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Abstract

This thesis describes the implementation of a personalised adaptive content-based

filtering system for the Adobe Community Engine. The system suggests users a

list of relevant articles based on their browsing history. See figure 1.1 for a picture

with the results.

The dissertation introduces a very fast way to estimate the similarity between

documents by the means of fingerprints. Fingerprints are compared to the classical

approach and the error is shown to be in a controllable limit while they are more

than two hundreds times faster.

Further, the thesis shows how fingerprints can be used to model the user be-

havior. The speed of the operations available are exploited to build a real-time

profile of the user which is updated when he or she visits a new page and which

is used to find relevant articles. Updating the profile using fingerprints is found

to be closely related to the classical approach. The results in appendix B suggest

that the filtering system improves its precision after user’s first visited article.

The filtering system developed — also referred as the recommendation engine

— will be integrated in a near future release of the Adobe Community Engine. It

will improve the user experience and it will stimulate the growth of the available

content.

Keywords: information retrieval, fingerprint, keywords, recommendation en-

gine, ADOBE, natural language, cosine similarity

1



Acknowledgements

I would like to thank to my colleagues at Adobe Systems Inc. who helped me

during the development of this project with ideas, comments, suggestions and

testing.

Special thanks go to Mihaela Barbu who gave me the original idea to develop

a content recommendation engine and to dr.eng. Paul-Alexandru Chirit, ă who

guided me over the last few months.

2



Contents

1 Introduction 7

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related Work 11

3 Algorithm 13

3.1 Representing Documents in the Vector Space . . . . . . . . . . . . . 13

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Extracting Keywords . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Computing Keyword Relevances . . . . . . . . . . . . . . . . 16

3.2 Documents Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Approximating the Similarity Between Two Documents . . . . . . . 20

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Estimating the Cosine Distance . . . . . . . . . . . . . . . . 22

3.3.3 Reliability of the Relative Frequency . . . . . . . . . . . . . 23

3.3.4 Generating Random Hyperplanes . . . . . . . . . . . . . . . 24

3.3.5 Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.6 Comparison of Fingerprints with Shingles . . . . . . . . . . . 25

3.4 Approximating the Similarity Between Users and Documents . . . . 26

3.4.1 User Profile Definition . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Storing the Visited Articles . . . . . . . . . . . . . . . . . . 27

3.4.3 Using Vectors to Represent the User Profile . . . . . . . . . 27

3.4.4 Using Fingerprints to Represent the User Profile . . . . . . . 29

3



Contents

4 Design 34

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Implementation Details 39

5.1 Combining Two Fingerprints . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Fast Computation of the Angle . . . . . . . . . . . . . . . . . . . . 39

5.3 Storing the Visited Articles . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Tracking the Followed Recommendations . . . . . . . . . . . . . . . 41

5.5 Handling Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Used Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6.1 Apache HTTP Server and Mod python . . . . . . . . . . . . 43

5.6.2 Pycrypto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6.3 RPyC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6.4 Beautiful Soup . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6.5 Natural Language Toolkit . . . . . . . . . . . . . . . . . . . 45

6 Future Work 46

7 Conclusions 48

A Analysis of the Adobe Community Articles 53

B Results 56

B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B.2 Document versus Document . . . . . . . . . . . . . . . . . . . . . . 57

B.3 User versus Document . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.4 Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C Code 62

C.1 Splitting Paragraphs into Sentences and Sentences into Words . . . 62

C.2 Extracting Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . 63

C.3 The Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C.4 The Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4



List of Figures

1.1 Screenshot of some suggested articles . . . . . . . . . . . . . . . . . 8

3.1 English most common words frequency [21] . . . . . . . . . . . . . . 17

3.2 ρ intersecting γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Plane and vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Updating the user profile . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Speed comparison: fingerprinting vs cosine product. Note that fin-

gerprinting includes 2.9ms the time required to fingerprint a vector

(eg. user profile or a query) . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 JavaScript code to insert the generated HTML code . . . . . . . . . 35

4.3 Snippet of the generated HTML code . . . . . . . . . . . . . . . . . 36

4.4 An example of a suggested article returned by the back-end (pre-

sented as a Python dictionary) . . . . . . . . . . . . . . . . . . . . . 37

5.1 Fingerprints Bitwise XOR . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Fast sideway-sum for 32bits integers . . . . . . . . . . . . . . . . . . 40

5.3 Probability of a false positive based on the number of elements

inserted for m = 768 and k = 9 (see equation 3.21). . . . . . . . . . 41

5.4 Generating suggestion IDs . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Logging suggestion IDs . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 A PATRICIA trie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.1 Histogram of the numbers of keywords in a vector. . . . . . . . . . . 54

A.2 Histogram of all keywords relevances . . . . . . . . . . . . . . . . . 54

A.3 Graph of the most relevant keyword from each document . . . . . . 55

A.4 Cumulative number of distinct words (documents shuffled). . . . . . 55

5



List of Figures

B.1 Engine is better than a monkey . . . . . . . . . . . . . . . . . . . . 58

B.2 Precision when the relevance of the title is adjusted. . . . . . . . . . 58

B.3 Keyword of a single word vs keyword of multiple words . . . . . . . 58

B.4 Precision when the relevance of the code is adjusted . . . . . . . . . 59

B.5 Number of clicks for both fingerprint based and vector based update

algorithm depending on the index of the page visited . . . . . . . . 60

B.6 Evolution of precision with the rank of the page visited . . . . . . . 60

B.7 Average queries per second (qps) given the number of clients . . . . 61

6



Chapter 1

Introduction

1.1 Overview

With the growing amount of content available on the Internet it is important

to help users to access faster the information they are searching by filtering the

irrelevant content and suggesting the content the users might look for.

Recommending entertaining content differs from recommending educational

content in that the users seeking entertaining content want more quantity, while

the others want more quality and less quantity.

The Adobe Community Engine [17] is an integrated web environment for Adobe

customers that provides community-based instruction, inspiration, and support in

a dynamic collaboration environment.

There is no question that the problem of finding relevant articles for a user is

hard. Currently Adobe Community Engine provides a search engine which users

can use to find articles based on an arbitrary user query.

The goal of this project is to extend the search functionality with a fast, per-

sonalised, adaptive and high precision content-based filtering system. When a

user visits a page he or she will be suggested a list of relevant articles based on

the past visited articles. The recommendation engine should try to guess the user

intent and should refine its results as long as the user continues to browse the site

for more information.

Good and fast suggestions are expected to increase the number of satisfied

users which hopefully will attract more users and will encourage them to expand

and improve the available content on Adobe Community engine.

The recommendation engine should be a stateless web-service easy to integrate

7



1.2. Use Cases

Figure 1.1: Screenshot of some suggested articles

with Adobe Community Engine.

1.2 Use Cases

There are many uses cases of a recommendation engine some of which are listed

below:

• The user visits the Adobe Cookbooks sites searching for an article. On the

right side of the page he or she is presented with a list of related articles

based on his or her session browsing history.

• The previous use case can be extended to suggest articles from online journals

like IEEE (http://www.ieee.org/) or ACM (http://portal.acm.org/),

developers’ weblogs or other technical sites.

• When a user starts a new thread on a forum he or she is suggested with a

list of articles matching the topic.
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1.3. Contributions

• The user visits the Adobe Community Engine site searching for a solution to

a particular problem. Together with the relevant articles the engine presents

suitable conversations from the forums. The user can check the comments

from other user or provide a better one.

• The engine can be adapted to work as a search engine or a filter: the user

input is expanded and modeled as a small document which is used to retrieve

only documents relevant to the user and related to the query.

1.3 Contributions

This thesis makes the following contributions:

• Introduces a fast way to estimate the cosine product of two document vectors

by the means of fingerprints. The approximation error is shown to be in a

controllable limit.

• Describes how to generate document fingerprints in linear time and with

constant additional memory.

• Shows how the fingerprints can be reverted to the vector representation using

the cosine product.

• Presents a way to combine two fingerprints and relates it to the linear com-

bination of the corresponding vectors.

• Shows how the fingerprints can be used to profile the user behavior.

Section 3.4.4 lists the main advantages of using the fingerprints and presents

a speed comparison against the dot product.

1.4 Outline

• The Introduction chapter introduces the recommendation engine, the use

cases and the contributions of the dissertation.

• The Related Work chapter presents some related work and other recommen-

dation engines available.

9



1.4. Outline

• The Algorithm chapter explains the theoretical details of the recommenda-

tion engine, describes how the users and the documents are modeled and

defines the fingerprint.

• The Design and Implementation Details chapters describe how the recom-

mendation engine was implemented.

• The Future Work chapter shows some possible improvements and extensions

to the recommendation engine.

• In the Analysis of the Adobe Community Articles appendix a statistical anal-

ysis of the data set used by the recommendation engine can be found.

• Finally, the Results shows the ability of the recommendation engine to find

relevant articles.

10



Chapter 2

Related Work

There are many systems that tries to solve the problem of finding relevant docum-

ments from a huge collection. Most recommendation systems can be classified in

content-based and collaborative filtering systems.

The content-based filtering systems analyse the documents’ content employing

techniques from information retrieval theory and try to find similar documents.

For example, rollSense (http://www.rollsense.com) analyses blog posts and sug-

gests similar articles from other sources. The suggested articles are pre-computed

and presented to the user when he or she visits the site. Other examples of systems

taking this approach include Ringo [30] and GroupLens [27].

Youtube (http://www.youtube.com) is a good example of a collaborative fil-

tering system. It uses the user-video graph to provide personalized video suggestion

for users [5]. For each video another set of videos viewed by other users who also

viewed the former video is suggested.

Google (http://www.google.com), the most popular search engine, uses a

combination of content-based and collaborative filtering to find relevant web pages

on the Internet. The pages are ranked on many factors including the hyperlinks

between them, users’ behavior, query’s language, geographical location of the user,

etc.

