memory cards, MP3 decoders, memory devices and other high speed applications.

We can compare SPI to other data transfer protocols:
Table 1: Protocol Comparison Chart

SPI RS-232 12C
PINS 3+ 1 per device 2 2
Number Of Devices unlimited 2 1024
Bitsin one data byte 8 10 (8 bytes + 1 start 9 (8 bytes + 1 ack
transfer bit + 1 stop hit) bit)
Must send one No No Yes
device address byte
before transmission
Clock Type Master clock only Both device clocks Master Clock that
must match dlave can influence
Data can transfer Yes Yes No
in two directions at
the same time (full-
duplex)

Asyou can see SPI sends the least bit's per data byte transfer byte and does not need to send a device address before
transmission. This makes SPI the fastest out of the three we compared.

Although SPI alows "unlimited" devices, and 12C allows for 1024 devices, the number of devices that can be
connected to each of these protocol's are still limited by your hardware setup. This tutorial does not go into detail
about connecting alarge number of devices on the same bus. When connecting more devices, unrevealed problems

How does SPI work?

Firstly, SPI worksin a master/slave setup. The master is the one that sends the clock pulses. At each pulse, data will
be sent and received.

SPI has a chip select pin. Every device will share the"SDI", "SDO" and "Clock" pins, but each device will haveit's
own chip select pin (also known as dave select). This means we can have avirtually unlimited number of devices
on the same SPI bus. Y ou should also note that the chip select pin can be active high or active low depending on the
device.

For some devices, the chip select pin must stay enabled throughout the transmission, and others require achangein
the chip select line before the next transmission.

SPI is Dual-Duplex. This means data can be sent and received at the same time. If you wish to send data and not
receive any, the PIC will receive data anyways. Y ou may ignore the return byte.

Here's a diagram showing the way in which SPI sends & receives data:

Jallib Tutorials | PIC internals | 59

Serial Dataln | f ©7 ¥ o0s ¥ ps ¥ oa ¥ ps ¥ 02 ¥ o1 ¥ 0o)

Serial Data Out o7 x D& }(Ds < D4 ;{ D3 X sz D1 }{ oo }\

Clock L] LJ i N i AN
ChipS&h&i, L

Samle Edge Data Change lock Polarity

SPI Modes

If you are using a device that does not yet have a Jallib library, you will need to get the devices SPI mode. Some
device datasheets tell you the SPI mode, and some don't. Y our device should tell you the clock idle state and sample
edge, with thisinformation, you can find the SPI mode. SPI devices can be set to run in 4 different modes depending
on the clock'sidle state polarity & data samplerising or falling edge.

Theimage aboveis SPI mode 1,1. See if you can understand why.

Clock Polarity (CKP) - Determinesif the clock is normally high or normally low during it'sidle state.
If CKP=1-the clock line will be high during idle.

If CKP =0 - the clock will be low during idle.

Data Clock Edge (CKE) - The edge that the datais sampled on (rising edge or falling edge)

If CKP=0, CKE =0- Dataisread on the clocks rising edge (idle to active clock state)

If CKP=0, CKE =1- Dataisread on the clocks falling edge (active to idle clock state)

If CKP =1, CKE =0 - Dataisread on the clocks falling edge (idle to active clock state)

If CKP=1, CKE=1- Dataisread on the clocks rising edge (active to idle clock state)

We can put thisin a chart to name the modes:

Table 2: SPI MODE NAMES

MODE NAME CKP CKE
0,0 0 1
01 0 0
1,0 1 1
11 1 0

" Note: | noticed the mode numbers & mode table on Wikipediais different then the table in the Microchip
"" PDF. | am going by the Microchip PDF, as well as the tested and working PIC Jallib library + samples.
Wikipedia also names these registers CPOL/CPHA instead of CKP/CKE.

60 | Jallib Tutorias | PIC internals

Using The Jallib Library

At the moment, thereis only a SPI master hardware library, therefore any device you wish to control must be
connected to the PIC's SDI, SDO, SCK pins. The chip select pin can be any digital output pin.

The library requires you to set the pin directions of the SDI, SDO, SCK lines as follows:

-- setup SPI

i ncl ude spi _master_hw -- first include the library
-- define SPI inputs/outputs

pi n_sdi _direction = input -- spi data input

pi n_sdo_direction = output -- spi data output

pi n_sck_direction = output -- spi data clock

Y ou only need to set the pin direction of the chip select pin, the PIC will set the direction of the SDI, SDO & SCK for
you. You will Aliasthis chip select pin as required by the device'sjalib library.

If you are using more then one device in your circuit, you will need to declare your chip select pin near the beginning
of your program. If you do not do this at the beginning of your program, some of your devices may receive data
because their chip select pin could be enabled during init procedures of other devices on the SPI bus.

-- choose your SPI chip select pin
-- pin_SSis the PIC s slave select (or chip select) pin.

ALl AS devi ce_chi p_sel ect _direction is pin_SS direction

ALl AS devi ce_chi p_sel ect is pin_SS

devi ce_chi p_sel ect _direction = out put -- chip select/slave select pin
devi ce_chip_select = | ow -- disable the device

Now the last step in setting up the SPI library isto use the init procedure.

Use the SPI mode name chart to get your SPI mode. The modes can be any of the following:
SPI_MODE_00

SPI_MODE_01

SPI_MODE_10

SPI_MODE_11

Y ou will also need to set the spi bus speed. Hereisalist of the speeds you may choose from:
SPI_RATE_FOSC 4 -- oscillator / 4

SPI_RATE_FOSC_16 -- oscillator / 16

SPI_RATE_FOSC_64 -- oscillator / 64

SPI_RATE_TMR -- PIC'sinternal timer

Y ou will use the following init procedure with your custom val ues entered:

spi _init(SPI_MODE 11, SPI _RATE FOSC 16) -- choose spi node and speed

Now your ready to use the procedures to send and receive data. First you must enable the device with the chip select
line:

devi ce_chip_select = high -- enable the device
Y ou can use the pseudo variable spi_master _hw to send and receive data as follows:

-- send decimal 50 to spi bus
spi _master _hw = 50

Or receive datalike this;

-- receive data fromthe spi port into byte x
var byte x
X = spi_nmaster_hw

Jallib Tutorials | PIC internals | 61

Y ou can aso send and receive data at the same time with the spi_master_hw_exchange procedure. here's an example:

-- send decimal byte 50 and receive data into byte x
var byte x
X = spi _master _hw _exchange (50)

When your done transmitting & receiving data, don't forget to disable your device
device_chip_select = low -- enable the device

Alright, now you should be able to implement SPI into any of your own devices. If you need assistance, contact us at
the Jallist Support Group or at Jallib Group.

References

The Jallib spi_master _hw library - Written by William Welch

Microchip Technology SPI Overview - http://wwZ1.microchip.conm/downl oads/en/devicedoc/spi.pdf
Wikipedia - http://en.wikipedia.org/wiki/Serial_Peripheral_Interface Bus

http://tech.groups.yahoo.com/group/jallist/
http://groups.google.com/group/jallib/topics?gvc=2
http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

62 | Jallib Tutorids | PIC internals

Chapter

3

Experimenting with external parts

Topics:

Hard Disks - IDE/PATA
IR Ranger with Sharp
GP2D02

LCD Display - HD44780-
compatible

Memory with 23k256
sram

RC Servo Control & RC
Motor Speed Control

SD Memory Cards

Y ou now have learned enough to be able to begin interfacing your PIC with external parts.
Without being exhaustive, this chapter explains how to use a PIC with several commonly
used parts, such asan LCD screen.

64 | Jallib Tutorials | Experimenting with external parts

Jallib Tutorials | Experimenting with external parts | 65

Hard Disks - IDE/PATA

Matthew Schinkel
Jallib Group

IDE Paralel ATA hard disk drive tutorial

Introduction to hard disks drives

If your are like me, you have too many old hard disks laying around. | have gathered quite a collection of drivesfrom
PC's | have had in the past. Now you can dust off your drives and put them in your circuit. | have extradrives ranging
in size from 171MB to 120GB.

Before you start, make sure you use a drive you do not care about. We are not responsible for your drive of the data
that ison it.

Y ou can find more general info at http://en.wikipedia.org/wiki/Parallel_ATA, and you can find more detailed
technical info at http://www.gaby.de/gide/I DE-TCJ.txt

Drive Types - PATA vs SATA

There are two types of hard disks PATA (parallel ata) and SATA (serial ata). In thistutorial we will use PATA, these
drives use a40 pin IDE connector. The newer type of drive SATA has only 7 pins but thereis no Jalib library for
these drives at the moment. Both types of hard disks are available with massive amounts of data space.

Drive Data Size

The current jallib library will accept drives up to 128GB. The 128GB limit is due to and addressing limitation, this
isthe 28 bit addressing limitation.The max address you will be able to reach is hex OXFFFFFFF. If you multiply this
address by 512 bytes (1 sector) you get amax size of 137,438,952,960 bytes, yes this does equal 128GB. Eventualy |
may upgrade the library for 48bit addressing which will allow up to a max drive size hex OxFFFFFFFFFFFF * 512 =
128PB (Petabytes). But now that | think about it, 128 GB should be enough!

http://en.wikipedia.org/wiki/Parallel_ATA
http://www.gaby.de/gide/IDE-TCJ.txt

66 | Jallib Tutorials | Experimenting with external parts

Actual Size

The most common drive sizestoday are 3.5" and 2.5". The 3.5 inch drives are commonly used in desktop computers,
2.5" drives are used in laptops. The 2.5" drives are nice for your circuit because they do not require a 12v supply
voltage, and they use much less power.

If you wish to use a2.5" laptop hard drive, you may need a2.5" to 3.5" IDE adapter like this one:

Build a breadboard connector

Now, if your going to put one of these into your circuit, you'll need to plug the drive into your breadboard. | took a
40pin IDE connector off an old motherboard. The easiest way to get large components of a board isto use a heat gun
on the bottom side of the board to melt the solder on all pins at once.

Now take this connector and stick it into some blank breadboard and add some pins. The blank breadboard | cut is4
holes wide by 20 long. Put the connector in the middle and connect the pins on the outside, join each pin with each
pin of the connector.

Of course you will also need a40pin IDE cable, | like the ones with the notch so you don't plug it in backwards.
Here'sthe one | made:

Jallib Tutorias | Experimenting with external parts | 67

Circuit Power

It isvery important that you have enough power to drive your circuit. Hard drives need alot of ampsto run,
especialy the 3.5" drives, so make sure you have a decent 5v and 12v power supply. | suggest that you DO NOT use
your PC's power supply to drive your circuit. Y ou can easily short circuit your power supply and blow up your PC.

If you really insist on doing this, you better put a fuse on both 5v and 12v between your PC and your circuit. Just
remember that | told you not to!

IDE Connector Pin-out

Pin 1 on the IDE cable isthe red stripe. Here the pin out for the male connector | took off a motherboard:

IDE Connector - Top View

PIN1

PIN FUNCTION PIN FUNCTION

1 /IRESET 2 GND

3 D7 4 D8

5 D6 6 D9

7 D5 8 D10

9 D4 10 D11

11 D3 12 D12

13 D2 14 D13

15 D1 16 D14

17 DO 18 D15

19 GND 20 NO PIN

21 22 GND

23 /IOWR - READ Pin 24 GND

25 /IORD - Write Pin 26 GND

27 28 ALE - 1K resistor to
5v

29 30 GND

31 32

33 Al 34

35 A0 36 A2

37 /CS0 (to 5v) 38 /CS1 (to GND)

39 ACT - BUSY LED 40 GND

Build the circuit

Build the circuit below. Asyou can seeit is quite smple. Asyou can see, it only requires 3 resistors, aled and a
bunch of wire. Y ou can put areset button on the IDE connector if you like, but | have found no use for it so | connect
it direct to 5v.

68 | Jallib Tutorials | Experimenting with external parts

Here's what the completed circuit should look like (don't turn on the power yet):

Jallib Tutorials | Experimenting with external parts | 69

Compile and write the software to your PIC

The hard disk lib (pata_hard_disk.jal) and a sample file (16f877_pata hard_disk.jal) will be needed for this project.
You will find thesefilesin the lib & sample directories of your jalib installation.

The most up to date version of the sample & library can be found at:
Samplefile - http://jallib.googlecode.convsvn/trunk/sample/16f877a_pata_hard_disk.jal
Library file - http://jallib.googlecode.comysvn/trunk/include/exter nal/storage/pata_hard_disk/pata_hard_disk.jal

Now lets test it and make sure it works. Compile and program your pic with 16f877_sd_card.ja from your jallib
samples directory. If you are using another pic, change the "include 16f877" linein 16f877_sd_card.jal to specify
your PIC before compiling.

Now that you have compiled it, burn the .hex file to your PIC with your programmer

http://jallib.googlecode.com/svn/trunk/sample/16f877a_pata_hard_disk.jal
http://jallib.googlecode.com/svn/trunk/include/external/storage/pata_hard_disk/pata_hard_disk.jal

70 | Jallib Tutorials | Experimenting with external parts

Power It Up

Plug your circuit into your PC for serial port communication at 115200 baud rate. Now turn it on. Y ou should get data
similar to the image below onto your serial port. Y ou will aso hear the hard drive turn on and off because of one of
the examples in the samplefile.

Serial Port Output

Raleerm Serml Cdplure Prugram 2, O 0. 5?

ANANAAAANAAAAAAAAARAAAAAAAAAAAAANAAARNARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAR
ARAAAARAAAAAARAARARAAAARAAAAAAAAARAAAARARAAARARA

F
[(BEBEBEBEBEBEBBEBEBBBBBEBBBEBBBBEBEBEEBEBEBBEBBEEBBEBBBBBEBBEBEBEBBEBEBBEEBEBBEBBEER
(BEBEBBEBEBEBEEBEBEBBBBBEBBBEBBBBEBEBEEBEBEBBEBBEBBBBBBBBEBBBBEBEBBEBEBBEBEBBEBBEER
[BEBEBEEBEBEEBEBEEBEBBEBEBEBBEBEBEBEEBEBEEBEBEEBEBBEBEBEBBEBEBEBBEEBEBEEBEBEEBEEBR
BEBEBEEBEBEEBEBEEBBEBEBEBBEBBEBEBEBEEBEBEEBEBEEEBEEBEEBBEBBEBEBEBEEBEBEEBEEEEBEEBR
[BEBEBEEBEBEEBEBEEBEBBEBEEBBEBBEBEBEBEEBEBEEBEBEEBEBEEBEBEEBEBBEEBEBEEEEBEEEEBEEEEBEEBR
BEBEBEEBEBEEBEBEEBBEBEEBBEBBEBEBEBEEBEBEEBEBEEBBEEBEBBEBEBBEBEBEBEEBEEEEBEBEEBEEBR
[BEBEBEEBEBEEBEBEEBBBBEBBBEBBEBEBCCCe

Display | Pott | Capture| Pins | Send | EchoPort| 120 | 12C2 | 12CMise | Mise | An| Clear| Freeze| |
Displap A5 [~ Half Duples Status
(C iscu [~ newLine mode | Disconnect
(- ng[suace] I Invert Data IR0 (2)
; Hex + Ascii | [| THD (3]
o m{‘a‘s Data Frames _|CT5(8)
" Hex Bytes |2 = _|DCo ()
. intlg = _|DSR &)
" uintlf [~ Single Gulp |
" Asca _|Ring (3
; ﬁgﬂu Rows Cols _|BREAK
~ FI'Datg Teminsl Fort | |50 %] |80 %] [Scrolback | Emor

Break condition received Char Count:7326 CPS:0 Port: 3 115200 8N1 Nong

Some of the data is not shown in the above image. If your disk is formatted with fat32 you may be able to see some
readabl e data from the boot sector. On my drive formatted with fat32 | can read "Invalid partition table Error loading
operating system" (not shown in the image). The AA BB CC DD EE are read/write examples that will be shown
below. The last set of datais from the Identify Drive command.

