
About neToolkit

neToolkit is a program designed to allow for quick prototyping of graphical user interfaces.
Instead of directly manipulating toolkit code from a particular programming language, the
GUI is described in a somewhat visual text input format. From this generalized input
description, neToolkit will generate the code which it represents, using a toolkit of the users
choice in a language of the users choice. In this manner, the input which describes the
resulting interface is both programming language and toolkit agnostic.

This project is developed and maintained by Michael Leimon, a graduate student of the
TAMU Nuclear Engineering Department. The naming of this project stems from an effort
to write more user friendly programs for the nuclear engineering field. These resulting
programs must work on multiple platforms, even if the final product uses different toolkits
on different platforms. This goal of this project is to make this possible and simple.

It should also be mentioned that, neToolkit is licensed under a FreeBSD license.

Examples

Hello World

This example demonstates, in likely the simplest case, the layout of a general GUI description.
Notice that indentation is what signifies children of a section. In this example, there are two
top-level sections, test test, and add prog.

The ‘@‘ symbol appearing in the ‘-frame‘ line of add prog, serves as a element insertion
operator. Essentially, the ‘-frame‘ element containing ‘@test test‘ is replaced by the code
section test test.

hello.ne

Hello world example (comment line)

frame test_test

-text: "Hello World!!"

application add_prog

-frame : @test_test

-output_name : "hello"

-source : "hello_src.py"

-description : "obligatory first program"

-language : python

-toolkit : tk

hello src.py

hello_src.py

1

this file does nothing

Figure 1: The resulting GUI for ‘hello.ne‘ as seen on OSX.

Columns and Rows

STUB

Figure 2: The resulting GUI for ‘short.ne‘ as seen on OSX.

Addition Program

STUB

Figure 3: The resulting GUI for ‘evalprog.ne‘ as seen on OSX.

Python Line Evaluator

evalprog.ne

call complex

-function: *eval_func

+args

- (input_line.text)

-return: (output_line.text)

2

frame eval_frame

+row

-text:"input"

-entry: & input_line

+row

-text:"evaluated"

-entry: & output_line

+row

-text: "Python Evaluator"

+button

-text: "evaluate"

+on_click

-@complex

application add_prog

-frame : @eval_frame

-output_name : "evalprog"

-source : "EvalProg_src.py"

-description : "evaluate a line of text using python"

-language : python

-toolkit : tk

EvalProg src.py

#!/usr/bin/env python3

EvalProg_src.py

def eval_func(a):

"use python to evaluate a line"

return eval(a)

Figure 4: The resulting GUI for ‘evalprog.ne‘ as seen on OSX.

3