Balabanović describes in [4] an adaptive recommendation service which seeks

to adapt to its users, providing increasingly personalized recommendations over

time. His engine is a hybrid system that uses both the collaborative approach and

the content-based one.

Another work on automatically generating hypertext links both within and be-

tween documents on the basis of semantic similarity was made by Green in [16].
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His article describes how to build and analyze lexical chains — sequences of se-

mantically related words — to find semantic links — links that connect parts of

documents on basis of their semantic similarity.

News@hand is a news recommender system which makes use of semantic tech-

nologies to provide several online news recommendation services. Its authors,

Cantador et al., evaluate in [10] a model that personalises the order in which news

articles are shown to the user according to his long-term interest profile.

12



Chapter 3

Algorithm

This chapter presents how the recommendation engine computes the similarity

between documents and/or users.

The first section describes how the document is represented and how it’s rep-

resentation is constructed. The next section defines the similarity between two

documents. The third section shows how to approximate the similarity and the

last section extends it to the similarity between a user and the documents.

3.1 Representing Documents in the Vector Space

3.1.1 Overview

This section introduces how the documents are processed and the mathematical

model used to describe a document.

In order to get the relevant documents from a collection of documents a value

to estimate the similarity between two documents is required. First the documents

are modeled as a feature vector which is a collection of (keywords, relevance) pairs:

~v , {κ1 : vκ1 , κ2 : vκ2 , . . .} (3.1)

A keyword κ can be anything characteristic to the document — eg. a tag, a word

or a phrase. The relevance of a keyword κ (ie. vκ) is a real positive number

specifying the degree of importance the keyword has in describing the document.

If a keyword, κ is unrelated to a document then its relevance is vκ = 0 and can be

omitted from the document representation. In the rest of the thesis document will

be used to mean the document feature vector, unless inferred from the context.

13



3.1. Representing Documents in the Vector Space

Following a common approach the smaller the distance between two docu-

ments, the more similar they are. The distance can be any function like Hamming

or Euclidean distance, but one that behaves particularly well for text is the cosine

similarity of the two documents which is described in section 3.2.

3.1.2 Extracting Keywords

To model a document as a feature vector like in 3.1, first the keywords are extracted

from the document using the next steps:

• First the document is split into sentences using simple regular expressions.

For example the paragraph:

– The second half and in 2009, we’re going to see a lot more deteriora-

tion. This is just the beginning. There are some clear-cut trends among

companies that are struggling the most, including the ones below.

is split into the following sentences:

– The second half and in 2009, we’re going to see a lot more deterioration.

– This is just the beginning

– There are some clear-cut trends among companies that are struggling

the most, including the ones below.

• Then each sentence is split into lowercase words delimited by spaces. For

example from the above sentences the word list result (spaces are used as

delimiters):

– the second half and in 2009 we’re going to see a lot more deterioration.

– this is just the beginning

– there are some clear -cut trends among companies that are struggling

the most including the ones below

• Next punctuation, numbers and noise words are removed. The above lists

are reduced to:

– second half deterioration

– beginning

14



3.1. Representing Documents in the Vector Space

– clear -cut trends companies struggling including

• Because a word can have different forms (like gerund or plural) which all

refer to the same concept, the words resulted from the previous step are

stemmed using the Porter stemming algorithm [26].

– second half deterioar

– begin

– clear -cut trend compani struggl includ

• Because consecutive words give a better representation of the concept of

the document the keywords extracted are all 1-gram, 2-gram, 3-gram, 4-

gram and 5-gram words from each sentence. For example chang background

is more relevant for a document than only chang or background and helps

discriminate between documents about changing the background and docu-

ments about changing the contents of the window in the background. The

table B.3 gives an experimental comparision between single and multiple

words keywords and shows that the latter gives better results. The key-

words extracted from the example paragraph are:

– second half deterioar second half half deterioar second half deterioar

– begin

– clear -cut trend compani struggl includ compani struggl . . .

• The last step is to remove all keywords that are present in only very few

documents improving both the performance and the quality. Many sentence

fragments aren’t actually meaningful concepts (eg. second half deterioar)

but some random association which are unlikely to appear anywhere else.

Removing such keywords increases the similarity between documents.

Text versus Code

Many articles from the Adobe Community database contain fragments of code as

examples. Because code is more verbose than text and carries less semantics it’s

important to treat it differently.

The code fragments are detected knowing that they usually appear inside <

pre > or < code > HTML tags. These tags are used to display the text with a

fixed-size font which is often used by programmers when they write and read code.

15



3.1. Representing Documents in the Vector Space

The engine treats code differently from text: a sentence is considered a single

line of source and no stemming is done. After the processing of the code fragment

usually only the function names remain.

Because the keywords resulted from the code carry less semantics their rel-

evance is adjusted to one third. The code is not eliminated because there are

some articles with no text so the recommendation is done solely on the function

names. The table B.4 summarizes the results for different coefficients of the code

keywords.

Other approaces: Lexical Compounds

Allan and Raghavan studied in [2] many part-of-speech patterns and found that

the lexical compounds of the following form:

{adjective? noun+}

give a very good representation of the document.

In spite of that, this approach failed for Adobe Community articles giving

terrible results. One explanation that the author came up with is that most posts

contain solutions to different problems and the relevant phrases are actions like

changing the background or using a checkbox to filter items which don’t match the

above pattern. Nevertheless, other part-of-speech patterns may be investigated.

3.1.3 Computing Keyword Relevances

The function of keyword relevance is to decide which keywords describe best the

document.

The simplest idea is to consider the relevance of a keyword κ as the term

frequency of κ in the document, tfκ.

tfκ ,
# of occurences of κ in the document

# of keywords in the document
(3.2)

Using the frequency to compute the keywords relevance has some drawbacks.

Most languages including English and Romanian have stop words, or noise words,

like the, I, it, me, and, although. Many applications to natural language processing

(NLP) maintain a list of such words which are removed before processing the text.

A list of stop words can be found at [1].

Many of the noise words are the most common words in the language. Adam

Kilgarriff analyzed the British National Corpus [7], a 100 million word collection

16



3.1. Representing Documents in the Vector Space

frequency word frequency word

6.18% the 4.23% is, was, be, are, ’s (= is),

were, been, being, ’re, ’m, am

2.94% of 2.68% and

2.46% a, an 1.80% in, inside

1.62% to 1.37% have, has, have, ’ve, ’s (= has),

had, having, ’d (= had)

1.27% he, him, his 1.25% it, its

1.17% I, me, my 0.91% to

0.86% they, them, their 0.86% not, n’t, no

0.83% for 0.83% you, your

0.70% she, her 0.65% with

0.64% on 0.62% that

Figure 3.1: English most common words frequency [21]

of samples of written and spoken language and produced the statistics from in 3.1.

The first 20 most common words in English represent more than one third of the

words used. The engine uses a list of the most common 332 English words.

However, ignoring noise words is not enough. For example, if all documents

in a collection talk about memory the word memory brings little to no infor-

mation to distinguish between any two documents. Nevertheless, because of the

high frequency of the word memory within documents it will falsely appear as an

important concept increasing the similarity between all documents.

The solution is to decrease the weighting of the keywords which are very fre-

quent in the collection of documents. Salton and Buckley describe in [28] various

attempts to eliminate indiscriminating words. The paper shows that the formula

which gives the best empirical results, called term frequency - inverse document

frequency (tf-idf), is

dκ = tfdocument,κ ∗ log
1

dfκ
(3.3)

where the document frequency of the keyword κ, dfκ, is

dfκ ,
# of documents κ occurs in

# of documents in the collection
(3.4)

The tf-idf formula has two advantages

• The weight of the stop words will be (almost) 0. If κ is a very frequent word

then dfκ is close to 1 and log 1
dfκ

is close to 0.

17



3.2. Documents Similarity

Even though it is still a good idea to remove the noise words. Doing so, will

improve the overall performance of the process.

• The weight of the indiscriminating words will be low.

The only disadvantage of tf-idf is that for each keyword its document frequency

must be computed beforehand which requires an initial pass over the entire col-

lection of documents.

Keyword’s Position in the Document

Chirit, ă et al. show in [11] how to improve the keyword’s relevance formula based

on the keyword’s position in text. The current implementation of the engine

currently does not use their approach.

Nevertheless, the relevances of the keywords extracted from the title are in-

creased to reflect the fact that they contain more semantic information than key-

words from the document’s content. When a user visits a page and sees the

recommendations he or she matches the titles with what he or she is currently

searching. The side effect of the increased relevance of the title keywords is a

better match between the user profile and the titles of the articles suggested.

3.2 Documents Similarity

A distance frequently used in text information retrieval is the cosine similarity

between the two documents represented by the vectors ~u and ~d:

cos∠(~u, ~d) ∈ [−1,+1] (3.5)

A cosine distance of 1 means that the articles are (almost) identical and a co-

sine distance of 0 or lower means that the articles are totally unrelated. The

recommendation engine uses the cosine distance to measure the similarity of two

documents or between the user profile and a document.

Definition 3.2.1. The dot product, or the scalar product, of two vectors ~u and

~v denoted by ~u · ~v is:

~u · ~v ,
∑
κ

uκ · vκ

18



3.2. Documents Similarity

Theorem 3.2.2. If ~u and ~v are two vectors then

cos∠(~u,~v) =
~u · ~v
‖~u‖ · ‖~v‖

Proof. From the law of cosines

‖~v − ~u‖2 = ‖~v‖2 + ‖~u‖2 − 2 · ‖~v‖ · ‖~u‖ · cos∠(~u,~v)

which leads to

cos∠(~u,~v) =
‖~v‖2 + ‖~u‖2 − ‖~v − ~u‖2

2 · ‖~v‖ · ‖~u‖

=

∑
κ v

2
κ +

∑
κ u

2
κ −

∑
κ (vκ − uκ)2

2 · ‖~v‖ · ‖~u‖

=

∑
κ v

2
κ + u2

κ − (vκ − uκ)2

2 · ‖~v‖ · ‖~u‖

=

∑
κ vκ · uκ
‖~v‖ · ‖~u‖

=
~u · ~v
‖~u‖ · ‖~v‖

If an article ~d1 is a about memory leaks words like memory and leak will be

very frequent. When compared to another article ~d2 about memory leaks the

values of the terms d1,memory · d2,memory and d1,leak · d2,leak from the dot product

(3.5) will be high increasing the value of the cosine similarity.

