
Galaxy LIMS documentation
Introduction
Administrator Manual

Quick start
About
Dependencies
Get the code and unpack
universe_wsgi.ini

Main
Add default forms and settings

Start Galaxy
add_defaults.py

Intro
Demo
Execute

Administration
Intro
Roles and permissions
Add data library
Add ngs_bot_user

Watch and analyze sequence run directories
Demo data workflow
Non-Demo data workflow
Sequence processing dependencies
How it works

Customization
Submission form:
Welcome.mako

Wiki
Intro
Requirements
Configuration

Set-up rabbitmq
Galaxy
Script

Troubleshooting
Fetching eggs fails

User manual
Create and manage requests

Create a request
Adding samples
Uploading data
Submit request
ADMIN: Request overview
ADMIN: Library preparation information
ADMIN: Uploading data
ADMIN: Submit request
ADMIN: Create a flowcell
ADMIN: Manage flowcell
ADMIN: Associate data to flowcell

Introduction
Galaxy offers by default a Sample Tracking system. In the NGS LIMS project we decided to use and extend this system.

Administrator Manual

Quick start

This is a summary to get a populated version of the Galaxy LIMS

Summary

Check Dependencies
hg clone galaxy-central-tron-limshttps://bitbucket.org/jelle/galaxy-central-tron-lims
cd galaxy-central-tron-lims && ./run.sh --daemon && tail -f paster.log
Check correct running interface on and inspect the paster.log filehttp://localhost:8080
python scripts/lims/add_defaults.py universe_wsgi.ini demo
Login using you@company.none/demolims

Once you have the system running, you can now start creating requests and adding samples by following this short
introduction Create and manage requests
To test the automatic flowcell processing, go to Watch and analyze sequence run directories

About

The code provided by the TRON repository is the modified version of . We tend to regulary merge the code repositories to keepgalaxy-central
up2date with all the latest goodies. Although our modifications have been aimed at the Sample Tracking part, you might see some
differences throughout our instance compared to the base - those should be minor though.
The documentation below explains and shows how to setup the TRON Galaxy LIMS - assumed is you are somewhat familiar with Galaxy.

Dependencies

The following python modules are required.

pyyaml
PIL with zlib(PNG/ZIP) support
xhtml2pdf
qrcode

In addition you may also want to use virtualenv as also proposed by the Galaxy 'Production Server' .Manual

One way to install the above mentioned modules is by using easy_install. In order for easy_install to build these modules you might also
need the package (e.g. apt-get install python-dev).python-dev

To get easy_install:

When running python 2.6:

wget 'http:
//pypi.python.org/packages/2.6/s/setuptools/setuptools-0.6c11-py2.6.egg#md5=bfa92100bd772d5a213eedd356d64086'
sh setuptools-0.6c11-py2.6.egg

or for 2.7

wget 'https:
//pypi.python.org/packages/2.7/s/setuptools/setuptools-0.6c11-py2.7.egg#md5=fe1f997bc722265116870bc7919059ea'
sh setuptools-0.6c11-py2.7.egg

And then:

easy_install pyyaml
easy_install PIL #check zlib *-see note below*for
easy_install xhtml2pdf
easy_install qrcode

Make sure PIL builds with zlib support. You might need to check that libz.so is located in /usr/lib see also: easy_install PIL does not install
zlib

If PIL fails to install with zlib support, you will first have to remove the package!
Removing python packages can be made easy with pip e.g. easy_install pip && pip uninstall PIL

https://bitbucket.org/jelle/galaxy-central-tron-lims
http://localhost:8080
https://bitbucket.org/galaxy/galaxy-central/wiki/Home
http://wiki.galaxyproject.org/Admin/Config/Performance/Production%20Server#Use_a_clean_environment
http://www.foxhop.net/ubuntu-python-easy_install-pil-does-not-install-zlib-support
http://www.foxhop.net/ubuntu-python-easy_install-pil-does-not-install-zlib-support

You can now continue following the or continue readingQuick start

Get the code and unpack

hg clone https://bitbucket.org/jelle/galaxy-central-tron-lims galaxy-central-tron-lims

You can now continue following the or with running galaxy, e.g. ./run.sh or ./run.sh --daemon && tail -fQuick start
paster.log.

universe_wsgi.ini

If you are not running the 'demo' settings, then there are a few specific settings in the ini file that you will have to change to optimally use this
Galaxy instance.

For testing purposes, you can leave all default settings.

