
Local Search with OscaR.cbls

for the Nerds who Want to Contribute

OscaR v4.0 – Spring2018

Renaud De Landtsheer, Thomas Fayolle,

Fabian Germeau, Gustavo Ospina,

Christophe Ponsard

– Oscar
• Open source framework for combinatorial optimization

• CP, CBLS

• Started in 2011

– Open source LGPL license
• https://bitbucket.org/oscarlib/oscar

• Implemented in Scala

– Consortium
• CETIC, UCL, N-Side Belgium

• Contributions from UPPSALA Sweden

«Use» Architecture of OscaR.cbls

Propagation:
Propagation element, Propagation stucture

Algo:
algorithms and specialized data-structures (ex: sequences)

Computation:
Variables, IntVar, SeqVar, SetVar, invariants

Objectives:
Objective (as a function of IntVar)

Search
neighbourhood

Lib of
invariants

Lib of
neighbourhoods

Lib of
combinators

Constraint:
constraint, system

Lib of Constraints

Routing:
model & neighbourhood

Scheduling:
model & neighbourhood

Core
Lib

A quick look under the hood:

Propagation graph for the WLP(4,6)

Propagation: update the output(s) to reflect a change on the inputs
– Single wave: elements are touched at most once
– Incremental: all invariants update their outputs incrementally
– Selective: only things that need to be updated wrt. changes are updated
– Partial: only things contributing to the needed output are updated

W0

W1

W2

W3

OpenWsFilter

Sum

SumWsCost

+

Opening
Cost

Transport
Cost

obj

From the
Distance
matrix

OpenWToS0MinWsToS0

OpenWToS1MinWsToS1

OpenWToS2MinWsToS2

OpenWToS3MinWsToS3

OpenWToS4MinWsToS4

OpenWToS5MinWsToS5

A quick look under the hood:
Selective + partial propagation

Cluster

Q0plus0

Q1plus1

Q2plus2

Q3plus3 Occurrences_of_0
Occurrences_of_1
Occurrences_of_2
Occurrences_of_3

Compute
violation violation1

Violation_AllDiff_Q0plus0

Violation_AllDiff_Q1plus1

Violation_AllDiff_Q2plus2

Violation_AllDiff_Q3plus3

ArrayAccess
minus

1
ArrayAccess

minus
1

ArrayAccess
minus

1
ArrayAccess

minus
1

Occurrences_of_4
Occurrences_of_5
Occurrences_of_6

Cluster

Q0plus0

Q1plus1

Q2plus2

Q3plus3 Occurrences_of_0
Occurrences_of_1
Occurrences_of_2
Occurrences_of_3

Compute
violation violation1

Violation_AllDiff_Q0plus0

Violation_AllDiff_Q1plus1

Violation_AllDiff_Q2plus2

Violation_AllDiff_Q3plus3

ArrayAccess
minus

1
ArrayAccess

minus
1

ArrayAccess
minus

1
ArrayAccess

minus
1

Occurrences_of_4
Occurrences_of_5
Occurrences_of_6

Queen[1]

Queen[0]

Queen[3]

Queen[2]

plus Violation

plus

plus

plus

plus

Q0plus0

Q1plus1

Q2plus2

Q3plus3

0

1

2

3

minus

minus

minus

minus

0minusQ0

1minusQ1

2minusQ2

3minusQ3

0

1

2

3

plus ViolationQ0

plus ViolationQ1

plus ViolationQ2

plus ViolationQ3

How propagation is coordinated?

• When model is closed
– Static propagation graph are sorted

by distance to decision (aka input) variables
• So each element belongs to a certain layer
• There are sot so many layers, but they are very wide

– Each propagation element is tagged by this distance

• Upon propagation

– toPropagateHeap sorts by distance (stored as a tag)
– toPropagateHeap aggregates on same layer

• Insert is
– O(log(nbLayers)) -time for the first element in the layer,
– O(1) -time for other ones

• Pop is
– O(log(nbLayers)) -time for the last element in the layer,
– O(1) -time for other ones

toPropagateHeap.insert(changedInputVariables)
while(toPropagateHeap.nonEmpty){

toPropagateHeap.popFirst.propagate()
toPropagateHeap.insert(newNodesToPropagate)

}

Propagation & Notification

• Propagation
– is the global process of updating the model

– Managed by the store

– It calls propagate()
• On the relevant propagation elements

• In the right order

• Propagation elements can be
– Variables:

• When a variable is propagated, it notifies its value change to the
invariants listening to it