Corollary 3.2.3. Let ~u = {κ : uκ, . . .} be an arbitrary vector and ~q = {κ : 1} a

query vector. Then:
uκ
‖~u‖

= cos∠(~u, ~q) (3.6)

Proof.

cos∠(~u, ~q) =
~u · ~q
‖~u‖ · ‖~q‖

=

∑
κ uκ · qκ
‖~u‖ · ‖~q‖

=
uκ
‖~u‖

19



3.3. Approximating the Similarity Between Two Documents

3.3 Approximating the Similarity Between Two

Documents

3.3.1 Overview

The online computation of the cosine similarity with all Adobe Cookbooks articles

is time prohibitive. The Wikipedia [31] article on Local Sensitive Hashing describes

a neat idea to approximate the cosine similarity between two vectors.

Definition 3.3.1. Let γ be a plane. The binary relation ∼γ exists between two

vectors iff they lie on the same side of γ.

Theorem 3.3.2. ∼γ is an equivalence relation. For any three vectors ~u, ~v and ~t

all the following holds true:

• Reflexivity: ~u ∼γ ~u

• Symmetry: if ~u ∼γ ~v then ~v ∼γ ~u

• Transitivity: if ~u ∼γ ~v and ~v ∼γ ~t then ~u ∼γ ~t

Definition 3.3.3. Let Pr[~u ∼γ ~d] be the probability that two vectors ~u and ~d to

lie on the same side of an arbitrary plane γ.

Theorem 3.3.4. If ~u and ~d are two vectors then

Pr[~u ∼γ ~d] = 1− ∠(~u, ~d)

π

Proof.

1. Case ~u = ~d.

If ~u = ~d then ∠(~u, ~d) = 0 and Pr[~u ∼γ ~d] = 1 = 1− 0
π

= 1− ∠(~u,~d)
π

2. Case ~u 6= ~d.

ρ be the plane induced by the vectors ~u and ~d and the origin O.

ρ and γ have at least one point in common, the origin O, so they must

have at least one line in common. Let’s suppose that the two planes do not

coincide and let δ = ρ ∩ γ be the common line.

The line δ divides the plane ρ in two half-planes. The upper half-plane is

included in the upper half-space induced by γ and the lower half-plane is

included in the lower half-space.
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Figure 3.2: ρ intersecting γ

In ρ define a coordinate system xOy such that the support line of the ~Ox

axis is δ and ~Oy axis lies in the upper half-space induced by the plane γ.

Using the coordinate system xOy, define âOb as the positive angle (ie. the

angle measured anticlockwise) between two vectors ~a and ~b. Of course the

identities hold true:

(a) ∠(~a,~b) = |âOb| = |b̂Oa|

(b) âOb = −b̂Oa

Let α = ∠(~u, ~d). Two disjunct cases can be identified:

(a) Case α = d̂Ou (see figure 3.2).

i. if x̂Ou ∈ [0, α) then ~u is in the upper half-plane of ρ, while ~d is in

the lower half-plane.

ii. if x̂Ou ∈ [α, π) then ~u and ~d are both in the upper half-plane of ρ.

iii. if x̂Ou ∈ [π, π+α) then ~u is in the lower half-plane of ρ, while ~d is

in the upper half-plane.

iv. if x̂Ou ∈ [π + α, 2π) then ~u and ~d are both in the lower half-plane

of ρ.

Given that the angle x̂Ou is uniform distributed in the interval [0, 2π)
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3.3. Approximating the Similarity Between Two Documents

the following results:

Pr[~u ∼γ ~d|∠(~u, ~d) = d̂Ou] =
(π − α) + (2π − (π + α))

2π

=
2π − 2α

2π

= 1− ∠(~u, ~d)

π

(b) Case ∠(~u, ~d) = ûOd. Analogous

Pr[~u ∼γ ~d|∠(~u, ~d) = ûOd] = 1− ∠(~u, ~d)

π

From the law of total probability

Pr[~u ∼γ ~d] = Pr[∠(~u, ~d) = ûOd] · Pr[~u ∼γ ~d|∠(~u, ~d) = ûOd]

+ Pr[∠(~u, ~d) = d̂Ou] · Pr[~u ∼γ ~d|∠(~u, ~d) = d̂Ou]

= 1− ∠(~u, ~d)

π

Corollary 3.3.5. The cosine distance between two vectors ~u and ~d is

cos∠(~u, ~d) = cos(π · (1− Pr[~u ∼γ ~d]))

3.3.2 Estimating the Cosine Distance

The probability that two vectors ~u and ~d lie on the same side of a plane can

be estimated using the relative frequency. Consider an experiment of choosing a

random plane and checking whether the two vectors lie on the same side of the

plane. Then Pr[~u ∼γ ~d] can be estimated as:

Pr[~u ∼γ ~d] ≈ p =
# of times the ~u and ~d lie on the same side

# of experiments
(3.7)

For example if from 900 planes the two vectors lie on the same side of 600 of

them then the angle between the two vectors can be approximated as ∠(~u,~v) ≈
π · (1− 600

900
) = π

3
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3.3.3 Reliability of the Relative Frequency

The reliability of the relative frequency, p, to estimate the Pr[~u ∼γ ~d] for any

lookup on T-

Test

two vectors ~u and ~d can be measured using the confidence interval for the normal

distribution

Pr[~u ∼γ ~d] ∈ p± z · σp (3.8)

where z depends on the level of confidence desired and σp is the standard error of

a proportion.

σp =

√
Pr[~u ∼γ ~d] · (1− Pr[~u ∼γ ~d])

N
≈
√
p · (1− p)

N
(3.9)

where N is the number of the conducted experiments.

The value of z is standard and can be looked up in the Z-Table for the normal

distribution. For example for a confidence of:

• 68.27% the value of z is 1.00

• 95.45% the value of z is 2.00

• 99.73% the value of z is 3.00

The largest confidence interval is obtained when p = 0.5:

p± z · σp ⊆ p± z · σ0.5 = p± z · 0.5√
N

= p± z√
4N

(3.10)

Therefore with a probability of 95.45% (corresponding to z equals to 2.00):

Pr[~u ∼γ ~v] ∈ p± 2√
4N

= p± 1√
N

(3.11)

Note that in order to shrink the confidence interval by a factor of 2 the number

of experiments must be increased by a factor of 4. In the implementation N , the

number of experiments, was chosen to be 3072.

Pr[~u ∼γ ~v] ∈ p± 0.0180,with 95.45% probability (3.12)

The standard deviation and the average error computed over all pairs of Cook-

books articles were 0.0091 and 0.0073.
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Figure 3.3: Plane and vectors

3.3.4 Generating Random Hyperplanes

Generating a random plane, γ, is equivalent to generating a random vector, ~nγ,

normal to the plane. The side of γ on which an arbitrary vector ~v lies, hγ(~v) = ±1,

is induced by the angle between ~v and the normal vector, ~nγ. If the angle is lower

than π
2

then ~v lies on the plus side of the plane, otherwise it lies on the minus side

(see 3.3). hγ(~v) can be expressed as:

hγ(~v) = sign(cos∠( ~nγ, ~v))

= sign(‖ ~nγ‖ · ‖~v‖ · cos∠( ~nγ, ~v))

= sign( ~nγ · ~v) (3.13)

The values of nγ,κ can be pregenerated and hard coded in the sources as con-

stants. However since the number of random planes (3072 in the implementation)

and the number of keywords extracted from the collection of documents are large

the memory requirements would be prohibitive. Nevertheless the property of the

hash functions to return uniform random distributed numbers can be exploited to

compute nγ,κ:

nγ,κ = hash(SEEDγ, κ) ∈ (−1,+1) (3.14)

where SEEDγ is an arbitrary number unique to each plane. Note that since the

values of vκ are always positive it’s important that the values of nγ,κ contain both

negative and positive numbers, otherwise every vector will be on the same side of

each plane.
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3.3. Approximating the Similarity Between Two Documents

Finally the value of hγ(~v) is:

hγ(~v) = sign

 ∑
κ∈set of keywords from ~v

hash(SEEDγ, κ) · vκ

 (3.15)

3.3.5 Fingerprints

Now, computing the angle between two vectors is fairly simple. First generate N

random seeds, SEEDγi(i = 1 . . . N), corresponding to N random planes, γi(i =

1 . . . N). Then for a vector, ~v, compute the fingerprint of N bits:

fp(~v) = hγ1(~v) > 0, hγ2(~v) > 0, . . . , hγN (~v) > 0

= fp1(~v), fp2(~v), . . . , fpN(~v) (3.16)

(3.7) can be rewritten in terms of counting the number of different bits between

the two fingerprints:

Pr[~u ∼γ ~v] ≈ fp(~u)⊕ fp(~v) ,

∑N
i=1 fpi(~u) · fpi(~v)

N
(3.17)

Together with (3.3.4) it results that

∠(~u,~v) ≈ π · fp(~u)⊕ fp(~v)

cos∠(~u,~v) ≈ cos (π · fp(~u)⊕ fp(~v)) (3.18)

It’s important to note that a fingerprint encode only the direction of its vector

and not its magnitude.

The recommendation engine uses fingerprints to compute the cosine similarity

between documents and user profiles.