Y ou now have aworking hard disk circuit!

Understand and modify the code

I will go over some of the key points you need to know about hard disk coding. Open the sample file with an editor if
you have not done so already. The code in the sample file may change, therefore it may be different then what you see
here. The sample file you have downloaded will always be tested and correct.

Include the chip
Select the PIC you wish to use and your clock frequency

-- include chip
i ncl ude 16F877a -- target PICmicro

Jallib Tutorials | Experimenting with external parts| 71

pragma target clock 20_000_000 -- oscillator frequency

-- configure fuses

pragnma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabled -- no Low Vol tage Progranm ng

Disable all analog pins and wait for power to stabilize

enable _digital _io() -- disable all analog pins if any
_usec_delay (100 _000) -- wait for power to stabilize

Setup serial port and choose baud rate 115200

-- setup uart for conmunication

const serial _hw baudrate = 115200 -- set the baud rate
i ncl ude serial _hardware

serial _hw init()

Includetheprint library

i nclude print -- include the print library

Setup the hard disk library constants/settings

The registers Alternate Status, Digital Output, and Drive Address registers will only be used by advanced users, so
keep the default PATA_HD_USE_CS0_CS1_PINS=FALSE

The pins/iowr, /iord, /cs0, /csl are active low pins that are supposed to require an inverter. If you leave
PATA_HD_NO_INVERTER = TRUE, the PIC will do the inversion for you. Y ou will most likely want to keep the
default "TRUE".

-- setup hard disk library

-- uses additional code space to add a speed boost to sector_read procedures
const bit PATA HD READ EXTRA SPEED = FALSE

-- set true if you will use Alternate Status,
-- Digital Qutput or Drive Address registers
const byte PATA HD USE CSO_CS1_PINS = FALSE

-- if true, an external inverter chip is not
-- needed on /iow, /iord, /csO, /csl pins
const bit PATA HD NO | NVERTER = TRUE

Setup pin assignments

Y es, pata hard disks have alot of pins. You will need two full 8pin port's (port B and port D of 16F877) for data
transfer, three register select pins, one read pulse pin and one write pulse pin. A total of 19io pins. | am ableto
comment out cs1/cs0 and save pins because of the constant we set.

-- pin assignnents

alias pata hd_data | ow is portb -- data port (low bits)
alias pata_hd_data_| ow direction is portb_direction

al i as pat a_hd_dat a_hi gh is portd -- data port (high bits)
alias pata_hd_data_hi gh_direction is portd_direction

alias pata _hd_a0 is pin_a3

alias pata _hd_aO _direction is pin_a3 direction

alias pata_hd_al is pin_al

alias pata_hd_al direction is pin_al direction

alias pata_hd_a2 is pin_a0

alias pata _hd_a2 direction is pin_a0 _direction

alias pata_hd_i owr is pin_e0

alias pata_hd_i owr _direction is pin_eO_direction

alias pata_hd_iord is pin_a4

alias pata _hd_iord_direction is pin_a4 direction

72| Jallib Tutorias | Experimenting with externa parts

;alias pata hd _csl is pin_a3

;alias pata hd csl direction is pin_a3 direction

;alias pata hd _csO is pin_a4

;alias pata_hd_csO_direction is pin_a4 direction

pata _hd_aO_directi on = out put -- register select pin

pata _hd_al direction = output -- register select pin

pata hd_a2 direction = output -- register select pin

pata_hd_i owr _direction = output -- used for wite pul se

pata_hd_iord _direction = output -- used for read pul se

;pata_hd_csl1l direction = out put -- register select pin

;pata_hd_csO _direction = out put -- register select pin

Now includethelibrary

i ncl ude pata_hard_di sk -- include the parallel ata ide hard disk
library

pata _hd_init() -- initialize startup settings

Add a separator procedure, Thiswill beused to display " ------ " ontotheserial port between examples.

-- procedure for sending "----------------- " via serial port

procedure separator() is
serial _hw data = 13
serial _hw data = 10
const byte str3[] = "----cmmm oo
print_string(serial _hw data, str3)
print_crlf(serial_hw data)

end procedure

It isalways a good idea to send something to the serial port so we know thecircuit isalive. Let'ssend " Hard

Disk Sample Started"

-- Send sonething to the serial port

separ at or () -- send "----" via serial port
var byte start_string[] = "HARD D SK SAMPLE STARTED"

print_string(serial _hw data, start_string)

Declare some user variables

-- variables for the sanple
var word stepl
var byte data

EXAMPLES
OK, now that everything is setup, we are ready for some examples.

Y ou will find that these examples are identical to the onesin the SD Card tutorial. This makesit easy for you to
switch between using a hard drive and a SD Card.

Before we get stated, you may want to get to know your hard drive and it's size. Thisway you will know what the
maximum addressable sector is.

On newer drives, you will see on the front sticker the number of LBA's. Thisisthe number of sectors on the drive.
We must subtract one from the number of LBA'sto get the highest addressable sector since the 1st sector is at address
0. My drive says "60058656" LBA's, therefore the last sector is at 60058656 - 1.

Each sector is 512 bytes, so the actual size of thisdrive is 60058656 * 512 = 30GB

On the sticker of some older drives, you will see CYL, HEADS,SEC/T. Y ou can calcul ate the number of sectors with:
(cylinders* heads* sectors per track). Then you may multiply that by 512 if you wish to get the size of the drivein
bytes.

Jallib Tutorials | Experimenting with external parts| 73

I have |eft afew ways to read and write to hard disks. The usage you choose may will on the PIC data space you have,
and what your application is. On asmaller PIC, you will only be able to run examples#1, #2, #5 and #6. I'll explain
asl| go.

Example #1 - Read data at sector O

Thisisalow memory usage way of reading from the hard disk, however it is slower then some of the other examples
later on. This method requires the use of pata_hd_start_read(), pata_hd_data byte, and pata_hd_stop read(). You'll
see that the usage is quite simple.

Note: Thevariable pata_hd_data byteisnot actually avariable, it is a procedure that looks & actslike a
regular variable. Thisis called a pseudo variable. Y ou may use this variable to read data or write data, as
shown in these exampl es.

I

The steps are:

1. Start reading at a sector address. In this case, sector O (the boot sector)

2. Loop many times while you read data. One sector is 512 bytes, we will read two sectors.

3. Store each byte of datainto the variable "data". Y ou can retrieve the data by reading the pseudo variable
pata_hd_data byte

4. Do something with the data. Let's send it to the serial port.
5. End the loop
6. Téell the hard disk we are done reading. The hard disk light will go out at this step.
pata_hd_start_read(0) -- get sd card ready for read at sector 0
for 512 * 2 | oop -- read 2 sectors (512 * 2 bytes)
data = pata hd data byte -- read 1 bytes of data
serial _hw wite(data) -- send byte via serial port
end | oop
pata_hd_stop_read() -- tell sd card you are done reading

Ok, we're done our example, so lets separate it from the next one with the separator() procedure to send some "-----
characters and a small delay.

separ at or () -- separate the exanples with "----
_usec_del ay(500_000) -- a small del ay

Example #2 - Writing data

This exampleis similar to example #1, but we will be writing data to the hard disk. It requires low memory usage.
Aswith the first example, we will be required to use 3 procedures. pata_hd_start_write(), pata_hd_data_byte and
pata_hd_stop_write()

Here are the steps:

1. Start writing at a sector address. | choose sector 20 since it seems that it will not mess up afat32 formatted drive, |
could be wrong!

2. Loop many times while you write your data. In this example, | am writing to 1 sector + 1/2 sector. The 2nd half of
sector 2 will contain all 0's. The end of sector 2 will contain O's because hard disks will only write datain blocks
of 512, and therefore any data you have there will be overwritten.

3. Write some data. Thistime we are setting the value of the pseudo variable pata_hd_data_byte. Writing to this
variable will actually send data to the hard disk. We are sending "A", so you will expect to read back the same
data later on.

4. Endyour loop

5. Téell the hard disk we are done writing. The hard disk light will go out at this step.

pata _hd_start_wite(20) -- get sd card ready for wite at sector 20

for 512 + 256 | oop -- loop 1 sector + 1 half sector (512 + 256 bytes)
pata hd data byte = "A" -- wite 1 bytes of data

end | oop

pata hd_stop wite() -- tell sd card you are done reading

Now of course you will want to read your data back, which will be the same asin example #1, but at sector 20.

pata _hd_start read(20) -- get sd card ready for read at sector 20
for 512 + 256 | oop -- loop 1 sector + 1 half sector (512 + 256 bytes)
data = pata hd_data byte -- read 1 bytes of data

74| Jallib Tutorials | Experimenting with externa parts

serial _hw wite(data) -- send byte via serial port
end | oop
pata_hd_stop_read() -- tell sd card you are done reading

Example #3 - Read and write data using a sector buffer (a 512 byte array)

In this example, we will use a 512 byte array for reading and writing. This 512 byte array is called a sector buffer.
This method is very fast, however it will require a PIC that can fit the 512 bytes of datain it'sram space. | find it is
also easier to use. | suggest PIC18f4620 with the same schematic.

For writing, Y ou will need only need to write data to the sector buffer array, then use the
pata_hd write_sector_address() procedure.

L ets go through the steps, first for writing data:

Loop 512 times (the size of the sector buffer)

Set each data byte in the array

End your loop

Write the data to the hard disk at a sector address.
5. Repeat the above to write more sectors.

-- fill the sector buffer with data
for 512 using stepl | oop -- loop till the end of the
sector buffer
pata hd_sector buffer[stepl] = "B" -- set each byte of data
end | oop
-- wite the sector buffer to sector 20
pata_hd_wite_sector_address(20)

dPwbdhpE

Here we will write another sector (to sector 21, the next sector)

for 512 using stepl | oop -- loop till the end of the
sector buffer
pata hd_sector buffer[stepl] = "C -- set each byte of data
end | oop

-- wite the sector buffer to sector 21
pata_hd wite_sector_address(21)

OK, it'stime to read back the data, which is exactly the opposite of writing. For reading, we will use the
pata read sector_addres() procedure first, then we can read data from the sector buffer array.

Request data from the hard disk at a sector address.

Loop 512 times (the size of the sector buffer)

Send each byte to the serial port.

End your loop.

Repeat the above to read more sectors.

-- read back the same sectors

-- read sector 20 into the sector buffer

pat a_hd_read_sect or _address(20)
-- now send it to the serial port

agprwDdE

for 512 using stepl | oop -- loop till the end of the
sector buffer
serial_hw wite(pata_hd sector_ buffer[stepl]) -- send each byte via serial
port
end | oop

Here we will repeat the above to read the next sector (sector 21)

-- read sector 21 into the sector buffer
pata hd_read_sector address(21)
-- now send it to the serial port

for 512 using stepl | oop -- loop till the end of the
sector buffer
serial_hw wite(pata_hd sector_buffer[stepl]) -- send each byte via serial
port

end | oop

Jallib Tutorials | Experimenting with external parts| 75

EXAMPLE #4 - Another method for reading and writing sectors

Example #4 is pretty straight forward. | am not going to go into too much detail on thisone. It is a combination of
examples 2 and 3. It is about the same speed as example #3.

-- get sd card ready for wite at sector 20
pata _hd_start_wite(20)

-- fill the sector buffer with data

for 512 using stepl | oop -- loop till the end of the sector
buf f er
pata_hd_sector_buffer[stepl] = "D -- set each byte of data

end | oop

-- wite the sector buffer to the sd card
pata hd wite sector()

-- fill the sector buffer with new data

for 512 using stepl | oop -- loop till the end of the sector
buf f er
pata_hd_sector_buffer[stepl] = "E" -- set each byte of data

end | oop

-- wite the sector buffer to the sd card

pata hd wite sector() -- wite the buffer to the sd card

-- tell sd card you are done witing
pata_hd_stop _wite()

-- read back both of the same sectors

-- get sd card ready for read at sector 20
pata hd_start read(20)

-- read the sector into the sector buffer
pata_hd_read_sector ()

-- now send it to the serial port

for 512 using stepl | oop -- loop till the end of the sector
buf f er
serial_hw wite(pata_hd sector_ buffer[stepl]) -- send each byte via serial
port

end | oop

-- read the next sector into the sector buffer

pata _hd_read_sector ()

-- now send it to the serial port

for 512 using stepl | oop -- loop till the end of the sector
buf f er
serial _hw wite(pata_hd _sector_buffer[stepl]) -- send each byte via serial
port

end | oop

pata_hd_stop_read() -- tell sd card you are done
r eadi ng

EXAMPLE #5 - Sending a command to the hard disk (Spin Up/ Spin Down)

Hard drives have other features that may be useful. In this short example, | will show how to turn on and off the hard
disk motor.

To turn on/off the hard disk motor, you will be writing to the "command register”, and you will be sending the "spin
down" command. If you browse through the hard disk library file pata_hard_disk.jal, you will see some constants
that you may use for other commands. For more information, you can read "connecting ide drives by tilmann reh" at
http://mww.gaby.de/gide/| DE-TCJ.txt

With this "spin down™" command, you will actually hear the hard drive motor turn off

pata _hd register wite (PATA HD COMVAND REG PATA HD SPI N DOMN) -- turn off
not or

Now give some delay.
_usec_del ay(5_000_000) -- 5 sec del ay

http://www.gaby.de/gide/IDE-TCJ.txt

76 | Jallib Tutorials | Experimenting with external parts

Then of course turn the drive motor back on

pata _hd_register wite (PATA HD COMVAND REG PATA HD SPI N _UP) -- turn on
not or

EXAMPLE #6 - |dentify Drive Command

Theidentify drive command loads 512 bytes of datafor you that contains information about your drive. You can

retrieve info like drive serial number, model number, drive size, number of cylinders, heads, sectors per track and
abunch of other data required by your PC. Of course you can read more info on thisin "connecting ide drives by
tilmann reh" at http://www.gaby.de/gide/I DE-TCJ.txt

Y ou will have to follow these steps to receive this drive information:

1. Send the"ldentify Drive" command to the command register
2. Wait till the hard drive isready for you to read it
3. read the data, and do something with it (send it to the serial port)

-- send the identify drive comand
pata_hd_regi ster_wite(PATA HD_COVWAND_REG PATA HD | DENTI FY_DRI VE)

-- check if drive is ready readi ng and set data ports as inputs
-- this MJUST be used before reading since we did not use pata_hd_start_read
pat a_hd_dat a_request (PATA HD WAI T_READ)

-- Read 512 bytes
for 512 | oop -- 256 words, 512 bytes per sector
data = pata_hd_data byte
serial _hw data = data
end | oop -- drive info high/low bytes are in
reverse order

Your Done!

That'sit, Now you can read & writeto all those hard drives you have laying around. Y ou can read raw data from
drives and possibly even get back some lost data.

Alright, go build that hard disk thingy you where dreaming about!

http://www.gaby.de/gide/IDE-TCJ.txt

IR Ranger with Sharp GP2D02

Jallib Tutorials | Experimenting with external parts| 77

Sébastien Lelong
Jallib Group

Sharp IR rangers are widely used out there. There are many different references, depending on the beam pattern, the
minimal and maximal distance you want to be able to get, etc... The way you got results also make a difference: either
analog (you'll get avoltage proportional to the distance), or digital (you'll directly get adigital value). Thisnice
article will explain these details (and now | know GP2D02 seems to be discontinued...)

Overview of GP2D02 IR ranger

GP2D02 IR ranger is able to measure distances between approx. 10cm and 1m. Results are available as digital values
you can access through a dedicated protocol. One pin, Vin, will be used to act on the ranger. Another pin, Vout, will
be read to determine the distance. Basically, getting a distance involves the following:

1. First you wake up the ranger and tell it to perform adistance measure

2. Then, for each bit, you read Vout in order to reconstitute the whole byte, that is, the distance

3. finally, you switch off the ranger

The following timing chart taken from the datasheet will explain this better.

