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— Oscar OSCaR

OPERATIONAL RESEARCH IN SCALA

* Open source framework for combinatorial optimization

- o

e Startedin 2011

— Open source LGPL license
* https://bitbucket.org/oscarlib/oscar
* Implemented in Scala

— Consortium

. UCL, N-Side Belgium
* Contributions from(Uppsala) Sweden
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C)CGHC Combinatorial optimization problems

 Ex:Scheduling

— Tasks, precedence's
— Shared resources

— Deadlines
— Minimize time span

* Ex: Routing
— Points, vehicles
— Distance
— Time windows
— Minimize overall distance

* Ex: Warehouse location
— Shops to supply
— Where to build warehouses?
— Minimize operation + construction costs
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TSP : all the possible tours
n cities; (n-1)! tours

@ @ @ ® @ @ @ O TSP : random tour?
© 0 0690 9 9 @9 pikaninitial solution
@ © 06/ @ @ @ @
-+ = : Repeat
© ofe:0 ® @ o :
.{.7.1.\'.\;. 0 o Explore neighbourhood
o .'l@‘.‘l;j; o o Move to best neighbour
' e, @ 018 '¢ @ @ Until no better neighbour
@ @@ 0 @ 0 O

TSP : moving a city

to another position in the tour
Current state:a 2 b 2c 2d 2 e 2a
Moving city c yields three neighbours:

Some black magic required a?>c>b>d>e>a
8 . a=>b=>d=>c=>e>a

to escape from local minima a>3b>ddedcDa
O(n? ) neighbours when considering all cities

@ Point in the search space



Local search is black magic

Non exhaustive
Needs tuning, benchmarking
But it works!

Local search practitioners, like you, are magicians

| am a wand maker,

and | will show you

why OscaR.cbls is a good wand Qe

OscaR

OPERATIONAL RESEARCH IN SCALA
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* Introduction
— Goal of OscaR.cbls
— NQueens
 Warehouse Location Problem
— Problem statement
— Solution
— About modelling
— About searching
 Under the hood of OscaR models
— Propagation
— Architecture
* Routing with OscaR.cbls
— Routing convention
— Model support
— Search support
* Cross product of neighbourhoods
* More examples
— Flow shop scheduling
— Car sequencing
 Conclusion
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* OscaR.cbls is developed primarily at CETIC

 CETICis a research centre in Belgium
— Focus on technology transfer in IT
— No fundamental research

— As such, OscaR.cbls is our research topic:

* How to make it faster-better-cheaper for users?
— Cheaper means « faster to develop a solution » since your time is money

* How to make it faster-better-cheaper for researchers?

* To fight against shelf research:

Make the research, write a report, put it in a shelf, do something
else
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e Why?
— Expert, like you, are expensive
— Non-expert can be empowered with smart algorithms in the hands
— Applications tend to change their requirements

* Agile approaches
* Evolving market needs

— Human brain is limited (at least mine)

* With OscaR.cbls, you can focus on the black magic part
where a lot of gain can be achieved

e How?
— Declarative approaches

* CBLS Modelling language for defining your problem
* Declarative language for defining search procedures

— Cost of license
* This is LGPL (free, non-contaminating)

— Integration
* This is Scala, compiles to Java bytecode
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* Developers targeting new applications
— Obviously

e Researchers

— Develop their innovative algorithms within OscaR.cbls
(constraints, meta-heuristic, neighbourhood, etc. )

— Don’t waste their time on everting else
— Make their research result be used, add to OscaR.cbls

e Benchmark makers

— Comparing different algorithms if often a tricky job:
* not the same programming language,
* not the same base algorithms,
* not the same implementation quality, etc.

