
PPlus Documentation
Release 0.5.2

Salvatore Masecchia, Grzegorz Zycinski, Annalisa Barla

June 26, 2013

CONTENTS

1 User documentation 3
1.1 Overview . 3
1.2 Installation . 4
1.3 Using PPlus . 8
1.4 PPlus Insight . 10

2 PPlus API 17
2.1 PPlusConnection class . 17
2.2 Utility functions and classes . 21
2.3 Quick Reference . 22

3 Indices and tables 25

Bibliography 27

Python Module Index 29

Python Module Index 31

Index 33

i

ii

PPlus Documentation, Release 0.5.2

Release 0.5.2

Homepage http://slipguru.disi.unige.it/Software/PPlus

Repository https://bitbucket.org/slipguru/pplus

PPlus is a simple environment to execute Python code in parallel on many machines without much effort. It is
actually a fork of Parallel Python, another simple but powerful framework for parallel execution of python code,
which lacks features needed for effective use in our daily research.

More specifically, PPlus was created to answer following needs:

• to facilitate data transport over distributed environment of usually very big file, exposing a simple interface
while handling details in the background

• to separate file handling between different experiments, so one machine can participate in many computa-
tional experiments simultaneously

CONTENTS 1

http://slipguru.disi.unige.it/Software/PPlus
https://bitbucket.org/slipguru/pplus
http://www.parallelpython.com/

PPlus Documentation, Release 0.5.2

2 CONTENTS

CHAPTER

ONE

USER DOCUMENTATION

1.1 Overview

A distributed environment controlled by PPlus (mainly inherited from Parallel Python) is composed of a set
of machines (nodes) that offer their resources to execute assigned tasks. All those nodes are running the
pplusserver.py process in the background, that provides visibility over the local network of a prefixed num-
ber of computational workers and controls all data transfers (see Using PPlus).

The Python code to be executed by PPlus consists of the following conceptual pieces:

• the worker code is distributed over the network to the node machines to be executed there; it produces
partial results saved locally and ready to be collected

• the master code that distributes the worker code pieces, collects all partial results and produce master
(final) results

When a Python code needs to be executed in parallel, it is placed on one of the machines. That process is
designated to be the master process: it distributes all parallel tasks to node workers and it receives all the results.
Note that the machine running the master process can also provide workers (running the pplusserver.py
script).

3

http://www.parallelpython.com/

PPlus Documentation, Release 0.5.2

Both worker code and master code can do any computations, import modules (with some restrictions), and
produce files.

Experiments

Internally, PPlus uses the concept of experiments to organize the code and data. The experiment consists of
the code that performs a specific task, including pieces to be executed in parallel (i.e. master code and all worker
code), as well as all regular files produced by that code. A single instance of the worker code, submitted for remote
execution, is also called worker task or worker job.

To ease running of multiple subsequent experiments over the network, the experiment code can use a shared file
system resource to store files produced during execution and to access them back if needed. This functionality is
controlled by PPlus in a transparent way and it is exposed through a simple API.

Note: PPlus controls shared disk resource in the form of any network-mounted file system (e.g. NFS, Samba
etc.), that can be accessed as normal directory. As a result, PPlus manipulates all remote file system resources as
normal files and directories.

Warning: PPlus has been developed on Linux utilizing single NFS-mounted external disk as shared file
system resource; using of different remote file systems and different operating systems has not been tested at
this moment.

The experiment code can access and store any remote files in a dedicated experiment directory, created specif-
ically for that purpose on the shared disk resource. Both experiment master code and all worker code have an
access to the experiment directory. The files produced by different experiments are physically separated; no di-
rect support is provided for accessing data from outside the experiment. As a result, many experiments can run
simultaneously without data corruption.

Note: The experiment directory is created automatically when the experiment code is started. It is possible
to assign already existing directory passing manually an experiment id, but is responsibility of the user code to
manage results collected in different run to avoid unexpected data corruptions or overwriting.

Sessions

Each execution of the code, of both master and worker type, on each machine, is considered a session. All the
activity during a session is stored in a separated session log file. More specifically:

• all worker tasks are considered running in separate sessions, and will produce separate session log files;

• the master code is also treated as running in separate session, but it will produce two logs; session log
documents the activity regarding accessing shared disk resource from within master code; experiment log
documents the activity regarding distribution of worker tasks; see Logging for more details.

1.2 Installation

PPlus is available on PyPI and may be easily installed using standard python setup tools like pip.

Anyway, we recommend to install PPlus from the source distribution, to also get some useful configuration files
and testing scripts shipped with it.

After extracting the compressed package, you can use the default distutils commands:

$ python setup.py install

After installation, you can launch the test suite:

4 Chapter 1. User documentation

http://en.wikipedia.org/wiki/Network_File_System_%28protocol%29
http://en.wikipedia.org/wiki/Samba_%28software%29
http://pypi.python.org/pypi/PPlus
http://www.pip-installer.org/
https://bitbucket.org/slipguru/pplus/downloads

PPlus Documentation, Release 0.5.2

$ python -c "import pplus; pplus.test()"

Note: Tests will print reports of expected raised exceptions. Check if you get OK or FAILED status at the end.

Note: You have to install PPlus on each machine you would like to use as a node worker and /or master.

You can also check the latest sources on PPlus code repository:

$ hg clone https://sabba@bitbucket.org/slipguru/pplus

1.2.1 Configuration

PPlus uses a configuration file that specifies the paths for storing and managing remote and temporary files and
logging. Each machine that participates in the network should provide its own configuration file.

During the installation, a default configuration file is saved in /etc/pplus/pplus.cfg. The simplest way to
configure PPlus is to edit this file which will be reached by master and workers scripts on the machine.