GP2DO02 IR ranger : timing chart

Vin

Qutput

0.2ms or less 1.5ms or more
70ms or more | 1ms or more _ |

RN KT

MsB L'sB
Example of distance measuring output (8-bit)

Figure 8: GD2D02 IR ranger : timing chart
Note: the distances obtained from the ranger aren't linear, you'll need some computation to make them

0

SO.

Sharp GP2D02 IR ranger looks likethis:

1.5ms or more

lJJ i L'ug i

LSB

«—= Power OFF

78 | Jalib Tutorias | Experimenting with external parts

* Redwireisfor +5V

e Black wire ground

* Greenwireisfor Vin pin, used to control the sensor

* Yellowwireisfor Vout pin, from which 8-bits results read
(make a mental note of this...)

Interfacing the Sharp GP2D02 IR ranger

Interfacing such a sensor is quite straight forward. The only critical point is Vin ranger pin can't handle high logic
level of the PIC's output, this level mustn't exceed 3.3 volts. A zener diode can be used to limit thislevel.

@ Note: be careful while connecting this diode. Don't forget it, and don't put it in the wrong side. Y ou may
damage your sensor. And I'm not responsible for | Y ou've been warned... That's said, | already forgot it,
put it in the wrong side, and thought I'd killed my GP2D02, but this one always got back to life. Anyway,
be cautious!

Here's the whole schematic. The goal hereisto collect data from the sensor, and light up a LED, more or less
according to the read distance. That's why we'll use aLED driven by PWM.

Interfacing a Sharp GP2002 IR ranger
+BV httpeifallib.googlecode. com

1N41Sﬁm \in L
;
16F88 vour 1™
RAZ/ANZ Rat/iant P2 .
e RAS/ANE RAGANG LT 5L
RA4/AN4 paricsct P8 GP2Do2
PASMCLR PA&OsC2 [12
Y55 ¥DD g
RBGINT me7PeD [
RB1/SDA meaPcC L=
GND RB2/RX esTx bt
PB3 reuscL 2 &
PIC16r88-DIP

GND

Figure 9: Interfacing Sharp GP2D02 IR range : schematic

Here's the ranger with the diode soldered on the green wire (which is Vin pin, using your previously created mental
note...):

I've also added thermoplastic rubber tubes, to cleanly join all the wires:

Jallib Tutorials | Experimenting with external parts| 79

Finally, in order to easily plug/unplug the sensor, I've soldered nice polarized connectors:;

Writing the program

jallib >=0.3 contains alibrary, ir_ranger_gp2d02.jal, used to handle this kind of rangers. The setup is quite straight
forward: just declare your Vin and Vout pins, and pass them to the gp2d02_r ead_pi ns() . Thisfunction returns
the distance as araw value. Directly passing pins allows you to have multiple rangers of this type (many robots have
many of them arranged in the front and back sides, to detect and avoid obstacles).

Using PWM libs, we can easily make our LED more or less bright. In the mean time, we'll also transmit the results
through a serial link.

var volatile bit gp2d02_vin is pin_a4

var volatile bit gp2d02_vout is pin_a6

var bit gp2d02_vin_direction is pin_a4_direction

var bit gp2d02_vout direction is pin_a6 _direction

i nclude ir_ranger_gp2d02

-- set pin direction (careful: "vin" is the GP2D02 pin's nane,
-- it's an input for GP2D02, but an output for PIC!)
gp2d02_vi n_directi on = out put

http://code.google.com/p/jallib/source/browse/trunk/include/external/ranger/ir/ir_ranger_gp2d02.jal

80 | Jallib Tutorias | Experimenting with external parts

gp2d02_vout _direction = input

var byte neasure
forever | oop
-- read distance fromranger num 0
nmeasure = gp2d02_read_pi ns(gp2d02_vi n, gp2d02_vout)
-- results via serial
serial _hw wite(neasure)
-- now blink nore or |ess
pwrl_set dutycycl e(neasure)
end | oop

ﬂ@ Note: | could directly passpi n_A4 and pi n_A6, but to avoid confusion, | prefer using aliases.

A sample, 16f88 ir_ranger_gp2d02.jal, isavailablein jallib SVN repositoryjallib released packages, and also in
starting from version 0.3. Y ou can access downloads here.

Building the circuit on a breadboard

Building the circuit using a breadboard

d

| usually power two tracks on the side, used for the PIC and for the ranger:

http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_ir_ranger_gp2d02.jal
http://code.google.com/p/jallib/source/browse/trunk/include/external/ranger/ir/ir_ranger_gp2d02.jal
http://code.google.com/p/jallib/downloads/list

Jallib Tutorials | Experimenting with external parts| 81

Using the same previously created mental note, | connected the yellow Vout pin using ayellow wire, and the green
Vin pin using agreen wire...

Testing (and the video)

Timeto test thisnice circuit ! Power the whole, and check no smoke is coming from the PIC or (and) the ranger. Now
get an object, like you hand, more or less closed to the ranger and observe the LED, or the serial output... Sweet !

http: //mww.youtube.com/watch?v=15AZwv7LzyM

http://www.youtube.com/watch?v=l5AZwv7LzyM

82 | Jallib Tutorials | Experimenting with external parts

LCD Display - HD44780-compatible

Sébastien Lelong
Jallib Group

In this"Step by Step” tutorial, we're going to (hopefully) have some fun with a LCD display. Particularly one
compatible with HD44780 specifications, which seems to be most widely used.

Setting up the hardware

As usual, there are plenty resources on the web. | found this one quite nice, covering lots of thing. Basically, LCDs
can be accessed with two distinct interfaces. 4-bit or 8-bit interfaces. 4-bit interface requires less pins (4 pins), but
is somewhat slow, 8-bit interface requires more pins (8 pins) but is faster. jallib comes with the two flavors, it's up
to you deciding which is most important, but usually, pins are more precious than speed, particularly when using a
16F88 which only has 16 /O pins (at best). Since 4-bit interface seems to be most used, and we'll use this one here...

So, I've never used LCD, to be honest. Most guys consider it as an absolute minimum thing to have, sinceit can help
alot when debugging, by printing messages. | tend to use seria for this... Anyway, I've been given aLCD, so | can't
resist anymore:)

The LCD | have seemsto be quite anice beast ! It has4 lines, is 20 characters long.

Looking closer, "JHD 204A" seems to be the reference. Near the connector, only a"1" and a"16". No pin's name.

http://www.google.com/search?hl=en&q=lcd+hd44780
http://home.iae.nl/users/pouweha/lcd/lcd.shtml

Jallib Tutorials | Experimenting with external parts | 83

Googling the whole points to aforum, and at least alink to the datasheet. A section describes the "Pin Assignement”.
Now I'm sure about how to connect this LCD.

http://www.8051projects.net/e107_files/public/1231066792_13674_FT0_jm204aspec.pdf

84 | Jallib Tutorias | Experimenting with external parts

® Pin assignment

Pin NO. Symbol Function Remark
1 GND | ov
2 Vdd Power supply +5V
3 V5 For LCD Variable
4 RS I Register Select(H=Data L=Instruction)
5 R/W Read/Write L=MPU to LCM,H=LCM to MPU
6 E Enable
7 DBO Data bus bit 0
8 DB1 Data bus bit 1
9 DB2 Data bus bit 2
10 DB3 Data bus bit 3
11 DB4 Data bus bit 4
12 DB5 Data bus bit 5
13 DB6 Data bus bit 6
14 DB7 Data bus bit 7
15 A Anode of LED Unit
16 K Cathode of LED Unit

For thistutorial, we're going to keep it simple;

o aspreviously said, well use 4-bit interface. This means we'll use DB4, DB5, DB6 and DB7 pins (respectively pin
11, 12, 13 and 14).

« wewon't read from LCD, so R/W pin must be grounded (pin 5)

* wewon't use contrast aswell, V5 pin (or Vee) must be grounded (pin 3)

Including pins for power, we'll use 10 pins out of the 16 available, 6 being connected to the PIC (RS, EN and 4 data
lines).

For convenience, | soldered a male connector on the LCD. Thiswill help when building the whole on a breadboard.

So we now have everything to build the circuit. Here's the schematic. It also includesa LED, it will help us checking
everything is ok while powering up the board.

Jallib Tutorials | Experimenting with external parts | 85

LCD _HD44780
Interfacing an HD44780-compatible LCD display AL P
{4-bit interface) 5l
14 DB7
httpfifjallib. googlecode. com 13 DBs
12 DBs
i DB4
—
+aY =1
——
i .
: EN
R
116F88 ’ ; Re
v RA/AN2 RA1/AN1 Ves
LS g RAG/ANZ RAWANG]; % Yoo
=] Radiana RATIOSCH 2 Vss
2 RASMCLR RA®OSC2 |2
2 ves VDD | . £
| ={ ReaNT Re7PaD [GND
- PB1/sDA RBEPGC =
GND —| RBaRX RESTX [
RB3 peasscL |2 e
PIC16F88-DIP
2Fx
)
%Y+
GND

Using a breadboard, it looks like this:

86 | Jallib Tutorias | Experimenting with external parts

-

-

-

-
-
-
-
-
-
-
-

Writing the software

For this tutorial, we'll use one of the available samples from jallib repository. | took one for 16f88, and adapt it to my
board (specifically, | wanted to use PORTA when connecting the LCD, and let PORTB's pinsasis).

http://code.google.com/p/jallib/source/browse/
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_lcd_hd44780_4.jal

Jallib Tutorials | Experimenting with external parts | 87

Asusual, writing a program with jallib starts with configuring and declaring some parameters. So we first have to
declare which pinswill be connected:

-- LCD 1O definition

var bit lcd_rs is pin_a6 -- LCD comand/ dat a sel ect.
var bit lcd rs direction is pin_a6 direction
var bit lcd_en is pin_a7 -- LCD data trigger

var bit lcd_en_direction is pin_a7_direction

var byte I cd _dataport is porta_l ow -- LCD data port
var byte | cd _dataport_direction is porta_|low direction

-- set direction
lcd_rs_direction = out put

I cd_en_direction = out put

| cd_dataport_directi on = out put

Thisis, pin by pin, the translation of the schematics. Maybe except port a_| ow. Thisrepresents pin A0 to A3, that
ispinsfor our 4 linesinterface. por t a_hi gh represents pin A4to A7, and por t a reprensents the whole port, A0 to
A7. These arejust "shorcuts'.

We aso have to declare the LCD geometry:

const byte LCD ROAS =4 -- 4 lines

const byte LCD_CHARS = 20 -- 20 chars per line
Once declared, we can then include the library and initialize it:

include I cd_hd44780_4 -- LCD library with 4 data |ines
lcd init() -- initialize LCD

For this example, well dso usethepri nt . j al library, which provides nice helpers when printing variables.

i ncl ude print

Now the main part... How to write things on the LCD.
* You can either useaprocedurecal: | cd_wite_char("a")

e oryou can usethe pseudo-variable:l cd = "a
e« lcd_cursor_position(x,y) will setthecursor position. x istheline, y isthe row, starting from 0

o findly,| cd_cl ear _screen() will, well... clear the screen !

Full API documentation is available on jalapi.
So, for this example, we'll write some chars on each line, and print an increasing (and incredible) counter:

const byte strif]
const byte str2[]
const byte str3[]

"Hell o world!" -- define strings
"third Iine"
"fourth line"

print_string(lcd, strl) -- show hell o worl d!
| cd_cursor_position(2,0) -- to 3rd line
print_string(lcd, str2)

| cd_cursor_position(3,0) -- to 4th line

print_string(lcd, str3)

var byte counter =0

forever | oop -- loop forever
counter = counter + 1 -- update counter
| cd_cursor_position(1,0) -- second |ine
print_byte hex(lcd, counter) -- output in hex format
del ay_100ns(3) -- wait alittle
i f counter == 255 then -- counter wap

| cd_cursor_position(1,1) -- 2nd line, 2nd char

http://jallib.googlecode.com/svn/trunk/doc/html/lcd_hd44780_4.html
http://jallib.googlecode.com/svn/trunk/doc/html/index.html

88 | Jallib Tutorias | Experimenting with external parts

led =" " -- clear 2nd char

led = " " -- clear 3rd char
end if
end | oop

The full and ready-to-compile code is available on jallib repository:
» blog_16f88_dl_lcd_hd44780_4.jal
You'll need latest jallib-pack, available on jallib's download section.

How does this look when running ?
Here'sthevideo !
http://mww.youtube.com/watch?v=hlVMuaz80S3

http://code.google.com/p/jallib/source/browse/trunk/doc/dita/tutorials/code/blog_16f88_sl_lcd_hd44780_4.jal
http://code.google.com/p/jallib/downloads/list
http://www.youtube.com/watch?v=hIVMuaz8OS8

Jallib Tutorials | Experimenting with external parts| 89

Memory with 23k256 sram

Matthew Schinkel
Jallib Group

Learn how to use Microchip's cheap 256kbit (32K B) sram for temporary data storage

What is the 23k256 sram and why use it?
S0, you need some data storage? Put your data on a 23k256!

If speed isyour thing, thisoneisfor you! Thisis FAST. According to Microchip's datasheet, data can be clocked in
at 20mhz. The disadvantage to this memory however isthat it will not hold it's memory when power is off sinceitisa
type of RAM (Random Access memory).

If you wish to hold memory while power is off, you will have to go with EEPROM but it is much slower. EEPROM
requires a 1ms delay between writes. In the time that | could write 1 byte to an EEPROM (1ms), | could write 2500
bytes to the 23k256 (if | can get my PIC to run fast enough).

Y et another advantage, isthat it isonly 8 pins (as you can see from the image). Other RAM memories have 10 or so
addresslines + 8 data lines. If you haven't guessed yet, we are sending serial datafor reads & writes. We will be using
SPI (Serial Periphera Interface Bus).

| suggest you start by reading the SPI Introduction within this book first.
Y ou can read more about the 23k256 here:

http: //www.microchi p.com/wwwipr oducts/Devi ces.aspx?dDocName=en539039

What will | learn?

Wewill be using the jallib sram_23k256 library & sample written by myself. With this library, we will be able to do
the following:

1. Initialization settings for 23k256.

2. Read settings from the 23k256.

3. Read & Write one byte to/from a specific address

4. Use the 23k256 as a large byte, word or dword array (32k bytes, 16k words, 8k dwords)
5. Fast read/write lots of data.

OK, lets get started

| suggest you start by compiling and writing the sample file to your PIC. We must make sure your circuit is working
before we continue. As always, you will find the 23k256 sample file in the sample directory of your jallib installation
"16f877_23k256.ja"

Y ou will need to modify this sample file for your target PIC.

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en539039

90 | Jallib Tutorias | Experimenting with external parts

” Note: Jallib version 0.5 had thisfollowing linein the library file, but in the next version (0.6) it will
w be removed from the library and you will have to add it to your sample file before the line include
sram_23k256.

const bit SRAM 23K256 ALWAYS SET SPI _MODE = TRUE
Here's the 23K 256 pin-out diagram:

PDIP/SOIC/TSSOP

(P, SN, ST)
- o
cs 01 8[]vce
SO 02 7 0 HOLD
NC 3 6] SCK
Vss [4 511 sI

Now build this schematics. Notice the resistors for 5v to 3.3v conversion. Also notice that we are using the PIC's
hardware SPI port pins. These pins are named (SDO, SDI, SCK) + One chip select pin of your choice.

