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* Open source framework for combinatorial optimization

- o

e Startedin 2011

— Open source LGPL license
* https://bitbucket.org/oscarlib/oscar
* Implemented in Scala

— Consortium

. UCL, N-Side Belgium
* Contributions from{UPPSALA) Sweden
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C)CQﬁC «Use» Architecture of OscaR.cbls

Routing: Scheduling:
model & neighbourhood model & neighbourhood
. Lib of Ll‘? of Lib of Constraints . le.of
neighbourhoods | combinators invariants Lib

Search Constraint: Core
neighbourhood constraint, system

Objectives:
Objective (as a function of IntVar)

Computation:
Variables, IntVar, SeqVar, SetVar, invariants

Propagation:
Propagation element, Propagation stucture

Algo:
algorithms and specialized data-structures (ex: sequences)




C) b A quick look under the hood:
Scelhic Propagation graph for the WLP(4,6)
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Propagation: update the output(s) to reflect a change on the inputs
— Single wave: elements are touched at most once
— Incremental: all invariants update their outputs incrementally
— Selective: only things that need to be updated wrt. changes are updated
— Partial: only things contributing to the needed output are updated



Yeeti A quick look under the hood:
Ocetic . . .
Selective + partial propagation
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* When modelis closed

— Static propagation graph are sorted
by distance to decision (aka input) variables

* So each element belongs to a certain layer
* There are sot so many layers, but they are very wide

— Each propagation element is tagged by this distance

* Upon propagation
toPropagateHeap. insert(changedInputVariables)
while(toPropagateHeap.nonEmpty){
toPropagateHeap.popFirst.propagate()
toPropagateHeap. insert(newNodesToPropagate)
}

— toPropagateHeap sorts by distance (stored as a tag)

— toPropagateHeap aggregates on same Iayer
* Insertis
— O(log(nbLayers)) -time for the first element in the layer,
— 0O(1) -time for other ones
* Popis
— Of(log(nbLayers)) -time for the last element in the layer,
— 0O(1) -time for other ones
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* Propagation
— is the global process of updating the model
— Managed by the store

— It calls propagate()
* On the relevant propagation elements
* In the right order

* Propagation elements can be

— Variables:

 When a variable is propagated, it notifies its value change to the
invariants listening to it

— Invariants:
* They can update their output in code that implement this method
* That they can also perform the updates when they are notified
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* Propagation revisited

* Asimpleinvariant
sum

* Dynamic invariants
SumElement

e Variable and their notifications
— Int

— Set
* Value-wise notification

— Seq
* Checkpoints
* Generic approach for global routing constraints
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* Helpers are abstract invariants parameterized by
— Some IntValue

— Some function

* Int = Int
* IntxInt —> Int

— A domain; the rage of possible value for the output of the
function, given the range of the IntValue

 Example:

case class Abs(v: IntValue)
extends Int2Int (
v, //theIntValue
(x: Int) => x.abs, //thetransformation function

if (v.min < 0 && 0 < v.max) 0O to (-v.min max v.max)
else(

val a = v.min.abs

val b = v.max.abs

if (a<b) a to b else b to a
1)
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class Sum (vars: Iterable[IntValuel])
extends IntInvariant (

vars.map ( .value) .sum, //initialvalue

vars.map( .min).sum to vars.map( .max).sum) //range of output
with IntNotificationTarget{

A helper for invariants whose
single output is an IntValue

Which variable you want to be notified

about when they change value

for (v <- vars) registerStaticAndDynamicDependency (v)

finishInitialization() When vars change value they call this method

from IntNotificationTarget trait id is a value
transmitted through register... method

override def notifyIntChanged(v: ChanginglIntValue, 1id:Int,
oldVal: Int, newVal: Int) {

this :+= newVal - oldval

} A debug procedure that you should
implement and that is called by the store

when instantiated with flag debug=true

override def checkInternals(c: Checker) {
c.check(this.value == vars.map( .value) .sum)
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* When an invariant is notified, the following
method is called by the variable:

def notifyIntChanged(v: ChangingIntValue, id:Int,
oldVal: Int, newVal: Int)

Where:

e Vis areference to the variable

* |d is an integer value that is optionally passed as a parameter
to the method for registering dependencies

e oldVal is the value before the change
* newVal is the value after the change
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* Invariants declare their dependencies:
— What variable they listen to
— What variable they control (set the value of)

e Static propagation graph
— Declared at startup
— Used to coordinate propagation wave

* Dynamic propagation graph
— Edges are a subset of the static propagation graph
— Can be changed by invariants
— Used by variable to notify listening invariants

* For an invariant to play with dynamic dependencies, it must be defined
with VaryingDependencies

— So it gets additional back-end data-structure and the method,
key = registerDynamicDependency (var)