Main

TRON START sample_tracking MAIN
Use same method for adding default forms as B. Chapman did for nglims extension.
lims_config_file = tool-data/lims.yaml
Sequencing request library - you will have to create this library through galaxies 'manage data
libraries' interface
This library will contain all sequencing requests
sequencing_library = Sequencing Projects
Flowcell library will contain all info about your flowcells. You want to keep those accesible by
admins only.
flowcell_library = Flowcell Data
which user account is used for the api calls and workflow selection
ngs_bot_user_email = ngs-galaxy@company.none
which user account(s) will be the lims administrators
lims_admin_users = you@company.none, lab-geek@company.none
Leave following settings alone - e.g. alternatives are not implemented/tested!!
use_extended_sample_form = True
are illumina indexes mutable when designing the flowcell - Not functioning
flowcell_mutable_indexes = False
TRON END

The comments should be pretty explanatory. The specifies where the yaml file is located, which describes the default formlims_config_file
definitions, request types, default roles, users and requests. The given location is where you can find the current yaml file.
As in the comment, the is the "Data Library" that will hold the sequencing requests data by default - e.g. when a newsequencing_library
request is created a child folder will be created owned by and named after the request owner. Another folder below that folder is created
which is named after the request name. The name of this folder will change together with the request name.

Add default forms and settings

Start Galaxy

Before adding the default forms, you will have to start Galaxy once and close/shut it down after you have been able to reach the Galaxy
interface - as that tells you that your settings were correct and the database has been initialized. In this stage, you can setup your Galaxy
system following the instruction provided on the . If you are just testing, you can directly continue our documentation.Galaxy Wiki

add_defaults.py

http://wiki.g2.bx.psu.edu/Admin/Get%20Galaxy

Summary

python scripts/lims/add_defaults.py universe_wsgi.ini demo

Intro

After you have shutdown Galaxy you are now able to add the forms that are optimized for TRONs sample tracking. You can change and/or
add forms in before loading them through this step or afterwards in the web interface. As mentioned before, the yaml file describes the
locations of the form definitions and which forms will be used for a request type.

Different from the standard Galaxy sample tracking is that a request type also relates to a flowcell form, which is only used
for the default available illumina indexes - i.e. [ADVANCED] if you want to add more default indexes, add or change a
flowcell form. Every field with the keyword 'index' in its name will be used to build the multiplexing index list. The first letter
of the name will be prefixed to the index number(e.g. for Sure Select Indexes : S01 ATCACG. This behavior might change
as it is a quick fix.

The yaml file as set in the universe_wsgi.ini by the option points by default to three different form definitions. One "Samplelims_config_file
Form", describes all fields presented on the add/edit sample pages, a "Request Form", describes the fields needed in the "New/Edit Request"
page and a "Flowcell Form", which describes how many lanes the flowcell design will have and the by default available illumina indexes.
The forms are defined in CSV's files which are then parsed by the add_defaults.py script, they follow practically the same format as used in
the csv import function for importing forms that can be found in the web interface - however they might differ over time.

Demo

To get you started quickly you can add some more defaults settings like users, roles, libraries and demo requests. You can configure parts of
this demo by modifying the mentioned yaml file.
You can add more users, define their default permission roles, create more libraries and add more requests.
When executing:

python scripts/lims/add_defaults.py universe_wsgi.ini demo

The following (default) objects will be created for the purpose of demoing:

User-Types:
Internal
External

Users (passwords: demolims)
Customer1: customer-1@demo.none
Admins, also named in the universe_wsgi.ini

You-Admin: you@company.none
Lims-admins, also named in the universe_wsgi.ini

Lab-Admin: lab-geek@company.none
NGS Bot that can be used to upload sequence request data

ngs-bot: ngs-galaxy@company.none
Roles:

NGS Customer
Default members: Customer1, You-Admin, Lab-Admin

Employee
Default members: You-Admin, Lab-Admin, ngs-bot

NGS Admin
Default members: You-Admin, Lab-Admin, ngs-bot

Libraries:
Sequencing Projects

Accessible by the roles: NGS Customer, NGS Admin
Flowcell Data

Accessible by the roles: NGS Admin
Forms:

Sample
All the sample information fields

Flowcell
Containing available multiplexing indexes

Request
Describing the minimal info about the request

User forms:
Internal
External

Containing more fields like Address, Account number etc
Request types:

NGS Request

Consists of the forms: Sample, Flowcell & Request
Requests:

Demo1
Owned by Customer1

Demo2
Owned by Customer1

Execute

To add the default forms:

python scripts/lims/add_defaults.py universe_wsgi.ini demo

Or without all the default accounts and roles

python scripts/lims/add_defaults.py universe_wsgi.ini

This script will output the specific changes it made. If all worked well, you can now start your Galaxy instance and see the default forms
under "Manage form definitions".