”@J Note: Thisisa3.3V Device

Plug in your seria port and turn it on (serial baud rate 38400). If it isworking, you will get mostly the hex value "11"
to your PC's seria port. Here's an image from my serial port software:

Jallib Tutorials | Experimenting with external parts| 91

“_ RealTerm: Serial Capture Program 2.0.0.57

| Captwre| Pins | Send | EchoPart| 120 | 12C:2 | 12CMisc | Miss | An| Clear| Freeze| |

Display bs % [~ Half Duplex Binary Sync Chary B Statug
. Asci I newline made BBCD - = _ | Disconnect
C Angi = Data | & None
& Hewlspace] | | ImvertData - & _IRxD (2]
(rf Hew +Azen | 7 ~| HOR | asci I THD (3
i3 Dists Fraress =] AND | Humber _IcTa
" Hex Bytes |2 3 | DD (1)
Uil I Singe) o Chenge [{ieinnbie _|DSA)
" Asi _|Ring(3)
. Binary Rows _Cols | BREAK
& i Teminal Fort| [17 2] [72 3] ™ Scrollback JEnor

‘fou can use Active automation to cantral me! Char Counk:2100 CPS:0 Port: 4 36400 6N1 MNone

If it is not working, lets do some troubleshooting. First start by checking over your schematic. If your schematic is
correct, the most likely problem is voltage levels. Check over your PIC's datasheet to see what the PIN types are, if
any of the pins have CMOS level outputs, you will not need voltage conversion resistors.

In the past, | have had issues with the voltage conversion resistors on the SCK line.

Setup the devices

Since the beginning initialization has already been written for you, and you already know how to include your PIC,
you can skip this section and go down to the 23k256 Usage section if you wish.

Take alook at the sample file you have. Asyou know, firstly, we will include your chip, disable all analog pins and
setup serial communication.

i ncl ude 16F877a -- target PICmicro

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSClL and OsSC2.

pragma target clock 20_000_000 -- oscillator frequency

-- configure fuses

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabled -- no Low Vol tage Programi ng

enabl e _digital _io() -- disable analog 1/0O (if any)
-- setup uart for conmunication
const serial hw baudrate = 38400
i ncl ude serial _hardware
serial_hw init()

- set the baudrate

As stated before, the 23k256 MUST be connected to the pic's SPI port, so let's setup the SPI port as well asthe
SPI library. We do not need to alias SPI hardware pins to another name. First include the library, then set the pin
directions for the 2 data lines and the clock line:

-- setup spi

i ncl ude spi _master_hw -- includes the spi library
-- define spi inputs/outputs

pin_sdi _direction = input -- spi input

pi n_sdo_direction = output -- spi out put

pi n_sck_direction = out put -- spi clock

Now that SPI data/clock pins are setup, the only pin left to define is the 23k256 chip select pin. If you have more then
one device on the SPI bus, this chip select pin setup should be done at the beginning of your program instead. This
chip select pin can be any digital output pin you choose to use.

-- setup chip select pin

92 | Jallib Tutorias | Experimenting with external parts

ALI AS sram 23k256_chi p_sel ect is pin_a2
ALI AS sram 23k256_chi p_sel ect _direction is pin_a2_direction
-- initial settings

sram 23k256 chi p_sel ect _direction = out put -- chip select/slave select pin
sram 23k256_chi p_sel ect = high -- start chip slect high (chip
di sabl ed)

Choose SPI mode and rate. 23k256 uses SPl mode 1,1

Wewill start with peed SPI_RATE_FOSC_16. (oscillator/16). These are the speeds that are available:
SPI_RATE_FOSC 4 -- Fastest

SPI_RATE_FOSC 16 -- Mid speed

SPI_RATE _FOSC 64 -- Slower

SPI_RATE_TMR -- Use timer

spi _init(SPI _MODE 11, SPI _RATE FOSC 16) -- init spi, choose nbde and speed

Thislinetellsthe PIC to set the SPI mode before each read & write. If you have multiple devices on the SPI bus using
different modes, you will need to set thisto TRUE

const byte SRAM 23K256_ALWAYS_SET_SPI _MODE = TRUE

Now we can finally include the library file, and initialize the chip:

i ncl ude sram 23k256 -- setup M crochip 23k256 sram
sram 23k256_i ni t (SRAM 23K256_SEQUENTI AL_MODE, SRAM 23K256_HOLD DI SABLE) - -
init 23k256 in sequential node

23k256 Usage

I'm going to go over this quickly since the codeis simple.
Read & Write Byte

Write hex "AA" to address 1:

sram 23k256 _write(1l, 0xAA) -- wite byte
Now read it back:

var byte data
sram 23k256 read(1l, data) -- read byte

Byte Array

Y ou can use the 23k256 as a large byte, word or dword array like this;

-- Exanpl e using 23k256 as a 32KByte array (at array address 2)

var byte datal

sram 23k256 byte[2] = OxBB -- set array byte 2 to val ue OxBB

datal = sram 23k256 byte[2] -- read array byte 2, data2 should = OxBB

-- Exanpl e using 23k256 as a 16K word array

var word data2

sram 23k256_word[3] = OxEEFF -- set array word 3 to val ue OXEEFF

dat a2 = sram 23k256 word[3] -- read array word 3, data2 should = OXEEFF

-- Exanpl e using 23k256 as a 8K dword array

var dword dat a3

sram 23k256_dwor d[3] = OxCCDDEEFF -- set array dword 3 to val ue OxCCDDEEFF
dat a3 = sram 23k256_dwor d[3] -- read array dword 3, data2 should =

0x CCDDEEFF

Jallib Tutorias | Experimenting with external parts | 93

If you are looking for a quick way to write lots of data, you can use the start_write, do_write and stop_write
procedures. Y ou should not use any other SPI devices on the same SPI bus between start_write() and stop_write()

sram_23k256_start_write (word in address) -- sets the address to write to
sram_23k256_do_write (bytein data) -- send the data
sram_23k256_stop_write() -- stops the write process

Here's an example:

-- Exanple fast wite |ots of data
sram 23k256 _start_wite (10)
for 1024 | oop
sram 23k256 _do wite (0x11)
end | oop
sram 23k256_stop write()

This works the same for the read procedures:

sram_23k256_start_read (word in address) -- sets the address to read from
sram_23k256_do_read (byte out data) -- get the data
sram_23k256_stop_read() -- stop the read process

-- Exanple fast read lots of data
sram 23k256 start _read (10)
for 1024 | oop
sram 23k256_do_read (datal)
serial _hw wite (datal)
end | oop
sram 23k256 st op_read()

Your done, enjoy!

94 | Jallib Tutorias | Experimenting with external parts

RC Servo Control & RC Motor Speed Control

Matthew Schinkel
Jallib Group

PIC RC servos and RC speed controllers used in the Radio Control hobby.

Servo Control Intro

RC or R/C (Radio Control) servos and RC motor speed controllers are used in the radio control hobby to control
thingslike RC Cars, RC airplanes, boats, robots, etc.

Servos are used for there positioning capability and strength. Small, regular sized servos can be bought at alocal
hobby store for $10 or less. Of course there are more expansive ones depending on the quality and size. These servos
normally plug into your radio control receiver, but today we will connect it to your PIC.

I will mostly be talking about RC servos, but you will also be able to connect a RC speed controller since they use
the same technology. These speed controllers are made up of power MOS FETsto allow 12v at 50A+ to control the
speed of amotor via PWM.

The only way to really know how something really worksisto take it apart! | found some gears, a potentiometer
some electronics and a motor. The servos gears are to give it the strength it needs to move whatever it is you want to
move in your project. The servo knows it's position by reading a voltage off the potentiometer that gets turned by the
gears which of course gets turned by the motor. After asignal is given, the servo will move to the correct location.

Jallib Tutorias | Experimenting with external parts | 95

To control aservo, we need to send it a PWM (pulse width modulation) signal. Thankfully it will all be taken care of
by the Jallib library | have created. A pulse will be sent every 20ms, and each pulse will be awidth between 0.5ms
and 2.5ms. The pulse width will vary depending on the position you have chosen. Servo pulse width required can
very depending on the servo manufacturer, therefore the library has been created with some default values that you
may change to get afull movement from left to right.

Pulse Spacing = 20ms
Z N
~ 7

—

Pulse Width = 0.5ms to 2.5ms

Here'sa Y ouTube video of one servo moving and it's signal on my oscilloscope: http://www.youtube.com/watch?
v=zA3anG0YZD4

Servos come with a verity of connector types but always have 3 wires. Oneis ground, one is power and the other is
signal. Take alook at this guys connector pinouts:

http: //mww.hor r or seek.comvhome/halloween/wol fstone/Motor s/svoint_RCServos.html

Here's an image of my RC servo connector (left), | will use some pins (right), to plug my servo into my breadboard.

f m§

There are two ways of implementing servos into your project. Y ou may either have your servos connected to your
main PIC, or to an external PIC. For smaller projects you will choose to control your servo from your main PIC, this
isthe method | will show you.

If your main PIC is needed to run some heavy code, or if you need more then 24 servos, you may wish to use external
PIC(s) vial2C interface. Thereisalibrary and two samples for using an external PIC vial2c bus. | will not discuss
this method here.

Servo control via your main PIC

This method will allow you to plug up to 24 servosinto your main PIC. Any digital capable 1/O pin on your PIC
should be able to run your servo signal, aways lookup your pinin the datasheet. Use a pull up resistor on open drain
pins. You will need to choose a PIC with a hardware timer, 8 servos can run on each timer module.

The library supports timer0, timer1 and timer3. Y ou can do a quick search for "timer0O module” in your datasheet to
seeif you have atimer, most PICs do have at least one timer. The library will give you an error if you if you do not
have a timer when you try to compile your code.

| have chosen 18F4620 (3 timers), but | have also tested it on 16f877a (2 timers), and 18f452(3 timers) with the same
schematic.

http://www.youtube.com/watch?v=zA3anG0YZD4
http://www.youtube.com/watch?v=zA3anG0YZD4
http://www.horrorseek.com/home/halloween/wolfstone/Motors/svoint_RCServos.html

96 | Jallib Tutoria's | Experimenting with external parts

Build your circuit

The schematic is very very simple, just take your blink circuit and plug in your servo.

|

RC SERVO 2

=

RC SERVO 1

Check your pinout!

The Code

Since your main PIC will be controlling the servos, the PIC is acting as a master device and therefore we will be using
the servo_rc_master library.

The library can be found under Jallib SVN at trunk\include\external\motor\servo\servo_rc_master.jal
The sample can be found in the Jallib SV N at trunk\sampl€\18f4620_servo_rc_master.ja

Y ou can access the Jallib SV N at http://code.google.convp/jallib/sour ce/browse/

Let's start by including your PIC, and disable all analog pins

-- include chip

i ncl ude 18f 4620 -- target PICmicro

pragma target clock 20_000_000 -- oscillator frequency

-- configuration nenory settings (fuses)

pragma target OSC HS -- HS crystal or resonator

pragnma target WDOT disabl ed -- no wat chdog

http://code.google.com/p/jallib/source/browse/

Jallib Tutorials | Experimenting with external parts | 97

pragma target LVP disabl ed -- no Low Vol tage Progranmi ng
pragma target MCLR external -- reset externally
enabl e digital io() -- disable analog 1/0O (if any)

This sample file will require 1 led, so define it now

-- led definition

alias |ed is pin_a0

alias led direction is pin_a0 _direction

| ed_direction = out put

Now you may define the pins that will be used for each of your servos, | have defined 8 although | have not
connected them all in my circuit.

-- setup servo pins

alias servo_ 1 is pin_bO

alias servo_1 direction is pin_bO direction
servo_1 direction = out put

alias servo_2 is pin_bl

alias servo_2_direction is pin_bl direction
servo_2 direction = out put

alias servo_3 is pin_b2

alias servo_3 direction is pin_b2 direction

servo_3 direction = out put

alias servo 4 is pin_b3

alias servo 4 direction is pin_b3 direction
servo_4 _direction = out put

alias servo 5 is pin_b4

alias servo_5_direction is pin_b4 direction
servo_5 direction = out put

alias servo_6 is pin_b5

alias servo 6 direction is pin_b5 direction

servo_6_direction = out put

alias servo 7 is pin_b6

alias servo 7 direction is pin_b6 direction
servo_7_direction = out put

alias servo_ 8 is pin_b7

alias servo_8 direction is pin_b7_direction

servo_8 direction = out put

-- commenting out 9th servo

;alias servo 9 is pin_a0

;alias servo 9 direction is pin_a0 _direction
;servo_9 direction = output

Here we will define the min & mas movement. These values can be changed to limit the amount your servos can
move. We will talk about thisin detail later on, thisis an important step. Changing these values will change the pulse
width for all servos.

-- choose mn & max servo novnent / pul se size
const byte SERVO M N 50 -- default is 50 (0.5ms mn pul se)
const byte SERVO MAX 255 -- default is 255 (2.5ms max pul se)

98 | Jalib Tutorials | Experimenting with external parts

Choose the timers your PIC will be using to control your servos. Each timer will take care of 8 servos. | have defined
8 servos, so | need only 1 timer. | have commented out the other 2 timers that | may use later on.

-- choose pic internal tiners

const byte SERVO USE TI MER = 0 -- timer for servo's 1 to 8

;const byte SERVO 9 TO 16 USE TIMER = 1 -- timer for servo's 9 to 16

;const byte SERVO 17 TO 24 USE TIMER = 3 -- tinmer for servo's 17 to 24

I may now include the servo_rc_master library, and initialize the servos. Within the init() procedure, all servos will be
centered.

i nclude servo_rc_master -- include the servo library

servo_init()

If you wish to turn off aservo at any point in your program. Thiswill turn off the servos motor by keeping the signal
linelow. Y ou may set or unset the on/off bit for any servo as follows:

-- use this to turn off a servo
;servo_1 on = FALSE

Sometimes the servo you have may move in the opposite direction that you would like it to, so here you have an
option of switching a servos direction. | have also noticed that some types of servos move in the reverse of others.

-- use this to reverse a servo
;servo_1 reverse = TRUE

Theinit procedure does center all servos, but you may want to start your servo at another location. Since | did not
leave any delay yet, the servos did not actually have time to move to there center position.

| am going to center the servos again to show you an example of the correct way to move a servo. After | give the
servos there move position, | will wait for 1sec so they have time to move to center.

Y ou can use various delays or move in increments to slow the servo movement speed. 127 is center.

-- exanple center all servos

servo_nove(127,1) -- center servo 1

servo_nove(127,2) -- center servo 2

servo_nove(127,3) -- center servo 3

servo_nove(127,4) -- center servo 4

servo_nove(127,5) -- center servo 5

servo_nove(127,6) -- center servo 6

servo_nove(127,7) -- center servo 7

servo_nove(127,8) -- center servo 8

; servo_nove(127,9)

_usec_delay (1_000_000) -- wait for servos to physically nove

Now | will create my main loop and have 2 of the servos move to various positions.

-- exanpl e noving servos one and two and blink |ed
forever | oop

servo_nove(255, 1)
servo_nove(0, 2)
_usec_delay (1_000_000)
led = !led

servo_nove(127,1) ;servo 1 centered
servo_nove(127,2) ;servo 2 centered
_usec_delay (1_000_000)

led = !led

servo_nove(0, 1)
servo_nove(255, 2)
_usec_del ay (1_000_000)
led = !led

Jallib Tutorials | Experimenting with external parts| 99

servo_nove(127,1) ;servo 1 centered
servo_nove(127,2) ;servo 2 centered
_usec_delay (1 _000_000)
led = !led

end | oop

So, that's it for the code. Simple right? | wish writing the library was that easy!

Y ou can go ahead and turn on your circuit, you should see the led blink and the servos should be moving. Change and
test your servo pinoutsif needed. The two servos will move in opposite directions since my servo_move() procedure
call values are different for each servo.

At this point, you should turn off the power when your servos are at the center position. We are turning the power off
S0 you may remove the moving part on the top of your servo, and place it back on so it looks centered.

Here'sa Y ouTube video of my two moving servos http://mww.youtube.com/watch?v=QS8MO07uuagyY

Setting Your Servo Max & Min Movements

For my projects, | feel that it isimportant to set the servo min/max values. Y ou may choose to either use the default
valuesthat | have set, or set your own. There are two reasons for setting these values correctly:

1. You can get more movement out of your servo (far right to far left)

2. You do not want your servo to try to move out of it's range. If your servo moves out of it's range for along period
of time, you may burn out the servos motor.

