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– Oscar
• Open source framework for combinatorial optimization

• CP, CBLS

• Started in 2011

– Open source LGPL license
• https://bitbucket.org/oscarlib/oscar

• Implemented in Scala

– Consortium 
• CETIC, UCL, N-Side Belgium

• Contributions from Uppsala Sweden



Combinatorial optimization problems

• Ex: Scheduling

– Tasks, precedence's

– Shared resources

– Deadlines

– Minimize time span

• Ex: Routing

– Points, vehicles

– Distance

– Time windows

– Minimize overall distance

• Ex: Warehouse location

– Shops to supply

– Where to build warehouses?

– Minimize operation + construction costs



Local search in one slide

Pick an initial solution

Explore neighbourhood

Move to best neighbour

Repeat

Until no better neighbour

Point in the search space

TSP : moving a city 
to another position in the tour

Current state: a  b  c  d  e  a
Moving city c yields three neighbours: 

a  c b  d  e  a
a  b  d  c e  a
a  b  d  e  c  a

O(n²) neighbours when considering all cities

TSP : all the possible tours 
n cities; (n-1)! tours

TSP : random tour?

Some black magic required 
to escape from local minima



Local search is black magic

Local search practitioners, like you, are magicians

I am a wand maker,

and I will show you 
why OscaR.cbls is a good wand

Non exhaustive
Needs tuning, benchmarking
But it works!
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Why are we developing OscaR.cbls?

• OscaR.cbls is developed primarily at CETIC

• CETIC is a research centre in Belgium
– Focus on technology transfer in IT
– No fundamental research
– As such, OscaR.cbls is our research topic:

• How to make it faster-better-cheaper for users?
– Cheaper means « faster to develop a solution » since your time is money 

• How to make it faster-better-cheaper for researchers?
• …

• To fight against shelf research:
Make the research, write a report, put it in a shelf, do something 
else



My goal: cut down the cost 

of having a local search solution

• Why?
– Expert, like you, are expensive
– Non-expert can be empowered with smart algorithms in the hands
– Applications tend to change their requirements 

• Agile approaches
• Evolving market needs

– Human brain is limited (at least mine)
• With OscaR.cbls, you can focus on the black magic part 

where a lot of gain can be achieved

• How?
– Declarative approaches

• CBLS Modelling language for defining your problem
• Declarative language for defining search procedures

– Cost of license
• This is LGPL (free, non-contaminating)

– Integration
• This is Scala, compiles to Java bytecode



Who might be interested?

• Developers targeting new applications
– Obviously

• Researchers
– Develop their innovative algorithms within OscaR.cbls

(constraints, meta-heuristic, neighbourhood, etc. )
– Don’t waste their time on everting else
– Make their research result be used, add to OscaR.cbls

• Benchmark makers
– Comparing different algorithms if often a tricky job: 

• not the same programming language, 
• not the same base algorithms, 
• not the same implementation quality, etc. 

– OscaR.cbls can be used as a reference platform for sound comparison 
of algorithms



The basic equation of local search

Local search - based solver = model + search procedure

variables 
constraints
objectives
…

neighbourhoods 
metaheuristics
…



val nQueens = 20000 // Number of queens
val queensRange= 0 to nQueens -1
val init = Random.shuffle(0 until nQueens)

// Variables
val queens = Array.tabulate(nQueens)(q => 

CBLSIntVar(0 to nQueens -1,init(q),"queen" + q)) 

// Constraints

val c = new ConstraintSystem(m)
c.add(allDifferent(queensRange.map(q => queens(q) + q))) 
c.add(allDifferent(queensRange.map(q => q - queens(q))))

close() 

// Swapping two queens to decrease overall violation
swapNeighborhood(queens)

.doAllMoves(_ >= nQueens || c.violation.value == 0, c)

println(queens.mkString(",")) 

Basic Nqueens, the OscaR way

Model

Search
procedure



val nQueens = 20000 // Number of queens
val queensRange= 0 to nQueens -1
val init = Random.shuffle(0 until nQueens)

// Variables
val queens = Array.tabulate(nQueens)(q => 

CBLSIntVar(0 to nQueens -1,init(q),"queen" + q)) 