On the master process, the configuration file may be specified directly in config_file_path parameter when
instantiating PPlusConnection:

pc = PPlusConnection(config_file_path=’pplus.cfg’)

If not specified that way (and in all worker sessions), PPlus looks for the configuration file in the following
locations, in order:

1. current working directory, as obtained by os.getcwd()

2. ~/.pplus/pplus.cfg, e.g. /home/user/.pplus/pplus.cfg

3. global configuration file /etc/pplus/pplus.cfg installed with PPlus (recommended)

Note: On workers, current working directory depends on how pplusserver.py script is executed.

An example of standard configuration file can be found in the source distribution of PPlus under
<path-to-pplus-source>/examples/pplus.cfg or downloaded here:

Default configuration file for PPlus client machine

Disk configuration
[io]
DISK_PATH = disk/ ; absolute paths o relative paths with respect
CACHE_PATH = cache/ ; to this configuration file directory

Workers configuration
[worker]
CACHE_WAITING_TIME = 2 ; in seconds
SESSION_LOG_LEVEL = DEBUG ; [DEBUG | INFO | WARNING | ERROR | CRITICAL]

Master configuration
[master]
JOB_MAX_RESUBMISSION = 0 ; a task is resubmitted after specified failures
EXPERIMENT_LOG_LEVEL = DEBUG ; [DEBUG | INFO | WARNING | ERROR | CRITICAL]

The DISK_PATH is the root of remote file system resource controlled by PPlus (e.g. the NFS mount point).

The CACHE_PATH is the root directory of internal local cache used by PPlus.

1.2. Installation 5

https://bitbucket.org/slipguru/pplus
http://docs.python.org/library/os.html#os.getcwd

PPlus Documentation, Release 0.5.2

The CACHE_WAITING_TIME is the time between locking individual file objects managed in local cache of the
machine, to avoid any possibility of concurrent writing. This parameter may be configured individually for each
machine, if needed.

The SESSION_LOG_LEVEL is the level of detail for log files produced by worker code on worker machines
during execution of worker tasks, as well as the session log produced by master code on master machine.

The JOB_MAX_RESUBMISSION is the number of maximal re-submissions of single failed worker task. That is,
if the worker task has failed, it will be submitted, possibly to different machine, to be executed again. If it fails
again, it will be submitted back again etc, maximum up to the number of times specified by this parameter.

The EXPERIMENT_LOG_LEVEL is the level of detail for experiment log produced by master code on master
machine.

Note: (OS Specific) All mount points specified in DISK_PATH on all machines participating in the single
experiment, must point to the same physical location on disk resource. Consult the documentation specific for
your OS for more details.

Note: The CACHE_PATH must be writable by the user that will execute master/worker code on that machine.

Configuration options in debug mode

PPlus has also a debug running mode:

pc = PPlusConnection(debug=True)

When a PPlusConnection is instantiated in this way no connection between master a worker processes
is created and each configuration option assume its default value (e.g. JOB_MAX_RESUBMISSION=0 and
CACHE_WAITING_TIME=2). Tasks will be executed on the local machine, creating a number of subprocesses
equal to the number of cpu cores minus one. Moreover, two local (w.r.t. master process working directory)
directories, namely disk and cache, will be created to simulate shared disk and local cache spaces.

1.2.2 A simple Task: counting words in a text file

With the source distribution of PPlus it is also shipped a simple example of how PPlus could be use. This
script is also useful to test the installation and the definition of a valid configuration file and can be found under
<path-to-pplus-source>/examples/pplus_test.py or dowloaded here.

The script defines a job function count which relies on a smaller function count_word.

Note: A PPlus job function has to expect as first argument a PPlusConnection instance (automatically
created by PPlus)

Define a dependency
def count_word(line, word):

return line.count(word)

Define a distribute function
def count(pc, word): # PPlusConnection instance mandatory as first argument

bigfile = pc.get_path(’BIGFILE’)

counter = 0
with open(bigfile) as f:

for line in f:
counter += count_word(line, word)

return word, counter

6 Chapter 1. User documentation

PPlus Documentation, Release 0.5.2

Into the main function is first created a new PPlus connection:

def main():
PPlus Connection instantiation in debug mode
pc = pplus.PPlusConnection(debug=True)
print ’Starting experiment with id %s’ % pc.id
print ’Master session id %s’ % pc.session_id

Because a PPlusConnection instance is created in debug mode, no configuration file is needed.

Then, if you have an active Internet connection, the script will automatically download a sample text file, namely
bigfile.txt, which can also be downloaded manually from the repository, and put it on the shared disk space:

Download, if not exists, the input file
if not os.path.exists(’bigfile.txt’):

file_url = ’http://bitbucket.org/slipguru/pplus/downloads/bigfile.txt’
print "Downloading ’bigfile.txt’...",
urllib.urlretrieve(file_url, ’bigfile.txt’)
print "done"

Put the file on the shared disk
pc.put(’BIGFILE’, ’bigfile.txt’)

We are now ready to submit the jobs. The target is to count how many times a prefixed set of (actually 6) words
appear into the text contained in bigfile.txt:

Submit counting jobs
words = [’love’, ’strong’, ’year’, ’than’, ’is’, ’and’] # 6 jobs
for w in words:

pc.submit(count, (w,), depfuncs=(count_word,))

Then we can collect and print the results:

Collect (and print) the results
results = pc.collect()
print ’\n%d tasks on %d returned’ % (len(results), len(words))
for w, c in results:

print "Found ’%s’ %d times" % (w, c)

From the PPlus source dir, if you run:

$ examples/pplus_test.py

the expected results is something like:

Starting experiment with id b92af2161a7511e1961f4cedde1c47b7
Master session id 31faf2377b274d42908cbe72ff66aee8
Downloading ’bigfile.txt’... done

6 tasks on 6 returned
Found ’love’ 2763 times
Found ’strong’ 499 times
Found ’year’ 1313 times
Found ’than’ 2493 times
Found ’is’ 81588 times
Found ’and’ 87585 times

Because we are in debug mode, jobs have run on the local machine cpus and you should have, in the current
working directory, two new directories simulating local cache (cache) and shared disk (disk):

$ ls cache disk
cache:
b92af2161a7511e1961f4cedde1c47b7

disk:
b92af2161a7511e1961f4cedde1c47b7

1.2. Installation 7

https://bitbucket.org/slipguru/pplus/downloads/bigfile.txt

PPlus Documentation, Release 0.5.2

Each one contains a sub-directory named as the executed experiment id.

