
Local Search with OscaR.cbls

explained to my neighbour

OscaR v4.0 – Spring2018

Renaud De Landtsheer, Thomas Fayolle,

Fabian Germeau, Gustavo Ospina,

Christophe Ponsard

– Oscar
• Open source framework for combinatorial optimization

• CP, CBLS

• Started in 2011

– Open source LGPL license
• https://bitbucket.org/oscarlib/oscar

• Implemented in Scala

– Consortium
• CETIC, UCL, N-Side Belgium

• Contributions from Uppsala Sweden

Combinatorial optimization problems

• Ex: Scheduling

– Tasks, precedence's

– Shared resources

– Deadlines

– Minimize time span

• Ex: Routing

– Points, vehicles

– Distance

– Time windows

– Minimize overall distance

• Ex: Warehouse location

– Shops to supply

– Where to build warehouses?

– Minimize operation + construction costs

Local search in one slide

Pick an initial solution

Explore neighbourhood

Move to best neighbour

Repeat

Until no better neighbour

Point in the search space

TSP : moving a city
to another position in the tour

Current state: a  b  c  d  e  a
Moving city c yields three neighbours:

a  c b  d  e  a
a  b  d  c e  a
a  b  d  e  c  a

O(n²) neighbours when considering all cities

TSP : all the possible tours
n cities; (n-1)! tours

TSP : random tour?

Some black magic required
to escape from local minima

Local search is black magic

Local search practitioners, like you, are magicians

I am a wand maker,

and I will show you
why OscaR.cbls is a good wand

Non exhaustive
Needs tuning, benchmarking
But it works!

Content

• Introduction
– Goal of OscaR.cbls
– NQueens

• Warehouse Location Problem
– Problem statement
– Solution
– About modelling
– About searching

• Under the hood of OscaR models
– Propagation
– Architecture

• Routing with OscaR.cbls
– Routing convention
– Model support
– Search support

• Cross product of neighbourhoods
• More examples

– Flow shop scheduling
– Car sequencing

• Conclusion

Why are we developing OscaR.cbls?

• OscaR.cbls is developed primarily at CETIC

• CETIC is a research centre in Belgium
– Focus on technology transfer in IT
– No fundamental research
– As such, OscaR.cbls is our research topic:

• How to make it faster-better-cheaper for users?
– Cheaper means « faster to develop a solution » since your time is money

• How to make it faster-better-cheaper for researchers?
• …

• To fight against shelf research:
Make the research, write a report, put it in a shelf, do something
else

My goal: cut down the cost

of having a local search solution

• Why?
– Expert, like you, are expensive
– Non-expert can be empowered with smart algorithms in the hands
– Applications tend to change their requirements

• Agile approaches
• Evolving market needs

– Human brain is limited (at least mine)
• With OscaR.cbls, you can focus on the black magic part

where a lot of gain can be achieved

• How?
– Declarative approaches

• CBLS Modelling language for defining your problem
• Declarative language for defining search procedures

– Cost of license
• This is LGPL (free, non-contaminating)

– Integration
• This is Scala, compiles to Java bytecode

Who might be interested?

• Developers targeting new applications
– Obviously

• Researchers
– Develop their innovative algorithms within OscaR.cbls

(constraints, meta-heuristic, neighbourhood, etc.)
– Don’t waste their time on everting else
– Make their research result be used, add to OscaR.cbls

• Benchmark makers
– Comparing different algorithms if often a tricky job:

• not the same programming language,
• not the same base algorithms,
• not the same implementation quality, etc.

– OscaR.cbls can be used as a reference platform for sound comparison
of algorithms

The basic equation of local search

Local search - based solver = model + search procedure

variables
constraints
objectives
…

neighbourhoods
metaheuristics
…

val nQueens = 20000 // Number of queens
val queensRange= 0 to nQueens -1
val init = Random.shuffle(0 until nQueens)

// Variables
val queens = Array.tabulate(nQueens)(q =>

CBLSIntVar(0 to nQueens -1,init(q),"queen" + q))

// Constraints

val c = new ConstraintSystem(m)
c.add(allDifferent(queensRange.map(q => queens(q) + q)))
c.add(allDifferent(queensRange.map(q => q - queens(q))))

close()