// Constraints
val c = new ConstraintSystem(m)
c.add(allDifferent(queensRange.map(q => queens(q) + q))) 
c.add(allDifferent(queensRange.map(q => q - queens(q))))

val mostViolatedQueens = argMax(c.violations(queens))
close() 

// Swapping a queen with one of the most violated ones
swapNeighborhood(queens, searchZone = mostViolatedQueens, 

symmetryCanBeBrokenOnIndices = false)
.doAllMoves(_ >= nQueens || c.violation.value == 0, c)

Advanced Nqueens, the OscaR way

Model

Search
procedure



A simple Nqueens

with old fashion search procedure
val init = Random.shuffle(0 until nQueens)
val queens = Array.tabulate(N)(q => CBLSIntVar(init(q), range, "queen" + q))

c.add(allDifferent(Array.tabulate(N)(q => queens(q) + q)))
c.add(allDifferent(Array.tabulate(N)(q => q - queens(q))))

close()

var it = 0
while(c.violation.value > 0){

selectMin(range,range)(
(p,q) => c.violation.swapVal(queens(p),queens(q)),
(p,q) => p < q)

match{
case (q1,q2) =>

queens(q1) :=: queens(q2)
}

it += 1
}

Model

Search
procedure

Selecting the pair 
of queens
with the best swap

Swapping
the values



The uncapacitated warehouse 

location problem

• Given

– S: set of stores that must be stocked by the warehouses

– W: set of potential warehouses 
• Each warehouse has a fixed cost fw

• transportation cost from warehouse w to store s is cws

• Find 

– O: subset of warehouses to open

– Minimizing the sum of the fixed and the transportation 
cost:

• Notice

– A store is assigned to its nearest open warehouse
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A WLP solver on a single slide

val m = new Store()
val warehouseOpenArray = warehouses.map(

CBLSIntVar(m, 0 to 1, 0, "warehouse_" + _ + "")).toArray

val openWarehouses = Filter(warehouseOpenArray) 

val distanceToNearestOpenWarehouse = stores.map((store:Int) => 
min(distanceCost(store), openWarehouses, 

defaultCostForNoOpenWarehouse)).toArray

val obj = Objective(Sum(distanceToNearestOpenWarehouse) 
+ Sum(costForOpeningWarehouse, openWarehouses))

m.close()

val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5), 

maxConsecutiveRestartWithoutImprovement=2, obj)

neighborhood.doAllMoves(obj)



The console output
The search can display info roughout the search:

0: no verbosities
1: every 10th of a second, summarise all performed moves, by neighbourhoods
2: print every move
3: print every search
4: print every explored neighbour

WarehouseLocation(W:15, D:150)