The shared disk disk contains the BIGFILE which was putted in, and an experiment log experiment.log:

$ ls -R disk
disk:
b92af2161a7511e1961f4cedde1c47b7

disk/b92af2161a7511e1961f4cedde1c47b7:
BIGFILE
experiment.b92af2161a7511e1961f4cedde1c47b7.log

The local cache contains the BIGFILE which was got by the workers, into the job function, and a logs directory
containing logs for each PPlus session:

$ ls -R cache
cache:
b92af2161a7511e1961f4cedde1c47b7

cache/b92af2161a7511e1961f4cedde1c47b7:
BIGFILE
logs

cache/b92af2161a7511e1961f4cedde1c47b7/logs:
rubik.master.31faf2377b274d42908cbe72ff66aee8.log
rubik.worker.118c1ec5ec634476b0ec99460df3b970.log
rubik.worker.26d78679bfb74a80b0d2ee4f72950616.log
rubik.worker.804089d287104afb87fe73cda038023f.log
rubik.worker.80e51feeb16a422d85681d5339a2bcee.log
rubik.worker.d4b0ab3a565442d8a834270ef64402a4.log
rubik.worker.dd9b8b3bdd3742df883ba11692909e66.log

Because the experiment ran in debug mode, here we have logs for all sessions:

• one for the master: hostname.master.<session_id>.log and

• one for each of (6) workers: hostname.worker.<session_id>.log.

Now we are ready to configure our network and run the experiment on a distributed environment as described in
Using PPlus.

1.3 Using PPlus

In A simple Task: counting words in a text file you can see how to use PPlus in a parallel but not distributed
environment (debug mode, see also PPlusConnection arguments).

In this section we assume you have correctly edit a PPlus configuration file adding valid disk and cache paths,
as explained in Configuration.

To run the test distributing the tasks we have only to start a pplusserver.py in auto-discovery mode (see
PPlus Server options):

$ pplusserver.py -a

and then the pplus_test.py script shutting-off the debug modality:

pc = pplus.PPlusConnection(debug=False) # line 24 of pplus_test.py

1.3.1 PPlus Server options

Executing pplusserver.py with the --help option:

8 Chapter 1. User documentation

PPlus Documentation, Release 0.5.2

$ pplusserver.py --help

you get a complete list of options (see also PPlusConnection):

usage: pplusserver.py [-h] [-d, --debug] [-a, --auto] [-r, --restart]
[--version] [-i, --interface INTERFACE]
[-p, --port PORT] [-b, --broadcast BROADCAST]
[-w, --workers {1,2,3,4}] [-s, --secret SECRET]
[-t, --timeout TIMEOUT] [-n, --nproto PROTONUM]

PPlus Network Server (pplus-0.5.0-hg)

optional arguments:
-h, --help show this help message and exit
-d, --debug set log level to debug
-a, --auto enable auto-discovery service
-r, --restart restart worker process after each task completion
--version show program’s version number and exit
-i, --interface INTERFACE

interface to listen
-p, --port PORT port to listen
-b, --broadcast BROADCAST

broadcast address for auto-discovery service
-w, --workers {1,2,3,4}

number of workers to start
-s, --secret SECRET secret for authentication
-t, --timeout TIMEOUT

timeout to exit if no connections withclients exist
-n, --nproto PROTONUM

protocol number for pickle module

1.3.2 Example: a working environment

To facilitate computational experiments performed by Computational Biology and Biostatistics branch of
SlipGURU research group, a complete environment for parallel computations was created in our lab.

It consists of a few personal Linux workstations, accessing each other in within the same local network. A separate
workstation has been dedicated to provide only the external disk space, accessible via NFS.

On all participating workstations, running various flavors of Ubuntu, a dedicated login-less user pplus was
created and a system service (pplus_services) was installed on each participating workstation, that mounts
external disk via NFS and starts pplusserver.py, so the machine can re-enter the environment automatically
even after manual restart.

The NFS mount point and location of local cache are in pplus home directory, and user pplus will execute any
incoming worker code.

Master code of the experiment can be executed on any workstation from any user.

All the operation needed to install a compete environment are performed using the pplus_add_node.py script
shipped with PPlus source distribution into the install directory together with the pplus_services Linux
script. Run:

$ pplus_add_node.py --help

to see all the options:

Usage: pplusserver.py [options] nfs_mount.

NFS mount point must be in remote_host:remote_dir format.
If not found, NFS driver will be automatically installed.

1.3. Using PPlus 9

http://slipguru.disi.unige.it/
https://bitbucket.org/slipguru/pplus/downloads

PPlus Documentation, Release 0.5.2

Options:
--version show program’s version number and exit
-h, --help show this help message and exit
-u USER, --user=USER workers owner user (*default pplus*). If the specified

user does not exist, it will be created (login
disabled)

-w WORKERS, --workers=WORKERS
number of workers to manage, default 4

1.4 PPlus Insight

In this section we describe some information about PPlus development that could be useful for advanced users.