Administration

Admin
The next steps requires a Galaxy admin account

Intro

If you did not execute the add_defaults.py with the demo option, you still have to create user accounts, roles and libraries yourself. Below is
explained how to do so.

 You can also update the settings in the yaml file(tool-data/lims.yaml) and run the scripts/lims/add_defaults.py script to add your specificNote
wishes.
Running the script with the update command like: "python scripts/lims/add_defaults.py universe_wsgi.ini demo " certain entities will beupdate
updated. Always your database before doing so as the changes are hard to reverse otherwise!backup

Summary
*Create Customer role e.g. "NGS_customer"
*Create Lab admin role e.g. "NGS_admin"
*Add role "Customer" to those users who need access to the "Lab"
*Add roles "Customer" and "Lab admin" to "Request Type" e.g. "NGS Request"
*Create two data libraries with the name specified in ini file with the parameter "sequencing_library" and "flowcell_library"
*Add "Customer" role to the access permission of the "sequencing_library" library
*Add "Lab admin" role to the access permission of the "flowcell_library" library
*Add "ngs_bot_user" account

Roles and permissions

This step is not necessary but ensures only specific user have access to the "Sequencing Request" part of your Galaxy instance.
You can create users as admin or let users create their own accounts. After an account is created you can add roles to these accounts. You
can create any role and name it as you like, for example "NGS_customer". You can then add this role to those users who will be allowed to
send "Sequencing Request".
To allow a user to submit a "Sequencing Request" with the role "NGS_customer" you will have to add this role to the request type. Under
"Manage request types" are the available request types and when following this guide, you will have the "NGS Request" request type. Click
on "Edit permissions" and add the "NGS_customer" role. Now your users with this role have access to the "Lab".

Add data library

In the universe_wsgi.ini file you have specified a name for the "sequencing_library" and "flowcell_library", you will now have to create these
libraries under "manage data library". You can limit the "access" to these libraries to those who only have the correct roles. After creating the
libraries, change the access role to the "NGS_customer" role for the "sequecing_library".
Now as someone creates a new request, a folder with his specified e-mail address is created in this library and a folder below with the
sequence request name. This folder is then linked to this request and should be used to send around files, e.g. Gel photos, raw and analyzed
data.
When a flowcell is created, a folder is created under the "flowcell_library" library. Now an admin can "Add data" to this folder, data can be
anything, like used samplesheets or QC forms.

Add ngs_bot_user

To be able to select workflows for samples and automatically run them on sequencing completion create the user that you indicated in the
 under the option .universe_wsgi.ini ngs_bot_user_email

Watch and analyze sequence run directories

Here we describe how you can setup your LIMS to automatically wait for new flowcell data and process them through CASAVA, upload fastq
files to the request owners library and execute a given workflow set-up in Galaxy.
What we describe here is directly applicable to the HiSeq2000 sequencing process, you will have to modify the methods and scripts if you
have a different sequencer or 'workflow'.

Demo data workflow

Demo
Unfortunately we do not provide any raw Illumina sequencing data, so if you don't have your own a complete data flow is
not possible.
However, setting the option "demo" to True (default) in the api_scripts.ini, does show most of the processes that would
otherwise be started.

cd scripts/api; python watchscript_flowcell.py

Non-Demo data workflow

Summary

Using the ngs-bot user, create one or more workflows that take a fastq file as input
Add samples/requests and as lims admin specify a workflow for each sample
Create a flowcell
Edit scripts/api/api_scripts.ini - provide the api key of the ngs-bot user
Setup cronjob like: "0 * * * * galaxy cd $GALAXYHOME/scripts/api; python watchscript_flowcell.py"
Output sequencing data into the 'sequencing_output_path' with the flowcell identifier at the end of the directory
name
See the result in the request owner library