3.3.6 Comparison of Fingerprints with Shingles

Broder presents in [9] an algorithm to detect near-duplicate documents. For each

document D a sketch, SD, of N integers is constructed.

SD = (S1,D, S2,D, . . . , SN,D) (3.19)

The sketch is used to estimate the resemblance r(A,B) (also known as the Jaccard

index [18]) of two documents A and B:

r(A,B) =
|SA ∩ SB|
|SA ∪ SB|

(3.20)
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where SD is the set of q-gram words in D. Broder indicates that a high resem-

blance (that is, close to 1) captures well the informal notion of ”near-duplicate”

or ”roughly the same” [9].

The author of this thesis was inspired by Broder’s paper to use hash functions

to fingerprint documents and calculate the distance between them. However the

algorithms are different in the following key points:

• Sketches are used to compute resemblance while fingerprints are used to

compute the cosine distance. Two different documents that both talk about

memory leaks have a low resemblance, but a high cosine similarity.

• Sketches retain the set of q-grams present in the document. Fingerprints

store the direction of the vector of most relevant keywords extracted from

the document Sketches don’t use the notion of how relevant is a keyword to

a document.

• It’s not possible to combine two sketches to form a new sketch. For combin-

ing two fingerprints see 3.4.4.

3.4 Approximating the Similarity Between Users

and Documents

This section introduces the user profile describes how to relate documents to the

user behavior.

3.4.1 User Profile Definition

The user is represented with two components:

• the set of visited articles (section 3.4.2)

• the set of relevant keywords from user browsing history (section 3.4.3)

The user profile is stored in user’s cookies so it must be encoded using the

base64 algorithm [20] and limited to 4 KBytes (see section 4.2).

In the rest of this chapter user profile, or profile, will be used to mean the

vector of the relevant keywords.
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3.4.2 Storing the Visited Articles

As the user browses the Cookbooks articles it is important that he or she is not

recommended already visited recipes because he or she is unlikely to visit them

again. Some popular entertaining sites suffer from this problem which leads to

users frustration because they cannot find new material. The problem can be

formulated as follows: Given an article identified by it’s URL did the user visit it?

The set of possible visited articles can be huge even if it is restricted to the

collection known to the recommending engine however, the number of visited

URLs in a normal browsing session on Cookbooks was empirically measured to be

less than 50.

Burton H. Bloom describes in [6] a space-efficient probabilistic data structure

that is used to insert into and test the membership of an element of a set. The

Bloom filters were initially used for spell checking to store most frequent words. At

the time of the invention of the bloom-filters 64 KBytes of memory was considered

a de facto standard while the Oxford English Dictionary [24] contains over 600.000

definitions.

A Bloom filter is a bit array of m bits and k different hash functions which

map each set element to one of the m array positions with a uniform random

distribution.

The probability of a false positive when checking for membership is:(
1−

(
1− 1

m

)kn)k

≈
(

1− e−
kn
m

)k
(3.21)

where n is the number of inserted elements. The probability of a false positive is

minimized when

k =
m

n
ln 2 (3.22)

The section 5.3 details the values of m and k used by the recommendation

engine.

3.4.3 Using Vectors to Represent the User Profile

The set of relevant keywords for the user can be represented as a feature vector

similar to a document:

~u = {κ1 : uκ1 , κ2 : uκ2 , . . .} (3.23)
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3.4. Approximating the Similarity Between Users and Documents

After the user visits an article his or her profile is updated to reflect the new set

of relevant keywords. A common method to update the user profile is to use the

linear combination:

~u �ξ ~d , ~u · ξ + ~d · (1− ξ) (3.24)

where ~d is the document and ξ ∈ [0, 1] is the decay factor. The visual representa-

tion of 3.24 can be seen in figure 3.4.

The effect of the decay is to decrease the importance of the earlier visited

articles compared to the more recent ones. For example, if ξ = 0 the user profile

is discarded.

~u

~d

~v

α1

α2

∠(~v, ~d) = α2

∠(~u,~v) = α1

Figure 3.4: Updating the user profile

Advantages and Disadvantages

Keeping the user profile in its vector representation has the advantage of being very

easy to work with. The result of the linear combination (3.24) can be manually

computed and compared.

Nevertheless this method has several drawbacks:

• Size. On average one (keyword, relevance) pair uses around 16 bytes. To

accommodate the size limit of the user cookie (see chapter ??) the vector

is trimmed to the 128 most relevant keywords. The effect of trimming is

negligible because empirically the weight of the 100th most relevant keyword

is almost two orders of magnitude lower than the weight of the most relevant

keyword. Keeping the documents as a list of pairs (keyword, relevance)

consumes roughly 16bytes · 128 = 2078bytes (2730 bytes in base64 [20]).

• Privacy. Nobody should have access to the plain profile of any user conse-

quently the profiles must be encrypted and signed before sent to the user.

Encrypting and decrypting user profiles are very slow.
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3.4.4 Using Fingerprints to Represent the User Profile

Another method to represent the user profile is to encode the fingerprint of the

user feature vector. After visiting a document, ~d, the profile is probabilistically

updated:

~u ◦Ψ
~d , a vector~� such that

with probability Ψ hγ(~�) = hγ(~u)

otherwise hγ(~�) = hγ(~d)

where γ is a random plane (3.25)

Relation with the Linear Update

The next theorem explores how far ~u ◦Ψ
~d diverges from other documents, ~q.

Theorem 3.4.1. Let ~u, ~d and ~q be three arbitrary vectors. If ~v′ = ~u ◦Ψ
~d then

∠(~q, ~v′) = Ψ · ∠(~q, ~u) + (1−Ψ) · ∠(~q, ~d)

Proof. From the update algorithm 3.25 it results that:

1− ∠(~q, ~v′)

π
= Pr[~q ∼γ ~v′]

= Ψ · Pr[~q ∼γ ~u] + (1−Ψ) · Pr[~q ∼γ ~d]

= Ψ · (1− ∠(~q, ~u)

π
) + (1−Ψ) · (1− ∠(~q, ~d)

π
)

= 1− Ψ · ∠(~q, ~u) + (1−Ψ) · ∠(~q, ~d)

π
=⇒

∠(~q, ~v′) = Ψ · ∠(~q, ~u) + (1−Ψ) · ∠(~q, ~d)

While both methods to combine two vectors (3.24 and 3.25) are intuitive, a

relation between them is not and is provided by the next corollary.

Corollary 3.4.2. Let ~u and ~d be two vectors. If ~v = ~u �ξ ~d and ~v′ = ~u ◦Ψ
~d then

∠(~v, ~v′) = Ψ · ∠(~u,~v) + (1−Ψ) · ∠(~d,~v)
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With the notations from the notations from the previous corollary, Ψ has to

be calculated such that the mean square error

ErrΨ =

√√√√(∠(~u,~v)− ∠(~u, ~v′)
)2

+
(
∠(~d,~v)− ∠(~d, ~v′)

)2

2
(3.26)

is minimised. The error ErrΨ is used to find a vector ~v′ that diverges ~u and

approaches ~u at the same angles as ~v.

Let α1 = ∠(~u,~v) and α2 = ∠(~d,~v). Calculating the values of α1 and α2 is

beyond the scope of this thesis and is left as an exercise for the reader.

From the update algorithm 3.25 it follows that:

Pr[~u ∼γ ~v′] = Pr[~u ∼γ ~d] + Ψ · Pr[~u �γ
~d]

= 1− α1 + (1−Ψ) · α2

π

∠(~u, ~v′) = π · Pr[~u �γ
~v′] = (1−Ψ) · (α1 + α2) (3.27)

∠(~d, ~v′) = π · Pr[~d �γ
~v′] = Ψ · (α1 + α2) (3.28)

The error 3.26 can be rewritten as

ErrΨ =

√
(α1 − (α1 + α2) · (1−Ψ))2 + (α2 − (α1 + α2) ·Ψ)2

2

=
√

(α1 ·Ψ + α2 · (1−Ψ))2

=
√

(Ψ · (α1 + α2)− α2)2 (3.29)

which is minimized when

Ψ =
α2

α1 + α2

(3.30)

From 3.27, 3.28 and 3.30 the angles are:

∠(~u, ~v′) = (α1 + α2) · (1−Ψ) = α1 (3.31)

∠(~d, ~v′) = (α1 + α2) ·Ψ = α2 (3.32)

∠(~v, ~v′) = α1 ·Ψ + α2 · (1−Ψ) =
2α1α2

α1 + α2

(3.33)

The last equations show that Ψ can be used to control the angle between ~u◦Ψ
~d

and the vectors ~u and ~d. There are an infinite number of such vectors located at

a fixed angle from the ~u �ξ ~d.
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Other Applications

Corollary 3.4.3. Let ~u and ~d be two vectors and ~v′ = ~u◦Ψ
~d. Let κ be a keyword.

If uκ = dκ = 0 then v′κ = 0.

Proof. Let q = {κ : 1}. From the corollary 3.2.3

cos∠(~u, ~q) =
uκ
‖~u‖

= 0

∠(~u, ~q) =
π

2

Analogous

∠(~d, ~q) =
π

2

From the theorem 3.4.1:

∠(~q, ~v′) = Ψ · ∠(~q, ~u) + (1−Ψ) · ∠(~q, ~d)

= Ψ · π
2

+ (1−Ψ) · π
2

=
π

2

Applying the theorem 3.2.3:

v′κ = ‖v′‖ · cos∠(~q, ~v′)

= ‖v′‖ · cos
π

2
= 0

The previous corollary states that if a keyword is not relevant to the user profile

or the document it will not be relevant to the probabilistically updated profile.

