|
(Dcetic

Your Connection to ICT Research

Local Search with OscaR.cbls
for the Nerds who Want to Contribute

OscaR v4.0 - Spring2018

Renaud De Landtsheer, Thomas Fayolle, o @
Fabian Germeau, Gustavo Ospina,

Christophe Ponsard O

OPERATIONAL RESEARCH IN SCALA

— Oscar OSCaR

OPERATIONAL RESEARCH IN SCALA

* Open source framework for combinatorial optimization

- o

e Startedin 2011

— Open source LGPL license
* https://bitbucket.org/oscarlib/oscar
* Implemented in Scala

— Consortium

. UCL, N-Side Belgium
* Contributions from{UPPSALA) Sweden

Your Connectionto ICT Research

C)CQﬁC «Use» Architecture of OscaR.cbls

Routing: Scheduling:
model & neighbourhood model & neighbourhood
. Lib of Ll‘? of Lib of Constraints . le.of
neighbourhoods | combinators invariants Lib

Search Constraint: Core
neighbourhood constraint, system

Objectives:
Objective (as a function of IntVar)

Computation:
Variables, IntVar, SeqVar, SetVar, invariants

Propagation:
Propagation element, Propagation stucture

Algo:
algorithms and specialized data-structures (ex: sequences)

C) b A quick look under the hood:
Scelhic Propagation graph for the WLP(4,6)

WO

W1
OpenWs
W2 WsCost Openmg
Cost bj
— o)
W3 WsToSO OpenWToS0
WsToS1 OpenWToS1
From the
WsToS2 OpenWToS2
Distance — P Transport
matrix WsToS3 OpenWToS3 Cost
WsToS4 OpenWToS4
— WsToS5

OpenWToS5

Propagation: update the output(s) to reflect a change on the inputs
— Single wave: elements are touched at most once
— Incremental: all invariants update their outputs incrementally
— Selective: only things that need to be updated wrt. changes are updated
— Partial: only things contributing to the needed output are updated

Yeeti A quick look under the hood:
Ocetic . . .
Selective + partial propagation

wYiglation_AIIDiff_QOplus0, _—

4
4 ,
' ﬁcﬁ rrejfe s_?_ﬂ.
Qoaur " ol Ly

(g Qacumeleomoind my Sy 2
Queen[1 & occusranloca ot
8 =QGaUEhtes Qb e /
~ Q -
’ —

J
=siotetion alitt Q0Rlsy / /
T . =Adpisl III
Violation IO <o phusa= .III

L |
vﬁt?nmmm:um

= JWti_onéllD_iff_QZ&lu%

2
1

rotationsh |1 =@ 3phss

QOplusD
Q2plus2
Q@3plus3

[
cetic

Your Connectionto Research

* When modelis closed

— Static propagation graph are sorted
by distance to decision (aka input) variables

* So each element belongs to a certain layer
* There are sot so many layers, but they are very wide

— Each propagation element is tagged by this distance

* Upon propagation
toPropagateHeap. insert(changedInputVariables)
while(toPropagateHeap.nonEmpty){
toPropagateHeap.popFirst.propagate()
toPropagateHeap. insert(newNodesToPropagate)
}

— toPropagateHeap sorts by distance (stored as a tag)

— toPropagateHeap aggregates on same Iayer
* Insertis
— O(log(nbLayers)) -time for the first element in the layer,
— 0O(1) -time for other ones
* Popis
— Of(log(nbLayers)) -time for the last element in the layer,
— 0O(1) -time for other ones

CelicC

Your C Researc h

* Propagation
— is the global process of updating the model
— Managed by the store

— It calls propagate()
* On the relevant propagation elements
* In the right order

* Propagation elements can be

— Variables:

 When a variable is propagated, it notifies its value change to the
invariants listening to it

— Invariants:
* They can update their output in code that implement this method
* That they can also perform the updates when they are notified

CelicC

Your Conn Researc h

* Propagation revisited

* Asimpleinvariant
sum

* Dynamic invariants
SumElement

e Variable and their notifications
— Int

— Set
* Value-wise notification

— Seq
* Checkpoints
* Generic approach for global routing constraints

b .
(DcetiC Helpers available for the simplest one

Your Connectionto ICT Research

* Helpers are abstract invariants parameterized by
— Some IntValue

— Some function

* Int = Int
* IntxInt —> Int

— A domain; the rage of possible value for the output of the
function, given the range of the IntValue

 Example:

case class Abs(v: IntValue)
extends Int2Int (
v, //theIntValue
(x: Int) => x.abs, //thetransformation function

if (v.min < 0 && 0 < v.max) 0O to (-v.min max v.max)
else(

val a = v.min.abs

val b = v.max.abs

if (a<b) a to b else b to a
1)

