
Toric Geometry and Sage

Volker Braun

Dublin Institute for Advanced Studies
10 Burlington Road
Dublin 4, Ireland

Email: vbraun@stp.dias.ie

Abstract

I will give a pedagogical introduction to toric geometry without requiring pre-
vious knowledge in algebraic geometry. The lecture series will be based on the
toric geometry package in the open-source Sage mathematics software system.
Various examples relevant to string theory are used to illustrate the techniques.
Each lecture will contain exercises to be solved in the accompanying computer
lab.

Contents

I Local Structure 4

1 Affine Varieties 4
1.1 Affine Algebraic Varieties . 4
1.2 The Ideal of a Variety . 5
1.3 Dimension . 7
1.4 Gröbner Bases . 7

2 The Sage Mathematics Software System 10
2.1 Prologue . 10
2.2 The Sage Notebook . 11
2.3 Introduction to Sage . 12
2.4 Algebraic Geometry in Sage . 16
2.5 The Python Language . 17

2.5.1 List Comprehensions . 17
2.5.2 Control Flow . 17
2.5.3 Functions . 18
2.5.4 Classes . 18

2.6 Cython and Scientific Computation . 18

3 Affine Toric Varieties 20
3.1 Schemes . 20
3.2 Cones and Lattices . 21
3.3 Torus Action and Orbifolds . 23
3.4 The Conifold . 25

II Global Aspects 27

4 Coordinate Patches and Compact Varieties 27

5 Toric Varieties 29
5.1 Fans . 29
5.2 Gluing . 30
5.3 Torus Orbits . 30
5.4 Orbit Closures . 31
5.5 Lattice Polytopes . 32
5.6 Resolution of Singularities . 32

6 Topology 32
6.1 Cartier and Weil Divisors . 32
6.2 Rational Equivalence . 33
6.3 Chow Group . 34

2

6.4 The Cohomology Ring . 35

III Divisors and Line Bundles 37

7 Homogeneous Coordinates 37

8 Sheaves 38
8.1 Line Bundles and Cartier Divisors . 38
8.2 Support Functions . 39
8.3 Global Sections . 40
8.4 Cohomology . 42

9 Positivity 42
9.1 Ampleness . 42
9.2 The Canonical Bundle . 42
9.3 Gorenstein . 43
9.4 Kahler and Mori Cone . 44

IV Mirror Symmetry 45

10 Calabi-Yau Hypersurfaces 45

11 Periods and Picard-Fuchs Equations 46

12 The Mirror Map 46

Bibliography 46

3

Part I

Local Structure

1 Affine Varieties

1.1 Affine Algebraic Varieties

Toric varieties are a special kind of algebraic variety (often we say just “variety”), which
themselves are a special kind of topological space. So before we get to toric part, lets
consider just algebraic varieties.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 1: The 1-dimensional real alge-
braic variety x2 + y2 = 1.

Algebraic geometry (the theory of algebraic
varieties) is a wide field with broad applica-
tions to geometry, algebra, and number the-
ory. We will actually see applications in these
apparently unrelated fields. Unfortunately, its
terminology is sometimes unintuitive precisely
because it draws from such disparate fields. So
instead of starting with the most general def-
inition of an algebraic variety, lets start with
the following working definition:

Definition 1 (Affine algebraic variety). An
affine algebraic variety (over the field F) is the
zero set V (p1, . . . , pk) ⊂ Fn of a finite number
of polynomials p1, . . . , pk ∈ F[x1, . . . , xn].

Note the special case where there is no poly-
nomial, k = 0. In this case V ({}) = Fn, so in
particular affine space is an algebraic variety.
The non-trivial affine algebraic varieties are the subvarieties of affine space cut out by
polynomial equations, hence the name. We will almost exclusively consider the case
where the field F = C are the complex numbers, and this will always be understood
in the following whenever we do not specify the field explicitly. However, because they
are complex spaces it is generally impossible to draw them on a piece of paper. For
graphing purposes, it is rather convenient to use the real numbers F = R as the base
field. For example, Figure 1 is a picture of a real algebraic variety. But note that the
real picture is often misleading. For example, affine algebraic varieties over C always
“run off to infinity”:

Exercise 1. Suppose that that X = V (p1, . . . , pk) is generated by k < n non-constant
polynomials and that the base field F is algebraically closed. Show that X admits a
surjective map f : X → Fn−k. Conclude that X cannot be compact.