— OscaR.cbls can be used as a reference platform for sound comparison
of algorithms
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‘I

"he basic equation of local search

Local search - based solver = model + search procedure

.

variables
constraints

o0 neighbourhoods
objectives

metaheuristics
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val nQueens = 20000 // Number of queens
val queensRange= 0 to nQueens -1
val init = Random.shuffle(0 until nQueens)

// Variables
val queens = Array.tabulate(nQueens)(q =>
CBLSIntVar(0 to nQueens -1,init(q),"queen" + q))

// Constraints Model
val ¢ = new ConstraintSystem(m)

c.add(allDifferent(queensRange.map(q => queens(q) + q)))
c.add(allDifferent(queensRange.map(q => q - queens(q))))

close()
// Swapping two queens to decrease overall violation
swapNeighborhood(gueens) I Search

.doAlIMoves(_ >= nQueens || c.violation.value == 0, c) procedure

printin(queens.mkString(","))
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val nQueens = 20000 // Number of queens
val queensRange= 0 to nQueens -1
val init = Random.shuffle(0 until nQueens)

// Variables
val queens = Array.tabulate(nQueens)(q =>
CBLSIntVar(0 to nQueens -1,init(q),"queen” + q))

// Constraints

val ¢ = new ConstraintSystem(m) Model
c.add(allDifferent(queensRange.map(q => queens(q) + q)))
c.add(allDifferent(queensRange.map(q => q - queens(q))))

val mostViolatedQueens = argMax(c.violations(queens))
close()

// Swapping a queen with one of the most violated ones
swapNeighborhood(queens, searchZone = mostViolatedQueens,
symmetryCanBeBrokenOnindices = false)
.doAlIMoves(_ >= nQueens || c.violation.value == 0, c)

Search
procedure



.) i A simple Nqueens
Y&mcehc with old fashion search procedure
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val init = Random.shuffle(0 until nQueens)
val queens = Array.tabulate(N)(q => CBLSIntVar(init(q), range, "queen" + q))

c.add(allDifferent(Array.tabulate(N)(q => queens(q) + q)))
c.add(allDifferent(Array.tabulate(N)(q => q - queens(q))))

Model
close
: \f you really
varit=0
while(c.violation.value > 0){ Wa nt tO d O th at. .o |
selectMin(range,range)( Selecting the pair
(p,q) => c.violation.swapVal(queens(p),queens(q)), Of queens
(p,q) =>p<q) with the best swap
match Search
case (q1,g2) => Swapping orocedure
queens(gl) :=: queens(q2) the values
}
it+=1

}
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* Given
— S: set of stores that must be stocked by the warehouses

— W: set of potential warehouses
« Each warehouse has a fixed cost f,,
- transportation cost from warehouse w to store s is ¢,

* Find
— O: subset of warehouses to open
— Minimizing the sum of the fixed and the transportation

cost:
Z fw + ZminWeO (Cws) L4 ¢ ? * ?
weO seS e 2 o
) ° . ? ° . 2 o
* Notice '

— A store is assigned to its nearest open warehouse



C) . l'he uncapacitated warehouse
Celic location problem

ooooooooooooooooooooooooooo

« Given
— S: set of stores that must be stocked by the war~"  es

— W: set of potential warehouses . %
- Each warehouse has a fixed cost f (\(\“

« transportation cost from - \N O
 Find O\) o
ok V

— A store is assigned to its nearest open warehouse
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val m = new Store()
val warehouseOpenArray = warehouses.map(
CBLSIntVar(m,0to 1, 0, "warehouse_" + + "")).toArray

val openWarehouses = Filter(warehouseOpenArray)

val distanceToNearestOpenWarehouse = stores.map((store:Int) =>
min(distanceCost(store), openWarehouses,
defaultCostForNoOpenWarehouse)).toArray

val obj = Objective(Sum(distanceToNearestOpenWarehouse)
+ Sum(costForOpeningWarehouse, openWarehouses))

m.close()

val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5),
maxConsecutiveRestartWithoutlmprovement=2, obj)

neighborhood.doAllMoves(ob))