Corollary 3.4.4. Let ~u and ~d be two vectors with ~d = {κ : −1}. If Ψ = π

2·∠(~d,~u)
∈

[0, 1] and ~v′ = ~u ◦Ψ
~d then

v′κ = 0

Proof. If ~q = {κ : 1} is a query vector then π − ∠(~q, ~u) = ∠(~d, ~u). From the

theorem 3.4.1:

∠(~q, ~v′) = Ψ · ∠(~q, ~u) + (1−Ψ) · ∠(~q, ~d)

=
π

2 · ∠(~d, ~u)
· ∠(~q, ~u) + (1− π

2 · ∠(~d, ~u)
) · π

= π +
π

2 · (π − ∠(~q, ~u))
· (∠(~q, ~u)− π)

=
π

2
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Applying the theorem 3.2.3 for ~q and ~v′

v′κ = ‖~v′‖ · cos∠(~q, ~v′) = 0

The last corollary provides means to erase keywords from a vector when only

its fingerprint is known.

Advantages and Disadvantages

There are a few advantages to using fingerprinting:

• Small fixed size. The engine’s implementation uses fingerprints of 3072 bits

(512 bytes when encoded using the base64 algorithm [20]) to represent almost

any document of any size. The fingerprint is more than 5 times smaller than

the encoded user profile vector.

Additionally, having a fixed size fingerprint is important when estimating

the memory requirements of the back-end (see chapter 4). The size of the

fingerprint also makes it very easy to fit in the user’s cookie.

• It’s fast. On a 2.4GHz processor fingerprinting a vector takes approximately

2.9ms, while computing the angle between two documents takes just under

0.9us. Computing the cosine product of two vectors takes about 250us.

For one time only operation, computing the similarity using fingerprints is

much slower. However, it’s important to note that fingerprinting of the doc-

uments is done offline in the preprocessing phase and so it can be neglected

from the response time.

A speed comparison between approximation using fingerprints and cosine

product is presented in table 3.5.

• No privacy issues. In order to extract any meaningful information from

the fingerprint one needs the random plane seeds which are not publicly

available. The corollary 3.2.3 provides a method to reverse-engineer the

fingerprint.

At the moment of writing this thesis the Adobe Community database contains

just over 600 articles and is expected to increase to over 10000 in the following year.

This translates in a current increase in speed of more than 40 times when using
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fingerprints which leads to much faster responses and more satisfied users. The

memory requirements are almost negligibly at current storage size availability, but

it’s important to consider when extending the collection of documents to include

other technical sites, webblogs or forums posts.

# of operations fingerprinting cosine product

1 2.9ms + 0.0009ms ≈ 2.9ms 0.25ms

10 2.9ms + 0.009ms ≈ 2.9ms 2.5ms

100 2.9ms + 0.09ms ≈ 3.0ms 25ms

1000 2.9ms + 0.9ms = 3.8ms 250ms

10000 2.9ms + 9ms = 11.9ms 2.5s

100000 2.9ms + 90ms ≈ 93ms 25s

1000000 2.9ms + 900ms ≈ 903ms 250s

Figure 3.5: Speed comparison: fingerprinting vs cosine product. Note that finger-

printing includes 2.9ms the time required to fingerprint a vector (eg. user profile

or a query)
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Chapter 4

Design

4.1 Overview

The feature is composed of three components: the user interface (4.2), the back-

end (4.3) and the preprocessing (4.4).

The flow is presented in picture 4.1. The users visits the Adobe Community

website (1) which calls the front-end (2) to generate the section displaying the

related articles (4). The front-end internally calls the back-end (3) to get the

relevant posts.

4.2 User Interface

The user interface is accomplished by the front-end module. The Adobe Commu-

nity site contains a small JavaScript function (see listing 4.2) which is called every

time a page is loaded. The script accesses the front-end service and inserts the

returned HTML code into a special section from the original web-page. If for any

reason the service fails nothing is displayed.

The front-end is a web-service that generates small HTML snippets (see the

example in listing 4.3) which display the recommended articles. The service is

available as a regular web-page and provides the following functionality:

• http://.../service/random_url. The user is redirected to a random ar-

ticle and his or her profile is cleaned. Mostly used for testing purposes.

• http://.../service/recommend?url=URL. After the user visits the article

at URL his or her profile is updated and he or she is presented with a list of

34

http://.../service/random_url
http://.../service/recommend?url=URL


4.2. User Interface

Figure 4.1: Flow

1 <script language=” j a v a s c r i p t ”>

2 $ . a jax ({
3 type : ”GET” ,

4 u r l : ”/ s e r v i c e /recommend” ,

5 s u c c e s s : f unc t i on ( html ) {
6 document . getElementById ( ’ r e l a t ed−r e c i p e s ’ )

7 . innerHTML = html ;

8 }
9 } ) ;

10 </ script>

Figure 4.2: JavaScript code to insert the generated HTML code
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4.3. Back-end

1 <p><a href=” http : / / . . . ”>

2 Delaying s t a t e change in t r a n s i t i o n s

3 </a></p>

4 <ul class=”meta”>

5 < l i><a class=” i c o user ”

6 t i t l e=” Sebas t i anCar l s son ”

7 href=” http : / / . . . ”>Sebas t i anCar l s son</a></ l i>

8 < l i>Rating : 3 .16</ l i>

9 < l i>S i m i l a r i t y : 2 .13</ l i>

10 </ul>

Figure 4.3: Snippet of the generated HTML code

relevant articles(as in 4.3). If the url parameter is omitted the referrer page

is implied.

• http://.../service/redirect?doc_id=ID&dest=URL. Logs that the user

followed the recommendation identified by doc id and redirects to URL. This

service is used to track the user clicks by replacing the URL to the article

with the corresponding redirect service URL.

The front-end stores the user profile in the user cookie [23] with a lifespan of

about 15 minutes. Every time the user accesses a page his or her profile is read,

sent to the back-end where it’s updated to reflect user’s action and then stored

back in the cookie. The cookie is usually limited to 4 KBytes and the profile must

be stored using a limited alphabet, usually using the base64 algorithm [20].

The front-end improves security and privacy by isolation. It does not have

access to the plain profile and if it is compromised at worst a malicious hacker will

have access to back-end’s interface which is already exposed by the front-end as

web-services.

The front-end can be extended to use more than one back-end and thus boost-

ing the performance and increasing the failure tolerance of the engine.

4.3 Back-end

The back-end exposes an interface to update the user’s profile, suggest articles

and log followed recommendations.
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4.3. Back-end

1 {
2 ’ doc id ’ : 0 x1234567890abcdef ,

3 ’ u r l ’ : ’ http ://www. adobe . com/ c f u s i o n / ’\
4 ’ index . cfm? event=showdeta i l s&post Id =322 ’

5 ’ t i t l e ’ : ’ Automatic user l og out ’ ,

6 ’ author ’ : ’ Krxtopher ’ ,

7 ’ r a t i n g ’ : 4 . 6 ,

8 ’ s i m i l a r i t y ’ : 2 . 7 ,

9 }

Figure 4.4: An example of a suggested article returned by the back-end (presented

as a Python dictionary)

Similar to many web services the back-end is a stateless service. The advantage

is that back-end doesn’t have to retain the user’s profile between requests which

helps improving performance and reliability. However, in order to track the user’s

behaviour the profile is store in the user’s cookie by the front-end.

For privacy reasons the profile is encrypted before it’s sent to the front-end

Since encrypting and decrypting are slower than other operations involved the

profiles are cached on the back-end service to avoid the decryption and therefore

decreasing the response time.

The back-end exposes the following API:

• visit url(encrypted profile, url)→ encrypted updated profile.

Called when the user visits a new page identified by it’s web address url. If

encrypted profile is missing the url is the first page visited by the user.

• suggest(encrypted profile, num suggestions, ignore urls)→ a list

When this service is called, the back-end walks through all articles from

Adobe Community database and matches them with the user profile. Then

it returns a list of num suggestions posts most relevant for the user. The

list doesn’t include any articles in ignore urls like the original article. Each

item in the list contains the doc id (the suggestion id — see the front-end

redirect service, section 4.2), the URL of the suggested article, the title to

display, the author, the rating from the users and the similarity with the

user’s profile.
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4.4. Preprocessing

• log redirect(doc id, source, dest)→ None

Logs a followed recommendation identified by doc id.

4.4 Preprocessing

In the preprocessing phase all Adobe Community articles are parsed. For each

document the following data is collected to be used in the back-end:

• the URL (e.g. http://www.adobe.com/cfusion/communityengine/index.

cfm?event=showdetails&postId=8924)

• the title (e.g. Cookbooks and CSS Advisor update 10.3)

• the author (e.g. john.doe@adobe.com)

• the Bayesian rating of the article (a real number between 1 and 5)

• the set of keywords and their relevance to the article (see section 3.1.2)

• the fingerprint of the article (see section 3.3.5)

The first four items are extracted from the database as they are. The rest are

computed in the preprocessing phase. This phase works in three steps:

1. Retrieves all the documents from the data base, parse them and extract the

keywords.

2. Compute document frequency for each keyword and trim redundant key-

words (see chapter 3).

3. For each document compute the document vector and calculate the finger-

print.

The data collected is stored on the physical disk and loaded when the back-end

starts. The preprocessing phase is run periodically to reflect the changes or the

new articles then the back-end is restarted to load the data.
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Chapter 5

Implementation Details

This chapter describes some implementation details. The engine was developed

under Python 2.6 [14] with the fingerprinting module written in C for speed rea-

sons.

5.1 Combining Two Fingerprints

The algorithm 3.25 can be easily adapted to calculate fp(~v′) = fp(~u ◦Ψ
~d). The

pseudo-code is provided in 1:

for i = 1 to N do

if random() < Ψ then

fpi(~v′)← fpi(~u)

else

fpi(~v′)← fpi(~d)

end if

end for
Algorithm 1: Updating the Fingerprint

random() is a function which produces uniform random generated numbers in

(−1,+1). Many popular programming languages provide such a function.