– Invariants:
• They can update their output in code that implement this method

• That they can also perform the updates when they are notified

Adding new invariants to OscaR.cbls

• Propagation revisited
• A simple invariant

sum

• Dynamic invariants
SumElement

• Variable and their notifications
– Int
– Set

• Value-wise notification

– Seq
• Checkpoints

• Generic approach for global routing constraints

Helpers available for the simplest one

• Helpers are abstract invariants parameterized by
– Some IntValue
– Some function

• Int Int
• Int × Int Int

– A domain; the rage of possible value for the output of the
function, given the range of the IntValue

• Example:
case class Abs(v: IntValue)

extends Int2Int(

v, // the IntValue
(x: Int) => x.abs, // the transformation function
if (v.min < 0 && 0 < v.max) 0 to (-v.min max v.max)

else{

val a = v.min.abs

val b = v.max.abs

if(a<b) a to b else b to a

})

A simple invariant: sum
class Sum(vars: Iterable[IntValue])

extends IntInvariant(

vars.map(_.value).sum, // initial value
vars.map(_.min).sum to vars.map(_.max).sum) // range of output

with IntNotificationTarget{

for (v <- vars) registerStaticAndDynamicDependency(v)

finishInitialization()

override def notifyIntChanged(v: ChangingIntValue, id:Int,

oldVal: Int, newVal: Int) {

this :+= newVal - oldVal

}

override def checkInternals(c: Checker) {

c.check(this.value == vars.map(_.value).sum)

}

}

A helper for invariants whose
single output is an IntValue

Which variable you want to be notified
about when they change value

When vars change value they call this method
from IntNotificationTarget trait id is a value

transmitted through register… method

A debug procedure that you should
implement and that is called by the store
when instantiated with flag debug=true

Notification

• When an invariant is notified, the following
method is called by the variable:

Where:

• V is a reference to the variable

• Id is an integer value that is optionally passed as a parameter
to the method for registering dependencies

• oldVal is the value before the change

• newVal is the value after the change

def notifyIntChanged(v: ChangingIntValue, id:Int,

oldVal: Int, newVal: Int)

Static and dynamic graph

• Invariants declare their dependencies:
– What variable they listen to
– What variable they control (set the value of)

• Static propagation graph
– Declared at startup
– Used to coordinate propagation wave

• Dynamic propagation graph
– Edges are a subset of the static propagation graph
– Can be changed by invariants
– Used by variable to notify listening invariants

• For an invariant to play with dynamic dependencies, it must be defined

– So it gets additional back-end data-structure and the method,

– This method returns a « key » to unregister. To unregister, simply call

– Both methods have O(1)-time complexity

with VaryingDependencies

key = registerDynamicDependency(var)

key.performRemove()

A sum invariant with a subset (1/2)
case class SumElements(vars: Array[IntValue], cond: SetValue)

extends IntInvariant(cond.value.map(vars(_).value).sum)

with VaryingDependencies

with IntNotificationTarget with SetNotificationTarget{

val keyForRemoval = Array.fill(vars.length) {null}

registerStaticDependency(cond)

registerDeterminingDependency(cond)

registerstaticDependencies(vars)

for(i <- cond.value){

keyForRemoval(i) = registerDynamicDependency(vars(i))

}

finishInitialization()

override def notifyIntChanged(v: ChangingIntValue, index: Int,

oldVal: Int, newVal: Int) {

this :+= (newVal - oldVal)

}

A sum invariant with a subset (2/2)
override def notifySetChanges(v: ChangingSetValue, d: Int,

addedValues: Iterable[Int],

removedValues: Iterable[Int],

oldValue: SortedSet[Int],

newValue: SortedSet[Int]) {

for (added <- addedValues){

keyForRemoval(added) = registerDynamicDependency(

vars(added))

this :+= vars(added).value

}

for(removed <- removedValues) {

keyForRemoval(removed).performRemove()

keyForRemoval(removed) = null

this :-= vars(removed).value

}

}

override def checkInternals(c:Checker) {

c.check(this.value == cond.value.map(vars(_).value).sum)

}

}

Propagation after notification

• Most invariants can update their update in the
notification procedure

• Sometime this is not desirable,

– because computation takes a significant amount of time,

– it is better to wait for all notifications to be received, and
perform this computation after

• To this end, invariants can also be propagated

– They have to override the method

– Upon notification, the invariant must schedule itself for
propagation (set itself into the propagation heap) by calling

override def performInvariantPropagation()

scheduleForPropagation()

A common stereotype

found in many CBLS models

• An array of CBLS variable and an array of Invariants

• Many dependencies in the static propagation graph

– Close requires sorting the propagation graph, slow down!