All manufacturers create there servos differently, there is no official specification for RC servos (that | know of).
So here are the steps:

1. Set SERVO_MIN =0and SERVO_MAX to 255
2. Set your servo_min values to restrict movement to one side. Directly after you call servo_init(), you should place
this code:

servo_nove(0, 1)
forever | oop
end | oop

Thiswill move your servo al the way to one side. Y ou will hear your servo motor being ON all the time (not good
for the motor).

3. Now run your circuit and gradually increase servo_min value so the servo is at the correct location on one side.
Try to get the servo to be Imm from it's min location. Y ou should not hear the motor running.

4, Repeat step 2 by decreasing servo_max but use this:

servo_nove(255, 1)
forever | oop
end | oop

Well, looks like your all set. | hope your having fun with Jalv2/Jalib!

http://www.youtube.com/watch?v=QS8M07uuagY

100 | Jalib Tutorials | Experimenting with external parts

SD Memory Cards

Matthew Schinkel
Jallib Group

In thistutorial we will learn how to use an SD Card for mass data storage.

SD Card Introduction

SD Cards (Secure Digital Cards) are quite popular these days for things like digital camera’s, video camera's, mp3
players and mobile phones. Now you will have one in your project! The main advantages are: small size, large data
storage capability, speed, cost. It has flash storage that does not require power to hold data. The current version of the
sd card library that we will be using in this tutorial works with "standard capacity” sd cards up 4gb in size. | hopeto
find time to add "high capacity” and "extended capacity” capability to the library.

SD Card have 2 data transfer types "SD Bus' and "SPI Bus'. Most PIC's have an SPI port. The"SD Bus" isfaster,
however uses more pins. We will be using SPI in our circuit. For more info on SPI read the tutorial in this book: SPI
Introduction. The SPI mode for SD Cardsis1,1.

We are not responsible for your dataor SD card. Make sure you have nothing important on your SD card before you
continue.

o]
=155 (chip selst)
])

SD CARD '::IJ \G/EB
PINOUT W | 56K
=_1|GhD
“1|s0

[

These SD Cards are 3.3v devices, therefore a 5v to 3v conversion is needed between the PIC and the sd card. We
will use resistors to do the conversion, however there are many other methods. See http://www.microchip.conv3v/ for
more information.

My favorite way of converting 5v to 3v iswith 74HCTO08. It must be HCT (not LS). 74L S08 will not work on a3.3v

power supply.
3.3v Power
5v Input 4l 3.3v Output
From PIC = To SD Card
e = T4HCTO8

Ground

Thiscircuit will use 16F877 If you are using adifferent PIC for your project, refer to the PIC's datasheet for pin
output levelsivoltage. For example, 18F452 has many pins that are 5v-input that give 3v-output. These pins show
as"TTL / ST" - TTL compatible with CMOS level outputs in the datasheet and they will not require any voltage
conversion resistors. If you are not sure, set a pin as an output, and make it go high then test with avolt meter.

http://www.microchip.com/3v/

Jallib Tutorials | Experimenting with external parts | 101

Build a SD Card Slot

Before we can build our circuit, we will need to find ourselves an sd card slot that can plug into our breadboard. Y ou
can find pre-made sd card slots on ebay and other places around the net. It is quite easy to make your own anyways. |
took one out of a broken digital camera and placed it on some blank breadboard and soldered on some pins. Here are
some images of my sd card holder:

Build the circuit

Follow this schematic for 16f877, if you are using another PIC, check the pin-outs for the SPI bus. The pin-outs of
your pic will show SDI, SDO, SCL and SS. The pin SSisthe chip select pin, you can use any pin for it but the others
must stay the same.

102 | Jdlib Tutorials | Experimenting with external parts

i
Wy

Compile and write the software to your PIC

With the use of the sd card lib (sd_card.jal) and a samplefile 16f877a sd_card.jal, we can easily put one in our own
circuit for mass data storage! You will find these filesin the lib & sample directories of your jallib installation.

The most up to date version of the sample & library can be found at:
Samplefile - http://jallib.googlecode.conVsvn/trunk/sample/16f877a_sd card.jal
Library file - http://jallib.googlecode.com/svn/trunk/include/external/storage/sd_card/sd card.jal

Now that our circuit is built, lets test it and make sure it works before we continue with more details. Compile and
program your pic with 16f877a sd_card.jal from your jallib samples directory. If you are using another pic, change
the "include 16f877a" linein 16f877a sd card.jal to specify your PIC before compiling.

Now that you have compiled it, burn the .hex file to your PIC

http://jallib.googlecode.com/svn/trunk/sample/16f877a_sd_card.jal
http://jallib.googlecode.com/svn/trunk/include/external/storage/sd_card/sd_card.jal

Jallib Tutorias | Experimenting with external parts | 103

Power It Up

Plug your circuit into your PC for serial port communication at 38400 baud rate. Now turn it on. Press the reset button
in your circuit, you should get aresult similar to this:

Serial Output

RealTerm: Serial Capture Program 2.0.0.57

F
SD CGARD SAMPLE STARTEDGLF

tart i
A R R R RO VRS

AAAAAAAARAARARAARARAARAAAAAAAAAAAAAAAAAAAARAAA ?nmmnnnnnnnnnnnnnnnnnnnnnnnnnn

F

BEBEBEEBEBEEBEBEEBBBEBEBBBEBEEBEBEBEEBEBEEBEBEEBEEEBEBEBBEBBEEBEBEBEEBEBEEBEBEEBBER
BEBEBEEBEBEEBEBEEBBEBEBEBBEBBEEBEBEBEEBEBEEBEBEEBBEBEBBBEBBEEBEBEBEEBEEEEBEBEEBEEBR
[BEBEBEEBEBEEBEBEEBBBEBEBEBBEBBEBEBEBEEBEBEEBEBEEBEBEBEBEBBEBBEBEBEEEEBEBEEBEEEEBBEBR
(BEBEBEEBEBEEBEBEEBBEBEBEBBEBBEBEBEBEEBEBEEBEBEEBBEEBEEBEBEBBEEBEBEEEEBEEEEBEEEEBEEBR
[BEBEBEEBEBEEBEBEEBEBBEBEEBBEBBEBEBEBEEBEBEEBEBEEEBEEBEBBEBEBBEEBEBEBEEBEEEEBEEEEBBEBR
(BEBEBEEBEBEEBEBEEBBBEBEBEBBEBBEEBEBEBEEBEBEEBEBEEBBEEBEBEBEBBEBEBEBEEBEBEEBEBEEBBEBR
[EEBBEEBBEEBBEEBBBEBBBEBBBBEBBBEBCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCH

Display | Pott | Capture| Pins | Send | EchoPort| 120 | 12C2 | 12CMise | Mise | An| Clear| Freeze| |
Displap A5 [~ Half Duples Status
:E iscii [~ newLine mode _ | Disconnect
(- Hgil[suace] I Invert Data _IR=D(2)
; Hex + Ascil | THD (3]
o m{‘a‘s Data Frames _|CT5(8)
? Hﬁxs Bytes |2 = _|DCo ()
int

" uintig [~ Single Gulp | ""D.SH)
" Asca _|Ring (3
? ﬁgﬂu Rows Cols __|BREAK.
T Floog Teminsl Fort | |50 %] |80 %] [Scrolback _|Enar

You can use AckiveX automation ko control me! Char Count:4300 CPsi0 Port: 3 115200 8N1 MNone

Asyou can see from the image, we got some actual readable data off the sd card as well as a bunch of junk. My sd
card isformated with fat32, thisiswhy | can actually read some of the data.

Y ou now have aworking sd card circuit!

Understand and modify the code

I'm just going to quickly go over some of the key points you need to know about sd cards. Open the sample file with
an editor if you have not done so already.

The code in the sample file may change, therefore it may be different then what you see here. The samplefile you
have downloaded will always be tested and correct.

Include the chip
Specify the PIC you wish to use as well as your clock frequency
i ncl ude 16f877a

pragma target OSC HS -- HS crystal or resonator

104 | Jdlib Tutorials | Experimenting with externa parts

pragma target clock 20_000_000 -- oscillator frequency

pragma target WDT disabled
pragma target LVP disabled

Disable all analog pins and wait for power to stabilize

enable_digital _io() -- disable all analog pins if any
_usec_delay (100_000) -- wait for power to stabilize

Setup serial port and choose baud rate 115200

-- setup uart for conmunication

const serial_hw baudrate = 115200 -- set the baud rate
i ncl ude serial _hardware

serial _hw_init()

Includetheprint library

i ncl ude print -- include the print library
Setup SPI Settings- The data transfer bus.

Here you may change the chip select pin "pin_SS' and "pin_SS direction” to another pin. SDI, SDO and SCK must
stay the same for the SPI hardware library.

Y ou may notice that we are not defining/aliasing pins sdi, sdo and sck. We do not need to define them with aline
like"dias pin_sdo is pin_c5" because they are set within the PIC and cannot be changed. If we use the SPI hardware
library, we must use the SPI hardware pins. We only need to define there direction like this"pin_sdo_direction =
output”.

Y ou may also choose the SPI rate. According to the SPI hardware library, you can use SPI_RATE_FOSC 4
SPI_RATE_FOSC 16, SPI_RATE_FOSC 64 or SPI_RATE_TMR. Thefastest is FOSC_4 (oscillator frequency / 4).
For the fastest speeds, it isagood ideato keep your SD Card as close to the PIC as possible.

i ncl ude spi _master_hw -- includes the spi library

-- define spi inputs/outputs

pin_sdi _direction = input -- spi input

pi n_sdo_direction = output -- spi out put

pi n_sck_direction = out put -- spi clock

spi _init(SPI_MODE 11, SPI _RATE FOSC 4) -- init spi, choose nbde and speed

alias sd chip _select is pin_ab
alias sd_chip_select _direction is pin_a5 direction
sd_chi p_sel ect _direction = out put

Setup the SD Card library and settings
Select sd card settings & Include the library file, then initalize the sd card.

Some sd cards may require a 10ms (or more) delay every time you stop writing to the sd card, you can choose
weather or not to have this delay. If you are doing many small writes and are worried about speed, you may set
SD _DELAY_AFTER WRITEto"FALSE".

-- setup the sd card
const bit SD ALWAYS SET_SPI _MODE = TRUE
const bit SD DELAY_AFTER WRI TE = TRUE

i ncl ude sd_card -- include the sd card ide hard disk library
sd_init() -- initialize startup settings

Add a separator procedure, Thiswill be used to display " ------ " ontothe serial port between examples.
-- procedure for sending 80 "----------------- " via serial port

procedure seperator() is
serial _hw data 13
serial _hw data 10

Jallib Tutorials | Experimenting with external parts | 105

const byte str3[] =
print_string(serial _hw data, str3)
print_crlf(serial_hw data)

end procedure

It isalways a good idea to send something to the serial port so we know thecircuit isalive. Let'ssend " Hard
Disk Sample Started"

-- Send sonething to the serial port

seperator () -- send "----" via serial port
var byte start_string[] = "SD CARD SAVPLE STARTED'
print_string(serial _hw data, start_string)

Declare some user variables

-- variables for the sanple
var word stepl
var byte data

EXAMPLES

OK, now that everything is setup, we are ready for some examples. | have left afew ways to read and write to SD
Cards. The usage you choose may will on the PIC data space you have, and what your application is. On asmaller
PIC, you will only be able to run examples #1, #2, #5 and #6. I'll explain as| go.

Y ou will find that these examples are identical to the ones in the hard disk tutorial. This makes it easy for you to
switch between using a SD Card and a hard disk.

Example #1 - Read data at sector O

Thisisalow memory usage way of reading from the sd card, however it is slower then some of the other examples
later on. This method requires the use of sd_start_read(), sd_data_byte, and sd_stop_read(). Y ou'll see that the usage
isquite simple.

" Note: Thevariable sd_data byteisnot actually avariable, it is aprocedure that looks & actslike a
"" regular variable. Thisis called a pseudo variable. Y ou may use this variable to read data or write data, as
shown in these exampl es.

The steps are:

1. Start reading at a sector address. In this case, sector O (the boot sector)
2. Loop many times while you read data. One sector is 512 bytes, we will read two sectors.

3. Store each byte of datainto the variable "data". Y ou can retrieve the data by reading the pseudo variable
sd_data byte

4. Do something with the data. Let's send it to the serial port.
5. End the loop
6. Téll the sd card we are done reading.
sd_start_read(0) -- get sd card ready for read at sector 0
for 512 * 2 | oop -- read 2 sectors (512 * 2 bytes)
data = sd_data_byte -- read 1 bytes of data
serial _hw wite(data) -- send byte via serial port
end | oop
sd_stop_read() -- tell sd card you are done reading

Ok, we're done our example, so lets separate it from the next one with the separator() procedure to send some "-----"
characters and a small delay.

separ at or () -- separate the exanples with "----
_usec_del ay(500_000) -- a small del ay

Example #2 - Writing data

This exampleis similar to example #1, but we will be writing data to the sd card. It requires low memory usage. As
with the first example, we will be required to use 3 procedures. sd_start_write(), sd_data_byte and sd_stop_write()

106 | Jallib Tutorials | Experimenting with external parts

Here are the steps:

1. Start writing at a sector address. | choose sector 20 since it seems that it will not mess up afat32 formatted sd
card, | could be wrong!

2. Loop many times while you write your data. In this example, | am writing to 1 sector + 1/2 sector. The 2nd half of
sector 2 will contain all 0's. The end of sector 2 will contain 0's because SD Cards will only write datain blocks of
512, and therefore any data you have there will be overwritten.

3. Write some data. Thistime we are setting the value of the pseudo variable pata_hd_data_byte. Writing to this
variable will actualy send data to the hard disk. We are sending "A", so you will expect to read back the same
data later on.

4. Endyour loop

5. Tell the SD Card we are done writing.

sd start_wite(20) -- get sd card ready for wite at sector 20

for 512 + 256 | oop -- loop 1 sector + 1 half sector (512 + 256 bytes)
sd_data_byte = "A" -- wite 1 bytes of data

end | oop

sd_stop_ wite() -- tell sd card you are done reading

Now of course you will want to read your data back, which will be the same asin example #1, but at sector 20.

sd_start_read(20) -- get sd card ready for read at sector 20

for 512 + 256 | oop -- loop 1 sector + 1 half sector (512 + 256 bytes)
data = sd_data byte -- read 1 bytes of data
serial _hw wite(data) -- send byte via serial port

end | oop

sd_stop_read() -- tell sd card you are done reading

Example #3 - Read and write data using a sector buffer (a 512 byte array)

In this example, we will use a512 byte array for reading and writing. This 512 byte array is called a sector buffer.
This method is very fast, however it will require a PIC that can fit the 512 bytes of datain it's ram space. | find it is
also easier to use. | suggest PIC18f4620 with the same schematic.

For writing, Y ou will need only need to write data to the sector buffer array, then use the sd_write_sector_address()
procedure.

Lets go through the steps, first for writing data:

Loop 512 times (the size of the sector buffer)

Set each data byte in the array

End your loop

Write the data to the hard disk at a sector address.
5. Repest the above to write more sectors.

-- fill the sector buffer with data
for 512 using stepl | oop -- loop till the end of the
sector buffer
sd_sector_buffer[stepl] = "B" -- set each byte of data
end | oop
-- wite the sector buffer to sector 20
sd wite sector_ address(20)

APwWDdDPE

Here we will write another sector (to sector 21, the next sector)

for 512 using stepl | oop -- loop till the end of the
sector buffer
sd_sector_buffer[stepl] = "C -- set each byte of data
end | oop

-- wite the sector buffer to sector 21
sd_wite_sector_address(21)

OK, it'stimeto read back the data, which is exactly the opposite of writing. For reading, we will use the
pata read sector_addres() procedure first, then we can read data from the sector buffer array.

1. Request datafrom the SD Card at a sector address.

Jallib Tutorials | Experimenting with external parts | 107

Loop 512 times (the size of the sector buffer).
Send each byte to the serial port.