5.2 Fast Computation of the Angle

The operation of counting the number of different bits between two fingerprints

is equivalent to counting the number of bits set in the bitwise XOR of the two
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fingerprints:

fp(~u) 1 1 0 1 · · · 1 0

fp(~d) 1 0 1 1 · · · 0 0

fp(~u)⊕ fp(~d) 0 1 1 0 · · · 1 0

Figure 5.1: Fingerprints Bitwise XOR

Most modern processors (including x86, x86 64, ARM, PPC) provide bitwise

logical instructions like XOR, AND, SHL, SHR, OR which can operate on machine-

word-size bits at a time. For 32bit Intel processors the best algorithm known for

sideways addition is available from Sean Eron Anderson’s website [3] and listed in

5.2. The number of bits in the bitwise XOR of two fingerprints can be calculated

by dividing the fingerprints in blocks of 32 bits and summing the sideway-sums of

the blocks. On a 2.4GHz processor computing the probability using fingerprints

of 3072 bits length was timed at 0.9us.

1 v = v − ( ( v >> 1) & 0x55555555 ) ;

2 v = ( v & 0x33333333 ) + ( ( v >> 2) & 0x33333333 ) ;

3 c = ( ( v + ( v >> 4) & 0xF0F0F0F) ∗ 0x1010101 ) >> 24 ;

Figure 5.2: Fast sideway-sum for 32bits integers

In listing 5.2 the first line computes the sideway-sum of groups of two bits.

The second line computes the sideway-sum of groups of four bits. The third line

computes the sideway-sum of groups of eight bits and adds the four bytes inside

the integer v to compute the final sideway-sum. A modified version for 64bits

processors is available from Knuth in [22].

From a theoretical point of view this algorithm exploits the parallelism present

in the processors to achieve a time complexity of O(log(machine word size)) to

count O(machine word size) bits.

5.3 Storing the Visited Articles

The section 3.4.2 presents how the user visited articles are stored.

The recommending engine uses Bloom filters of m = 768bits (96bytes). If a

user visits less than 64 articles the probability of a false positive is minimized for

k = 9 hash functions.
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5.4. Tracking the Followed Recommendations

Table 5.3 summarizes the probability of a false positive given the number of

inserted URLs. For n = 64 visited articles the probability of a false positive is

around 0.43%.

# of elements Pr[false positive]

1 6 · 10−18

5 1 · 10−11

10 4 · 10−9

25 6 · 10−6

50 0.0009

64 0.0043

100 0.0457

Figure 5.3: Probability of a false positive based on the number of elements inserted

for m = 768 and k = 9 (see equation 3.21).

5.4 Tracking the Followed Recommendations

Sometimes, in order to test the recall of the recommendation engine the followed

suggested articles should be tracked.

There are a few requirements:

• No back-end side storage. The back-end should not maintain a list with all

recommendations generated, although it can log (to a physical disk) data.

• Suggestions must expire.

• A malicious hacker should not be able generate false entries.

For each suggestion the engine generates an unique id using the algorithm in

listing 5.4.

The URLs of the suggested articles are replaced with the new generated URLs

which call the redirect web service. The redirect service logs the followed suggestion

as in 5.5 and redirects to dest.

If ESID is modified then SID will not be a valid suggestion id. If SID or dest

are incorrect then the computed ID will be invalid and will not match any ID

logged in 5.4.
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5.5. Handling Keywords

1 Generate a random ID o f D b i t s

2 Log user ’ s p r o f i l e and ID

3 For each URL of the suggested a r t i c l e s :

4 SID = D xor d i g e s t (URL) // d i g e s t ( ) i s a

5 // cryptograph ic hash

6 // func t i on o f D b i t s

7 ESID = c r y p t o g r a p h i c a l l y encrypt (SID , dead l ine )

8 generate the URL:

9 http :// s e r v i c e / r e d i r e c t ? e s i d=ESID&dest=URL

Figure 5.4: Generating suggestion IDs

1 http :// s e r v i c e / r e d i r e c t ? e s i d=ESID&dest=URL

2 deadl ine , SID = decrypt ESID

3 i f time < dead l ine :

4 ID = SID xor d i g e s t (URL)

5 Log ID , URL

6 r e d i r e c t to URL

Figure 5.5: Logging suggestion IDs

The advantage of this approach to generating an unique random ID for each

suggestion is that less logging and tracking is necessary (one for each set of rec-

ommended articles versus one for each recommended article).

5.5 Handling Keywords

The section 3.1.2 described what are the keywords and how they are extracted

from the text. This section continues and shows how the set of keywords is stored

by the preprocessing phase. There are a few things that should be accounted for:

• Accessing a keyword of multiple words should be fast.

• Accessing a keyword which is a prefix of another keyword should be fast.

• Keywords have associated a number like term frequency

• Joining two sets of keywords should be relatively easy
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• Low memory requirements

The data structure used is the PATRICIA trie introduced by Morrison in [25]

where each node represents a keywords and each edge is labeled with a word. In

figure 5.6 the keywords in the trie are change, change background, change state,

user, tree and tree item.

A keyword can be accessed by following the path from root to the corresponding

node. The data associated with the keyword is stored in the its node. This

data structure has low memory requirements because the paths are shared. The

algorithm 2 joins two PATRICIA tries.

function join(A, B)

// if A is a trie, A[κ] is a subtree reached by

// following the edge labeled κ from root.

begin
C ← λ

foreach κ, a labeled edge from A or B do

if κ, edge from A and B then
C[κ] = join(A[κ], B[κ])

else if κ, edge from A then
C[κ] = A[κ]

else if κ, edge from B then
C[κ] = B[κ]

end

return C
end

Algorithm 2: A recursive function to join two PATRICIA tries

5.6 Used Technologies

This sections uses some technologies used by the recommendation engine.

5.6.1 Apache HTTP Server and Mod python

Apacha HTTP Server is an open-source HTTP server for modern operating sys-

tems including UNIX, MS-Windows, Macintosh and Netware. The goal of this

project is to provide a secure, efficient and extensible server that provides HTTP

services in sync with the current HTTP standards. (http://www.apache.org)

43

http://www.apache.org


5.6. Used Technologies

Figure 5.6: A PATRICIA trie

Mod python is an Apache module that embeds the Python interpreter within

the server. (http://www.modpython.org/)

The front-end runs as a web server over Apache HTTP Server using mod python.

5.6.2 Pycrypto

Pycrypto — The Python Cryptography Toolkit — is a Python library that pro-

vides implementations for various cryptographic encryption and digestion algo-

rithms. (http://www.dlitz.net/software/pycrypto/)

The front-end uses pycrypto to generate unique recommendation identifiers

and the back-end uses it to encrypt profiles when needed.

5.6.3 RPyC

RPyC, or Remote Python Call, is a transparent and symmetrical Python library

for remote procedure calls, clustering and distributed-computing. (http://rpyc.

wikidot.com/).

In the server-client scenario the back-end is the server and the front-end, the

client. The communication between them is done using the RPyC library.

5.6.4 Beautiful Soup

Beautiful Soup is an HTML/XML parser for Python that can turn even invalid

markup into a parse tree. It provides simple, idiomatic ways of navigating, search-
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5.6. Used Technologies

ing, and modifying the parse tree. It commonly saves programmers hours or days

of work. (http://www.crummy.com/software/BeautifulSoup/)

Beautiful Soup was used to parse the articles from the Adobe Community

database that were written in HTML. This library allowed elimination of tags (eg.

< br >, < em >, < p >), detection of code and elimination of comments.

5.6.5 Natural Language Toolkit

NLTK — Natural Language Toolkit — is a Open source Python modules, lin-

guistic data and documentation for research and development in natural language

processing, supporting dozens of NLP tasks, with distributions for Windows, Mac

OSX and Linux. (http://www.nltk.org/)

NLTK was used for stemming (see section 3.1.2) and part-of-speech tagging

(see subsection 3.1.2).
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Chapter 6

Future Work

This work was aimed to introduce a new method to compute the similarity between

users and documents.

Though, the appendix Results shows that the recommendation engine performs

pretty well under the conducted tests, the precession can be improved by including

other factors such as the magnitude of the document or user vector, the user

rating of the article or the hyperlinks between documents (eg. see the PageRank

algorithm [8]). These factors will be combined using the Expectation Maximisation

algorithm [12] to compute the similarity.

One area that needs more development is the modeling of documents as vectors.

Lexical chains [16], synonym networks [13], lexical patterns [2] or position of the

words in the text [11] are only a few areas that need to be investigated.

Currently, the user starts with an empty profile which is filled after the first

visited article. How to choose the initial profile to improve precision even nothing

is yet known about the user is called the cold-start problem. Schein et al. describe

some Methods and Metrics for Cold-Start Recommendations in [29].

When the recommendation engine goes live the user base will be much larger

than the one available during the development, so the engine will be fine tuned

to return better results. Moreover, with a larger user base the engine can suggest

common articles visited by different users as in collaborative filtering systems.

The engine can be extended on other segments of the Adobe Community En-

gine like forums. Every time a user visits an article he or she is shown a relevant

thread from the forum motivating him or her to contribute additional information

on the same topic.

The preprocessing phase analyses all documents from the Adobe Community
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Engine database every run. Currently, this is not an issue because the number

of articles in the database is not big and the time required to do that is under 2

minutes. Nonetheless, given the projection that many more articles will be added

the preprocessing phase should be modified to address only the changes and the

new articles.

While the minimal functionality was implemented as the engine was success-

fully integrated with Adobe Community Engine developing a recommendation en-

gine is an endless work of extending, fine tuning, text modeling and testing.
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Chapter 7

Conclusions

This thesis introduces a very fast way to estimate the similarity between docu-

ments and users by the means of fingerprints. Fingerprints are a way to encode

the direction of the document/user vector as an array of bits. They are used to

compute the cosine similarity between two vectors which are representations of

the documents and the users. The estimation error is shown to be negligible.