SwitchWarehouse(warehouse_0:=0 set to 1; objAfter:7052)            - #

SwitchWarehouse(warehouse_1:=0 set to 1; objAfter:5346)            - #

SwitchWarehouse(warehouse_2:=0 set to 1; objAfter:4961)            - #

SwitchWarehouse(warehouse_3:=0 set to 1; objAfter:4176)            - #

SwitchWarehouse(warehouse_4:=0 set to 1; objAfter:3862)            - #

SwitchWarehouse(warehouse_9:=0 set to 1; objAfter:3750)            - #

SwitchWarehouse(warehouse_12:=0 set to 1; objAfter:3620)           - #

SwitchWarehouse(warehouse_0:=1 set to 0; objAfter:3609)            - #

SwapWarehouses(warehouse_0:=0 and warehouse_4:=1; objAfter:3572)   - #

SwapWarehouses(warehouse_1:=1 and warehouse_6:=0; objAfter:3552)   - #

SwapWarehouses(warehouse_0:=1 and warehouse_1:=0; objAfter:3532)   - #

SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3528)            - #

RandomizeNeighborhood(warehouse_12:=1 set to 0, warehouse_

SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3656)            -

SwapWarehouses(warehouse_12:=0 and warehouse_13:=1; objAfter:3528) - °

RandomizeNeighborhood(warehouse_14:=0 set to 1, warehouse_

SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3907)            -

SwitchWarehouse(warehouse_12:=1 set to 0; objAfter:3882)           -

SwitchWarehouse(warehouse_13:=1 set to 0; objAfter:3862)           -

SwitchWarehouse(warehouse_14:=1 set to 0; objAfter:3658)           -

SwitchWarehouse(warehouse_12:=0 set to 1; objAfter:3528)           - °

MaxMoves: reached 2 moves

openWarehouses:={1,2,3,6,7,9,12}

- Means: 
obj decreases 
after this move

# Means: 
we found a 
solution with a 
new best 
objective

° Means: 
we found an 
solution with obj
equal to the 
best so far

neighborhood.verbose = 2



WareHouseLocationVisu

W = 1000
S = 1000

Complex search strategy:
• Switch
• Swap with kNearest
• Swap
• Restarts
• Mu(switch)



Modelling Support with OscaR

• Three types of variables
– IntVar, SetVar, and SeqVar

• Invariant library
–Logic: 

• Access on array of Int/SetVar, Filter, Cluster , etc.
–MinMax: 

• Min, Max, ArgMin, ArgMax
–Numeric: 

• Sum, Prod, Minus, Div, Abs , etc.
–Set: 

• Inter, Union, Diff, Cardinality , etc.
–Seq: 

• Concatenate, Size, Content , etc.
–Routig on Seq:

• Constant Distance, Node-Vehicle restrictions, etc.
Summing up to roughly 100 invariants in the library



Search support with OscaR

• Three sets of neighbourhoods

– Domain-independent: assign, swap, flip, roll, shift, etc.

– Routing: one point move,  2-opt, 3-opt, insert point, etc.

– Scheduling: flatten, relax

lots of tuning: symmetry elimination, hot restart, best/first, search zone, 
etc.

• Neighbourhood combinators

– Selecting neighbourhood

– Stop criteria

– Solution management

– Meta-heuristics: restart, simulated annealing

– Combined neighbourhood: cross-product “AndThen”, linear 
aggregation

– Graphical display of objective function vs. run time

• Can also build your own search procedure based on linear selectors



Best or first improving neighbour?

• Neighbourhoods can search for 
– best neighbour (it must be accepted by the acceptation function)
– First improving neighbour

• This setting is decided at the level of the basic search 
neighbourhoods
– AssignNeighbourhood
– 2-opt
– …

• A basic search neighbourhood is a bunch of nested loops, and 
most of our neighborhoods input a parameter for deciding 
best/first for each level of their loop
– Common pattern: 
– Expecting a types:
– There are two types (with additional parameters): 

• Check Scaladoc of your neighbourhoods

Select…Behavior

LoopBehavior

First() Best()



Three shades of Warehouse Location

• The presented one, with best Switch: 

• Tabu search (requires model extension)

• Using the most efficient neighbourhood anytime

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse ",  
selectIndiceBehavior = Best())

exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5), 

maxConsecutiveRestartWithoutImprovement=2, obj)

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse "
searchZone = nonTabuWarehouses , selectIndiceBehavior = Best())

acceptAll
afterMoveOnMove((a:AssignMove) => tabu(a.id) = it + tabulength; it += 1)
maxMoves someIterationBound withoutImprovementOver obj)
saveBestAndRestoreOnExhaust obj)

search = (BestSlopeFirst(AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses"))

onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5), 
maxConsecutiveRestartWithoutImprovement=2, obj)



Profiling your search

• You need to know how each neighbourhood performed
– What neighbourhood takes a lot of time?
– What neighbourhood does never find a move?
– Etc.