Ocetic

Your Connection to ICT Research A Simple invariant: Sum

class Sum (vars: Iterable[IntValuel])
extends IntInvariant (

vars.map (.value) .sum, //initialvalue

vars.map(.min).sum to vars.map(.max).sum) //range of output
with IntNotificationTarget{

A helper for invariants whose
single output is an IntValue

Which variable you want to be notified

about when they change value

for (v <- vars) registerStaticAndDynamicDependency (v)

finishInitialization() When vars change value they call this method

from IntNotificationTarget trait id is a value
transmitted through register... method

override def notifyIntChanged(v: ChanginglIntValue, 1id:Int,
oldVal: Int, newVal: Int) {

this :+= newVal - oldval

} A debug procedure that you should
implement and that is called by the store

when instantiated with flag debug=true

override def checkInternals(c: Checker) {
c.check(this.value == vars.map(.value) .sum)

CelicC

Your C Researc h

* When an invariant is notified, the following
method is called by the variable:

def notifyIntChanged(v: ChangingIntValue, id:Int,
oldVal: Int, newVal: Int)

Where:

e Vis areference to the variable

* |d is an integer value that is optionally passed as a parameter
to the method for registering dependencies

e oldVal is the value before the change
* newVal is the value after the change

[
cetic

Your Connectionto Research

* Invariants declare their dependencies:
— What variable they listen to
— What variable they control (set the value of)

e Static propagation graph
— Declared at startup
— Used to coordinate propagation wave

* Dynamic propagation graph
— Edges are a subset of the static propagation graph
— Can be changed by invariants
— Used by variable to notify listening invariants

* For an invariant to play with dynamic dependencies, it must be defined
with VaryingDependencies

— So it gets additional back-end data-structure and the method,
key = registerDynamicDependency (var)

— This method returns a « key » to unregister. To unregister, simply call
key.performRemove ()

— Both methods have O(1)-time complexity

Your Connectionto ICT Research

I .
Ocetic 4 sum invariant with a subset (1/2)

case class SumElements (vars: Array[IntValue], cond: SetValue)
extends IntInvariant (cond.value.map (vars() .value) .sum)
with VaryingDependencies
with IntNotificationTarget with SetNotificationTarget {

val keyForRemoval = Array.fill(vars.length) {null}

registerStaticDependency (cond)
registerDeterminingDependency (cond)
registerstaticDependencies (vars)
for (i <- cond.value) {

keyForRemoval (1) = registerDynamicDependency (vars(i))

finishInitialization/()
override def notifyIntChanged(v: ChanginglntValue, 1index: Int,

oldVal: Int, newVal: Int) {
this :+= (newVal - oldVal)

\ .
(>Cehc A sum invariant with a subset (2/2)

override def notifySetChanges (v: ChangingSetValue, d: Int,

addedValues: Iterable[Int],
removedValues: Iterable[Int],
oldValue: SortedSet[Int],

newValue: SortedSet[Int]) {
for (added <- addedValues) {

keyForRemoval (added) = registerDynamicDependency (

vars (added))
this :+= vars (added) .value

}

for (removed <- removedValues) {
keyForRemoval (removed) .performRemove ()
keyForRemoval (removed) = null
this :-= vars(removed) .value

override def checkInternals (c:Checker) {
c.check (this.value == cond.value.map (vars (

} _

) .value) .sum)

CelicC

Your C Researc h

* Most invariants can update their update in the
notification procedure

e Sometime this is not desirable,
— because computation takes a significant amount of time,

— it is better to wait for all notifications to be received, and
perform this computation after

* To this end, invariants can also be propagated

— They have to override the method

override def performInvariantPropagation ()

— Upon notification, the invariant must schedule itself for
propagation (set itself into the propagation heap) by calling

scheduleForPropagation ()

I . A common stereotype
(Dcetic . P
o oot e found in many CBLS models

* An array of CBLS variable and an array of Invariants

v variables i invariants listening to the array

SumElements (
Array[IntValue],

v*i dependencies in cond: SetValue)
static propagation graph

 Many dependencies in the static propagation graph

— Close requires sorting the propagation graph, slow down!

e Also: the invariants all want to compute the same
static result on the array

Ex: Zv in the array v.max

\ |
L)cellc

Your Researc h

e OscaR.cbls can create an « artificial » bulky node in
the middle

v variables i invariants listening to the array

SumElements (
Array[IntValue],

v+i dependencies in cond: SetValue)
static propagation graph (instead of v*i)