Another class of base fields is very important for computations, namely finite fields.
By definition, a finite field is a field with a finite number of elements. For example, F3 =

4

{0, 1, 2} with addition and multiplication being the usual addition and multiplication
modulo 3 is a field:

• Closed under addition and multiplication

• Multiplication is distributive over addition.

• Both addition and multiplication are associative and commutative.

• Existence of additive identity and inverse.

• Existence of multiplicative identity and inverse.

Usually the last point, that is the existence of a multiplicative inverse for all x 6= 0, is
the tricky part. Here, we note that 1

1
= 1 and 1

2
= 2 in F3. This construction generalizes

to Fp = Zp for any prime number p.

Exercise 2. Construct a field with 4 elements, that is, construct an addition and mul-
tiplication table on {0, 1, x, y}.

As the exercise shows, there are more finite fields than just Fp. The general theory
of finite fields can be summarized as

Theorem 1 (Structure of finite fields). The number of elements of a finite field is of
the form pn, where p is a prime and n ≥ 1. The field of size pn exists and is unique,
and is usually denoted by Fpn.

Physicists are generally not interested in finite fields for obvious reasons. But they are
an important tool in computations, because one can often devise much faster algorithms
for dealing with polynomials over finite fields. For example, see [1, Section 4.6.2] for ways
to factorize polynomials over finite fields. Many computations in algebraic geometry are
only possible by judiciously replacing the problem over C with another problem over a
finite field, and we will see some examples of this in the following. Note that for any
finite field Fpn ,

• There are finitely many maps (Fpn)k → Fpn .

• There are infinitely many polynomials (in k variables) over Fpn .

• A variety over Fpn consists of a finite number of points.

1.2 The Ideal of a Variety

While a set of polynomials uniquely determines an algebraic variety, the converse is not
true: You cannot uniquely recover the polynomials from the variety. For starters, if p
and q are polynomials, then

p(x̄)f(x̄) + q(x̄)g(x̄), f, g ∈ C[x1, . . . , xn] = C[x̄] (1)

also vanishes on V (p, q). So, first of all, we should only think of the variety as depending
on the ideal generated by the polynomials, that is, the subset of the whole polynomial
ring that is generated by linear combinations with polynomial coefficients:

5

Definition 2 (Ideal). The ideal 〈r1, r2 . . . , 〉 generated by elements r1, r2, · · · ∈ R of a
ring1 R is the set of all R-linear combinations

〈r1, r2, . . . 〉 =
{∑

siri

∣∣∣si ∈ R} ⊂ R (2)

One key fact about ideals in polynomial rings is that they are finitely generated:

Theorem 2 (Hilbert’s basis theorem). An ideal I ⊂ C[x̄] is always finitely generated,
that is, of the form I = 〈p1(x̄), . . . , pk(x̄)〉 for some k ∈ Z.

There is some rather unintuitive nomenclature associated; For the record let me
mention that

• A ring is called noetherian if every ideal is finitely generated; Examples are mul-
tivariate polynomial rings over fields.

• A ring2 is a principal ideal domain (PID) if every ideal can be generated by a
single element.

Exercise 3. Given univariate polynomials f , g ∈ C[x], show that 〈f, g〉 = 〈gcd(f, g)〉.
Conclude that univariate polynomials rings over fields are PIDs.

We can define the ideal generated by all polynomials vanishing on a variety without
having to enumerate any particula set of generators:

Definition 3 (Ideal of a variety). Given an affine algebraic variety V ⊂ Cn, let

I(V) =
{
p ∈ C[x̄]

∣∣∣ p(x̄) = 0 ∀ x̄ ∈ V
}

(3)

be the ideal generated by all polynomials vanishing on V .