Ocetic

Your Connectionto ICT Research

‘I

"he console output

The search can display info roughout the search:
0: no verbosities
1: every 10t of a second, summarise all performed moves, by neighbourhoods
2: print every move
3: print every search
4: print every explored neighbour

neighborhood.verbose = 2

- Means:
WarehouseLocation(W:15, D:150) .
SwitchWarehouse (warehouse 0:=0 set to 1; objAfter:7052) - # ObJ decreases
Sw.itchWarehouse(warehouse_l:zO set to 1; obj:After:5346) - # after thlS move
SwitchWarehouse (warehouse 2:=0 set to 1; objAfter:4961) - #
SwitchWarehouse (warehouse 3:=0 set to 1; objAfter:4176) - #
SwitchWarehouse (warehouse 4:=0 set to 1; objAfter:3862) - #
SwitchWarehouse (warehouse 9:=0 set to 1; objAfter:3750) - # # MeanS:
SwitchWarehouse (warehouse 12:=0 set to 1; objAfter:3620) - # we found a
SwitchWarehouse (warehouse 0:=1 set to 0; objAfter:3609) - # . _
SwapWarehouses (warehouse 0:=0 and warehouse 4:=1; objAfter:3572) - # solution with a
SwapWarehouses (warehouse 1:=1 and warehouse 6:=0; objAfter:3552) - # new best
SwapWarehouses (warehouse 0:=1 and warehouse 1:=0; objAfter:3532) - 4
SwitchWarehouse (warehouse 7:=0 set to 1; objAfter:3528) - # Objective
RandomizeNeighborhood (warehouse 12:=1 set to 0, warehouse
SwitchWarehouse (warehouse 7:=0 set to 1; objAfter:3656) -
SwapWarehouses (warehouse 12:=0 and warehouse 13:=1; objAfter:3528) - ° ° Means:
RandomizeNeighborhood (warehouse 14:=0 set to 1, warehouse .
SwitchWarehouse (warehouse 7:=0 set to 1; objAfter:3907) - we found an
SwitchWarehouse (warehouse 12:=1 set to 0; objAfter:3882) - . . .
SwitchWarehouse(warehouse:13:=l set to 0; objAfter:3862) - solution with ObJ
SwitchWarehouse (warehouse 14:=1 set to 0; objAfter:3658) -
SwitchWarehouse (warehouse 12:=0 set to 1; objAfter:3528) - ° equal to the

MaxMoves: reached 2 moves best so far
openWarehouses:={1,2,3,6,7,9,12}




Ocetic

Your Connectionto ICT Research

WareHouselocationVisu

— o
* We_ s o & B =] - 5]
el 5 [ = e . e ODoOpg o° UD. _
= e B * °® 0y ° IDET
u UeC ad, ‘il " s T ey W
<a (=] o .|:|. o E' 2 e i l® :D’.
e | : o a8 AL o O »° . 8 _
. BgfE g O el i a .0 o, “Ra i % ‘D@. g W - 1000
uo g e D.OD (=] D? * ‘mmp* .'EP D'.D.D’ B o E{QD‘~ * = - a'%
o % n* o a8 ] ho ‘e
o o ° . E -—
e fEé, @ g . x, w1 o %o o M t'ngu *dg ° = S - 1000
3 * L o
B o DD S.:[a =] x o.uﬂ '.SBDEI * o A4 & . DD ° o B C
g " d:l. 2 DDD [ ® o 2 o = .D’ o DDJ. L2 ..UE] * % 'E E
2 . .D o
i oo =g oo ‘e ® é-’,mn Be,. g . [ 'DE
. o*'0 @ . v: * * B, *°'® .
s he e, TR o0 & P o E T Complex search strategy:
o o .. =) o spens ° O =]
s EE o 0 s pu] « o ‘o8 & 0@ g o0 .o
» ° bm% oo 0 B 0 o B0, @ @ E g e Swit h
oo o, s Be PRI ol Ll Bl Kk . - WILC
0 gy 5] a8 . % o o o o, 8% gley °®
= . c% o o e oh o B (] . A (] ° & =] .
(o o
Pl c g% w9 fye ood g et et 0 e Swap with kNearest
DE =] o0 o o?
0o . ot e o &% . ) og
o ‘e Be o s o @ * =m
i 8 g DR G ¥ " et S SR L * Swap
&
nn.ﬂ '. - D.: g Dn.‘EED B g Eho F . q:]'.'ﬂ a, =] "
fm % ®,'8 Lo "t ¥ a2 & o * Restarts
5 B o 53 & ‘mge * @ :'DE E&'D =
0 »e O, “;1 ae o 0. %4 3] ] .? . ‘.0 e la ° H
° o
T n . . o. ° o Mu(switch)
? |‘_% g oot & Dnno a ., g ae.8 s ° W * Os DDD
& pl .0 99 @DDD - DDD‘. o @ e 'D. < B R
g o
Da.qa’; DF. . EPL‘I g DDD L D. . @, .tl,D . E' ® ¢
o8 i e m o'g S g
Op Dn. g e 'G-D.- o .8 p ., :] @ = = 85 DDL s
o 2 B,° o . o .
® & 'l =] '.EQE it . E ° Do ° = .8 2 ®e ‘D 'DDD Da:‘o
oo o L Qe > Ee, * o o [&]
a o .D. DD’Q ® o
. qn s O g ¢ goO . . *Og -~ O % B .0
. o SO e o o P ed og 8 N P
ot -3 o mR g g o F " B e
-E s .E\] b U o D.D‘ B a 2o El. - D.. m o O
o o
TR T B @ “pa.o0 . e R
. e . v '..I:I. 3 . B & *TOg e L4 )
o as Cghtad Rt e Chg et a0 el
o o o te,E
. o Py a ° u] . . o
g o0 W™ P et e .8% o Q’%D-ﬁqu
ol @S .3 % o Bl At - = g. e g @ ¢ gy
o i L Fa opd ° g -« +8 > B & -'J
Be B . .%D ° K} & [ 19 .CD o ote B a B O, ¢ =
Je ® ey 0, /| > « O a .0 .
D:lob ° % [} Uu D.DD " * éj ° & ot %
he *o°0 % ° o ° ° . - o, ° ¥ T @ a