// Swapping two queens to decrease overall violation
swapNeighborhood(queens)

.doAllMoves(_ >= nQueens || c.violation.value == 0, c)

println(queens.mkString(","))

Basic Nqueens, the OscaR way

Model

Search
procedure

val nQueens = 20000 // Number of queens
val queensRange= 0 to nQueens -1
val init = Random.shuffle(0 until nQueens)

// Variables
val queens = Array.tabulate(nQueens)(q =>

CBLSIntVar(0 to nQueens -1,init(q),"queen" + q))

// Constraints
val c = new ConstraintSystem(m)
c.add(allDifferent(queensRange.map(q => queens(q) + q)))
c.add(allDifferent(queensRange.map(q => q - queens(q))))

val mostViolatedQueens = argMax(c.violations(queens))
close()

// Swapping a queen with one of the most violated ones
swapNeighborhood(queens, searchZone = mostViolatedQueens,

symmetryCanBeBrokenOnIndices = false)
.doAllMoves(_ >= nQueens || c.violation.value == 0, c)

Advanced Nqueens, the OscaR way

Model

Search
procedure

A simple Nqueens

with old fashion search procedure
val init = Random.shuffle(0 until nQueens)
val queens = Array.tabulate(N)(q => CBLSIntVar(init(q), range, "queen" + q))

c.add(allDifferent(Array.tabulate(N)(q => queens(q) + q)))
c.add(allDifferent(Array.tabulate(N)(q => q - queens(q))))

close()

var it = 0
while(c.violation.value > 0){

selectMin(range,range)(
(p,q) => c.violation.swapVal(queens(p),queens(q)),
(p,q) => p < q)

match{
case (q1,q2) =>

queens(q1) :=: queens(q2)
}

it += 1
}

Model

Search
procedure

Selecting the pair
of queens
with the best swap

Swapping
the values

The uncapacitated warehouse

location problem

• Given

– S: set of stores that must be stocked by the warehouses

– W: set of potential warehouses
• Each warehouse has a fixed cost fw

• transportation cost from warehouse w to store s is cws

• Find

– O: subset of warehouses to open

– Minimizing the sum of the fixed and the transportation
cost:

• Notice

– A store is assigned to its nearest open warehouse









Ss

wsOw

Ow

w cf)(min

?

?

? ?

?

The uncapacitated warehouse

location problem

• Given

– S: set of stores that must be stocked by the warehouses

– W: set of potential warehouses
• Each warehouse has a fixed cost fw

• transportation cost from warehouse w to store s is cws

• Find

– O: subset of warehouses to open

– Minimizing the sum of the fixed and the transportation
cost:

• Notice

– A store is assigned to its nearest open warehouse









Ss

wsOw

Ow

w cf)(min

?

?

? ?

?

A WLP solver on a single slide

val m = new Store()
val warehouseOpenArray = warehouses.map(

CBLSIntVar(m, 0 to 1, 0, "warehouse_" + _ + "")).toArray

val openWarehouses = Filter(warehouseOpenArray)

val distanceToNearestOpenWarehouse = stores.map((store:Int) =>
min(distanceCost(store), openWarehouses,

defaultCostForNoOpenWarehouse)).toArray

val obj = Objective(Sum(distanceToNearestOpenWarehouse)
+ Sum(costForOpeningWarehouse, openWarehouses))

m.close()

val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5),

maxConsecutiveRestartWithoutImprovement=2, obj)

neighborhood.doAllMoves(obj)

The console output
The search can display info roughout the search:

0: no verbosities
1: every 10th of a second, summarise all performed moves, by neighbourhoods
2: print every move
3: print every search
4: print every explored neighbour

WarehouseLocation(W:15, D:150)