• Also: the invariants all want to compute the same
static result on the array

Ex: σ𝑣 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦 𝑣.𝑚𝑎𝑥

v variables i invariants listening to the array

v*i dependencies in
static propagation graph

SumElements(

Array[IntValue],

cond: SetValue)

Solution: Bulking

• OscaR.cbls can create an « artificial » bulky node in
the middle

• This node is called « bulk »
– Used to symbolize dependencies,
– Reduces memory consumption
– Speed up graph algo that run when
– Can memoïze static results computed by invariants

(see API)

v variables i invariants listening to the array

v+i dependencies in
static propagation graph (instead of v*i)

SumElements(

Array[IntValue],

cond: SetValue)

store.close()

A sum invariant with Bulking
case class SumElements(vars: Array[IntValue], cond: SetValue)

extends IntInvariant(cond.value.map(vars(_).value).sum)

with Bulked[IntValue, Unit] with VaryingDependencies

with IntNotificationTarget with SetNotificationTarget{

val keyForRemoval = Array.fill(vars.length) {null}

registerStaticDependency(cond)

registerDeterminingDependency(cond)

registerstaticDependencies(vars)

bulkRegister(vars)

Object model of Int type

(similar for Set and Seq)

IntValue

ChangingIntValue

CBLSIntVar

CBLSIntConst

IntInvariant

IntNotificationTarget

An invariant with a single output,
of type Integer

Invariant should input IntValue,
so they can be given CBLSIntVar, IntConst
or other invariant as input

If an invariant listens
to an IntValue,
it must implement this trait (one method),
to receive notification

calls

Value-wise notification for Set

• « Only call me about these values »
– Invariants specify a set of integer values to the variable
– It is notified about change only when at least one of these value

is added to or removed from the set

• HowTo:
– Dyamic dependency is declared through:

– The returned key has two additional methods:

• This adds a filter to the notifications

val key:ValueWiseKey =

registerDynamicValueWiseDependency(cond)

key.addToKey(newValueToListenAbout)

key.removeFromKey(valueIAmNotInterestedAboutAnymore)

Sequences and their symbolic

notifications
• Incremental updates

– Three incremental operations:
• Insert
• Delete
• Move(from,to,moveAfter,flip)

– Additional operations
• rollBack
• assign

• Symbolic notification messages: SeqUpdate

• Check our paper at CPAIOR’18

OrElse combinator

• Only one method to implement:

class OrElse(a: Neighborhood, b: Neighborhood)

extends NeighborhoodCombinator(a, b) {

override def getMove(obj: Objective,

initialObj:Int,

acceptanceCriterion:(Int, Int)=>Boolean)

: SearchResult = {

a.getMove(obj, initialObj, acceptanceCriterion) match {

case NoMoveFound =>

a.reset()

b.getMove(obj, initialObj, acceptanceCriterion)

case x => x

}

}

}

References about OscaR.cbls internals
1. Renaud De Landtsheer, Christophe Ponsard, OscaR.cbls : an open source framework for constraint-based local

search, 27th ORBEL Annual Meeting, Kortrijk, Belgium, February 7-8 2013.
2. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Local Search with OscaR.CBLS,

Workshop Design and Analysis of Meta-heuristics, Antwerp, 17-18 March 2016.
3. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Towards the Complexity of

Differentiation Through Lazy Updates in Local Search Engines, 30th ORBEL Annual Meeting, Louvain-La-
Neuve, Belgium, January 28-29 2016

4. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Adding a Sequence Variable to the
OscaR.CBLS Engine, 31th ORBEL Annual Meeting, Brussels, Belgium, February 2-3, 2017

5. Renaud De Landtsheer, Gustavo Ospina, Yoann Guyot, Fabian Germeau, Christophe Ponsard, Supporting
Efficient Global Moves on Sequences in Constraint-based Local Search Engines, Proceedings of the 6th
International Conference on Operations Research and Enterprise Systems, 171-180, 2017, Porto, Portugal

6. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, and Christophe Ponsard. Recent developments of
metaheuristics, chapter Combining Neighborhoods into Local Search Strategies, pages 43–57. Springer, 2018.

7. Generic Support for Global Routing Constraint in Constraint-Based Local Search Frameworks, Quentin
Meurisse, Renaud De Landtsheer, 32th ORBEL Annual Meeting, Liege, Belgium, February 1-2 2018

8. Renaud De Landtsheer, Fabian Germeau, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Easily Building
Complex Neighbourhoods With the Cross-Product Combinator, 32th ORBEL Annual Meeting, Liege, Belgium,
February 1-2 2018

9. Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Fabian Germeau, and Christophe Ponsard, Reasoning
on Sequences in Constraint-Based Local Search Frameworks, accepted at CPAIOR2018, 15th International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research
June 26-29, 2018, Delft, The Netherlands