• How to collect profiling statistic
– Use the Profile combinator where you want to measure

– Run the search as usual

– Print the profiling statistics

– You get a ton of info (not all on the slide) Time measures are in ms 

val neighborhood = 
(BestSlopeFirst(Profile(AssignNeighborhood(warehouseOpenArray, "Switch"))

Profile(SwapsNeighborhood(warehouseOpenArray, "Swap")))
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5), 

maxConsecutiveRestartWithoutImprovement=2, obj)

neighborhood.doAllMoves(obj)

println(neighborhood.profilingStatistics)

Neighborhood calls found sumGain sumTime avgGain avgTime slope

Switch       631   625   74905   1006    118     1       74458

Swap         17    12    79      21467   4       1262    3



A quick look under the hood:

Propagation graph for the WLP(4,6)

Propagation: update the output(s) to reflect a change on the inputs
– Single wave: elements are touched at most once
– Incremental: all invariants update their outputs incrementally
– Selective: only things that need to be updated wrt. changes are updated
– Partial: only things contributing to the needed output are updated

W0

W1

W2

W3

OpenWsFilter

Sum

SumWsCost

+

Opening
Cost

Transport
Cost

obj

From the 
Distance
matrix

OpenWToS0MinWsToS0

OpenWToS1MinWsToS1

OpenWToS2MinWsToS2

OpenWToS3MinWsToS3

OpenWToS4MinWsToS4

OpenWToS5MinWsToS5



A quick look under the hood:
Selective + partial propagation
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Routing with OscaR.cbls

• Modelling
– Sequence variable (very efficient to perform classical routing moves)
– Library of global routing constraints

• Route length(sequence, distance matrix)
• Node vehicle restrictions
• …

• Searching
– Insert point
– One point move
– 2-opt
– …

• Routing convention: all vehicles in the same sequence variable

– Vehicle [0..v-1] start from nodes [0..v-1]
– Vehicle starts are always in the sequence in that order
– Vehicle implicitly come back to their start point
– Vehicle starts cannot be moved by neighbourhoods
– At most one occurrence of every value in the sequence

0 8 5 12 1 6 9 4 2 3V=4



A VRP class 

around the sequence variable

val myVRP = new VRP(model,n,v)

val routeLength = constantRoutingDistance(

myVRP.routes,n,v,

symmetricDistanceMatrix)(0)

val penaltyForUnrouted = 10000

val obj = Objective(routeLength

+ penaltyForUnrouted*n 

- penaltyForUnrouted*length(myVRP.routes))

model.close()



Main routing invariants (1/2)

• ConstantRoutingDistance
– given a distance matrix, 
– maintains the driven distance
– options: isSymmetric? perVehicle? preCompute?
– O(log(v)) update on classical neighbourhoods (with proper options)

• ForwardCumulativeIntegerDimensionOnVehicle
– given a function (node × content × node’) =>content’
– maintains an array node=>content

• ForwardCumulativeConstraintOnVehicle
– given 

• a function (node × content × node’) =>content’
• a max capacity

– maintains a violation per vehicle (sum of overshoot per node)

• NodesOfVehicle
– given route
– maintains vehicle => set of nodes reached by vehicle



Main routing invariants (2/2)

• NodeVehicleRestrictions
– given set of couples (node, vehicle)

– maintains number of such couples (n,v) such that vehicle v 
reaches node n

– O(log(v)) update on classical neighbourhoods

• RouteSuccessorAndPredecessors
– given route

– maintains two IntVar arrays: node => predecessor,   node => 
successor

– you can declare virtually anything from these arrays, using 
element invariant

• VehicleOfNodes
– given route

– maintains a SetVar array: vehicle => nodes reached by vehicle



Routing neighbourhoods

• InsertPoint
– InsertPointRoutedFirst:    

for(r <- routed) 
for(u <- unrouted relevant wrt r)

…

– InsertPointUnroutedFirst
for(u <- unrouted)  

for(r <- routed relevant wrt u)
…

• OnePointMove
• RemovePoint
• SegmentExchange
• ThreeOpt
• TwoOpt

– TwoOpt1 
– TwoOpt2



Symetric VRP (v = 100) N vs. run time
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val search = (BestSlopeFirst(List(

insertPointUnroutedFirst(k=10), 

insertPointRoutedFirst(k=10), 

onePointMove(k=10),

twoOpt(k=10), 

threeOpt(k=10))) 

exhaust threeOpt(k=20))

Median over 10 runs with symmetric distance:
square map with randomly placed points and straight line distance



Local search … smart neighbourhoods

• Additional constraint call for specific 
neighbourhoods

– Pick-up & delivery (PDP)