SwitchWarehouse(warehouse_0:=0 set to 1; objAfter:7052) - #

SwitchWarehouse(warehouse_1:=0 set to 1; objAfter:5346) - #

SwitchWarehouse(warehouse_2:=0 set to 1; objAfter:4961) - #

SwitchWarehouse(warehouse_3:=0 set to 1; objAfter:4176) - #

SwitchWarehouse(warehouse_4:=0 set to 1; objAfter:3862) - #

SwitchWarehouse(warehouse_9:=0 set to 1; objAfter:3750) - #

SwitchWarehouse(warehouse_12:=0 set to 1; objAfter:3620) - #

SwitchWarehouse(warehouse_0:=1 set to 0; objAfter:3609) - #

SwapWarehouses(warehouse_0:=0 and warehouse_4:=1; objAfter:3572) - #

SwapWarehouses(warehouse_1:=1 and warehouse_6:=0; objAfter:3552) - #

SwapWarehouses(warehouse_0:=1 and warehouse_1:=0; objAfter:3532) - #

SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3528) - #

RandomizeNeighborhood(warehouse_12:=1 set to 0, warehouse_

SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3656) -

SwapWarehouses(warehouse_12:=0 and warehouse_13:=1; objAfter:3528) - °

RandomizeNeighborhood(warehouse_14:=0 set to 1, warehouse_

SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3907) -

SwitchWarehouse(warehouse_12:=1 set to 0; objAfter:3882) -

SwitchWarehouse(warehouse_13:=1 set to 0; objAfter:3862) -

SwitchWarehouse(warehouse_14:=1 set to 0; objAfter:3658) -

SwitchWarehouse(warehouse_12:=0 set to 1; objAfter:3528) - °

MaxMoves: reached 2 moves

openWarehouses:={1,2,3,6,7,9,12}

- Means:
obj decreases
after this move

Means:
we found a
solution with a
new best
objective

° Means:
we found an
solution with obj
equal to the
best so far

neighborhood.verbose = 2

WareHouseLocationVisu

W = 1000
S = 1000

Complex search strategy:
• Switch
• Swap with kNearest
• Swap
• Restarts
• Mu(switch)

Modelling Support with OscaR

• Three types of variables
– IntVar, SetVar, and SeqVar

• Invariant library
–Logic:

• Access on array of Int/SetVar, Filter, Cluster , etc.
–MinMax:

• Min, Max, ArgMin, ArgMax
–Numeric:

• Sum, Prod, Minus, Div, Abs , etc.
–Set:

• Inter, Union, Diff, Cardinality , etc.
–Seq:

• Concatenate, Size, Content , etc.
–Routig on Seq:

• Constant Distance, Node-Vehicle restrictions, etc.
Summing up to roughly 100 invariants in the library

Search support with OscaR

• Three sets of neighbourhoods

– Domain-independent: assign, swap, flip, roll, shift, etc.

– Routing: one point move, 2-opt, 3-opt, insert point, etc.

– Scheduling: flatten, relax

lots of tuning: symmetry elimination, hot restart, best/first, search zone,
etc.

• Neighbourhood combinators

– Selecting neighbourhood

– Stop criteria

– Solution management

– Meta-heuristics: restart, simulated annealing

– Combined neighbourhood: cross-product “AndThen”, linear
aggregation

– Graphical display of objective function vs. run time

• Can also build your own search procedure based on linear selectors

Best or first improving neighbour?

• Neighbourhoods can search for
– best neighbour (it must be accepted by the acceptation function)
– First improving neighbour

• This setting is decided at the level of the basic search
neighbourhoods
– AssignNeighbourhood
– 2-opt
– …

• A basic search neighbourhood is a bunch of nested loops, and
most of our neighborhoods input a parameter for deciding
best/first for each level of their loop
– Common pattern:
– Expecting a types:
– There are two types (with additional parameters):

• Check Scaladoc of your neighbourhoods

Select…Behavior

LoopBehavior

First() Best()

Three shades of Warehouse Location

• The presented one, with best Switch:

• Tabu search (requires model extension)

• Using the most efficient neighbourhood anytime

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse ",
selectIndiceBehavior = Best())

exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5),

maxConsecutiveRestartWithoutImprovement=2, obj)

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse "
searchZone = nonTabuWarehouses , selectIndiceBehavior = Best())

acceptAll
afterMoveOnMove((a:AssignMove) => tabu(a.id) = it + tabulength; it += 1)
maxMoves someIterationBound withoutImprovementOver obj)
saveBestAndRestoreOnExhaust obj)

search = (BestSlopeFirst(AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses"))

onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5),
maxConsecutiveRestartWithoutImprovement=2, obj)

Profiling your search

• You need to know how each neighbourhood performed
– What neighbourhood takes a lot of time?
– What neighbourhood does never find a move?
– Etc.