— This method returns a « key » to unregister. To unregister, simply call
key.performRemove ()

— Both methods have O(1)-time complexity
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I .
Ocetic 4 sum invariant with a subset (1/2)

case class SumElements (vars: Array[IntValue], cond: SetValue)
extends IntInvariant (cond.value.map (vars( ) .value) .sum)
with VaryingDependencies
with IntNotificationTarget with SetNotificationTarget {

val keyForRemoval = Array.fill(vars.length) {null}

registerStaticDependency (cond)
registerDeterminingDependency (cond)
registerstaticDependencies (vars)
for (i <- cond.value) {

keyForRemoval (1) = registerDynamicDependency (vars(i))

finishInitialization/()
override def notifyIntChanged(v: ChanginglntValue, 1index: Int,

oldVal: Int, newVal: Int) {
this :+= (newVal - oldVal)
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override def notifySetChanges (v: ChangingSetValue, d: Int,

addedValues: Iterable[Int],
removedValues: Iterable[Int],
oldValue: SortedSet[Int],

newValue: SortedSet[Int]) {
for (added <- addedValues) {

keyForRemoval (added) = registerDynamicDependency (

vars (added) )
this :+= vars (added) .value

}

for (removed <- removedValues) {
keyForRemoval (removed) .performRemove ()
keyForRemoval (removed) = null
this :-= vars(removed) .value

override def checkInternals (c:Checker) {
c.check (this.value == cond.value.map (vars (

} _

) .value) .sum)
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* Most invariants can update their update in the
notification procedure

e Sometime this is not desirable,
— because computation takes a significant amount of time,

— it is better to wait for all notifications to be received, and
perform this computation after

* To this end, invariants can also be propagated

— They have to override the method

override def performInvariantPropagation ()

— Upon notification, the invariant must schedule itself for
propagation (set itself into the propagation heap) by calling

scheduleForPropagation ()
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* An array of CBLS variable and an array of Invariants

v variables i invariants listening to the array

SumElements (
Array[IntValue],

v*i dependencies in cond: SetValue)
static propagation graph

 Many dependencies in the static propagation graph

— Close requires sorting the propagation graph, slow down!

e Also: the invariants all want to compute the same
static result on the array

Ex: Zv in the array v.max
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e OscaR.cbls can create an « artificial » bulky node in
the middle

v variables i invariants listening to the array

SumElements (
Array[IntValue],

v+i dependencies in cond: SetValue)
static propagation graph (instead of v*i)

* This node is called « bulk »
— Used to symbolize dependencies,
— Reduces memory consumption
— Speed up graph algo that run when store.close ()

— Can memoize static results computed by invariants
(see API)
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case class SumElements (vars: Array[IntValue], cond: SetValue)
extends IntInvariant (cond.value.map (vars( ) .value) .sum)

with Bulked[IntValue, Unit] with VaryingDependencies
with IntNotificationTarget with SetNotificationTarget({

val keyForRemoval = Array.fill(vars.length) {null}

registerStaticDependency (cond)
registerDeterminingDependency (cond)

. . i et ;

bulkRegister (vars)



Object model of Int type
C)CQHC (similar for Set and Seq)
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Invariant should input IntValue,
so they can be given CBLSIntVar, IntConst

, , , or other invariant as input
If an invariant listens

to an IntValue,
it must implement this trait (one method), m
to receive notification

calls

ETTE T

An invariant with a single output,
of type Integer
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* « Only call me about these values »
— Invariants specify a set of integer values to the variable

— It is notified about change only when at least one of these value
is added to or removed from the set

* HowTo:

— Dyamic dependency is declared through:

val key:ValueWiseKey =
registerDynamicValueWiseDependency (cond)

— The returned key has two additional methods:

key.addToKey (newValueToLlistenAbout)
key.removeFromKey (valueIAmNotInterestedAboutAnymore)

 This adds a filter to the notifications
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* |ncremental updates

— Three incremental operations:

* |nsert
e Delete

* Move(from,to,moveAfter,flip)
— Additional operations

* rollBack
* assign

* Symbolic notification messages: SeqUpdate

previousUpdate

IncrementalUpdate

A

Sequence valueAfter Seq szdare
LatestNotified
Assign Move
RollBackToCheckpoint Remove

Insert

* Check our paper at CPAIOR’18

DefineCheckpoint
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OrElse combinator

* Only one method to implement:

class OrElse(a: Neighborhood, b: Neighborhood)
extends NeighborhoodCombinator(a, b) {

override def getMove (obj: Objective,
initialObj:Int,
acceptanceCriterion: (Int, Int)=>Boolean)
SearchResult = {

a.getMove (obj, 1nitialObj, acceptanceCriterion) match ({
case NoMoveFound =>
a.reset ()
b.getMove (obj, initialObj, acceptanceCriterion)
case x => X
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