1.4.1 File Management

Remote files are managed based on file keys. They serve as identifiers for accessing physical files without knowing
their precise location, regardless of the network protocols.

The following rules apply to file keys regarding experiment level:

• between different experiment directories, the same file keys may be used; that is, key ‘BIGFILE’ used in
experiment A, and key ‘BIGFILE’ used in experiment B, are both referring to two different files

• within experiment directory, if the same file key is used for opening new remote file for writing, by default
the content of the existing file will be overwritten without warning; otherwise, an error will be reported

As a result, within experiment all file keys must be unique to avoid unwanted data corruption.

Note: It is strongly advisable not to access any physical files in the locations affected by experiment code that
is running: experiment directory on shared disk resource, and local cache directories for all participating worker
machines. Doing so may result in data corruption.

Note: (OS Specific) By convention, typical file keys are composed of capital letters, digits and underscore, for
instance CFG, PROBESET_2_GENEID. However, it is possible to use, as file key, any regular file name that is
acceptable on the OS that handles shared disk resource. Consult OS specific documentation for more details.

Note: Internally, in the current implementation, the file objects are still stored as normal files, and file keys are
used as real file names. Therefore, knowing the OS specific details of shared disk resource, as well as the file keys
themselves, it is still possible to access the real file objects, in case of untraceable crash.

1.4.2 Logging

PPlus uses logging to record its activity during the execution of experiment code.

The following logs are used:

• experiment log

This log is created by master code when experiment ID is granted. It documents the activity of the master code
regarding control of worker tasks and interaction with Parallel Python. Also, all errors in worker tasks will be
logged here. It is considered private and is not exposed through public API. When experiment is finished, it is
available in the following location:

<SHARED_DISK_PATH>/<experiment_ID>/experiment.log

10 Chapter 1. User documentation

http://docs.python.org/library/logging.html#logging

PPlus Documentation, Release 0.5.2

• master session log

This log is created by master code when experiment ID and session ID are granted. It primarily documents the
activity of the master code regarding remote file access. It is considered public and is exposed through public API.
When experiment is finished, it is available in the following location on master machine:

<LOCAL_CACHE_PATH>/<experiment_ID>/logs/<machine_name>.master.<session_ID>.log

• session log

This log is created by each single worker task, with experiment ID given and session ID granted. It documents
the activity of the worker code regarding remote file access. It is considered public and is exposed through public
API. When experiment is finished, it is available in the following location on worker machine:

<LOCAL_CACHE_PATH>/<experiment_ID>/logs/<machine_name>.worker.<session_ID>.log

Note: Logs produced in <LOCAL_CACHE_PATH> are never transferred to shared disk resource after the exper-
iment has been finished. They must be accessed manually on each machine.

1.4.3 PPlus Execution modes

Debug Mode

Debug mode is intended to check the correctness of the experiment code, by executing it as local experiment.
Instead of distributing worker tasks to remote machines, all of them will be executed on local machine, along with
master task.

In this mode:

1. PPlus ignores all configuration files and creates disk and cache directories in current working directory:

>>> import os
>>> import pplus
>>> cwd = os.getcwd()
>>> pc = pplus.PPlusConnection(debug=True)
>>> os.path.exists(os.path.join(cwd, ’disk’))
True
>>> os.path.exists(os.path.join(cwd, ’cache’))
True

2. The master code is executed normally, and it ‘distributes’ all worker code pieces as usual, producing all
regular files normally

3. When any exception is thrown during the execution of master code, the experiment code flow is interrupted,
and the error is reported

4. When any exception is thrown during the execution of any worker task, the task is not resubmitted for
another execution, the experiment code flow is interrupted, and the error is reported

Normal Mode

Normal mode is intended to run the experiment code over fully configured parallel environment.

In this mode:

1. The master code is executed; during the initial phase, the following specific activities occur:

• the master PPlusConnection instance is created, that reads properly specified configuration file
(see Configuration), obtaining, among others, DISK_PATH and CACHE_PATH locations for that par-
ticular machine

• the experiment ID is granted, in the form of uuid

1.4. PPlus Insight 11

http://docs.python.org/library/uuid.html#uuid

PPlus Documentation, Release 0.5.2

• the session ID is granted, in the form of uuid

• the experiment directory is created:

<DISK_PATH>/<experiment_ID>

all remote files produced by the whole experiment code will be stored there

• the local cache for the experiment is created on that machine:

<CACHE_PATH>/<experiment_ID>

all temporary copies of remote files accessed by master code will be stored there

3. The master code continues its execution, eventually worker code pieces are distributed over worker ma-
chines. The master code keeps track of all distributed worker tasks, as well as of all completed worker
tasks.

4. When some worker piece of code is distributed, together with experiment ID, to worker machine, then
reconstructed according to Parallel Python rules, and started, the following specific activities occur:

• from within worker code, the worker PPlusConnection instance is created that reads properly
specified configuration file, obtaining, among others, DISK_PATH and CACHE_PATH locations for
that particular machine

• the experiment ID is re-used to access shared experiment directory in:

<DISK_PATH>/<experiment_ID>

• the worker session ID is granted, in the form of uuid

• if does not exists, the local cache for the experiment is created for that machine:

<CACHE_PATH>/<experiment_ID>

all temporary copies of remote files, accessed by any worker code running on that machine within the
experiment, will be stored there

• the worker code piece continues its execution until the formal end (i.e. when the last statement has
been processed, and/or function end has been reached)

Note: When any exception is thrown inside worker task, it is considered an error and the task is
considered as not completed. Therefore, all worker tasks must be self-contained; deliberate exception
propagation will lead to error.

when the execution passes without errors, the worker task is considered completed

5. Master code, in the meanwhile, controls execution status of all distributed worker tasks periodically (‘col-
lects’ them).