• How to collect profiling statistic
– Use the Profile combinator where you want to measure

– Run the search as usual

– Print the profiling statistics

– You get a ton of info (not all on the slide) Time measures are in ms

val neighborhood =
(BestSlopeFirst(Profile(AssignNeighborhood(warehouseOpenArray, "Switch"))

Profile(SwapsNeighborhood(warehouseOpenArray, "Swap")))
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5),

maxConsecutiveRestartWithoutImprovement=2, obj)

neighborhood.doAllMoves(obj)

println(neighborhood.profilingStatistics)

Neighborhood calls found sumGain sumTime avgGain avgTime slope

Switch 631 625 74905 1006 118 1 74458

Swap 17 12 79 21467 4 1262 3

A quick look under the hood:

Propagation graph for the WLP(4,6)

Propagation: update the output(s) to reflect a change on the inputs
– Single wave: elements are touched at most once
– Incremental: all invariants update their outputs incrementally
– Selective: only things that need to be updated wrt. changes are updated
– Partial: only things contributing to the needed output are updated

W0

W1

W2

W3

OpenWsFilter

Sum

SumWsCost

+

Opening
Cost

Transport
Cost

obj

From the
Distance
matrix

OpenWToS0MinWsToS0

OpenWToS1MinWsToS1

OpenWToS2MinWsToS2

OpenWToS3MinWsToS3

OpenWToS4MinWsToS4

OpenWToS5MinWsToS5

A quick look under the hood:
Selective + partial propagation

Cluster

Q0plus0

Q1plus1

Q2plus2

Q3plus3 Occurrences_of_0
Occurrences_of_1
Occurrences_of_2
Occurrences_of_3

Compute
violation violation1

Violation_AllDiff_Q0plus0

Violation_AllDiff_Q1plus1

Violation_AllDiff_Q2plus2

Violation_AllDiff_Q3plus3

ArrayAccess
minus

1
ArrayAccess

minus
1

ArrayAccess
minus

1
ArrayAccess

minus
1

Occurrences_of_4
Occurrences_of_5
Occurrences_of_6

Cluster

Q0plus0

Q1plus1

Q2plus2

Q3plus3 Occurrences_of_0
Occurrences_of_1
Occurrences_of_2
Occurrences_of_3

Compute
violation violation1

Violation_AllDiff_Q0plus0

Violation_AllDiff_Q1plus1

Violation_AllDiff_Q2plus2

Violation_AllDiff_Q3plus3

ArrayAccess
minus

1
ArrayAccess

minus
1

ArrayAccess
minus

1
ArrayAccess

minus
1

Occurrences_of_4
Occurrences_of_5
Occurrences_of_6

Queen[1]

Queen[0]

Queen[3]

Queen[2]

plus Violation

plus

plus

plus

plus

Q0plus0

Q1plus1

Q2plus2

Q3plus3

0

1

2

3

minus

minus

minus

minus

0minusQ0

1minusQ1

2minusQ2

3minusQ3

0

1

2

3

plus ViolationQ0

plus ViolationQ1

plus ViolationQ2

plus ViolationQ3

Routing with OscaR.cbls

• Modelling
– Sequence variable (very efficient to perform classical routing moves)
– Library of global routing constraints

• Route length(sequence, distance matrix)
• Node vehicle restrictions
• …

• Searching
– Insert point
– One point move
– 2-opt
– …

• Routing convention: all vehicles in the same sequence variable

– Vehicle [0..v-1] start from nodes [0..v-1]
– Vehicle starts are always in the sequence in that order
– Vehicle implicitly come back to their start point
– Vehicle starts cannot be moved by neighbourhoods
– At most one occurrence of every value in the sequence

0 8 5 12 1 6 9 4 2 3V=4

A VRP class

around the sequence variable

val myVRP = new VRP(model,n,v)

val routeLength = constantRoutingDistance(

myVRP.routes,n,v,

symmetricDistanceMatrix)(0)

val penaltyForUnrouted = 10000

val obj = Objective(routeLength

+ penaltyForUnrouted*n

- penaltyForUnrouted*length(myVRP.routes))

model.close()