CelicC

Your C Researc h

* Three types of variables
— IntVar, SetVar, and SeqgVar

* |nvariant library
—Logic:
 Access on array of Int/SetVar, Filter, Cluster, etc.
—MinMax:
* Min, Max, ArgMin, ArgMax
—Numeric:
* Sum, Prod, Minus, Div, Abs, etc.
—Set:
* Inter, Union, Diff, Cardinality, etc.
—Seq:
* Concatenate, Size, Content , etc.
—Routig on Seq:
* Constant Distance, Node-Vehicle restrictions, etc.
Summing up to roughly 100 invariants in the library
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* Three sets of neighbourhoods
— Domain-independent: assign, swap, flip, roll, shift, etc.
— Routing: one point move, 2-opt, 3-opt, insert point, etc.
— Scheduling: flatten, relax

lots of tuning: symmetry elimination, hot restart, best/first, search zone,
etc.

* Neighbourhood combinators
— Selecting neighbourhood
— Stop criteria
— Solution management
— Meta-heuristics: restart, simulated annealing

— Combined neighbourhood: cross-product “AndThen”, linear
aggregation

— Graphical display of objective function vs. run time
* Can also build your own search procedure based on linear selectors



Your

C

CelicC

Researc h

Neighbourhoods can search for
— best neighbour (it must be accepted by the acceptation function)
— First improving neighbour
This setting is decided at the level of the basic search
neighbourhoods
— AssignNeighbourhood
— 2-opt

A basic search neighbourhood is a bunch of nested loops, and
most of our neighborhoods input a parameter for deciding
best/first for each level of their loop

— Common pattern: select..Behavior
— Expecting a types: LoopBehavior
— There are two types (with additional parameters): First () Best ()

Check Scaladoc of your neighbourhoods
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* The presented one, with best Switch:

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse ",
selectindiceBehavior = Best())
exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5),
maxConsecutiveRestartWithoutimprovement=2, obj)

e Tabu search (requires model extension)

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse "
searchZone = nonTabuWarehouses , selectindiceBehavior = Best())
acceptAll
afterMoveOnMove((a:AssignMove) => tabu(a.id) = it + tabulength; it += 1)
maxMoves somelterationBound withoutimprovementOver ob))
saveBestAndRestoreOnExhaust ob))

* Using the most efficient neighbourhood anytime

search = (BestSlopeFirst(AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")

SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses"))
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5),
maxConsecutiveRestartWithoutimprovement=2, obj)
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* You need to know how each neighbourhood performed
— What neighbourhood takes a lot of time?
— What neighbourhood does never find a move?