End your loop.

Repeat the above to read more sectors.

a s wd

-- read back the sane sectors

-- read sector 20 into the sector buffer
sd_read_sect or _address(20)

-- now send it to the serial port

for 512 using stepl | oop -- loop till the end of the
sector buffer
serial_hw wite (sd_sector buffer[stepl]) -- send each byte via serial port
end | oop

Here we will repeat the above to read the next sector (sector 21)

-- read sector 21 into the sector buffer
sd _read_sector_address(21)
-- now send it to the serial port

for 512 using stepl | oop -- loop till the end of the
sector buffer
serial_hw wite (sd_sector_buffer[stepl]) -- send each byte via serial port
end | oop

EXAMPLE #4 - Another method for reading and writing sectors

Example #4 is pretty straight forward. | am not going to go into too much detail on thisone. It is a combination of
examples 2 and 3. It is about the same speed as example #3.

-- get sd card ready for wite at sector 20
sd_start_wite(20)

-- fill the sector buffer with data

for 512 using stepl | oop -- loop till the end of the sector
buf f er
sd_sector_buffer[stepl] = "D -- set each byte of data

end | oop

-- wite the sector buffer to the sd card
sd_wite_sector()

-- fill the sector buffer with new data

for 512 using stepl | oop -- loop till the end of the sector
buf f er
sd_sector_buffer[stepl] = "E" -- set each byte of data

end | oop

-- wite the sector buffer to the sd card

sd wite sector() -- wite the buffer to the sd card

-- tell sd card you are done witing

sd _stop_ wite()

-- read back both of the sane sectors

-- get sd card ready for read at sector 20
sd_start_read(20)

-- read the sector into the sector buffer
sd_read_sector()

-- now send it to the serial port

for 512 using stepl | oop -- loop till the end of the sector
buf f er
serial _hw wite(sd sector_buffer[stepl]) -- send each byte via serial port
end | oop

-- read the next sector into the sector buffer
sd_read_sector()
-- now send it to the serial port

for 512 using stepl | oop -- loop till the end of the sector
buf f er
serial_hw wite(sd sector buffer[stepl]) -- send each byte via serial port

end | oop

108 | Jalib Tutorials | Experimenting with external parts

sd_stop_read() -- tell sd card you are done
readi ng

Now you can put whatever you want on your SD Card, or possibly read lost data off of it.

If you want to read files stored on the card by your PC, thereisa FAT32 library and there will be atutorial soon so
you can easily browse, read and write to files and folders stored on your card.

What are you waiting for, go build something cool!

Sources
TheJallib SD Card Library - Written by Matthew Schinkel
SanDisk Secure Digital Card - http://www.cs.ucr .edu/~amitra/sdcar d/ProdManual SDCar dv1.9.pdf

http://www.cs.ucr.edu/~amitra/sdcard/ProdManualSDCardv1.9.pdf

Chapter

A

PIC software

Topics: Learn about software libraries that will help you on your journey. These software libraries

_ may run on hardware you already connected from other tutorials.
* Print & Format

* FAT32 File System

110 | Jellib Tutorials | PIC software

Jallib Tutorials | PIC software | 111

Print & Format

Matthew Schinkel
Jallib Group

Formatting output data with Print & Format

Print & Format

In aprevious tutoria (Serial Port and RS-232 for communication) Y ou probably noticed it is annoying to have to
change Real Term from ASCII to HEX in order to see output of numbers. It is also not easy to view raw HEX data.
Y ou will probably want to be able to output decimal numbers to make it easy on us humans. Thisiswhere the print
and format libraries comein!

The print and format libraries are quite easy to use, start off by including them into your main file (after your seria
port include block).

i ncl ude print
i ncl ude fornmat

Of course, now you need to know what procedures are available. Thisiswhen it is a good ideato open up alibrary
file. Scroll through the file and note procedure names as well as their input parameters.

JAL Edit - D:\jalwZ\ib\print. jal
File Edit Search View Complle Tools Help

0| - W] XS] =% da| v B o m|@] | o] b %] 40| conste o Papa

1k Active JAL File is C:\Documents and SettingsiMatthew\Desktopicode blocksigenerated|18F67i50_fat32_sd_card jal
SR piintiel |

27748

[Code Ex... * x| KB
Press F5 o Refiesh 278 procedure print dword dec(volatile byte out device, dword in data) is &
273

' 9 Procedures 280 _print_universal_dec(device, data, 3}
Gy Functions 281

@ Constants 262 end procedure

0 [l Variables 283

[0 Alases 204 procedure print word dec(volatile byte out device, word in data) is
285

286 _print_universal dec(device, data, 4)

287

288 end procedure

289

290 procedure print byte_dec(volatile byte out device, byte in data) is
291

292 _print universal_dec(device, data, 2)
293

294 end procedure

+
||

| Compile Results

0%

Data Lzage

Hardware Stack
A

i

Print and format numbers
In the previous image, you can see 3 procedure names:

1. print_byte dec() - Prints abyte in decimal format.
2. print_word_dec() - Printsaword in decimal format.
3. print_dword_dec() - Prints adword in decimal format.

Each requires the following parameters:

1. device - The device the datawill be outputted to. Usually you will put serial_hw_data or serial_sw_data.
However, you can put any pseudo variable (fake variable, that is actually a procedure) as an input. This pseudo
variable usually allows writing to an output device such as and LCD or protocol SPI, 12C, etc.

2. data- The datato be sent to the device.

The following example will set the value of the word x to 543 and send it to the seria serial port in ASCII format:

var word x = 543
print_word dec(serial _hw data, x)

112 | Jallib Tutorials | PIC software

Now let's have alook at the format library. you will see 3 alike procedures with names:

1. format_byte dec - Formats abyte in decimal.
2. format_word_dec - Formats aword in decimal.
3. format_dword_dec - Formats adword in decimal.

These format procedures are able to format a byte, word or dword. Here are the input parameters:

1. device- Sameasprint library.

2. data- The datato be sent to the device.

3. n_tot - Thetotal length of the outputted number (Including sign' +/-', and decimal point)
4. n2 - The number of decimal places.

The following example will write 61.234 to the serial port in ASCII format:

var dword _dec x = 61234
format _dword_dec(serial _hw data, x, 6, 3)

Printing Strings
The print library also has a procedure for printing strings. called print_string. It requires 2 inputs:

1. device- same as above.
2. str[] - The string to print to the seria port (an array of characters).

Here's an example that will output "Hello World" to the serial port in ASCII format:

const byte hello_string[] = "Hello Wrl d"
print_string(serial _hw data, hello_string)

Il Note: the constant array must be abyte array.
Y,

Last of course, you may need to go to the next line with carriage return + line feed (CRLF).
print_crlf(serial_hw data)
CRLF can aso be put directly into your string with "\r\n". This will put Hello and World on 2 separate lines.

const byte hello_string[] = "Hello\r\nWrld"
print_string(serial _hw data, hello_string)

Put it all together
i ncl ude 16f877a -- target PICrmicro

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSClL and OSC2.

pragma target clock 20 _000_000 -- oscillator frequency

-- configure fuses

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabl ed -- no Low Vol tage Progranmi ng
enabl e digital _io() -- disable analog 1/0O (if any)

-- ok, now setup seri al

const serial _hw baudrate = 115 200
i ncl ude serial _hardware

serial _hw.init()

i ncl ude print
i ncl ude fornmat

const byte start[] = "Start of main program..\r\n"
print_string(serial _hw data, start)

Jallib Tutorials | PIC software | 113

var dword x = 61234

const byte stringl[] = "Let's print a dword: "
print_string(serial _hw data, stringl)
print_dword_dec(serial _hw data, x)
print_crlf(serial_hw data)

const byte string2[] = "Let's print a dword with 3 decinal pl aces:
print_string(serial _hw data, string2)

format _dword_dec(serial _hw data, x, 6, 3)

print_crlf(serial_hw data)

const byte string3[] = "Let's print it in hex: "
print_string(serial _hw data, string3)

print_dword _hex(serial hw data, x)

print_crlf(serial_hw data)

const byte string4[] = "If we print as a hex byte, it will be truncated: "
print_string(serial _hw data, string4)

print_byte hex(serial hw data, byte(x))

const byte end[] = "\r\nEnd of main program.."
print_string(serial _hw data, end)

Here's the output. Take special note of how and why our number 61234 in hex (OxO000EF32) got reduced into a byte
(0x32) in the 5th line shown below.

" RealTerm: Serial Capture Program 2.0.0.57

Start of main program
2 rint a duord:

Disolay | Port | Capture | Fins | Send | EchoPort| 120 | 1262 | 12cMise | Mise | An| Clear| Freeze| _|
Dispeyis [Halt Duples Status
? ﬁﬁgl I~ newLine mode _ | Disconnect
 Hesfspace] | |_ lnwert Data _|RXD (2)
& H_exs+ Ascii | # _ITHD (3]
& .L::?al Data Frames _ICTS (8]
 Hex 2 = _|pCo 1)
 intlg s | D5F (5]
. uint]& I Single _Gulp | e
" Asci _|Ring (3]
l; Einary Rows Cols |BREAK,
O Pog | Temnafon [16 3] o 2] I scoback o

Doubleclick here to koggle more Help Char Count:426 CPS:0 Port: 5 115200 8N1 None

There you go... that's print and format! Doesn't this make life so easy!

114 | Jallib Tutorials | PIC software

FAT32 File System

Matthew Schinkel
Jallib Group

FAT32 Intro

If you made it here, you either have or are thinking about putting some storage device into your project. Of course
you may want to use FAT32 or sometype of file system if you are using a device such as a SD card or hard disk with
a huge amount of storage space. Y ou could read or write directly to your storage device if you wanted wish, so why
use afile system such as FAT32? It is an easy way to manage data and to access dataviaa PC, it isuser friendly for
building your product and also good for users of your product.

Fat32 can be read by the most popular operating systems. Of course, FAT32 is a Microsoft product used in Windows,
but Linux and MAC OS can aso read FAT32. Jallib also has Minix V2 file system available.

Before you start & Requirements

Before you get started, there are afew things you need to know about the current Jallib FAT32 libraries. Y ou will
need to choose alibrary based on your project requirements. Be sure to choose a PIC that will suit your needs. |
suggest PIC 18f4620 since it has loads of RAM & program memory. There are 2 FAT32 libraries to choose from.
Here'salist of featuresthe libraries currently have:

Features FAT32 FAT32 SMALL
RAM (Minimum) 1500 bytes 256 bytes
Program Memory (Minimum) 20k 5k
Max Files: Dependant on RAM available 1

(Can use external memory)
List files YES YES
Createfiles YES NO
Read & Writetofiles YES YES
Read long file names YES YES
Write long file names NO NO
Max Partitions 4 primary, 0 extended 1 primary
Read/Write fragmented files & YES NO
directories
Max file fragments Dependant on RAM available 1

(Can use external memory)

Max directory fragments Dependant on RAM available 1
(Can use external memory)

Thistutorial will concentrate on the normal FAT32 library. There will be a separate tutorial for FAT32 SMALL
whenever | find time!

M Note: Always get the newest library and sample. | suggest you download the newest Jallib Bee package
"" from http://code.google.com/p/jallib/downl cads/list

Choose a storage device

http://code.google.com/p/jallib/downloads/list

Jallib Tutorials | PIC software | 115

SD cards - SD cards are popular thanks to their small size. They are quite easy to connect to your circuit. The hookup
will cost you 4 PIC pins via SPI port. They are slower then hard disks due to serial datatransfer via SPI port. Most
SD Cards also have an endurance of 100,000 write cycles. They run on 3.3v.

Hard Disk - Hard drives are fast but large. The main sizes of hard disks are 3.5", 2.5" and 1.8". Connecting them to
your circuit is simple, but will require 21 pins. | did actually fit sd card + hard disk in one circuit on 18f4620. Hard
drives have an unlimited number of write cycles. They run at 5v TTL levels, but will accept 3.3v on it'sinputs. You
can run your PIC at 3.3v or 5v.

Suggested Tutorials

Getting Sarted

Blink aled

Serial Communication

SD Card OR PATA Hard DIsk
23k256

agprdwbdpeE

Benefits of ICSP

Y ou may program your PIC whileit isin your breadboard circuit

Y ou may program your PIC whileit is on a soldered circuit board

Y ou will save time programming so you can write more code faster

Y ou can reset your circuit from your PC

Y ou can program surface mount PIC's that are on soldered circuit board

Y ou won't bend or break any pins

Y ou won't damage your PIC by placing it in your breadboard wrong

With aremote desktop software like VNC, you can program your PIC from anywhere around the world.

| can program my PIC in my living room on my laptop while | watch tv with my wife! (I keep my messin my
office)

© o N U AMWDNE

The Schematic

Y our schematic will be the same as either the hard disk or sd card tutorial. If you wish to use external memory, you
can add a 23k256. I'll explain external memory later on. Although the schematics show 16f877, you can replace it
with 18f4620. 16F877 is not large enough.

116 | Jallib Tutorials | PIC software

oo
B 3
) = 5D Card - 5P Bus
| |
" = =
$ 8
swmer
a0
. « E | ol ol o] o] e~
—0 RAVPP ReziPoD |22 =
‘ = Koo e E
3 s
o s nes § 22
4 Kesamanmer. noa § 37
s =
anere ReaIPo
— 2 Kesaock re2 |32
= z o oo
= & Kreomoians reonnT § 32, fu
- voo 52 — o dut
* o 31
0w 4+ o1t L a— vas 31
™ o [t = 258
[2 rossro 20 =" | .a
¢ 2 an Rosieps | 22 pe =
“ Kot Roapsead 27 L ot
15 Recorriosormick rezmor £ 29 = s
iz et 15 _Recuriosicerz Reer 23, =
7 2 o

A7 Keeziccrr RESISDO
XTALZom Iz 12 Rearsoysoa | 22 —
4“] 1 Roopseo rosmsrs | 22
20 Keoipset rozpspz § 21

Seialpot
.
z
or|2
RT—2
o2
woo|—& .
== 3
e
voo .
38828 283 B 2 9 8
elajalglelel oo oo Fleels] elelz|nlelaol w5 8 als o
Pecd
o S
RAdreauigs ol p esistor for open dran < . amonf 2
== L oo | 2 3
— © Lercema ot o1,
= e . nozreser |20 <
@l 5 ; - s

Jallib Tutorias | PIC software | 117

Some Images

Run a sample

If you've already done a previous sd card or hard disk tutorial, you know you have aworking circuit. | suggest you try
one of the following samples:

18f4620_fat32_pata hard_disk.jal
18f4620_fat32_sd card.jal

Start by formatting your storage device in windows. Then put afew files and adirectory on it. In thisexample | put 4
files and one directory.

Set your serial port to 115200 baud. If al is good, you should get a directory listing on your seria port software:

118 | Jallib Tutorials | PIC software

. RealTerm: Serial Capture Program 2.0.0.57

EBBBIBBBBI LLLT]
18018680A 1 DATA -TH
3080526 1A010AAAA: Music File.mp3!

Display | Port | Capture | Pins | Send | EchoPort] 120 | 1202 | 12CHise | Mise | An| Clear| Freeze| |
Dizplay As ™ Half Duplex Statug
* ﬁscii ™ newline mode _ | Discannect
("- Hgil[snaca] I lrwert Data _|RXD[2)
? H_exB+Ascii ¥ | THD (3]
' ,L::Pgt Data Erames LTS (8
e Byes [21 “oeoq)
int

T uint]6 [~ Singe _Gulp | "‘D.SH £l
" Ascil _|Ring (3]
F Einary Rows Colz _|BRE&K
o ng:tlf Teminal Fort| 120 3| |80 3] [Scialback _|Enar

‘iou can use Activer automation to control me! Char Count:1444 CP5:0 Port: 3 115200 8M1 Mone

While we have this sample running, let's try it out!