Main routing invariants (1/2)

• ConstantRoutingDistance
– given a distance matrix,
– maintains the driven distance
– options: isSymmetric? perVehicle? preCompute?
– O(log(v)) update on classical neighbourhoods (with proper options)

• ForwardCumulativeIntegerDimensionOnVehicle
– given a function (node × content × node’) =>content’
– maintains an array node=>content

• ForwardCumulativeConstraintOnVehicle
– given

• a function (node × content × node’) =>content’
• a max capacity

– maintains a violation per vehicle (sum of overshoot per node)

• NodesOfVehicle
– given route
– maintains vehicle => set of nodes reached by vehicle

Main routing invariants (2/2)

• NodeVehicleRestrictions
– given set of couples (node, vehicle)

– maintains number of such couples (n,v) such that vehicle v
reaches node n

– O(log(v)) update on classical neighbourhoods

• RouteSuccessorAndPredecessors
– given route

– maintains two IntVar arrays: node => predecessor, node =>
successor

– you can declare virtually anything from these arrays, using
element invariant

• VehicleOfNodes
– given route

– maintains a SetVar array: vehicle => nodes reached by vehicle

Routing neighbourhoods

• InsertPoint
– InsertPointRoutedFirst:

for(r <- routed)
for(u <- unrouted relevant wrt r)

…

– InsertPointUnroutedFirst
for(u <- unrouted)

for(r <- routed relevant wrt u)
…

• OnePointMove
• RemovePoint
• SegmentExchange
• ThreeOpt
• TwoOpt

– TwoOpt1
– TwoOpt2

Symetric VRP (v = 100) N vs. run time

0,86

4,40

8,67

12,61

19,24

26,45

0,00

5,00

10,00

15,00

20,00

25,00

30,00

1k 3k 5k 7k 9k 11k

R
u

n
 t

im
e

[s
ec

o
n

d
]

Number of points

val search = (BestSlopeFirst(List(

insertPointUnroutedFirst(k=10),

insertPointRoutedFirst(k=10),

onePointMove(k=10),

twoOpt(k=10),

threeOpt(k=10)))

exhaust threeOpt(k=20))

Median over 10 runs with symmetric distance:
square map with randomly placed points and straight line distance

Local search … smart neighbourhoods

• Additional constraint call for specific
neighbourhoods

– Pick-up & delivery (PDP)

• Two point insert

• Two point move
– Only try moving deliveries after their pick-up,

and on the same vehicle

– …

• Complex neighbourhoods

– Lin-Kernighan: A succession of two-opts

An important combinator:

the cross-product of neighbourhoods

What is explored: a search tree with two non-root levels
– Objective function is evaluated only at the actual neighbours that form

the bottom of the tree
– dynAndThen returns a compositeMove,

in this case this move includes two instances of insertpointMove

val insertPickupAndRelatedDelivery = (
insertPointUnroutedFirst(nonRoutedPickupPoints, …)
dynAndThen (insertMove: InsertPointMove) =>

insertPointUnroutedFirst(
pickUpToDelivery(insertMove.insertedPoint), …))

…

p1,pos1
p1,pos2 p2,pos1

…

p2,pos2

d1,pos2 d1,pos3 d2,pos2 d2,pos3
…

Pruning the exploration tree

• Once the pick-up node is inserted, some constraints might
already be violated, and search tree can be pruned
– Deadline constraints

• Not all constraints can be checked:
– “pick-up before delivery” will be violated anyway
– “vehicle content < max capacity” will be inconclusive

val pickupAndDeliveryInsertTW = (
insertPointUnroutedFirst(nonRoutedPickupPoints, …)
dynAndThen(
(insertMove: InsertPointMove) =>
if(timingConstraints.violation.value == 0) {

insertPointUnroutedFirst(
pickUpToDelivery(insertMove.insertedPoint), …))

}else NoMoveNeighborhood
))

(triangular inequality holds)

Car Sequencing problem

• Sequencing of cars in assembly lines:

– Maximum k cars of any n consecutive cars in the sequence can
have option o in {abs,airCo,esp}

– For all option o, each having specific (k, n)

• They can only build the ordered cars

• Problem statement:
– Given

• Order book (set of cars to build, specified by their equipment)

– Find
• Ordering for these cars

– Such that
• All sequence constraints are enforced

A Car Sequencer: Model

val m = new Store()
val c = new ConstraintSystem(m)

//initializing the sequence with a random permutation of the ordered cars
val carSequence = Array.tabulate(nbCars)(CBLSIntVar(…….,carTypes,"carClassAtPosition" + _))

//airCo: class(0, 2, 4) max 2 out of 3
c.post(sequence(carSequence,3,2, makeBoolArray(0,2,4)))
c.post(sequence(carSequence,5,3, makeBoolArray(0,1,4,5)))
c.post(sequence(carSequence,5,3, makeBoolArray(0,1,2)))
c.post(sequence(carSequence,3,2, makeBoolArray(3,4,5)))

val carViolation = c.violations(carSequence)
val violatedCars = filter(carViolation)
val mostViolatedCars = argMax(carViolation)

c.close
val obj:Objective = c.violation
s.close()

A Car Sequencer: a Search Strategy

Two Neighbourhoods And Three Restarts
val search =

(swapsNeighborhood(carSequence,"mostViolatedSwap",
searchZone2 = mostViolatedCars,
symmetryCanBeBrokenOnIndices = false)

exhaust wideningFlipNeighborhood(carSequence,"flipSubSequence")

onExhaustRestartAfter(
shuffleNeighborhood(carSequence, mostViolatedCars,

name = "shuffleMostViolatedCars")
guard(() => mostViolatedCars.value.size > 2), 2, obj)

onExhaustRestartAfter(
shuffleNeighborhood(carSequence, violatedCars,

name = "shuffleSomeViolatedCars",
numberOfShuffledPositions = () => 5 max (violatedCars.value.size/2)), 2, obj)

orElse (shuffleNeighborhood(carSequence, name = "shuffleAllCars") maxMoves 4)

saveBestAndRestoreOnExhaust obj)

A car sequencer problem,

and a solution

totalNumberOfCars:470
Proposed car sequence:
0,2,1,3,3,0,1,2,4,3,1,2,2,5,3,0,2,1,4,3,2,1,2,4,3,0,1,2,3,4,0,1,2,3,4,1,0,2,3
,4,2,1,2,4,5,2,1,2,5,3,1,2,0,3,4,1,2,0,3,3,1,0,2,3,4,0,1,2,3,4,1,0,2,3,4,2,1,2,
4,5,2,0,3,2,3,0,1,3,0,3,0,1,3,2,5,0,2,3,0,3,0,0,3,0,3,0,2,3,0,5,2,0,3,0,5,2,0,
3,5,1,2,0,3,4,2,1,2,5,3,0,1,2,4,3,1,2,0,3,5,2,0,1,3,3,0,4,1,2,3,0,3,0,0,3,2,5,
0,0,3,2,5,0,0,3,2,4,1,2,3,0,5,2,2,5,0,5,2,3,1,1,3,0,3,0,0,3,0,3,2,1,4,0,3,2,1,
4,2,5,2,0,3,2,3,0,5,2,2,3,4,1,2,0,3,4,2,1,2,4,3,2,0,3,0,5,2,2,5,2,3,0,0,3,2,3,
0,5,0,2,3,0,3,2,4,1,2,3,0,3,0,3,2,0,3,0,3,2,0,3,0,3,0,2,5,0,3,2,0,5,2,3,0,0,5,
2,3,2,1,4,0,3,2,0,3,2,4,1,2,3,0,4,1,2,3,4,1,2,0,3,4,1,2,2,5,3,0,1,2,4,3,2,1,0,
4,3,2,1,0,3,3,2,0,1,4,3,2,0,5,0,3,2,0,3,2,3,2,0,3,2,3,0,1,3,0,3,1,0,3,2,4,1,0,
3,2,5,0,0,3,2,3,0,0,3,0,3,0,0,3,3,0,1,0,3,3,1,0,0,3,3,2,1,2,4,5,2,1,2,4,3,0,2,1,
5,3,0,2,1,3,4,2,1,0,3,3,2,1,2,4,3,0,0,3,0,3,0,2,3,0,4,1,2,3,0,3,2,2,3,0,3,0,0,3,
0,3,1,2,4,1,3,1,2,4,1,3,2,2,3,2,5,2,0,5,2,3,2,0,3,4,1,2,2,3,4,1,2,0,3,3,1,0,0