— Etc.

* How to collect profiling statistic
— Use the Profile combinator where you want to measure

val neighborhood =
(BestSlopeFirst(Profile(AssignNeighborhood(warehouseOpenArray, "Switch"))

Profile(SwapsNeighborhood(warehouseOpenArray, "Swap")))
onExhaustRestartAfter(RandomizeNeighborhood(warehouseOpenArray, W/5),
maxConsecutiveRestartWithoutimprovement=2, obj)

— Run the search as usual
neighborhood.doAllMoves(obj)

— Print the profiling statistics
printin(neighborhood.profilingStatistics)

— You get a ton of info (not all on the slide) Time measures are in ms

Neighborhood calls found sumGain sumTime avgGain avgTime slope

Switch 631 625 74905 1006 118 1
Swap 17 12 79 21467 4 1262

74458
3



C) b A quick look under the hood:
Scelhic Propagation graph for the WLP(4,6)

WO

W1
OpenWs
W2 WsCost Openmg
Cost bj
— o)
W3 WsToSO OpenWToS0
WsToS1 OpenWToS1
From the
WsToS2 OpenWToS2
Distance — P Transport
matrix WsToS3 OpenWToS3 Cost
WsToS4 OpenWToS4
— WsToS5

OpenWToS5

Propagation: update the output(s) to reflect a change on the inputs
— Single wave: elements are touched at most once
— Incremental: all invariants update their outputs incrementally
— Selective: only things that need to be updated wrt. changes are updated
— Partial: only things contributing to the needed output are updated



Yeeti A quick look under the hood:
Ocetic . . .
Selective + partial propagation
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* Modelling
— Sequence variable (very efficient to perform classical routing moves)

— Library of global routing constraints
* Route length(sequence, distance matrix)
* Node vehicle restrictions

e Searching
— Insert point
— One point move
— 2-opt

* Routing convention: all vehicles in the same sequence variable

V=4 ©) (3 O @ @
— Vehicle [0.. nodes [0..V-

— Vehicle starts are always in the sequence in that order
— Vehicle implicitly come back to their start point

— Vehicle starts cannot be moved by neighbourhoods

— At most one occurrence of every value in the sequence
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A VRP class
around the sequence variable

val myVRP =

val routeLength

new VRP (model,n,v)

constantRoutingDistance (
myVRP.routes,n, v,
symmetricDistanceMatrix) (0)

val penaltyForUnrouted = 10000

val obj = Objective(routeLength

model.close ()

+ penaltyForUnrouted*n
— penaltyForUnrouted*length (myVRP. routes))
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* ConstantRoutingDistance

— given a distance matrix,

— maintains the driven distance

— options: isSymmetric? perVehicle? preCompute?

— Of(log(v)) update on classical neighbourhoods (with proper options)
* ForwardCumulativelntegerDimensionOnVehicle

— given a function (node x content x node’) =>content’

— maintains an array node=>content

 ForwardCumulativeConstraintOnVehicle
— given
e afunction (node x content x node’) =>content’
* A max capacity

— maintains a violation per vehicle (sum of overshoot per node)

* NodesOfVehicle

— given route
— maintains vehicle => set of nodes reached by vehicle
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* NodeVehicleRestrictions
— given set of couples (node, vehicle)

— maintains number of such couples (n,v) such that vehicle v
reaches node n

— O(log(v)) update on classical neighbourhoods

e RouteSuccessorAndPredecessors
— given route

— maintains two IntVar arrays: node => predecessor, node =>
successor

— you can declare virtually anything from these arrays, using
element invariant

e VehicleOfNodes

— given route
— maintains a SetVar array: vehicle => nodes reached by vehicle
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* |nsertPoint

— InsertPointRoutedFirst:
for(r <- routed)
for(u <- unrouted relevant wrt r)

— InsertPointUnroutedFirst
for(u <- unrouted)
for(r <- routed relevant wrt u)