When some worker task is marked as not completed, it is resubmitted for another execution, until it is
marked as completed.

Note: The maximum number of re-submissions is controlled by JOB_MAX_RESUBMISSION parameter,
specified for master machine (see Configuration). Note that by default, the failed worker tasks are not
resubmitted.

Note: Although the limit of re-submissions is available, the unnecessary overhead of computation time
is still present for particular long tasks (that is, when task is failing constantly because of programming
error). Therefore, it is advisable to design parallel code with caution using Debug Mode, before trying it
with Normal Mode.

12 Chapter 1. User documentation

http://docs.python.org/library/uuid.html#uuid
http://docs.python.org/library/uuid.html#uuid

PPlus Documentation, Release 0.5.2

6. When any exception is thrown during the execution of master code, the experiment code flow is interrupted,
and the error is reported

7. When master code has collected all distributed worker tasks, it finishes its execution until the formal end
(i.e. when the last statement has been processed, and/or function end has been reached)

8. The experiment code has finished; assuming all configuration files pointed to the same shared disk resource,
all the shared data are available in one experiment directory:

<DISK_PATH>/<experiment_ID>

1.4.4 PPlus job submission

Starting with PPlus 0.5.2, jobs can be submitted in two ways.

Direct Mode

In direct mode, one passes function object to submit().

This way, while convenient, has some limitations regarding scope of function in Python code.

Technically, function object must be unpicklable by local/remote Parallel Python worker. In case of unpickling
error, the exception may vary; see pickle for details on how function objects are pickled/unpickled.

This also means that function must be essentially importable on remote worker machine(s), as well as for local
worker(s). Most frequently this means proper installation of module/package the function is defined in. See
distutils for more information about installing Python modules/packages.

Note: If job function is in properly installed module/package, direct mode should be sufficient and less trouble-
some to use. For example, if job functions are from numpy/scipy packages, most likely those packages will be
installed anyway on all involved PPlus machines.

Indirect Mode

In indirect mode, essentially ANY Python function can be submitted as job to be executed by Parallel Python,
bypassing the limitations of direct mode.

Here, the function object is NOT passed directly into submit(). Instead, the following procedure is applied:

1. Full scope of function object (i.e. the module it is defined in) must be accessible through sys.path; if
not, it may be dynamically added.

For example, if function is defined as “function1” in package “a.b.c”, then “a.b.c” must be accessible through
sys.path.

2. Function object is added as one of the depfuncs (i.e. function object is added to depfuncs argument iterable).

3. Function name is passed as “function” argument to submit().

Technically, the job function itself is then transported by Parallel Python as any other depfunc, and then is recov-
ered in proper scope on proper machine by its name.

The indirect mode allows circumventing scope problems e.g. with submission of functions from deep submodules.

Note: The indirect mode is important in the following cases:

• PPlus is used with Python module/package that is not installed, either on remote worker machine(s) or on
local machine, or even both

• PPlus user is not in full control of what could, or could not, be installed on involved machines

1.4. PPlus Insight 13

http://docs.python.org/library/pickle.html#pickle
http://docs.python.org/library/distutils.html#distutils
http://docs.python.org/library/sys.html#sys.path
http://docs.python.org/library/sys.html#sys.path

PPlus Documentation, Release 0.5.2

Example

Note: In this example, we assume that module/package mysoftware is not installed, i.e. it is not accessible
through sys.path.

The following function is defined in module mysoftware.mod1.impl.Job. The function has no arguments and no
dependencies (in sense of Parallel Python’s depfuncs):

module mysoftware.mod1.impl.Job
file Job.py

...

job function
def jobFunc():

job code here
return result

...

To submit it in direct mode, it is necessary to call submit() within the scope of mysoftware.mod1.impl.Job,
so the function object is pickled and unpickled properly:

module mysoftware.mod1.impl.Job
file Job.py

import pplus

...

job function
def jobFunc():

job code here
return result

...

if __name__ == ’__main__’:
...
create PPlus connection, here in debug mode
pc = pplus.PPlusConnection(debug=True)
submit in direct mode
pc.submit(jobFunc)
pc.collect()

This works since current directory is always added to sys.path.

If we have our submission code implemented in mysoftware.main.job.Job, submission in direct mode is no
longer possible, since the enclosing module (mysoftware.mod1.impl.Job) is not visible and import is not sufficient:

module mysoftware.main.job.Job
file Job.py

import pplus
-----> fails with import error
from mysoftware.mod1.impl import jobFunc

if __name__ == ’__main__’:
...
create PPlus connection, here in debug mode
pc = pplus.PPlusConnection(debug=True)
submit in direct mode

14 Chapter 1. User documentation

http://docs.python.org/library/sys.html#sys.path

PPlus Documentation, Release 0.5.2

pc.submit(jobFunc)
pc.collect()

One can add mysoftware.mod1.impl to sys.path, and dynamically import ‘Job’ (see __import__() for more
details), but this will cause different trouble:

module mysoftware.main.job.Job
file Job.py

import pplus

if __name__ == ’__main__’:
...
create PPlus connection, here in debug mode
pc = pplus.PPlusConnection(debug=True)
path to ’mysoftware’ package
MYSOFTWARE_ROOT_PATH = ...
add it to sys.path
if MYSOFTWARE_ROOT_PATH not in sys.path:

sys.path.append(MYSOFTWARE_ROOT_PATH)
dynamically import ’mysoftware.mod1.impl.Job’ and obtain it
jmod = __import__(’mysoftware.mod1.impl’, fromlist=[’Job’])
jmod = getattr(jmod, ’Job’)
obtain job function
jobFunc = jmod.jobFunc
submit in direct mode
pc.submit(jobFunc)
-----> fails during job execution, most likely with ImportError
pc.collect()

This time, function object is visible and properly submitted, but local/remote worker(s) cannot unpickle it properly,
and (most likely) result will be ImportError thrown from within PP worker.