The profile of the user is obtained by combining the fingerprints of the visited

documents such that more recent visited articles have a higher relevance when

finding relevant articles. The resulted fingerprint is shown to contain only the

features found in the visited documents and nothing more. The user profile is

kept in the user cookie.

The fingerprints are used to build a personalised recommendation engine which

finds relevant articles based on the user’s browsing history. The recommendation

engine is implemented as a stateless web-service that generates small HTML snip-

pets which is shown together with the visited articles. A periodic phase is required

which models the documents as a vector using traditional information retrieval

techniques.

The appendix B — Results — shows that empirically the use of fingerprints

gives similar results as the typical approach while it is around two orders of mag-

nitude faster.
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Appendix A

Analysis of the Adobe

Community Articles

This chapter contains a statistical analysis of the collection of Adobe Community

articles. The database contains around 600 documents written by users in HTML.

The preprocessing phase strips any HTML tag and leaves only the visible text

before extracting the keywords.

For the histograms the number of bins were computed using the Sturges’ for-

mula:

# of bins = d1 + log2 # of elementse

The first histogram (A.1) shows the distribution of the number of keywords in

the vector representation of the document. The distribution has a bell shape and

the average number of keywords in a document is 142.

The second histogram (A.2) shows a histogram of the distribution of keyword

relevances as calculated by the recommendation engine. It is interesting that the

curve approximates a line.

The third graph (A.3) plots the most relevant keyword (sorted by relevance)

from all documents.

The last graph (A.4) can be extrapolated to infer that the addition of new

documents will not increase very much the number of unique keywords in the

collection.
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Figure A.2: Histogram of all keywords relevances
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Figure A.3: Graph of the most relevant keyword from each document
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Figure A.4: Cumulative number of distinct words (documents shuffled).
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Appendix B

Results

In order to improve the quality of the recommendation engine several tests were

conducted which are presented in this chapter

The first section describes the measure used to help decide which features are

good and which features aren’t.

The second section performs an analysis of the ability of the recommenda-

tion engine to measure the similarity between documents. This is equivalent to

discarding the user profile each time he or she visits a page.

The last section shows the strength of the engine to understand what the user

is looking for.

B.1 Overview

Two statistical classifications are widely used to assess the quality of the recom-

mendation engine: precision and recall.

• Precision is the probability that a retrieved document is relevant

Precision =
|{relevant documents}

⋂
{documents retrieved}|

|{documents retrieved}|

• Recall is the probability that a relevant document is retrieved

Recall =
|{relevant documents}

⋂
{documents retrieved}|

|{relevant documents}|

Because measuring the recall involves determining all relevant documents for

user profile which is hard and requires much human resources only the precision

was measured.
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B.2. Document versus Document

The improvement or regression of different features were tested using A/B tests.

To find relevant documents the back-end used an algorithm randomly selected from

a list of two or three. Some users, in this case other developers from Adobe, were

asked to test the recommendation engine by following some predefine steps. The

users didn’t posses any internal knowledge on how the engine works.

It’s important to note that comparing two different tests is not applicable

because bug fixes and other improvements were made between different tests.

Also I noticed that some users felt compelled to click one of the recommendations

so one feature that is particularly bad had a higher precision when tested together

with another poor feature than when tested together with a much better feature.

The tested precision is just an approximation of the real precision which will be

found when the engine goes live.

B.2 Document versus Document

To test whether the engine can model well the documents the users were asked to

follow several steps:

1. User visits a random article and reads its content. His or her profile is

cleaned.

2. User checks a list of 5 recommended articles.

3. If the user finds any relevant title he or she follows the link. The recommen-

dation engine logs the click and takes him or her back to the first step.

4. Otherwise user starts from the first step.

Joachims et al. show in [19] the probability of a result to be followed depends

on it’s rank: the lower the rank the higher the probability. Therefore, the test

results also include the number of clicks for each rank.
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B.2. Document versus Document

random engine

displayed 16 70

clicked 1 22

precision 0.063 0.314

1st article 0 5

2nd article 0 2

3rd article 0 13

4th article 1 1

5th article 0 1

Figure B.1: Engine is better than a monkey

title ×1 title ×5 title ×8

displayed 70 24 23

clicked 22 8 8

precision 0.314 0.333 0.348

1st article 5 3 2

2nd article 2 5 5

3rd article 13 0 1

4th article 1 0 0

5th article 1 0 0

Figure B.2: Precision when the relevance of the title is adjusted.

single word multiple words

displayed 23 30

clicked 12 26

precision 0.522 0.867

1st article 5 15

2nd article 3 4

3rd article 1 2

4th article 3 1

5th article 0 4

Figure B.3: Keyword of a single word vs keyword of multiple words
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B.3. User versus Document

code ×1 code ×0 code ×1
3

displayed 30 24 27

clicked 19 13 18

precision 0.633 0.542 0.666

1st article 8 8 7

2nd article 3 2 3

3rd article 3 2 5

4th article 4 1 2

5th article 1 0 1

Figure B.4: Precision when the relevance of the code is adjusted

B.3 User versus Document

This section shows the competence of the engine to recommend articles relevant

to the user.

The methodology from the previous section was changed:

1. User visits a random article and reads its content. His or her profile is

cleaned.

2. User checks a list of 5 recommended articles.

3. If the user finds any relevant title he or she follows the link. The recom-

mendation engine logs the click and takes him or her back to the second

step.

4. Otherwise user starts from the first step.

The user continues visiting articles as long as he or she sees relevant articles

then he or she starts over. The profile also contains already visited pages (see

section 3.4.2) and he or she is always presented new articles.

The table B.5 provides a comparison of how the two update algorithms behave

when user browses the site (see sections 3.4.3 and 3.4.4). The figure B.6 shows

the evolution of the precision. Both update algorithms show an increase in the

precision when the user visits the second page.
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B.3. User versus Document

page number fingerprint vector

1 47 17

2 29 8

3 21 5

4 16 5

5 10 3

6 5 3

7 2 3

8 2 3

9 1 3

10 1 2

11 0 1

12 0 1

Figure B.5: Number of clicks for both fingerprint based and vector based update

algorithm depending on the index of the page visited
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Figure B.6: Evolution of precision with the rank of the page visited
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B.4. Response Time

number of clients qps response time

1 43.8 23ms

4 20.2 50ms

16 23.7 42ms

64 30.0 33ms

Figure B.7: Average queries per second (qps) given the number of clients

B.4 Response Time

An important aspect of the recommendation engine is the response time. The

back-end was designed to use multiple simultaneous threads, but Python has a

Global Interpretor Lock [15] so the threads are not concurrent.

To test the engine under heavy load a client that simulates a user that randomly

walks the site was written. The client skips the front-end and directly uses the

interface from the back-end.

1. The client visits a random page using a clean profile.

2. The client gets a list of five relevant articles.

3. With the probability of 1
6

the client restarts from step 1.

4. Otherwise, the client chooses a random article from the suggested list and

visits it then it goes back to step 2.

The results are summarized in table B.7. At 20qps (queries per second) the

recommendation engine performs well beyond the current usage of the Adobe

Community Engine.
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Appendix C

Code

This chapter provides some sample code from the engine’s implementation.

C.1 Splitting Paragraphs into Sentences and Sen-

tences into Words

import re

import itertools

_WORD = re.compile(’\w+’, re.UNICODE)

# Python regexp doesn’t support (yet) UNICODE capital letters

_TEXT_SENTENCE_DELIM = re.compile(’([.!?]\W+(?=[A-Z]|\n)|$)’, re.UNICODE)

_CODE_SENTENCE_DELIM = re.compile(’\n|\r|$’, re.UNICODE)

def _helper(text, delim):

"""Splits a text into sentences using regexp"""

sentences = []

start = 0

for match in delim.finditer(text):

end = match.end()

sentences.append(text[start:end])

start = end

return sentences
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C.2. Extracting Keywords

def code_to_sentences(text):

"""Splits code into sentences (more like statements)"""

return _helper(text, _CODE_SENTENCE_DELIM)

def text_to_sentences(text):

"""Splits text into sentences"""

return _helper(text, _TEXT_SENTENCE_DELIM)

def sentence_to_words(sentence):

"""Splits a sentence into words ignoring punctuation"""

return _WORD.findall(sentence)

C.2 Extracting Keywords

"""Various functions to work with the keywords.

The tree representation of keywords has the following recursive definition:

node = {

’’ : frequency/relevance,

word1 : child_node1,

word2 : child_node2,

...

}

For example:

{

’’ : 8,

’romania’ : {

’’ : 5,

’iasi’ : { ’’: 1 },

’bacau’ : { ’’: 1 },

’deva’ : { ’’: 1 },

},

’bulgaria’ : { ’’: 1 },

’moldova’ : { ’’: 2 },

}

The terms in the example are: ’romania’(5), ’romania iasi’(1),

’romania bacau’(1), ’romania deva’(1), ’bulgaria’(1), ’moldova’(2).
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C.2. Extracting Keywords

For a document ‘keyword’ counts represent frequencies.

For a document ‘tfidf’ counts represent relevance. (see for example:

http://en.wikipedia.org/wiki/Tf-idf)

For a collection ‘df’ counts represent document frequency (number

of documents containing the keyword)

For a collection ‘idf’ counts represent inverse document frequency.

For simple keywords tfidf formula is similar to the one described on:

http://en.wikipedia.org/wiki/Tf-idf.

For compound keywords tfidf formula depends on probabilities of the

terms and their parents.