Each fileisidentified by a number. Thefirst one"0" isthe volumeid. The partition loaded is named "VOL_ID". You
will also see 3 files and one directory. The directory is named "AAAA" (number2). Y ou can identify directories by
their attributes "00010000".

Now just send a number via Realterm's "Send" tab. If you send the number O, you will list the same root directory
again. If you send the number of afile, It's contents will be displayed. If you send the number of adirectory, you will
go into that directory and it's contents will be listed. Here'swhat | get when | send the number "1".

Y ou will notice some junk at the end of the file. Usually you'll get a bunch of 0's. They are there because fat32 reads
& writesin 512 byte chunks, and the file is only 415 byteslong. Y ou can fix your software to stop at the correct byte
at the end of thefile.

" RealTerm: Serial Capture Program 2.0.0.57
1880188688 AAAA

5 180106BAAA: DATA
21 1881688008 i

[

Hello World! Hello World! Hello World? Hello World? Hello World! Hello World? He
1lo World?! Hello World?! Hello World?! Hello World?! Hello World! Hello World?! Hell

o WYorld! Hello Yorld! Hello World?! Hello World?! Hello Yorld! Hello World? Hello
World! Hello Yorld?! Hello World?! Hello World! Hello Yorld?! Hello World! Hello Yo
! Hello World* Hello Worl World? Hello UHorld? Hello Yorld? Hello Yorl
AR A T AT R T R R R AR R
3 ":"L"L""L""L"L""L""L"L"":"":":"":": : LI Y LA Y

Display | Port | Captwe | Pins ~ Send | EchoPor| 120 | 1202 | 120Mise | Mise | An| Clear| Freeze| |
Status
EOL S :
1 - Send ASCII F :EP e : g;i;o[gr;ect
|] sendNurbers| Sendagol | +CR LBt TR0 @
4
— = | |cTs (@
ﬂ ﬂ ﬂ FRepeats |1 ﬂ ™ Literal [Ship Spaces ™ scre) J |DCD (1)
Diump File to Port il DSF [6)
|c:\temp\capture.txt ﬂ J Send File x Stop | Delays |0 ﬂ 0 ﬂ _|Ring (9]
___________ _ |BREAK
Repeats m | i—[_ |Emar
‘¥ou can use Activeld automation to control me! Char Count:4080 CPS:0 Port: 3 115200 8M1 Mone

The Code
Alright then, we're ready to get our hands dirty. Let's take alook

Jallib Tutorials | PIC software | 119

Required Includes

Thefirst part of the sampleisjust a bunch of includes, I'm not going to cover the first includes to much since they are
covered in other tutorials. When we get to the fat32 include, I'll give more detail.

-- Title: FAT32 library for reading fat32 fil esystem

-- Aut hor: WMatthew Schinkel, copyright (c) 2009, all rights reserved.
-- Adapt ed- by:

-- Conpiler: >=2.4k

-- This file is part of jallib (http://jallib.googl ecode. com

-- Rel eased under the BSD license (http://ww.opensource.org/licenses/bsd-

i cense. php)

-- Description: this exanple reads files & folders froma fat32 formatted sd
card

-- using the fat32 library.

-- Sources:

-- http://ww. m crosoft.conm whdc/systeni platforn firmaare/fatgen. nspx

-- http://ww. pjrc.com tech/8051/i de/ fat 32. ht ni

-- http://en.w ki pedia.org/wi ki/File_Allocation_Tabl e

-- include chip

i ncl ude 18f 4620 -- target picnmicro
-- this program assunes a 20 mhz resonator or crysta
-- Is connected to pins oscl and osc2.

pragma target osc | NTOSC_ NOCLKOUT -- hs crystal or resonator
; pragma target osc hs -- hs crystal or resonator

; pragma target clock 20_000_000 -- oscillator frequency

pragma target clock 32_000_000 -- oscillator frequency

pragma target wdt disabled
pragma target |lvp disabled

pragma target MCLR ext ernal -- reset externally
;CSCII»LIRCF = 0bl10 -- set int osc to 4nmhz

OSCCON | RCF = 0b111 -- set internal osc to 8nmhz

OSCTUNE_PLLEN = true -- nultiply internal osc by 4

enabl e_digital _i o() -~ moke all pins digital 1/0
_usec_del ay(100_000) -- wait for power to settle

i ncl ude del ay

-- setup uart for conmunication

const serial _hw baudrate = 115200 -- set the baudrate

i nclude serial _hardware

serial _hw.init()

-- sonme aliases so it is easy to change fromserial hwto serial sw
alias serial _ wite is serial_hwwite

alias serial _read is serial_hw read

alias serial _data is serial_hw data

alias serial _data available is serial _hw data avail able

i ncl ude print
i ncl ude spi _naster_hw -- includes the spi library

-- define spi inputs/outputs
pi n_sdi _direction = input -- spi input

120 | Jellib Tutorials | PIC software

pi n_sdo_direction = output -- spi out put
pi n_sck_direction = output -- spi clock
spi _init(SPI _MODE 11, SPI _RATE FOSC 4) -- init spi, choose node and speed

alias spi_master is spi_master_hw

-- setup 23k256 for external menory

-- setup chip select pin

ALI AS sram 23k256 chi p_sel ect is pin_al

ALl AS sram 23k256_chi p_sel ect _direction is pin_al direction
-- initial settings

sram 23k256_chi p_sel ect _direction = out put -- chip select/slave select pin

sram 23k256_chi p_sel ect = high -- start chip slect high (chip
di sabl ed)

-- initalize 23k256 in byte node

alias sram 23k256_force_spi _node is spi_naster_hw set_node 00 -- al ways set

spi node to 0,0

i ncl ude sram 23k256 -- setup M crochip 23k256 sram

sram 23k256 i ni t (SRAM 23K256 SEQUENTI AL_MODE, SRAM 23K256 HOLD DI SABLE) - -
init 23k256 in sequential node

-- setup the sd card pins

alias sd_chip_select is pin_SS

alias sd_chip_select direction is pin_SS direction
sd_chi p_sel ect = high

sd_chi p_sel ect _direction = output

-- setup the sd card library

alias sd _force_spi_node is spi_master_hw set _node_11 -- always set spi node to
1,1

;const bit SD EXTRA SPEED = TRUE

const bit SD_ALWAYS_SET_SPI _MODE = TRUE

const bit SD DELAY_AFTER WRI TE = TRUE

i ncl ude sd_card -- include the sd card ide hard disk library
sd_init() -- initialize startup settings

Includethe FAT32 library

Now for the fat32 include. Y ou will need to modify some of the constants to fit your need. Here's along description
of each constant so you have someidea of what to usein your project.

FAT32_WRITE_LONG_FILE_NAMES - Enables writing of long file names. Thisis not currently implemented.
Keep it FALSE for now.

FAT32_FILES MAX - The maximum number of files per directory. Each file will take up 2 bytes of ram. Y ou can
use external memory for this. I'll explain more about external memory soon.

FAT32_FILE_NAME_SIZE - The maximum size of afile name. larger sized file names take more RAM space. If a
file name is larger then this constant, some of it's characters will get cut off during listing of a directory.

FAT32_DIR_FRAGMENTS TO_ALLOW - The number of fragments a directory may have. Requires 6 bytes of
RAM space per fragment allowed. Thiswill use PIC's internal memory at the moment. I'll probably change this so
you can use an external memory source.

FAT32_FILE_FRAGMENTS TO_ALLOW - The number of fragments a file may have. Reguires 8 bytes of RAM
space per fragment allowed. Thiswill use PIC'sinternal memory at the moment. I'll probably change this so you can
use an external memory source.

FAT32_ENTRIES_MAX - highest file entry address can be 65535. Changing thisis only for advanced users. I'll
have to give a better description of this sometime. Basically each file entry (not file name) is 32 byteslong. FAT32
lib reads all entries and stores important entry locations into RAM. The important entries are entries that are the
beginning of afile name. When afile number is called, the library will go to the entry address to read the file name,

Jallib Tutorials | PIC software | 121

size, cluster address etc. This way the entire file name list does not need to be stored in RAM. Only the location of the
file name gets stored.

FAT32 USE INTERNAL_MEMORY - Choose where to store FAT32's file location table (internal memory or
external memory). Thisisrelated to FAT32_FILES MAX. If you have 50 files max, each file will take 2 bytes
of ram, so 100 bytes ram. Choose weather you want this 100 bytes of ram to be used internally or on an external
memory device. For external memory, | very much suggest external RAM or something fast and with a high
endurance (write cycles) like 23k256. Thiswill of course affect the "if" statement that follows this constant.

Within the FAT32_USE_INTERNAL_MEMORY "if" statement, you will need to define an array named
"fat32_entry_location". Thisarray can be area array, alarge array (through the large array lib) or a pseudo array. If
you look in the 23k256 lib, you will see that sram_23k256_word[] is a pseudo (fake) array. For external memory we
simply alias a pseudo array "aliasfat32_entry location is sram_23k256_word"

And of course, here isasample block for including fat32. Y ou can keep the defaults for now and mess around with
them later. | kept the values low to save RAM space.

-- setup fat32 --

-- include the required files

;include pic_data _eeprom

-- change these vaues to save nenory

const bit FAT32_WRI TE LONG FI LE NAMES = FALSE -- support witing of long file
names

const word FAT32_FI LES MAX = 20 -- the max nunber of files allowed
in a directory
const byte FAT32_FILE NAME SI ZE = 80 -- choose max file_nane size. if a

file_nane is longer the this, beginning chars will be cut. short file_nanes
are 12 bytes.

const FAT32_ DI R FRAGVENTS TO ALLOW = 5 -- uses 6 bytes nmenory per fragnment
all oned (0 not all owed)

-- -- wi ndows defrag does not
defragnent directories.

const FAT32 FI LE FRAGVENTS TO ALLOW = 5 -- uses 8 bytes nenory per fragnent
all owed (0 not all owed)

-- experts may change the follow ng val ues

;const byte FAT32 _ENTRIES MAX = 1 -- highest file entry address can
be 256

const byte FAT32 ENTRIES MAX = 2 -- highest file entry address can
be 65535

-- choose a nenory source for the file |list
const bit FAT32_USE | NTERNAL MEMORY = TRUE -- Use internal nenory for file
| ocation |ist
| F FAT32_USE_| NTERNAL_MEMORY == TRUE THEN
-- Setup a large array for storing sector data, This is where file_nane
| ocations are stored

const dword LARGE ARRAY 2 SIZE = FAT32_FI LES MAX -- choose
nunber of array variabl es

const dword LARGE ARRAY 2 VARI ABLE SI ZE = FAT32_ENTRI ES MAX -- choose
bytes size of variables

i nclude large_array_ 2 -- include the array library

ALIAS fat32_entry location is large_array_2
el sif FAT32_USE | NTERNAL_MEMORY == FALSE THEN

-- put your own code here if you wish to allow nassive anounts of files per
directory

-- exanpl e usage of 23k256 for external nenory

-- alias the 23k256 device word array

;alias entry location is sram 23k256 byte -- highest file entry address
can be 256
alias fat32 entry |l ocation is sram 23k256_wor d -- highest file entry

address can be 65535

122 | Jellib Tutorials | PIC software

END | F

i ncl ude fat32 -- include fat32 library -- include fat32

Y ou may want to filter out some files such as hidden or system files which you may not need in your project.
-- CHOOCSE FI LE ATTRI BUTES TO FI LTER OUT

fat32 filter _is read only = FALSE
fat32 filter_is_hidden = FALSE
fat32 filter is _system = FALSE
fat32 filter is volune_id = FALSE
fat32 filter_is directory = FALSE
fat32 filter _is_archive = FALSE

Themain program
Well then, your ready for the main program. First we have afew inital settings.
| have created a simple seperator procedure to send aline "'----------- " viaserial port.

-- procedure for sending 80 "----------------- via serial port
procedure separator() is

serial _data = 13

serial _data = 10

const byte str3[] =

print_string(serial _data, str3)
print_crlf(serial _data)
end procedure

-- start of nmain program
separator()-- send "----"

We can now initialize the library. The input to fat32_init is the partition number, which will usually be the first
(partition 1).

fat32_init(1l) -- initialize fat32, go to 1st primary partition's root dir "\"

Now some good coding stuff, let's print a directory to the serial port. Thefirst dir listing isthe root dir. There are
some options we can choose for the print dir procedure.

FAT32 PRINT_LONG_FILE_NAME - print the file name

FAT32 PRINT_NUMBER - print the file number

FAT32 _PRINT_SIZE - print thefile size

FAT32 PRINT_CLUSTER - print thefile's cluster address

FAT32 PRINT_TABLE - print atable around everything

FAT32 PRINT_DATE - print thefile date

FAT32 PRINT_ATTRIBUTES - print the files attributes (such as read only, hidden, etc).
Thefile attributes are "ADV SHR" (you will see this on your serial port software), and each can be true or false.
A - IsArchive

D - Isadirectory

V - IsavolumelD

S-Isasystemfile

H - Isahiddenfile

Jallib Tutorials | PIC software | 123

R - Isread only

fat32 print_directory(serial _data, FAT32 PRINT_ALL) -- sends dir listing via
serial port

Of course, you could just print one file name at atime instead. This could be useful on an LCD where you can only
view a certain number of files at atime, and scrolling is needed.

-- read 3rd file's nanme, location, size, attributes into nmenory
fat32 read file_info(3)

-- now send the filenane via the serial port (file nunmber and file nane)
fat32 print _file_ info(serial _data, FAT32_ PRI NT_NUMBER +
FAT32_PRI NT_LONG_FI LE_NANME)

Declare some variables we're going to use, then start our main loop

var byte data

var dword stepl

var word step2

var byte file nunber = 0

forever | oop
separator() -- send "----- then loop and wait for user input

This exampleisa user program, so we will wait for the user. The user can send data to the device via serial port to
select afile number. So, let's wait for data.

Note that the serial software library does not contain aserial_data_available variable.
When we get data from the user, it will be placed into our variable file_number.

file nunber = serial _data

Now we can either check the file's attributes to seeif it isafile or directory (see fat32_file attribin fat32.jal), or we
can simply try to go into the directory. If wefail to go into the directory, it must be afile.

If we do go into the directory, we will print the new directory to the screen.

-- choose a file for reading or dir for opening
if fat32_cd(file_nunber) then -- if change directory is
successf ul
fat32 print_directory(serial data, FAT32 PRINT ALL) -- print dir listing

Otherwise (if it is not adirectory), we will open the file.
elsif fat32 file_open(file_nunber) then -- if gointo file is successful
Calculate the number of sectorsin afile

The fastest way to read files is by reading them sector by sector. We'll need to cal culate how many sectors are in the
file so we can use afor loop later on.

-- cal cul ate nunber of sectors in file

var dword sectors_avail abl e

if (fat32_file_size) == (fat32 file_size / 512) * 512 then
sectors_available = (fat32 file_size / 512)

el se
sectors_available = (fat32 file_ size / 512) + 1

end if

Reading & writing
While writing the FAT32 library, | wanted to give some different ways for the code writer to read & writeto afile.
1. Read any byte from afile at any address.

a. fat32 read file byte address(address) - function that returns a byte from any byte address in the file.

124 | Jellib Tutorials | PIC software

2. A faster way to read byte by byte. Still slower then sector reads. It is not so user friendly since you must call afew
procedures. Only reads starting at the beginning of afile. If you are using an sd card and have other SPI devices
connected, do not use them until you do stop_file read.

a. fat32_start file read() - start reading afile from the beginning
b. fat32 read file byte() - read one byte
c. fat32 stop file read - stop reading
3. Averyfast & user friendly way to read and writeto afile at any sector address of thefile.

a. fat32_sector_buffer[] - a512 byte array that stores data to be read or written
b. fat32 _read file sector_number(address) - Call thisto read datainto the buffer from any address.
c. fat32 write file sector_number(address) - Call thisto write sector buffer to media at any address.