• Two point insert

• Two point move
– Only try moving deliveries after their pick-up, 

and on the same vehicle

– …

• Complex neighbourhoods

– Lin-Kernighan: A succession of two-opts



An important combinator: 

the cross-product of neighbourhoods

What is explored: a search tree with two non-root levels
– Objective function is evaluated only at the actual neighbours that form 

the bottom of the tree
– dynAndThen returns a compositeMove, 

in this case this move includes two instances of insertpointMove

val insertPickupAndRelatedDelivery = (
insertPointUnroutedFirst(nonRoutedPickupPoints, … )
dynAndThen (insertMove: InsertPointMove) =>

insertPointUnroutedFirst(
pickUpToDelivery(insertMove.insertedPoint), …))

…

p1,pos1
p1,pos2 p2,pos1

…

p2,pos2

d1,pos2 d1,pos3 d2,pos2 d2,pos3
…



Pruning the exploration tree

• Once the pick-up node is inserted, some constraints might 
already be violated, and search tree can be pruned
– Deadline constraints

• Not all constraints can be checked: 
– “pick-up before delivery” will be violated anyway
– “vehicle content < max capacity” will be inconclusive

val pickupAndDeliveryInsertTW = (
insertPointUnroutedFirst(nonRoutedPickupPoints, …)
dynAndThen(
(insertMove: InsertPointMove) =>
if(timingConstraints.violation.value == 0) {

insertPointUnroutedFirst(
pickUpToDelivery(insertMove.insertedPoint), …))

}else NoMoveNeighborhood
))

(triangular inequality holds)



Car Sequencing problem

• Sequencing of cars in assembly lines:

– Maximum k cars of any n consecutive cars in the sequence can 
have option o in {abs,airCo,esp}

– For all option o, each having specific (k, n)

• They can only build the ordered cars

• Problem statement: 
– Given

• Order book (set of cars to build, specified by their equipment)

– Find
• Ordering for these cars

– Such that
• All sequence constraints are enforced



A Car Sequencer: Model

val m = new Store()
val c = new ConstraintSystem(m)

//initializing the sequence with a random permutation of the ordered cars
val carSequence = Array.tabulate(nbCars)(CBLSIntVar(…….,carTypes,"carClassAtPosition" + _))

//airCo: class(0, 2, 4) max 2 out of 3
c.post(sequence(carSequence,3,2, makeBoolArray(0,2,4))) 
c.post(sequence(carSequence,5,3, makeBoolArray(0,1,4,5))) 
c.post(sequence(carSequence,5,3, makeBoolArray(0,1,2))) 
c.post(sequence(carSequence,3,2, makeBoolArray(3,4,5)))

val carViolation = c.violations(carSequence)
val violatedCars = filter(carViolation)
val mostViolatedCars = argMax(carViolation)

c.close
val obj:Objective = c.violation
s.close()



A Car Sequencer: a Search Strategy

Two Neighbourhoods And Three Restarts
val search =

(swapsNeighborhood(carSequence,"mostViolatedSwap", 
searchZone2 = mostViolatedCars, 
symmetryCanBeBrokenOnIndices = false)

exhaust wideningFlipNeighborhood(carSequence,"flipSubSequence") 

onExhaustRestartAfter(
shuffleNeighborhood(carSequence, mostViolatedCars, 

name = "shuffleMostViolatedCars") 
guard(() => mostViolatedCars.value.size > 2), 2, obj)

onExhaustRestartAfter(
shuffleNeighborhood(carSequence, violatedCars, 

name = "shuffleSomeViolatedCars", 
numberOfShuffledPositions = () => 5 max (violatedCars.value.size/2)), 2, obj)

orElse (shuffleNeighborhood(carSequence, name = "shuffleAllCars") maxMoves 4)

saveBestAndRestoreOnExhaust obj)