Sequence processing dependencies

CASAVA1.8
Illumina Sequencing data

How it works

The script watchscript_flowcell.py will check for any new flowcells in the 'sequencing_output_path' directory and will note any new flowcell
directory in the file specified by 'processed_flowcells'. If the file RTAComplete.txt is found, this will tell the script that this flowcell is ready to
be processed by CASAVA. A samplesheet will be fetched from Galaxy, using the script 'scripts/api/get_samplesheet.py', and CASAVA is
started with this samplesheet to create fastq files, which are placed in 'casava_output_path'. Then each fastq will be linked to the request
library folder in galaxy - using the samplesheet to identify the request identifier. If any workflow was set, the fastq will be processed using that
workflow under the ngs-bot account/history. All non-hidden files will then be copied to the request library folder and permissions are set to the
request owner.
Currently the workflows to be executed and that can be selected when modifying requests will be linked to the ngs-bot user. To understand
better how the processing of flowcells works, the best way is to look in the two scripts: scripts/api/watchscript_flowcell.py and
scripts/api/process_flowcell.py

Customization

As you may have noticed there are some default TRON logos and texts in place. You may replace those with your own. Please be aware of
the picture sizes and formats.

Submission form:

The submission form is defined in:

templates/requests/common/submission_form.mako
static/images/submission_logo.png # shown in the middle-top of the submission form, size: 308x75px
static/images/QR_logo_60.png # shown within the qr barcode, size: 60x60px
Feel free to modify this template. As you will notice, most information is like an html file. Be aware though, that not all css
styling will be converted/displayed in the resulting pdf. Changing this template does not require you to restart Galaxy.

Welcome.mako

The welcome.mako replaces the default welcome.html. You can modify this file to change the first page as you enter Galaxy.

templates/welcome.mako
static/images/Logo.png # The logo shown in the bottom-center of the page, size: 300x300px

Job section
If you don't like the job section on the welcome page, you can remove the blocks between the ##JOBS comments (in the
static/welcome.mako)
Furthermore, feel free to remove static/jobs.xml

Wiki

summary

Check Requirements
Configure Galaxy to send notifications ()Configuration
Set-up rabbitmq
Configure 'listener.py' to send to your wiki setup, or set both to false to send to messages to STDOUT

Intro

To let a wiki be updated automatically on each request change, you will have to configure an amqp server, as used by the Galaxy team, we

have been using RabbitMQ.
The scripts attached have been successfully run in our environment to update a Atlassian Confluence (3.x) wiki. Furthermore, we have been
using this script to update a mediawiki with semantics support (using the SMW bundle).

Make sure you have all dependencies/requirements in place:

Requirements

RabbitMQ-Server set-up -> apt-get install rabbitmq-server
For reading messages from AMQP:

pika 0.5.2 -> pip install pika==0.5.2
For Mediawiki:

python-wikitools -> http://code.google.com/p/python-wikitools/
Pywikipediabot -> http://www.mediawiki.org/wiki/Manual:Pywikipediabot

For Confluence:
xmlrpclib -> easy_install xmlrpclib

Additional modules:
libxml2 -> apt-get install libxml2-dev
libxslt -> apt-get install libxslt1-dev
lxml -> easy_install lxml

Configuration

You will have to setup galaxy to send request&flowcells updates to an amqp channel:

Set-up rabbitmq

For demo purposes the default configuration can be used for rabbitmq. (re)start galaxy on the same host and you can leave the default
settings in the universe_wsgi.ini and in the script mentioned for updating a wiki. Just remove the comment marks and set notify_wiki to true
.

Galaxy

TRON START
Wiki AMQP settings - if you want to send sequencing request updates to a wiki. Confluence and
Mediawiki supported.
notify_wiki = True
notify_amqp_host = localhost:5672
notify_amqp_user = guest
notify_amqp_pass = guest
notify_amqp_virtual_host= /
notify_amqp_exchange = galaxy
notify_amqp_type = direct
notify_amqp_routing_key = sequencing_requests
notify_amqp_queue = requests
TRON END

Script

Under scripts/lims you will find a script called listener.py
You will need to set the correct settings in this script.

STDOUT: If you do not have a wiki or if you are interesting only in seeing the messages, set both confluence and wiki to False in .listener.py
This way the messages will only be send to STDOUT.

This script can be executed and put in the background or in a screen to always run and wait for new messages on the queue.

Error handling: if you get an error like: "TypeError: channel() takes at least 2 arguments (1 given)" then you are probably running a newer
version of pika. Either make sure you are running pika 0.5.2 or update the code to support your version.

If you do not like how pages appear in your wiki, you will need to edit galaxy2wiki.py directly.

Troubleshooting

Fetching eggs fails

If you get the error message "Fetch failed." after running ./run.sh you might have to correct your http_proxy settings if you are behind a proxy.
To see if your python instance can access the internet try:

http://code.google.com/p/python-wikitools/
http://www.mediawiki.org/wiki/Manual:Pywikipediabot

$: python
>>> from urllib urlopenimport
>>> print urlopen("http:).read()//www.google.com"

And correct based on any error message you get.