* OnePointMove
* RemovePoint
 SegmentExchange
* ThreeOpt
* TwoOpt

— TwoOptl

— TwoOpt2



Ocetic Symetric VRP (v = 100) N vs. run time
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val search = (BestSlopeFirst(List (
insertPointUnroutedFirst (k=10),
insertPointRoutedFirst (k=10),
onePointMove (k=10),
twoOpt (k=10),
threeOpt (k=10)))
exhaust threeOpt (k=20))

Median over 10 runs with symmetric distance:
square map with randomly placed points and straight line distance

30,00 26,45
25,00
20,00
15,00

10,00

Run time [second]

5,00

0,00
1k 3k 5k 7k 9k 11k

Number of points
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e Additional constraint call for specific
neighbourhoods
— Pick-up & delivery (PDP)
* Two point insert

* Two point move

— Only try moving deliveries after their pick-up,
and on the same vehicle

 Complex neighbourhoods

— Lin-Kernighan: A succession of two-opts



C) b An important combinator:
‘ SCCNC the cross-product of neighbourhoods

val 7nsertPickupAndRelatedDeliver

insertPointUnroutedFirst (nonRoutedPickupPoints, ..

dynAndThen (insertMove: InsertPointMove) =>
insertPointUnroutedFirst
pickUpToDelivery(insertMove.insertedPoint), ..))

What is explored: a search tree with two non-root levels

— Objective function is evaluated only at the actual neighbours that form
the bottom of the tree

— dynAndThen returns a compositeMove,
in this case this move includes two instances of insertpointMove

pl,posl n2,p052
p1,p0s2 p2,p0s

d1,pos d1,pos3 d2,pos2 d2,pos3
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Pruning the exploration tree

* Once the pick-up node is inserted, some constraints might
already be violated, and search tree can be pruned

— Deadline constraints

* Not all constraints can be checked:
— “pick-up before delivery” will be violated anyway
— “vehicle content < max capacity” will be inconclusive

val pickupAndDeliveryInsertTW = (
insertPointUnroutedFirst(nonRoutedPickupPoints, ..)

dynAndThen (
(insertMove: InsertPointMove
if(t7imin == 0) {

insertPointUnroutedFirst(
pickUpToDelivery(insertMove.insertedPoint), ..))
}else NoMoveNeighborhood

))

(triangular inequality holds)
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e Sequencing of cars in assembly lines:

— Maximum k cars of any n consecutive cars in the sequence can
have option o in {abs,airCo,esp}

— For all option o, each having specific (k, n)
* They can only build the ordered cars

* Problem statement:
— Given
* Order book (set of cars to build, specified by their equipment)
— Find
* Ordering for these cars

— Such that
* All sequence constraints are enforced



C)cetic A Car Sequencer: Model
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val m = new Store()
val ¢ = new ConstraintSystem(m)

//initializing the sequence with a random permutation of the ordered cars
val carSequence = Array.tabulate(nbCars)(CBLSIntVar(.......,carTypes," carClassAtPosition" + ))

//airCo: class(0, 2, 4) max 2 out of 3
c.post(sequence(carSequence,3,2, makeBoolArray(0,2,4)))
c.post(sequence(carSequence,5,3, makeBoolArray(0,1,4,5)))
c.post(sequence(carSequence,5,3, makeBoolArray(0,1,2)))
c.post(sequence(carSequence,3,2, makeBoolArray(3,4,5)))

val carViolation = c.violations(carSequence)
val violatedCars = filter(carViolation)
val mostViolatedCars = argMax(carViolation)

c.close
val obj:Objective = c.violation
s.close()



(I) b A Car Sequencer: a Search Strategy
wceelc Neighbourhoods And Three Restarts

val search =
(swapsNeighborhood(carSequence,"mostViolatedSwap",
searchZone2 = mostViolatedCars,
symmetryCanBeBrokenOnlindices = false)

exhaust wideningFlipNeighborhood(carSequence,"flipSubSequence")

onExhaustRestartAfter|(
shuffleNeighborhood(carSequence, mostViolatedCars,
name = "shuffleMostViolatedCars")
guard(() => mostViolatedCars.value.size > 2), 2, obj)

onExhaustRestartAfter(
shuffleNeighborhood(carSequence, violatedCars,
name = "shuffleSomeViolatedCars",
numberOfShuffledPositions = () => 5 max (violatedCars.value.size/2)), 2, obj)