To submit such function successfully from within mysoftware.main.job, we need indirect mode. Note that we
still need to modify sys.path:

module mysoftware.main.job.Job
file Job.py

import pplus
import sys
import os
from mysoftware.mod1.impl import jobFunc

if __name__ == ’__main__’:
...
create PPlus connection, here in debug mode
pc = pplus.PPlusConnection(debug=True)
path to ’mysoftware’ package
MYSOFTWARE_ROOT_PATH = ...
add it to sys.path
if MYSOFTWARE_ROOT_PATH not in sys.path:

sys.path.append(MYSOFTWARE_ROOT_PATH)
dynamically import ’mysoftware.mod1.impl.Job’ and obtain it
jmod = __import__(’mysoftware.mod1.impl’, fromlist=[’Job’])
jmod = getattr(jmod, ’Job’)
obtain job function
jobFunc = jmod.jobFunc
INDIRECT MODE SUBMISSION
depfuncs = list()
jobFunc is passed as Parallel Python depfunc
depfuncs.append(jobFunc)
submit in indirect mode

1.4. PPlus Insight 15

http://docs.python.org/library/sys.html#sys.path
http://docs.python.org/library/functions.html#__import__
http://docs.python.org/library/sys.html#sys.path

PPlus Documentation, Release 0.5.2

pc.submit(jobFunc.func_name, depfuncs=depfuncs)
pc.collect()

Here, func_name is a string that contains function name. See Data model for more details.

Essentially, any Python function located anywhere can be submitted indirectly, providing that it is accessible
through sys.path in the moment of submission. Note that after submission, any dynamic entries added to
sys.path may be removed if not needed anymore.

Indirect mode on PPlus earlier than 0.5.2

It is still possible to use indirect mode on PPlus with version earlier than 0.5.2, since indirect mode is inherent
feature of Parallel Python, and PPlus 0.5.2 offers only support for it. In such case, PPlus will very likely throw
exception similar to this one (as seen on Windows, Python 2.6):

Traceback (most recent call last):
<...>
<...>
File "C:\Python26\lib\site-packages\pplus_connection.py", line 480, in submit
self._submit_task(function, args, depfuncs, modules)

File "C:\Python26\lib\site-packages\pplus_connection.py", line 597, in _submit_task
tid=task_id)

File "C:\Python26\lib\site-packages\pplus\core\pp.py", line 441, in submit
(tid, args[0].func_name))

AttributeError: ’str’ object has no attribute ’func_name’

1.4.5 Name clash with dependent functions

As a rule of thumb, avoid using the same name for any depfunc and job function at the same time.

For example, if mysoftware.main.jobs.func depends on mysoftware.impl.deps.func, in indirect mode both func-
tions must be passed as depfuncs, and both will be resolvable on target machine by Parallel Python only by their
name func. At the end, since both functions are instantiated in the same scope, only one of them can be pickup by
name, and second one is simply discarded and never executed.

In such cases, what exactly happens during job execution, depends on may independent factors, among them: how
many arguments dependance function has, the relative order of presence of both functions in “depfuncs” argument,
etc. The end result is unpredictable.

To avoid this, simply use different names whenever possible, e.g. “mysoftware.impl.deps.func” and
“mysoftware.main.jobs.job_func”.

16 Chapter 1. User documentation

http://docs.python.org/reference/datamodel.html#datamodel
http://docs.python.org/library/sys.html#sys.path
http://docs.python.org/library/sys.html#sys.path

CHAPTER

TWO

PPLUS API

2.1 PPlusConnection class

class pplus.PPlusConnection(id=None, config_file_path=None, debug=True, lo-
cal_workers_number=None, workers_servers=None, secret=None,
experiment_label=None)

Implements common end point for accessing PPlus environment.

Parameters id : str, optional (default: None)

experiment id. if None, create master connection instance; otherwise, create worker
connection instance.

Experiment ID is currently generated as uuid.uuid1() (for master connection)
and uuid.uuid4() (for worker connection). See also “experiment_label” op-
tion.

config_file_path : str, optional (default: None)

path to PPlus configuration file.

If None the configuration file will be searched in the current working direc-
tory and then in standard current and global location, ‘~/.pplus/pplus.cfg’ and
‘/etc/pplus/pplus.cfg’.

In debug mode this option is ignored.

debug : bool, optional (default: True)

if True create connection instance in PPlus debug mode.

local_workers_number : int, optional (default: None)

number of local workers forked by the master process.

In debug mode, None means that local_workers_number is equal to the number of
available cpus/cores. In normal mode, None means 0.

workers_servers : list, optional (default: None)

list of pplus servers addresses. It is possible to specify also port by using the format
‘address:port’. Default port number is 60000 If None, servers are automatically
discovered (if they are running in auto-discovery mode).

In debug mode this option is ignored.

secret : str, optional (default: None)

pass-phrase used to authenticate connections with workers servers.

In debug mode this option is ignored.

experiment_label : str, optional (default: None)

17

http://docs.python.org/library/uuid.html#uuid.uuid1
http://docs.python.org/library/uuid.html#uuid.uuid4

PPlus Documentation, Release 0.5.2

label assigned to experiment

If not None, the label will be prepended to experiment id, and experiment will be
identified as ‘<label>_<id>’. This may ease the identification of particular exper-
iment among others, since id is unique but not human readable. See “id” option
notes for more details.

Raises PPlusError :

when specified (or default) configuration file does not exist or when id does not
contain proper mandatory option.