Solving time: 2.8s

val orderedCarsByType = (0 -> 110, 1 -> 60, 2 -> 110 ,

3 -> 120, 4 -> 40, 5 -> 30)

Flow Shop Scheduling

• Factory scheduling
– A number of pieces must be machined

– They follow the same path on machines
• Step1 on machine1, step2 on machine2, etc.

– Each part takes a different amount of time on each
machine

– Parts are ordered at the start, and never between
machines

– A machine must wait if the next part is not ready

– A part must wait if the next machine is not ready

– Minimize the total machining time by properly
sequencing the parts

Flow shop scheduling

• Parts must pass through a machine line

– Each part takes a different duration on each machine
– Parts are sequenced at the start
– machines must wait if the next part is not ready from previous machine
– A part must wait if the next machine is not ready

• Problem statement
– Given

• Machines, set of parts and duration of each part on each machine

– Find
• Proper sequence of the parts

– Such that
• total machining time is minimized

A Flow shop scheduling problem

and its solution

no more improvement found after 77 it, 1150 ms
job sequence:0,2,6,8,4,5,3,1,7

val machineToJobToDuration:Array[Array[Int]] =

Array(

Array(1,2,1,7,2,5,5,6,7),

Array(4,5,3,1,8,3,7,8,4),

Array(6,8,2,5,3,1,2,2,8),

Array(4,1,7,2,5,5,6,4,5))

«Use» Architecture of OscaR.cbls

Propagation:
Propagation element, Propagation stucture

Algo:
algorithms and specialized data-structures (ex: sequences)

Computation:
Variables, IntVar, SeqVar, SetVar, invariants

Objectives:
Objective (as a function of IntVar)

Search
neighbourhood

Lib of
invariants

Lib of
neighbourhoods

Lib of
combinators

Constraint:
constraint, system

Lib of Constraints

Routing:
model & neighbourhood

Scheduling:
model & neighbourhood

Core
Lib

Code structure

• algo
• core

– computation
– propagation
– constraint
– objective
– search

• lib
– constraint
– invariant
– search

• neighbourhoods
• combinators
• linear selectors

• modelling
• business

– routing
– scheduling (deprecated)

• benchmarks
• visual

Business package provides
model and neighbourhoods for
• routing
• scheduling (deprecated)

import oscar.cbls._
import oscar.cbls.modeling._

object MyStuff extends CBLSModel{…}

import oscar.cbls.business.routing._

To write simple models,
modelling package
provides factories to core and lib

Conclusion: Features of Oscar.cbls

• Modelling part: Rich modelling language
– IntVar, SetVar, SeqVar
– ~100 invariants: Logic, numeric, set, min-max, etc.
– 17 constraints: LE, GE, AllDiff, Sequence, etc.
– Constraints can attribute a violation degree to any variable
– Model can include cycles
– Fast model evaluation mechanism

• Efficient single wave model update mechanism
• Partial and lazy model updating, to quickly explore neighbourhoods

• Search part
– Library of standard neighbourhoods
– Combinators to define your global strategy in a concise way
– Handy verbose and statistics feature, to help you tuning your search

• Business packages: Routing, scheduling
– Model and neighbourhoods

• FlatZinc Front End [Bjö15]

• 50kLOC

• Open source LGPL
– Code using OscaR is not contaminated
– Extensions and corrections to OscaR are expected to be pushed back to OscaR

Further readings
1. Renaud De Landtsheer, Christophe Ponsard, OscaR.cbls : an open source framework for constraint-based local

search, 27th ORBEL Annual Meeting, Kortrijk, Belgium, February 7-8 2013.
2. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Local Search with OscaR.CBLS,

