
jQuery labs
Lab 1 - Selectors
In this lab youʼll experiment with the different selectors offered by jQuery.

Step 1 - Select by element type
Use the element type selector to select all title (<h2>) elements to change the font color to
gray instead of black.

Step 2 - Select by class
Use the class selector to select all “entry” elements and give them a border.

Step 3 - Select by id
Select the footer using the ID selector to give the footer a grayish background color.

Step 4 - Nested selection
Select all links in the menu (not the one in the footer) using a nested selector to style the
links in the menu. A better way would be to do this using a css style, but itʼs just for
exercise.

Step 5 - More advanced nested selection
In this step you will use a combination of selectors to style a table. First, create a selector
to give each odd row in the table a different color from even rows. Second, create a
selector to style the header of the table (just another <tr> in this example). Also create a
selector to set the width of each first column to 200 pixels. Again, this could be done again
using CSS (which would be a cleaner approach), but itʼs a good practice.

Lab 2 - Todo application
In this lab youʼll build a simple Todo application using pure jQuery.

Step 1 - Creating a form
Create a form with a text field, a text area and a button. This form will be used to add new
todo items.

Step 2 - Create a click handler
Add a click handler to the add button that adds a new item (using the data from the text
input fields) to a local list of items. Because the list is not saved anywhere all data will be
gone after a browser refresh, ignore this for this lab. Make sure the item is added to the list
using a console.log in the event handler. Make sure the form doesnʼt get submitted
(forcing a new browser request)!

Step 3 - Rendering items
The todo items should be displayed as a list. Create an empty <div> as a placeholder for
the items. Add code to the buttonʼs event handler to create a new html element using
jQuery and add the element to the list of items.

! ! 1

Step 4 - Removing items
Add a “delete” button behind every item. Add an event handler for this button and a
method that removes an element from the list. Use the jQuery data() attribute to identify
the specific row to delete.

Step 5 - Display item details
Make each item clickable. When a user clicks an item the details of that item should be
rendered in a html popup using a new, absolute positioned div. Add a close button the
popup div to close it.

Lab 3 - Ajax
In this lab you will build a Twitter application. Twitter offers a nice RESTful JSON API which
is a perfect example to try jQueries AJAX functionality.

Step 1 - Building the page
Start by creating the page that will display the tweets. Create an empty as a
placeholder for the list of tweets, a text input field and a button.

Step 2 - Loading tweets
Add a click event listener to the button and use the $.ajax method to requests the
“timeline” for the specified user. The URL for the timeline API is as follows:
http://api.twitter.com/1/statuses/user_timeline.json?screen_name=screenname

You can find more details about the API in the Twitter documentation here:
http://dev.twitter.com/doc/get/statuses/user_timeline

Note that youʼre required to use jsonp instead of normal json as the data type to work
around the problem of the same origin security rule. To be able to do this youʼll need to use
the plain $.ajax method instead of the easier to use $.getJSON method. Use the
console.log method to see if the result is a list of tweets.

Step 3 - Rendering tweets
Implement the success handler for the ajax call to render the list of tweets. Use the $.each
method to iterate over the tweets and create a new item to add to the placeholder
for each tweet.

Step 4 - Cleanup the list
Display the timeline for one user, and than request the timeline for another user. Youʼll
notice that the second timeline is just appended to the list of the first user. Fix this by
clearing the list of tweets before rendering a new timeline.

Step 5 - CSS
The current list doesnʼt look very impressive. Try to improve this by adding some CSS to
the page. Use the CSS3 box-shadow and -webkit-border-radius properties to get a modern
look & feel.

! ! 2

http://api.twitter.com/1/statuses/user_timeline.json?screen_name=screenname
http://api.twitter.com/1/statuses/user_timeline.json?screen_name=screenname
http://dev.twitter.com/doc/get/statuses/user_timeline
http://dev.twitter.com/doc/get/statuses/user_timeline

Lab 4 - Creating a plugin
In this lab youʼll create a jQuery plugin that enables table pagination.

Step 1 - Inspect the page
There is a predefined page for this lab that contains a large table of books. Youʼre going to
create a jQuery plugin that adds paging to this table.

Step 2 - Create the plugin
Add a new JavaScript file to the project and include this file on the page. Write a (empty)
pagination() function and test if this code is called correctly if the method is called on a
wrapped element set.

Step 3 - Implement pagination
Add code to hide all rows that are not part of the ʻcurrentʼ page. Make sure each page
shows only 10 rows and add a next and previous button to jump to different pages. The
buttons should be created from the plugin code, not directly on the page containing the
table.

Step 4 - Protect from page overflow
The user is now able to show a page that doesnʼt contain any items by clicking the next
button too many times, or by going to a negative page number. Protect the user from this
by adding some code to dynamically disable the next/prev buttons.

Step 5 - Plugin configuration
Add a parameter object as an argument to the pagination method and add arguments for
the number of items per page, and the css classes and texts for the buttons.

! ! 3

Labs jQuery UI
Lab 1 - Drag & Drop
In this lab you will create a simple agenda application with drag & drop functionality using
jQuery UI.

Step 1 - Investigate the page
Take a look at the page provided for the lab. It contains a bunch of divs that represent todo
items and some divs that represent days in the agenda. There is no markup so everything
is just shown as text elements.

Step 2 - Add CSS
First youʼre going to need some styling to get a page that looks like an agenda. Make sure
your page looks similar to the following example.

Step 3 - Make todo items draggable
Select all todo items and call the draggable() method on them. The items should now be
draggable, but they can be dropped anywhere on the page. Add two properties to the
draggable(): “revert” and “scope”. The scope must be set on the droppable too later to
make sure they match. Only items with a matching scope will be droppable on a drop
target. Test the application again and make sure items can still be dragged, but not
dropped anywhere.

Step 4 - Handle drop events
Add code to handle drop events. The idea is to keep a global variable that contains the list
of days with the list of todos for each day. This can be achieved by using a multi-
dimensional array. A multi-dimensional array can be created using the following syntax in
JavaScrpt:

var	
 days	
 =	
 Array(7)
days[0]	
 =	
 new	
 Array();
days[1]	
 =	
 new	
 Array();
//...

! ! 4

Arrays can dynamically grow in JavaScript by using the push() method.

Step 5 - Check the schedule
To validate if the schedule is saved correctly you can add a button that prints the whole
schedule to the console when the user clicks it.

! ! 5

Labs HTML 5
Lab 1 - Video
In this lab youʼll create a video player with bookmarking functionality.

Step 1 - Display video
Add a video element to the page with a poster frame and custom buttons (so donʼt use the
default controls). Make sure you can play, pause and restart a video.

Step 2 - Add bookmarking functionality
Add a “bookmark” button. When a user clicks the button an image should be rendered of
the current frame. This image should be displayed below the video. When a user clicks a
bookmark, the video should jump to the time saved by the bookmark. To get/set the
current time in a video you use the currentTime property on the video element.

! ! 6