Attributes

id Experiment ID of the current connection instance.
session_id Session ID of the current connection instance.
is_debug Indicates if the current connection instance is in debug mode.
disk_path Full path related with the current experiment on remote disk.
cache_path Full path related with the current experiment on local cache.
session_logger Instance of loggers.PPlusLogger.

Members

put(key, src_path[, overwrite]) Store specified file on currently configured disk resource, using specified file identifier.
remove(key) Remove remote file, associated with specified file identifier, from currently configured disk resource.
get_path(key) Get valid physical local path of the remote file associated with specified file identifier.
write_remotely(key[, binary, buffering, ...]) Returns a file descriptor open for writing, associated with specified file identifier.
submit(function[, args, depfuncs, modules]) Submit requested callable/deepfunction as a task to be executed in parallel
collect([clean_executed]) Wait for all submitted but not completed tasks; when all tasks are completed, collect their partial results and return them.

put(key, src_path, overwrite=True)
Store specified file on currently configured disk resource, using specified file identifier.

Parameters key : str

PPlus disk file identifier to use on remote side.

src_path : str

physical path to the file to be stored on remote disk resource.

overwrite : bool, optional (default: True)

if True, overwrite any existing remote file already associated with ‘key’ silently;
otherwise, raise an error.

Raises PPlusError :

when remote file is overwritten and silent overwriting of existing remote files is
turned off.

remove(key)
Remove remote file, associated with specified file identifier, from currently configured disk resource.

If requested remote file does not exist, do nothing.

Parameters key : string

PPlus remote file identifier of requested file

get_path(key)
Get valid physical local path of the remote file associated with specified file identifier.

18 Chapter 2. PPlus API

PPlus Documentation, Release 0.5.2

This path is intended for opening the file only in read mode; use open_remotely() for write mode.

The remote file is accessed through local cache. The first time it has been requested, it is transferred
silently to the local cache. For every subsequent request, a copy from local cache will be accessed.

Parameters key : str

PPlus remote file identifier of requested file.

Returns physical_path : str

physical path of remote file in the local cache, for opening the file in read mode
only.

Raises PPlusError :

if requested remote file cannot be accessed.

write_remotely(key, binary=False, buffering=-1, overwrite=True)
Returns a file descriptor open for writing, associated with specified file identifier.

The object returned by the function could also be used within a with statement.

Warning: The method returns a file-like object which actually write in worker’s local cache. The
file is transferred on the central disk only when you close it. Moreover, be aware that PPlus does
not check for concurrent writing of the file.

Parameters key : str

PPlus remote file identifier of requested file.

binary : bool, optional (default: False)

if True, force opening remote file in binary mode.

buffering : int, optional (default: -1, system default)

buffer size to use while opening remote file. If the buffering argument is given,
0 means unbuffered, 1 means line buffered, and larger numbers specify the buffer
size.

overwrite : bool

if True, overwrite any existing remote file already associated with ‘key’ silently;
otherwise, raise an error

Returns fd : file

file descriptor for the opened file

Raises PPlusError :

when any error was reported during opening of remote file or when remote file is
overwritten and silent overwriting of existing remote files is turned off

See Also:

PPlusTemporaryCachedFile

submit(function, args=(), depfuncs=(), modules=())
Submit requested callable/deepfunction as a task to be executed in parallel within current PPlus envi-
ronment.

The callable has to accept as first parameter an instance of PPlusConnection which will be
instantiated and passed automatically by PPlus and may return any valid Python pickeable object.

Note: For direct submission, “function” is a callable. However, callable can be also submitted in indi-
rect mode, where callable itself is added to depfuncs and callable name is given as “function”. During
job execution, callable is then reconstructed in correct scope by its name. This mechanism allows

2.1. PPlusConnection class 19

PPlus Documentation, Release 0.5.2

circumventing natural limitations of callable submission in Parallel Python (which stems from limita-
tions of function pickling in Python itself), and allows submission of any function, if only accessible
through sys.path. See PPlus job submission for more details.

Warning: If your job function produce a very big result may be more efficient to save the result
on the disk.

1.Create manually a file in the local cache (that we can assume writable):

pc = PPlusConnection instance given by PPlus
tmp_file = os.path.join(pc.cache_path, ’UNIQUE_FILE_NAME’)

with open(tmp_file) as f:
do something with f

pc.put(’KEY’, tmp_file)

2.Use the write_remotely() method:

pc = PPlusConnection instance given by PPlus
with pc.write_remotely(’KEY’)) as f:

do something with f

Parameters function : callable/string

callable object/callable name to be sent as task for parallel execution.

If string, “function” is interpreted as callable name. Subsequently, the correspond-
ing callable MUST be added to depfuncs, otherwise an error will occur!

args : iterable

any positional arguments for requested callable.

depfuncs : iterable

any depended callables (‘deep functions’) for requested callable.

modules : iterable

list of module names that requested callable imports when executed on remote side.

collect(clean_executed=False)
Wait for all submitted but not completed tasks; when all tasks are completed, collect their partial
results and return them.

If clean_executed is True new tasks can be submitted afterwards, allowing submission cycles:

submit() # 1
...
submit() # 10
collect(True) # get 1..10
collect(True) # get NULL
submit() # 11
...
submit() # 20
collect(True) # get 11..20
collect(True) # get NULL

if False, preserve content of internal cache between calls, so older partial results will be available with
newer ones:

submit() # 1
...
submit() # 10
collect(False) # get 1..10

20 Chapter 2. PPlus API

http://docs.python.org/library/sys.html#sys.path

PPlus Documentation, Release 0.5.2

collect(False) # get 1..10
submit() # 11
...
submit() # 20
collect(False) # get 1..20
collect(False) # get 1..20

Parameters clean_executed : bool, optional (default: True)

if True, clean internal cache immediately after collection succeeded.