4, Thefast way to read and writeto afile. A little bit faster then #3. Not as user friendly. Y ou must start reading or
writing at the beginning of the file. Read and write sector by sector by filling fat32_sector_buffer[]

a. fat32 sector_buffer[] - a512 byte array that stores data to be read or written

b. fat32_start file write() - start writing to afile, starting at the beginning of thefile.

c. fat32 stop file write() - stop writing to afile

d. fat32 start_file read() - start reading from afile, starting at the beginning of thefile.
e. fat32 stop file read() - stop reading from afile

Well, as you can see you have alot of options. Our sample uses #3 (fast and user friendly). It really depends on your
application. If you are recording sound, you may want #4 since you'll be starting at the beginning of the file. If you
are jumping around in the file, you may want #3. Of course #3 would be perfectly sufficient for recording sound.
You'l just have to try them out!

I'll give abit more explanation of #3. Y ou will obviously either read from the storage device or write to the storage
device.

For writing, you will first fill the sector buffer with data, then when you call
fat32_write file sector_number(address), the library will transfer the data from the buffer onto the storage device.

-- EXAMPLE 3 WRI TE (fast and user friendly)
-- Read fromany sector nunber in the file, in any order you wi sh.
for sectors_avail abl e using stepl | oop

-- set the data to be witten

for 512 using step2 | oop
fat32_sector _buffer[step2] = "E'

end | oop

-- wite one sector to the disk
fat32 wite file_sector_nunber(stepl)
end | oop

For reading, you will first choose the sector to read from, then call fat32_read file sector_number(address), the
library will transfer data from the storage device into the sector buffer. After the dataisin the sector buffer array, you
can do what you like with it.

-- EXAMPLE 3 READ (fast and user friendly)
-- Read from any sector nunber in the file, in any order you w sh
for sectors_avail abl e using stepl | oop

-- read one sector fromthe disk

fat32 read fil e_sector_nunber(stepl)

-- send the sector via serial port

for 512 using step2 | oop

serial _data = fat32_sector_buffer[step2]

end | oop

end | oop

Jallib Tutorials | PIC software | 125

Well, that was awsome, let's wrap this up! Y ou should close the file when your done with it, just to ensure your
storage device goes ready. On a hard disk, you will see the disk LED go off.

fat32 file_cl ose()
end if
end | oop

What's that now? Y ou want to see an example of thisworking? | guessit'stime for a'Y outube Video! Y ou can see me
easily moving around in files & directories, and even transferring an MP3 to my PC via Realterm!

http://www.youtube.com/watch?v=ar7DKTPriNk

Have fun!

http://www.youtube.com/watch?v=ar7DkTPriNk

126 | Jallib Tutorials | PIC software

Appendix

128 | Jallib Tutorials | Appendix

Materials, tools and other additional how-tos

Jallib Tutorials | Appendix | 129

Building a serial port board with the max232 device

Matthew Schinkel
Jallib Group

In thistutorial, we're going to build a seria port that can connect your PIC's TX and RX pinsto your pc or other
hardware using a max232 chip.

Many circuits will require some seria port communication, you may buy yourself ars232 to TTL adapter off the net
for aslittle as $10, or you can build one yourself. The max232 is a very popular chip. It converts your 5v circuit to the
12v required for serial communication to things like your PC. Many microcontrollers have RX and TX output pins.
Here is aimage of the max232 adapter | purchased. It hasinput pinsfor RX, TX, CT, RT aswell as GND and 5v. The
RX and TX pins can be directly connected to your PIC.

F

["™
Now, lets build our own!

First get yourself a RS232 port, you can cut up one of your serial port cords, or buy a port from the store for adollar
or two.

| am going to use a cut serial port cord since it already has leads on it, and islong enough to reach my pc. Use your
multi-meter to find the pin numbers, and touch up the wires with solder so they’ll go into your breadboard easily.

Now build the circuit, As you can see, you will need the max232 chip from your local electronics store and a few 1uf
capacitors.

130 | Jallib Tutorials | Appendix

BY

?

=1o
IHF
: W

i —fe
MAX232 o5
1 i
'-.':alu"' 2 3 Wi 2
it e 4
' W ;)
- 54 ca GNO
B)
{ o
T — i T Tiour |1 El N [
1 Tan T20UT |] B
o—2d ROUT 2 RN |2 il ¢ 8]
=2 RECUT @ REiN |=ie e 5
MAXZ2a2F Sl e
T GND
GHD

Great job, now connect the RX and TX pinsto your circuit, and plug the rs232 port directly your pc, or to a usb-to-
seria adapter, or even to a bluetooth-to-serial adapter for short range wireless.

| strongly suggest you make this on a PCB with pinsthat will plug to your breadboard. you'll useit alot!
Inthisimage, | did not complete my PIC circuit, but | think you get the idea:

Jallib Tutorials | Appendix | 131

You can use serial_hardware lib or serial_software lib to transmit data to your pc, check for it in the other jalib
projects. | suggest the software realterm for sending/receiving data to your PIC

Open Source REALTERM http://realterm.sourceforge.net/
It can be downloaded for free from http://sourceforge.net/projects/realterm/files/
Open the software, click “Port”, choose your speed and port number and press “open”

Hex output

132 | Jalib Tutorials | Appendix

“_ RealTerm: Serial Capture Program 2.0.0.57

O B3 7 L = B LA B

0 =0) D 00 O e O L0 O o T

L 6
4
; E
E‘
L 6
g

B3 S

Display | Post | Capture | Pz Send |EchoPor| 120 | 1202 | 120Miee | Mise | \n| Clear| Freeze| |
Stalug
EOL Y
I Send ASCII rf' $B|| g Connected
= afane
o [L RAD (2)
- Ssrdblgmh3|3| Sendascll | +E1lj i THD ()
[el T | : = e | _IETS
- 0]] tF| ngpents [T 2] ™ Ltsal [StipSpaces || *oic) | s DEDE]-F
Dump Fie bo Port — _|D3RIE
o hbemphaptune. it =1 _! Sand Fia | x St.;.p| Delaps |0 5|0 =i Fing (9]
A BREAK.
Bepeats [1 [[0 2 I Enar
Yol Can uss Ackiy el autormation to contral med Char Courg:610 CP5:0 Port: 4 33200 SM1 Mane
Ascii output

¢ RealTerm: Serial Capture Program 2.0.0.57

HMF3 5D (L
[HEFHH [iLF
AAAAR . TET s
ALAMIE .HFP]
Diff Make Mothing Else Matters.npdis
CONF3181 .8T10pks
CONF?456 .

OMF745

MF74

i
Jew
madonn: [
UAH.HP3 (sl
van_halen_clip.MP3 il

Display |Pmt | Copture | Pine | Send | EchoPor | 120 | 1202 | 12CMisc | Misc |
Diplay 45 | [Half Duplew
pd *gf_g" ! newline mode
" Heufspacal | | Jrrvet Data
;_ Hex + Bz | |
r :':.;Ea Drata Frames =
:jﬁ-g Bvies |2 =
" untle [" Single _ Guip |
" Asci
£ Binaiy Rows Lol
kil Teminal Fort| [16° 2] [0 2] 1 Sciolback
o can uss Ackivel automation bo corrol me! Char Courg: 774

CP3:0

yn| Clear| Freeze| |

Statusz
Connected
R0 2y

_ITHD (3

|CTS (8

DCD 1)

DSR Bl

Ring (3]

BREAFK

Enai

Port: 4 332400 EM1 Moneg

Jallib Tutorials | Appendix | 133

In Circuit Programming

Matthew Schinkel
Jallib Group

Intro to in-circuit programming & ICSP

What is ICSP?

ICSP stands for In-Circuit Serial Programming. More information can be found at http://wwZ1.microchip.cony
downloads/en/DeviceDoc/30277d.pdf

Benefits of ICSP

Y ou may program your PIC whileit isin your breadboard circuit

Y ou may program your PIC whileit is on a soldered circuit board

Y ou will save time programming so you can write more code faster

Y ou can reset your circuit from your PC

Y ou can program surface mount PIC's that are on soldered circuit board

Y ou won't bend or break any pins

Y ou won't damage your PIC by placing it in your breadboard wrong

With aremote desktop software like VNC, you can program your PIC from anywhere around the world.

| can program my PIC in my living room on my laptop while | watch tv with my wife! (I keep my messin my
office)

©ONO U~ wWDNRE

Intro to ICSP & in-circuit programming

When | got started in micro-controllers and JAL, | needed to choose a programmer. At thetime, | did not know
anything about choosing a programmer, so | just went on ebay and bought one that is able to program many different
PIC's.

For years, | used this programmer by putting my 16f877 chip into it, programming it, and putting it into my
circuit. | broke pins and wasted alot of time. Little did | know, my programmer has an ICSP output for in-circuit
programming. My programmer even says ICSP on it, but | did not know what ICSP is.

Eventually | got sick and tired of moving my micro-controller back and forth from the breadboard to the programmer,
and | had herd some talk about ICSP. | found aICSP circuit on the net, and | took a harder look at my programmer,

it has 6 pins sticking up labeled ICSP. However, | did not know what pin was what, they where not marked well, and
| could not find info about my programmer. One of the pinswas marked pin 1 on the programmer. If you know your

I CSP pinouts already, you may skip to the circuit diagram.

| searched for 6-pin ICSP in Google and found that pinouts are different depending on the programmer. So, | took
out my volt-meter and logic probe (and oscilloscope, although it is not needed) and measured the voltages off each
pin while programming a chip and while not. | could see on the PCB that pin 3 is connected to ground and pin 6 is
connected to nothing. Here'swhat | got:

PIN # Whileldle While Programming

1 Ov 12v

2 Ov 5v

3 Ov Ov

4 5v Pulsing Ov to 5v (random)

5 Ov Pulsing Ov to 5v (square wave)

6 not connected Ov - can see no connection on
PCB

http://ww1.microchip.com/downloads/en/DeviceDoc/30277d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/30277d.pdf

134 | Jalib Tutorials | Appendix

Get the pin names

The pin names for ICSP are VPP1, LOW, DATA, CLK, VCC, GND. So lets match them up:
Ov pin 6 must be pin “AUX", | think this oneis actually not connected

Ov pin 3 must be pin “GND”

pin 1 isaprogramming enable pin, VPP1

pin 2 is5v, mostly used to power a not powered circuit during programming.

pin 4/5 are pulsing pins. They must be“CLK” and “DATA” (you may have to guess which iswhich if you don't ave a
oscilloscope.

Lets make a new chart. | believe most | CSP ports have pinsin this order:

PIN # PIN NAME Whileidle While
Programming

1 VPP1 Ov 12v

2 VDD Ov 5v

3 GND Ov Ov

4 DATA 5v Pulsing Ov to 5v
(random)

5 CLK Ov Pulsing Ov to 5v
(square wave)

6 AUX not connected not connected

Build a circuit with ICSP

VDD can be connected to your PIC’ s 5v supply (as seen in the schematic below), but many programmers do not need
thispin. If you do not need it you can disconnect it. | feel that it is more safe to disconnect it if you are not going to
useit. You can test disconnecting this wire after you get ICSP working.

VDD isfor power-off programming. Power-off programming does not work in my circuit because there istoo much
current drain. In my projects, | do use the VCC pin, and | will program my chips while my circuit power supply is
ON.

GND must be connected to your circuits ground. Follow this circuit diagram:

R mkimj

s
I3
oy
p
i
e
|8
- a0 0 \
[RerrPoD
BuTToN " " 2 Kewma Reerpoc
2 Keavam Ros
s Komenmer Roa
5 Kusmer ResiF oM
& Kenarmock Re2
T L N iy
FJ7 ca = Kcomosmns ReomnT
Voo o Kemme oo
Bz [* ETE D =
W il RD7/PSP7 —
—D . i oy
FL one e "
kL SC2/CLKOUT RDHPSP4R——
A5 Kcomiosomick RCTRXDT
200t 209t A5 Becimiosuccez ReB/TREK =2
= A7 Rcocces Rears00
ATALAOIE 15 RocascrscL Rearsousoa 22
»4“] 12 Koarsra noarpers | 22
2 RozipeR2

Y our done! Turn on your power supply and try to program your chip!

0uf|

o1

g

Jallib Tutorials | Appendix | 135

136 | Jallib Tutorials | Appendix

Miscellaneous

Changelog

Jallib Tutorials | Appendix | 137

Jallib Tutorial Book Changes & Updates

Jallib Group
Jallib Group

Table 3: Version 0.4 (Release date: To Be Released

Date Comments

2011/05/23 Added print & format library.

2011/05/19 Added FAT32 tutorial

2010/04/22 Fixed English and integrate Y outube flash object
in HTML output

2010/04/06 Alphabetical TOC

2010/04/05 Added RC servo & motor speed control tutorial

2010/04/01 Changed hard disk tutorial schematic

2010/03/25 Updated | CSP schematic and tutorial to reflect PIC
Kit 2 pinouts. | CSP schematic matches Microchip
Specification

2010/03/12 Updated SD Card schematic. Added pull-up

resistor on chip-select line, changed resistor values
for 5v-3v conversion

Table 4: Version 0.3 (Release Date: 2010/03/12)

Date Comments

2010/0127 Fixed 12C bus schematic and modified 12C titles

2010/01/21 Added ADC introduction, re-organized PWM tutorials and
titles

2010/01/20 Better quality Images on Getting Started, serial board, blink
aled tutorials.

2010/01/19 Added seria & rs-232 tutorial

2010/01/15 New |CSP Schematic

Table 5: Version 0.2 (Release date: 2009/12/30)

Date Comments

2009/12/06 Added SD Card tutorial
2009/12/06 Added PATA Hard Disk tutorial
2009/12/06 Added ICSP tutorial

Table 6: Version 0.1 (Release date: 2009/11/22)

Date

Comments

2009/11/22

Initial Release

138 | Jallib Tutorials | Appendix

License

We, the Jallib Group, want this book to be as open and free as possible, so we have decided to release it under the
Creative Commons Attribution-Noncommercial-ShareAlike 3.0 license.

@050

Basically (and repeating what's on the Creative Commons website), you are free to:

» Share- copy, distribute, and transmit the work
* Remix - adapt the work

Under the following conditions:

e Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way
that suggests that they endorse you or your use of the work).

* Noncommercial - You may not use thiswork for commercia purposes.

» ShareAlike- If you alter, transform, or build upon this work, you may distribute the resulting work only under the
same, similar or a compatible license.

Thefull, lega text of the license can be found at: http://creativecommons.or g/licenses/by-nc-sa/3.0/legal code

Thislicense applies to the book content itself, not to the code, libraries, examples, etc. found in the Jallib collection,
or whereit is explicitly stated that a particular work is released under another license. For instance, most of the
worksin the Jallib collection are released under either the BSD or ZLIB licenses, not under this Creative Commons
license. If you are in doubt about the license status of a particular file, please ask on the Jallib mailing list (http://
groups.google.convgroup/jallib).

http://groups.google.com/group/jallib
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://groups.google.com/group/jallib
http://groups.google.com/group/jallib

	Contents
	Back to basics...
	Installation
	Getting Started
	Blink A Led (Your First Project)
	Serial Port and RS-232 for communication

	PIC internals
	ADC - Analog-to-Digital Conversion
	I²C (Part 1) - Building an I²C slave + Theory
	I²C (Part 2) - Setting up and checking an I²C bus
	I²C (Part 3) - Implementing an I²C Slave
	PWM Intro - Pulse Width Modulation
	PWM (Part 1) - Dimming a led with PWM
	PWM (Part 2) - Sound and Frequency with Piezo Buzzer
	SPI Introduction

	Experimenting with external parts
	Hard Disks - IDE/PATA
	IR Ranger with Sharp GP2D02
	LCD Display - HD44780-compatible
	Memory with 23k256 sram
	RC Servo Control & RC Motor Speed Control
	SD Memory Cards

	PIC software
	Print & Format
	FAT32 File System

	Appendix
	Materials, tools and other additional how-tos
	Building a serial port board with the max232 device
	In Circuit Programming

	Miscellaneous
	Changelog
	License