* This node is called « bulk »
— Used to symbolize dependencies,
— Reduces memory consumption
— Speed up graph algo that run when store.close ()

— Can memoize static results computed by invariants
(see API)

C)CGHC A sum invariant with Bulking

Your Connectionto ICT Research

case class SumElements (vars: Array[IntValue], cond: SetValue)
extends IntInvariant (cond.value.map (vars() .value) .sum)

with Bulked[IntValue, Unit] with VaryingDependencies
with IntNotificationTarget with SetNotificationTarget({

val keyForRemoval = Array.fill(vars.length) {null}

registerStaticDependency (cond)
registerDeterminingDependency (cond)

. . i et ;

bulkRegister (vars)

Object model of Int type
C)CQHC (similar for Set and Seq)

Your Connectionto ICT Research

Invariant should input IntValue,
so they can be given CBLSIntVar, IntConst

, , , or other invariant as input
If an invariant listens

to an IntValue,
it must implement this trait (one method), m
to receive notification

calls

ETTE T

An invariant with a single output,
of type Integer

[
cetic

Your Connectionto Research

* « Only call me about these values »
— Invariants specify a set of integer values to the variable

— It is notified about change only when at least one of these value
is added to or removed from the set

* HowTo:

— Dyamic dependency is declared through:

val key:ValueWiseKey =
registerDynamicValueWiseDependency (cond)

— The returned key has two additional methods:

key.addToKey (newValueToLlistenAbout)
key.removeFromKey (valueIAmNotInterestedAboutAnymore)

 This adds a filter to the notifications

[
cetic

Your Connectionto Research

* |ncremental updates

— Three incremental operations:

* |nsert
e Delete

* Move(from,to,moveAfter,flip)
— Additional operations

* rollBack
* assign

* Symbolic notification messages: SeqUpdate

previousUpdate

IncrementalUpdate

A

Sequence valueAfter Seq szdare
LatestNotified
Assign Move
RollBackToCheckpoint Remove

Insert

* Check our paper at CPAIOR’18

DefineCheckpoint

-

i,
(Dcetic

Your Connectionto ICT Research

OrElse combinator

* Only one method to implement:

class OrElse(a: Neighborhood, b: Neighborhood)
extends NeighborhoodCombinator(a, b) {

override def getMove (obj: Objective,
initialObj:Int,
acceptanceCriterion: (Int, Int)=>Boolean)
SearchResult = {

a.getMove (obj, 1nitialObj, acceptanceCriterion) match ({
case NoMoveFound =>
a.reset ()
b.getMove (obj, initialObj, acceptanceCriterion)
case x => X

[
cetic

Your Connectionto Research

1.

2.

Renaud De Landtsheer, Christophe Ponsard, OscaR.cbls : an open source framework for constraint-based local
search, 27th ORBEL Annual Meeting, Kortrijk, Belgium, February 7-8 2013.

Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Local Search with OscaR.CBLS,
Workshop Design and Analysis of Meta-heuristics, Antwerp, 17-18 March 2016.

Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Towards the Complexity of
Differentiation Through Lazy Updates in Local Search Engines, 30th ORBEL Annual Meeting, Louvain-La-
Neuve, Belgium, January 28-29 2016

Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Adding a Sequence Variable to the
OscaR.CBLS Engine, 31th ORBEL Annual Meeting, Brussels, Belgium, February 2-3, 2017

Renaud De Landtsheer, Gustavo Ospina, Yoann Guyot, Fabian Germeau, Christophe Ponsard, Supporting
Efficient Global Moves on Sequences in Constraint-based Local Search Engines, Proceedings of the 6th
International Conference on Operations Research and Enterprise Systems, 171-180, 2017, Porto, Portugal

Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, and Christophe Ponsard. Recent developments of
metaheuristics, chapter Combining Neighborhoods into Local Search Strategies, pages 43-57. Springer, 2018.

Generic Support for Global Routing Constraint in Constraint-Based Local Search Frameworks, Quentin
Meurisse, Renaud De Landtsheer, 32th ORBEL Annual Meeting, Liege, Belgium, February 1-2 2018

Renaud De Landtsheer, Fabian Germeau, Yoann Guyot, Gustavo Ospina, Christophe Ponsard, Easily Building
Complex Neighbourhoods With the Cross-Product Combinator, 32th ORBEL Annual Meeting, Liege, Belgium,
February 1-2 2018

Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, Fabian Germeau, and Christophe Ponsard, Reasoning
on Sequences in Constraint-Based Local Search Frameworks, accepted at CPAIOR2018, 15th International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research
June 26-29, 2018, Delft, The Netherlands