A car sequencer problem, 

and a solution

totalNumberOfCars:470 
Proposed car sequence:
0,2,1,3,3,0,1,2,4,3,1,2,2,5,3,0,2,1,4,3,2,1,2,4,3,0,1,2,3,4,0,1,2,3,4,1,0,2,3
,4,2,1,2,4,5,2,1,2,5,3,1,2,0,3,4,1,2,0,3,3,1,0,2,3,4,0,1,2,3,4,1,0,2,3,4,2,1,2,
4,5,2,0,3,2,3,0,1,3,0,3,0,1,3,2,5,0,2,3,0,3,0,0,3,0,3,0,2,3,0,5,2,0,3,0,5,2,0,
3,5,1,2,0,3,4,2,1,2,5,3,0,1,2,4,3,1,2,0,3,5,2,0,1,3,3,0,4,1,2,3,0,3,0,0,3,2,5,
0,0,3,2,5,0,0,3,2,4,1,2,3,0,5,2,2,5,0,5,2,3,1,1,3,0,3,0,0,3,0,3,2,1,4,0,3,2,1,
4,2,5,2,0,3,2,3,0,5,2,2,3,4,1,2,0,3,4,2,1,2,4,3,2,0,3,0,5,2,2,5,2,3,0,0,3,2,3,
0,5,0,2,3,0,3,2,4,1,2,3,0,3,0,3,2,0,3,0,3,2,0,3,0,3,0,2,5,0,3,2,0,5,2,3,0,0,5,
2,3,2,1,4,0,3,2,0,3,2,4,1,2,3,0,4,1,2,3,4,1,2,0,3,4,1,2,2,5,3,0,1,2,4,3,2,1,0,
4,3,2,1,0,3,3,2,0,1,4,3,2,0,5,0,3,2,0,3,2,3,2,0,3,2,3,0,1,3,0,3,1,0,3,2,4,1,0,
3,2,5,0,0,3,2,3,0,0,3,0,3,0,0,3,3,0,1,0,3,3,1,0,0,3,3,2,1,2,4,5,2,1,2,4,3,0,2,1,
5,3,0,2,1,3,4,2,1,0,3,3,2,1,2,4,3,0,0,3,0,3,0,2,3,0,4,1,2,3,0,3,2,2,3,0,3,0,0,3,
0,3,1,2,4,1,3,1,2,4,1,3,2,2,3,2,5,2,0,5,2,3,2,0,3,4,1,2,2,3,4,1,2,0,3,3,1,0,0

Solving time: 2.8s

val orderedCarsByType = (0 -> 110, 1 -> 60, 2 -> 110 , 

3 -> 120, 4 -> 40, 5 -> 30)



Flow Shop Scheduling

• Factory scheduling
– A number of pieces must be machined 

– They follow the same path on machines
• Step1 on machine1, step2 on machine2, etc.

– Each part takes a different amount of time on each 
machine

– Parts are ordered at the start, and never between 
machines

– A machine must wait if the next part is not ready

– A part must wait if the next machine is not ready

– Minimize the total machining time by properly 
sequencing the parts



Flow shop scheduling

• Parts must pass through a machine line

– Each part takes a different duration on each machine
– Parts are sequenced at the start
– machines must wait if the next part is not ready from previous machine
– A part must wait if the next machine is not ready

• Problem statement
– Given

• Machines, set of parts and duration of each part on each machine

– Find
• Proper sequence of the parts

– Such that
• total machining time is minimized



A Flow shop scheduling problem

and its solution

no more improvement found after 77 it, 1150 ms
job sequence:0,2,6,8,4,5,3,1,7

val machineToJobToDuration:Array[Array[Int]] =

Array(

Array(1,2,1,7,2,5,5,6,7),

Array(4,5,3,1,8,3,7,8,4),

Array(6,8,2,5,3,1,2,2,8),

Array(4,1,7,2,5,5,6,4,5))



«Use»  Architecture of OscaR.cbls

Propagation: 
Propagation element, Propagation stucture

Algo: 
algorithms and specialized data-structures (ex: sequences)

Computation: 
Variables, IntVar, SeqVar, SetVar, invariants 

Objectives:
Objective (as a function of IntVar)