Returns results : iterable

partial results from each submitted and completed task

Raises PPlusError :

when no task has been submitted yet

exception pplus.PPlusError
General exception used for reporting PPlus errors.

2.2 Utility functions and classes

2.2.1 Logging

class pplus.loggers.PPlusLogger(name, path, level)
PPlus File Logger.

This class is used to manage sessions and experiment logs. The only responsibility of this class is to
properly format log messages. Through the PPlusConnection.session_logger attribute of a
pplus.PPlusConnection instance, client code can add messages into the current session log.

Parameters name : str

log hierarchical name. PPlus names all the log with a root prefix ‘pplus’. A session
log will have name ‘pplus.<session_id>’

path : str

log file path

level : str, [‘DEBUG’ | ‘INFO’ | ‘WARNING’ | ‘ERROR’ | ‘CRITICAL’]

sets the log level

2.2.2 Local Cache

All the functions working on the local cache rely on a file system locker (mutex) to avoid file corruption during
concurrent operations.

class pplus.lockfile.FilesystemLock(name)
A file system mutex used in the local cache.

This relies on the filesystem property that creating a symlink is an atomic operation and that it will fail if
the symlink already exists. Deleting the symlink will release the lock.

The implementation is based on the lockfile module (version 10.2.0) shipped with the [Twisted] library.

Parameters name : str

name of the file associated with this lock.

clean : bool

2.2. Utility functions and classes 21

PPlus Documentation, Release 0.5.2

indicates whether this lock was released cleanly by its last owner. Only meaningful
after lock has been called and returns True.

locked : bool

indicates whether the lock is currently held by this object.

class pplus.ioutils.PPlusTemporaryCachedFile(pc, key, mode, buffering, overwrite)
Temporary writable cached file.

An instance of this class is returned by the pplus.PPlusConnection.write_remotely()
method.

The class wraps a standard temporary file opened in the local cache. The user code may use it as a standard
file object (even in a with statement) which will be transferred on the shared disk when closed.

Parameters pc : PPlusConnection object

instance of PPlusConnection

key : str

identifier of the file to use when transferred on shared disk

mode : str, [’wb’, ‘w’]

file mode, ‘b’ means binary mode. The mode is not checked, because it is correctly
passed by pplus.PPlusConnection

buffering : int

buffer size to use while opening file.

overwrite : bool

if True, overwrite any existing remote file already associated with ‘key’ silently;
otherwise, raise an error Check is done only during transferring.

pplus.ioutils.copy_if_not_exists(src_path, dst_path, clean=True)
Copy src_path to dst_path only if the latter does not exist.

clean parameters refers to the cache mutex status.

pplus.ioutils.remove_if_exists(file_path, clean=True)
Remove file_path from the local cache.

clean parameters refers to the cache mutex status.

pplus.ioutils.create_local_experiment_dirs(path, clean=True)
Create local cache directories structure having path as root.

clean parameters refers to the cache mutex status.

2.2.3 Configuration file

pplus.ioutils.read_config_file(config_file_path)
Reads configuration file and returns a dictionary representation.

For each ‘section’ and for each ‘option’ the resulting dictionary contain the read value mapped with the key
‘SECTION.OPTION’.

2.3 Quick Reference

pplus.PPlusConnection([id, ...]) Implements common end point for accessing PPlus environment.
pplus.PPlusError General exception used for reporting PPlus errors.

Continued on next page

22 Chapter 2. PPlus API

PPlus Documentation, Release 0.5.2

Table 2.3 – continued from previous page
pplus.loggers Logging utilities (for sessions and experiment logs).
pplus.ioutils File System related utilities (caching and configuration file parsing).
pplus.lockfile Filesystem-based interprocess mutex.

2.3. Quick Reference 23

PPlus Documentation, Release 0.5.2

24 Chapter 2. PPlus API

CHAPTER

THREE

INDICES AND TABLES

• genindex

• search

25

PPlus Documentation, Release 0.5.2

26 Chapter 3. Indices and tables

BIBLIOGRAPHY

[Twisted] http://twistedmatrix.com

27

http://twistedmatrix.com

PPlus Documentation, Release 0.5.2

28 Bibliography

PYTHON MODULE INDEX

p
pplus, 17
pplus.ioutils, 22
pplus.lockfile, 21
pplus.loggers, 21

29

PPlus Documentation, Release 0.5.2

30 Python Module Index

PYTHON MODULE INDEX

p
pplus, 17
pplus.ioutils, 22
pplus.lockfile, 21
pplus.loggers, 21

31

PPlus Documentation, Release 0.5.2

32 Python Module Index

INDEX

C
collect() (pplus.PPlusConnection method), 20
copy_if_not_exists() (in module pplus.ioutils), 22
create_local_experiment_dirs() (in module

pplus.ioutils), 22

F
FilesystemLock (class in pplus.lockfile), 21

G
get_path() (pplus.PPlusConnection method), 18

P
pplus (module), 17
pplus.ioutils (module), 22
pplus.lockfile (module), 21
pplus.loggers (module), 21
PPlusConnection (class in pplus), 17
PPlusError, 21
PPlusLogger (class in pplus.loggers), 21
PPlusTemporaryCachedFile (class in pplus.ioutils), 22
put() (pplus.PPlusConnection method), 18

R
read_config_file() (in module pplus.ioutils), 22
remove() (pplus.PPlusConnection method), 18
remove_if_exists() (in module pplus.ioutils), 22

S
submit() (pplus.PPlusConnection method), 19

W
write_remotely() (pplus.PPlusConnection method), 19

33

	User documentation
	Overview
	Installation
	Using PPlus
	PPlus Insight

	PPlus API
	PPlusConnection class
	Utility functions and classes
	Quick Reference

	Indices and tables
	Bibliography
	Python Module Index
	Python Module Index
	Index