orElse (shuffleNeighborhood(carSequence, name = "shuffleAllCars") maxMoves 4)

saveBestAndRestoreOnExhaust obj)
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val orderedCarsByType = (0 -> 110, 1 -> 60, 2 -> 110
3 => 120, 4 -> 40, 5 -> 30)

totaINumberOfCars:470

Proposed car sequence:
0,2,1,3,3,0,1,2,4,3,1,2,2,5,3,0,2,1,4,3,2,1,2,4,3,0,1,2,3,4,0,1,2,3,4,1,0,2,3
,4,2,1,2,4,5,2,1,2,5,3,1,2,0,3,4,1,2,0,3,3,1,0,2,3,4,0,1,2,3,4,1,0,2,3,4,2,1,2,
4,5,2,0,3,2,3,0,1,3,0,3,0,1,3,2,5,0,2,3,0,3,0,0,3,0,3,0,2,3,0,5,2,0,3,0,5,2,0,
3,5,1,2,0,3,4,2,1,2,5,3,0,1,2,4,3,1,2,0,3,5,2,0,1,3,3,0,4,1,2,3,0,3,0,0,3,2,5,
0,0,3,2,5,0,0,3,2,4,1,2,3,0,5,2,2,5,0,5,2,3,1,1,3,0,3,0,0,3,0,3,2,1,4,0,3,2,1,
4,2,5,2,0,3,2,3,0,5,2,2,3,4,1,2,0,3,4,2,1,2,4,3,2,0,3,0,5,2,2,5,2,3,0,0,3,2,3,
0,5,0,2,3,0,3,2,4,1,2,3,0,3,0,3,2,0,3,0,3,2,0,3,0,3,0,2,5,0,3,2,0,5,2,3,0,0,5,
2,3,2,1,4,0,3,2,0,3,2,4,1,2,3,0,4,1,2,3,4,1,2,0,3,4,1,2,2,5,3,0,1,2,4,3,2,1,0,
4,3,2,1,0,3,3,2,0,1,4,3,2,0,5,0,3,2,0,3,2,3,2,0,3,2,3,0,1,3,0,3,1,0,3,2,4,1,0,
3,2,5,0,0,3,2,3,0,0,3,0,3,0,0,3,3,0,1,0,3,3,1,0,0,3,3,2,1,2,4,5,2,1,2,4,3,0,2,1,
5,3,0,2,1,3,4,2,1,0,3,3,2,1,2,4,3,0,0,3,0,3,0,2,3,0,4,1,2,3,0,3,2,2,3,0,3,0,0,3,
0,3,1,2,4,1,3,1,2,4,1,3,2,2,3,2,5,2,0,5,2,3,2,0,3,4,1,2,2,3,4,1,2,0,3,3,1,0,0

Solving time: 2.8s
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* Factory scheduling
— A number of pieces must be machined

— They follow the same path on machines
e Stepl on machinel, step2 on machine2, etc.

— Each part takes a different amount of time on each
machine

— Parts are ordered at the start, and never between
machines

— A machine must wait if the next part is not ready
— A part must wait if the next machine is not ready

— Minimize the total machining time by properly
sequencing the parts



C)CGHC Flow shop scheduling
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* Parts must pass through a machine line

— Each part takes a different duration on each machine

— Parts are sequenced at the start

— machines must wait if the next part is not ready from previous machine
— A part must wait if the next machine is not ready

* Problem statement
— Given
* Machines, set of parts and duration of each part on each machine
— Find
* Proper sequence of the parts

— Such that
 total machining time is minimized



, . A Flow shop scheduling problem
‘ C)cehc and its solution

val machineToJobToDuration:Array[Array[Int]] =

no more improvement found after 77 it, 1150 ms
job sequence:0,2,6,8,4,5,3,1,7
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C)CQﬁC «Use» Architecture of OscaR.cbls

Routing: Scheduling:
model & neighbourhood model & neighbourhood
. Lib of Ll‘? of Lib of Constraints . le.of
neighbourhoods | combinators invariants Lib