User manual

Create and manage requests

This quick 'step-by-step' guide you through the basics of creating and managing requests. You will have to have Galaxy LIMS installed to try
this out. We assume you can access your instance through and you added the default values by executing 'pythonhttp://localhost:8080
scripts/lims/add_defaults.py universe_wsgi.ini demo'
The 'customer' account has the email address customer-1@demo.none and the lab account, the one managing the request, the email
address lab-geek@company.none

Create a request

1. Browse to the main page: http://localhost:8080
2. Login with the customer account (default password: demolims) using the "User->Login" option
3. From the "Analyse Data" view, "Go to the Lab" section ("Lab->Sequencing Requests")
You will now see 2 requests, they are however without any samples.
4. Create a new request by pressing the right upper button "Create new request" or edit one of the existing
5. After providing at the minimal a name to the request, you can now after saving add some samples

Adding samples

1. On the "Add Samples" page, you start out with one sample.
2. The best way to list your samples is to first provide information for this first sample.
3. Then, at the bottom of the page specify how many copies of the sample you want to create and press "Add sample".
Specifying 4 samples will get you a total of 5 samples in this request, each with the same information. Change according to the information
you want to provide
4. Press "Save" to store the request. You will be warned if some values are missing or bad depending on the sample type you specified.

Uploading data

If you have any (quality) information about your samples in a file (e.g. pictures), you can upload those with your request for the Lab personnel
to check
1. Go to "Associate Data"
2. Pick a file to upload from your local drive and provide some description if you want
3. "Upload to library"
4. The resulting file will show below in the section "Associated datasets", where you can also see the other files belonging to your request.

Submit request

1. Press "Submit request" button in the top right corner
2. After succesful submission you can now get the submission form, that you can sign and sent with your samples to the lab

ADMIN: Request overview

1. Login with the lab account (default password: demolims) using the "User->Login" option
2. You will now see the section "Lab Admin" in the header and below that the "Seqeuncing requests" option, go there.
Here you will see multiple requests that have been created by you or other users

ADMIN: Library preparation information

1. Select a request (that has one or more samples)
2. Go to the "QC details" tab
3. Here you are able to provide your information regarding quality control and library preparation
4. For each section, you are able to select if the customer is allowed to see this information when he/she is looking at the request
5. Furthermore, each 'QC line' can be copied to add more information about one sample

ADMIN: Uploading data

http://localhost:8080
http://localhost:8080

Apart from directly interacting with the data library under "Shared Data" you can, like the 'customer' upload data to the request directly, this
can be a quality control file or the raw or analysed data.
1. Go to the "Associate Data" tab
2. Pick a file to upload from your local drive and provide some description if you want
3. Check the checkbox "Show Customer" if you want to allow the customer to see this dataset after upload
4. "Upload to library"
5. The resulting file will show below in the section "Associated datasets". It will list all files 'associated' with this request and show if the
request owner is able to see the file.

ADMIN: Submit request

The admin can reject, submit or delete request without any form validation

ADMIN: Create a flowcell

1. If there are requests one can start to design a flowcellsubmitted
2. Go to "Create flowcell" by using the left panel or through the "Lab Admin->Browse Flowcells->Create flowcell" buttons
3. "Find" samples, by default samples that are passed the "Sequencing Finished" state (after a flowcell is finished) will not be found
4. Select your samples and "Create flowcell"
5. Either by creating or editing a flowcell you can now rearrange your samples on the flowcell
– You will be warned if samples cannot fit in one lane due to muliplexing problems
6. If you want to define technical replicates, you can press the two-blue-circles on that sample when its in the bucket to clone it. When using
the 'processed_flowcell.py' script technical replicate will automatically be pooled (based on the same name and index).
7. "Save"

ADMIN: Manage flowcell

1. Once defined you can get a samplesheet for this flowcell
2. When not using the "watchscript_flowcell.py", you can update your flowcell manually
3. In the "Browse Flowcells" section, you can select any flowcell and set the state to "Submit"(flowcell cannot be editted anymore) and
"Finished".
4. If put to "Finished" all samples on that flowcell will be updated to the "Finished state", furthermore, if all samples of a request are finished,
the request will also be marked.

ADMIN: Associate data to flowcell

1. If you have any data you want to associate to the flowcell, you can use the "Add data" when selecting a flowcell
2. Data associated, can also be viewed by browsing the "Shared Data->Data Libraries->flowcell_library"