Search
neighbourhood

Lib of 
invariants

Lib of 
neighbourhoods

Lib of 
combinators

Constraint: 
constraint, system

Lib of Constraints

Routing: 
model & neighbourhood

Scheduling: 
model & neighbourhood

Core
Lib



Code structure

• algo
• core

– computation
– propagation
– constraint
– objective
– search

• lib
– constraint
– invariant
– search

• neighbourhoods
• combinators
• linear selectors

• modelling
• business

– routing
– scheduling  (deprecated)

• benchmarks
• visual

Business package provides 
model and neighbourhoods for 
• routing 
• scheduling (deprecated)

import oscar.cbls._
import oscar.cbls.modeling._

object MyStuff extends CBLSModel{…}

import oscar.cbls.business.routing._

To write simple models, 
modelling package 
provides factories to core and lib



Conclusion: Features of Oscar.cbls

• Modelling part: Rich modelling language
– IntVar, SetVar, SeqVar
– ~100 invariants: Logic, numeric, set, min-max, etc.
– 17 constraints: LE, GE, AllDiff, Sequence, etc.
– Constraints can attribute a violation degree to any variable
– Model can include cycles
– Fast model evaluation mechanism

• Efficient single wave model update mechanism
• Partial and lazy model updating, to quickly explore neighbourhoods

• Search part
– Library of standard neighbourhoods
– Combinators to define your global strategy in a concise way
– Handy verbose and statistics feature, to help you tuning your search

• Business packages: Routing, scheduling
– Model and neighbourhoods

• FlatZinc Front End [Bjö15]

• 50kLOC

• Open source LGPL
– Code using OscaR is not contaminated
– Extensions and corrections to OscaR are expected to be pushed back to OscaR
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Who is behind OscaR.cbls?

• CETIC team
– Renaud De Landtsheer
– Thomas Fayolle
– Fabian Germeau
– Gustavo Ospina
– Christophe Ponsard
– Yoann Guyot (until 2017)

• Contributions from Uppsala
– Jean-Noël Monette
– Gustav Björdal

• Internships & MS Theses
– UMONS: Gaël Thouvenin, Sébastien Drobisz, Florent Ghilain, 

Jannou Bohée, Quentin Meurisse
– IPL: Fabian Germeau
– HENALUX: Quentin Wautelet



Where is OscaR?

• Repository / source code

– https://bitbucket.org/oscarlib/oscar/wiki/Home

• Released code and documentation

– https://oscarlib.bitbucket.org/

• Discussion group / mailing list

– https://groups.google.com/forum/?fromgroups#!foru
m/oscar-user

https://bitbucket.org/oscarlib/oscar/wiki/Home
https://oscarlib.bitbucket.org/
https://groups.google.com/forum/?fromgroups


Other CBLS tools

• Comet
– First CBLS implementation by Pascal van Hentenryck and Laurent Michel
– Not maintained since 2008

• Kangaroo
– One paper @CP2011, status unknown, not available

• LocalSolver
– Commercial tool, with academic licence
– Booleans, floats, integers, lists with very few invariants
– Closed search procedure, closed source

• EasyLocal++
– No support for modelling

• GoogleCP
– Not a CBLS tool; a CP engine mimicking CBLS, less scalability

• InCell
– CBLS engine, Toulouse, Cedric Pralet

• Yacc
– ??



Two typical remarks on OscaR.cbls

• Why don’t you use C/C++ with templates, and 
compile with gcc –o3? You would be 2 times faster!

• I can develop a dedicated solver that will run 2 
times faster because it will not need the overhead 
data structures of OscaR.cbls

… these remarks are correct, but …



Brain cycle 

is more valuable than CPU cycle

• Algorithmic tunings deliver more than 2 to 4!
– Ex: symmetry elimination on neighbourhoods

– Ex: Restricting your neighbourhood to relevant search 
zones

– Ex: Tuning when your neighbourhoods are actually used

– We lately had a speedup 10 by tuning a search procedure

• Our framework cuts down dev cost, 
so you have time to focus on these high-level tunings! 

• TODO: parallel propagation
– Goal: same “basic speed” as dedicated implementation

– A core is cheaper than a single day of work for an engineer



Sörensen’s conjecture (Prof UAntwerp)

In the real world, solving

optimization problems

using exact methods is a

waste of resources