Search Constraint: Core
neighbourhood constraint, system

Objectives:
Objective (as a function of IntVar)

Computation:
Variables, IntVar, SeqVar, SetVar, invariants

Propagation:
Propagation element, Propagation stucture

Algo:
algorithms and specialized data-structures (ex: sequences)




[
cetic

Your Connectionto Research

algo
core

computation
propagation
constraint
objective
search

constraint
invariant
search

* neighbourhoods
e combinators
* |inear selectors

modelling
business

— scheduling (deprecated)

routing

benchmarks
visual

To write simple models,
modelling package
provides factories to core and lib

import oscar.cbls._
import oscar.cbls.modeling. _

object MyStuff extends CBLSModel{...}

Business package provides
model and neighbourhoods for
* routing

* scheduling (deprecated)

import oscar.cbls.business.routing.
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Modelling part: Rich modelling language
— IntVar, SetVar, SeqVar
— ~100 invariants: Logic, numeric, set, min-max, etc.
— 17 constraints: LE, GE, AlIDiff, Sequence, etc.
— Constraints can attribute a violation degree to any variable
— Model can include cycles

— Fast model evaluation mechanism
* Efficient single wave model update mechanism
* Partial and lazy model updating, to quickly explore neighbourhoods

Search part
— Library of standard neighbourhoods
— Combinators to define your global strategy in a concise way
— Handy verbose and statistics feature, to help you tuning your search

Business packages: Routing, scheduling
— Model and neighbourhoods

FlatZinc Front End [Bj615]
50kLOC

Open source LGPL
— Code using OscaR is not contaminated
— Extensions and corrections to OscaR are expected to be pushed back to OscaR
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e CETIC team

— Renaud De Landtsheer
— Thomas Fayolle

— Fabian Germeau

— Gustavo Ospina

— Christophe Ponsard

— Yoann Guyot (until 2017)

* Contributions from Uppsala
— Jean-Noél Monette
— Gustav Bjordal

* |Internships & MS Theses

— UMONS: Gaél Thouvenin, Sébastien Drobisz, Florent Ghilain,
Jannou Bohée, Quentin Meurisse

— |PL: Fabian Germeau
— HENALUX: Quentin Wautelet
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* Repository / source code
— https://bitbucket.org/oscarlib/oscar/wiki/Home

e Released code and documentation
— https://oscarlib.bitbucket.org/

 Discussion group / mailing list

— https://sroups.google.com/forum/?fromgroups#!foru
m/oscar-user



https://bitbucket.org/oscarlib/oscar/wiki/Home
https://oscarlib.bitbucket.org/
https://groups.google.com/forum/?fromgroups
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* Comet
— First CBLS implementation by Pascal van Hentenryck and Laurent Michel
— Not maintained since 2008
* Kangaroo
— One paper @CP2011, status unknown, not available
* LocalSolver
— Commercial tool, with academic licence
— Booleans, floats, integers, lists with very few invariants
— Closed search procedure, closed source
e Easylocal++
— No support for modelling
 GoogleCP
— Not a CBLS tool; a CP engine mimicking CBLS, less scalability
* [nCell
— CBLS engine, Toulouse, Cedric Pralet

* Yacc
— 7?7
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 Why don’t you use C/C++ with templates, and
compile with gcc —03? You would be 2 times faster!

* [ can develop a dedicated solver that will run 2
times faster because it will not need the overhead

data structures of OscaR.cbls

... these remarks are correct, but ...



o . Brain cycle
SCelic is more valuable than CPU cycle

e Algorithmic tunings deliver more than 2 to 4!
— Ex: symmetry elimination on neighbourhoods

— Ex: Restricting your neighbourhood to relevant search
zones

— Ex: Tuning when your neighbourhoods are actually used
— We lately had a speedup 10 by tuning a search procedure

 Our framework cuts down dev cost,
so you have time to focus on these high-level tunings!

 TODO: parallel propagation
— Goal: same “basic speed” as dedicated implementation
— A core is cheaper than a single day of work for an engineer



N
Ocetic ssrensen’s conjecture (Prof UAntwerp)
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In the real world, solving
optimization problems
using exact methods is a
waste of resources