Workshop Design and Analysis of Meta-heuristics, Antwerp, 17-18 March 2016.
3. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Towards the Complexity of

Differentiation Through Lazy Updates in Local Search Engines, 30th ORBEL Annual Meeting, Louvain-La-
Neuve, Belgium, January 28-29 2016

4. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Adding a Sequence Variable to the
OscaR.CBLS Engine, 31th ORBEL Annual Meeting, Brussels, Belgium, February 2-3, 2017

5. Renaud De Landtsheer, Gustavo Ospina, Yoann Guyot, Fabian Germeau, Christophe Ponsard, Supporting
Efficient Global Moves on Sequences in Constraint-based Local Search Engines, Proceedings of the 6th
International Conference on Operations Research and Enterprise Systems, 171-180, 2017, Porto, Portugal

6. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, and Christophe Ponsard. Recent developments of
metaheuristics, chapter Combining Neighborhoods into Local Search Strategies, pages 43–57. Springer, 2018.

7. Generic Support for Global Routing Constraint in Constraint-Based Local Search Frameworks, Quentin
Meurisse, Renaud De Landtsheer, 32th ORBEL Annual Meeting, Liege, Belgium, February 1-2 2018

8. Renaud De Landtsheer, Fabian Germeau, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Easily Building
Complex Neighbourhoods With the Cross-Product Combinator, 32th ORBEL Annual Meeting, Liege, Belgium,
February 1-2 2018

9. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Fabian Germeau, and Christophe Ponsard, Reasoning
on Sequences in Constraint-Based Local Search Frameworks, accepted at CPAIOR2018, 15th International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research
June 26-29, 2018, Delft, The Netherlands

Who is behind OscaR.cbls?

• CETIC team
– Renaud De Landtsheer
– Thomas Fayolle
– Fabian Germeau
– Gustavo Ospina
– Christophe Ponsard
– Yoann Guyot (until 2017)

• Contributions from Uppsala
– Jean-Noël Monette
– Gustav Björdal

• Internships & MS Theses
– UMONS: Gaël Thouvenin, Sébastien Drobisz, Florent Ghilain,

Jannou Bohée, Quentin Meurisse
– IPL: Fabian Germeau
– HENALUX: Quentin Wautelet

Where is OscaR?

• Repository / source code

– https://bitbucket.org/oscarlib/oscar/wiki/Home

• Released code and documentation

– https://oscarlib.bitbucket.org/

• Discussion group / mailing list

– https://groups.google.com/forum/?fromgroups#!foru
m/oscar-user

https://bitbucket.org/oscarlib/oscar/wiki/Home
https://oscarlib.bitbucket.org/
https://groups.google.com/forum/?fromgroups

Other CBLS tools

• Comet
– First CBLS implementation by Pascal van Hentenryck and Laurent Michel
– Not maintained since 2008

• Kangaroo
– One paper @CP2011, status unknown, not available

• LocalSolver
– Commercial tool, with academic licence
– Booleans, floats, integers, lists with very few invariants
– Closed search procedure, closed source

• EasyLocal++
– No support for modelling

• GoogleCP
– Not a CBLS tool; a CP engine mimicking CBLS, less scalability

• InCell
– CBLS engine, Toulouse, Cedric Pralet

• Yacc
– ??

Two typical remarks on OscaR.cbls

• Why don’t you use C/C++ with templates, and
compile with gcc –o3? You would be 2 times faster!

• I can develop a dedicated solver that will run 2
times faster because it will not need the overhead
data structures of OscaR.cbls

… these remarks are correct, but …

Brain cycle

is more valuable than CPU cycle

• Algorithmic tunings deliver more than 2 to 4!
– Ex: symmetry elimination on neighbourhoods

– Ex: Restricting your neighbourhood to relevant search
zones

– Ex: Tuning when your neighbourhoods are actually used

– We lately had a speedup 10 by tuning a search procedure

• Our framework cuts down dev cost,
so you have time to focus on these high-level tunings!

• TODO: parallel propagation
– Goal: same “basic speed” as dedicated implementation

– A core is cheaper than a single day of work for an engineer

Sörensen’s conjecture (Prof UAntwerp)

In the real world, solving

optimization problems

using exact methods is a

waste of resources