"""

import nltk

from math import log

import splitter

import bjhash

_STEMMER = nltk.stem.PorterStemmer()

# the list of words to ignore

# * http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

# * some other very common not included above (eg. ’ll, ’ve)

# XXX read from somewhere else

with open(’stop_words’) as f:

_STOP_WORDS = f.read().split()

# how long can a compound keyword be

_NGRAM = 4

def tree():

"""Returns an empty tree"""

return {’’: 0}

def extract_keywords(sentence):

"""Extracts keywords from sentence.
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C.2. Extracting Keywords

@return: a tree containing compound keywords from sentence

"""

words = splitter.sentence_to_words(sentence)

# lowercase and remove 1 character length words

words = [w.lower() for w in words if len(w) > 1]

# removes stopwords

words = [w for w in words if w not in _STOP_WORDS]

# stems

words = [_STEMMER.stem(w) for w in words]

# removes numbers

words = [w for w in words if not w.isdigit()]

# deletes duplicate words

temp, last = [], ’’

for word in words:

if word != last:

temp.append(word)

last = word

words = temp

# generates n-gram keywords

root = tree()

for start in xrange(len(words)):

node = root

node[’’] += 1

for index in xrange(start, min(start + _NGRAM, len(words))):

node = node.setdefault(words[index], tree())

node[’’] += 1

return root

def update_keywords(keywords, new, coef=1):

"""Updates ‘keywords’ tree with keywords from ‘new’ tree."""

keywords[’’] += new[’’] * coef

for keyword, child_new in new.iteritems():

if keyword:

child_keywords = keywords.setdefault(keyword, tree())

update_keywords(child_keywords, child_new, coef)

return keywords
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C.2. Extracting Keywords

def update_df(df, keywords):

"""Updates a ‘df’ tree with keywords from ‘keywords’ tree.

This function is similar to ‘update_keywords’ but counts

from ‘keywords’ are ignored.

@param keywords: a tree containing keywords from one document

@param df: a tree representing document frequency

@return: the updated ‘df’

"""

df[’’] += 1

for keyword, child_keywords in keywords.iteritems():

if keyword:

child_df = df.setdefault(keyword, tree())

update_df(child_df, child_keywords)

return df

def convert_to_idf(df):

"""Given a ‘df’ tree converts it inplace to an ‘idf’ tree."""

# if df has at most one son, removes it

if len(df) <= 2:

temp = df[’’]

df.clear()

df[’’] = temp

return

# Deletes all keywords present in all documents where parent is

# present (ie. idf = 0). For example if ‘foo’ and ‘foo bar’ are

# both present in 100 documents, then there is no need for ‘foo bar’.

# Also, deletes all keywords found only in one document.

for keyword, child in df.items():

if keyword:

if child[’’] == df[’’] or child[’’] == 1:

del df[keyword]

# Recurses and computes final df values for its sons

for keyword, child in df.iteritems():

if keyword:

66



C.2. Extracting Keywords

convert_to_idf(child)

child[’’] = log(1. * df[’’] / child[’’])

#child[’’] = log(1. * df[’’])

def compute_tfidf(keywords, idf, _tfidf=None, _sum=None):

"""Computes tfidf for each keyword in document.

Words not in idf are ignored because they may be too rare

and not relevant for the document relations.

"""

if _tfidf is None:

idf[’’] = 0.

_sum = keywords[’’]

_tfidf = tree()

for keyword, child_keywords in keywords.iteritems():

if keyword:

child_idf = idf.get(keyword)

if child_idf is None:

continue

relevance = 1. * child_keywords[’’] / _sum * (

log(1. * _sum / keywords[’’]) + child_idf[’’])

#relevance = 1. * child_keywords[’’] / _sum * child_idf[’’]

child_tfidf = _tfidf.setdefault(keyword, { ’’: relevance })

compute_tfidf(child_keywords, child_idf, child_tfidf, _sum)

return _tfidf

def flatten_tfidf(tfidf, _flat=None, _word=’’):

"""Given a ‘tfidf’ tree returns a flat representation.

For each node (except root) path is concatened and a pair

(path, relevance) is generated

For example, given the following tree (copied from module’s docstring):

{

’’ : 8,

’romania’ : {
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C.2. Extracting Keywords

’’ : 5,

’iasi’ : { ’’: 1 },

’bacau’ : { ’’: 1 },

’deva’ : { ’’: 1 },

},

’bulgaria’ : { ’’: 1 },

’moldova’ : { ’’: 2 },

}

the result will be the list (possible in a different order):

[

(’romania’, 5),

(’romania iasi’, 1),

(’romania bacau’, 1),

(’romania deva’, 1),

(’bulgaria’, 1),

(’moldova’, 2),

]

"""

if _flat is None:

_flat = []

for keyword, child in tfidf.iteritems():

if keyword:

if _word:

word = _word + ’ ’ + keyword

else:

word = keyword

_flat.append((word, child[’’]))

flatten_tfidf(child, _flat, word)

return _flat

def compute_fingerprint(tfidf):

"""Computes fingerprint of the document.

@param tfidf: a flat representation of keywords in a document

@return computed fingerprint of keywords vector
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C.3. The Backend

"""

return bjhash.fingerprint(tfidf)

C.3 The Backend

def exposed_suggest(self, profile_sign, encrypted_profile,

num_suggestions, ignore_urls):

"""Suggests ‘num_suggestions‘ documents based on user’s profile.

@param profile_sign user’s profile signature

@param encrypted_profile the encrypted user’s profile

@param num_suggestions number of suggestions to return

@param ignore_urls a tuple of URLs to ignore

@return tuple({

’doc_id’ : doc_id, # a suggestion id

’url’ : url, # sugested URL

’title’ : title, # sugested title

’similarity’: similarity, # a coefficient. The higher the better.

’author’ : author, # author of the document

’rating’ : rating, # whatever rating was

# retrieved from cookboks

})

"""

profile = self.__get_profile(profile_sign, encrypted_profile)

ignore_urls = frozenset(ignore_urls)

# computes similarity between user’s profile and all documents

docs = []

suggestion_id = random.getrandbits(crypto.DIGEST_BITS_SIZE)

self.log.suggestion_id = suggestion_id

self.log.profile_sign = profile_sign

profile_fingerprint = profile.fingerprint()

for doc in self.docs.itervalues():

url, fingerprint = doc[’url’], doc[’fingerprint’]

if url not in ignore_urls:

similarity = bjhash.cosine(fingerprint,

profile_fingerprint)

similarity *= 1 - 0.9 * profile.has_visited(url)

docs.append((url, similarity))
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C.3. The Backend

# leaves only the best ‘num’ documents

docs = heapq.nlargest(num_suggestions, docs, key=lambda d: d[1])

# computes suggestion ids

for index in xrange(len(docs)):

url, similarity = docs[index]

doc_id = suggestion_id ^ crypto.digest_int(url)

doc_id = (’%%0%dX’ % (2 * crypto.DIGEST_SIZE)) % doc_id

doc_id = crypto.encrypt_block(self.key, doc_id)

docs[index] = _dict_doc_to_tuple(self.docs[url],

doc_id=doc_id,

similarity=similarity)

# makes docs immutable (and thus dumpable)

docs = tuple(docs)

self.log.docs = docs

return docs

def exposed_log_redirect(self, doc_id, source, dest):

"""Logs a redirect from source and dest."""

try:

doc_id = crypto.decrypt_block(self.key, doc_id)

doc_id = int(doc_id, 16)

except (crypto.DecryptError, ValueError):

# ignores invalid doc_ids (somebody is messing with our ids)

_logger.error(’Cannot decode doc_id. Malicious url?’)

return

suggestion_id = doc_id ^ crypto.digest_int(dest)

self.log.suggestion_id = suggestion_id

self.log.source = source

self.log.dest = dest

def exposed_random_urls(self, num_urls):

"""Returns num_urls random URLs from the loaded set"""

num_urls = min(num_urls, len(self.docs))

urls = random.sample(self.docs, num_urls)

return tuple(_dict_doc_to_tuple(self.docs[url]) for url in urls)
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C.4. The Front-end

C.4 The Front-end

@_handle_client_errors

def redirect(req, doc_id, dest):

"""Implements a redirection to destination"""

try:

client = _connect(req)

client.root.log_redirect(base64.urlsafe_b64decode(doc_id), _referer(req), dest)

except Exception:

# ignores any server error

pass

# redirects to destination

util.redirect(req, urllib.unquote(dest))

@_handle_client_errors

def random_page(req):

"""Redirects to a random page"""

client = _connect(req)

urls = client.root.random_urls(1)

cookie = Cookie.Cookie(’u’, ’’, discard=True, expires=0)

Cookie.add_cookie(req, cookie)

cookie = Cookie.Cookie(’s’, ’’, discard=True, expires=0)

Cookie.add_cookie(req, cookie)

if urls:

util.redirect(req, dict(urls[0])[’url’])

raise apache.SERVER_RETURN, apache.HTTP_INTERNAL_SERVER_ERROR

@_handle_client_errors

def recommend(req, url=None):

"""Generates HTML code with the suggestions"""

req.content_type = ’text/html; charset=utf-8’

if url is None:

url = _referer(req)

sign, profile = _load_profile(req)

client = _connect(req)

71



C.4. The Front-end

sign, profile = client.root.visit_url(sign, profile, url)

docs = client.root.suggest(sign, profile, NUM_RECOMMENDATIONS, (url,))

# transforms url from

# from http://host/.../recommend

# to http://host/.../redirect

redirect_url = urllib.url2pathname(req.parsed_uri[6])

redirect_url = os.path.join(os.path.dirname(redirect_url), ’redirect’)

redirect_url = urllib.pathname2url(redirect_url)

# generates the html code

result = SUGGESTION_HEADER

for doc in docs:

doc = dict(doc)

doc[’doc_id’] = base64.urlsafe_b64encode(doc[’doc_id’])

doc[’url’] = urllib.quote(doc[’url’])

doc[’similarity’] = ’%.2f’ % (doc[’similarity’] * 4 + 1)

result += SUGGESTION_ELEMENT.format(redirect_url=redirect_url, **doc)

result += SUGGESTION_FOOTER

_save_profile(req, sign, profile)

return result
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