Finding the variety defined by an ideal and the vanishing ideal of a variety are almost,
but not quite, inverse operations. What is true is that, for any affine variety V ,

V
(
I(V)

)
= V. (4)

To better understand I
(
V (I)

)
, consider the ideal I = 〈x2〉 ⊂ C[x]. Its variety is

V (I) = {0}, and its vanishing ideal is 〈x〉. Hence we get a larger ideal than the one we
started with; Essentially, if pk ∈ I then we have to add p to the generators of I

(
V (I)

)
.

This construction is called the radical of I and written
√
I, though it involves more than

just square-roots. To summarize,

I
(
V (I)

)
=
√
I. (5)

1By ring, I will always mean a commutative ring.
2Some authors also require a PID to be without zero-divisors.

6

1.3 Dimension

In order to perform any computation, we need to rephrase questions about the geometry
of a variety in terms of an algebraic question about the defining ideal. For example,
consider the variety defined by the ideal 〈xy〉 ⊂ C[x, y]. Clearly, xy = 0 if either x = 0
or y = 0, so the variety is the union of the two coordinate hyperplanes,

V
(
〈xy〉

)
= V

(
〈x〉
)
∪ V

(
〈y〉
)

(6)

A variety that can be written as the union is called a reducible variety. As the example
shows, if you can find polynomials not in the ideal but such that their product is in the
ideal, then the variety is reducible. This motivates the definition

Definition 4 (Prime ideal). An ideal I (R is prime if f · g ∈ I ⇒ f ∈ I or g ∈ I.

The weird name stems from the fact that if you take R = Z, then the ideal 〈k〉 is a
prime ideal if and only if k is a prime number.

I(V) is a prime ideal ⇔ V is an irreducible variety

Perhaps the most basic property is the dimension of the variety. One might be
tempted to define the dimension of the variety as (# of variables) − (# of equations),
but as we will see in Subsection 2.4 this fails horribly. The next best guess would be to
define it geometrically by the tangent plane at a suitable non-singular point, but what
does that mean for varieties over finite fields? Instead, we use the following definition
of the dimension of an ideal I. First, note that if J (I and J is a prime ideal, then
V (J) must have strictly larger dimension3 than V (I). Hence, we are led to define

Definition 5 (Krull dimension). The dimension of V (I), also written as dim(I), is the
maximal length of a chain of prime ideals

P0 (P1 (· · · (PdimV (I) (C[x̄]/I (7)

The simplest example is affine subspace Cr = V (〈xr+1, . . . , xn〉) ⊂ Cn. The quotient
C[x1, . . . , xn]/I ' C[x1, . . . , xr] has the following maximal chain of prime ideals

{0} (〈x1〉 (〈x1, x2〉 (· · · (〈x1, . . . , xr〉 (C[x̄]/I, (8)

in accordance with the expected dimension of Cr.

1.4 Gröbner Bases

How can we actually compute the dimension? Actually, a number of algorithms have
been proposed in the literature, for example see [2, 3]. One common fact about all of
them is that they rely on Gröbner bases. Instead of computing the dimension in general,
I will only consider the question whether the dimension is zero, which is technically a
bit easier but uses the same ingredients as the general case.

3If we would not have required J to be prime then we would still have V (J)) V (I), but this might
just be because V (J) contains another irreducible component in addition to V (I).

7

Theorem 3 (Theorem 6.54 of [2]). For an ideal I ⊂ C[x̄], the following are are equiva-
lent:

1. dim(I) = 0.

2. C[x̄]/I is a finite-dimensional C-vector space.

3. For every variable xi there is some non-zero univariate polynomial

bi(xi) = xmi
i + ami−1x

mi−1 + · · ·+ a0 ∈ I ∩ C[xi]. (9)

Proof. 2⇒ 3: The residue classes {xki mod I | k ∈ Z>} must be linearly dependent
because they live in a finite-dimensional vector space, so some linear combination
is zero modulo I.

3⇒ 2: If we write vdim for the vector space dimension, then

vdim
(
C[x̄]/I

)
≤ vdim

(
C[x̄]/〈xm1

i , . . . , xmn
n 〉
)

=
∏
i

mi (10)

(1⇒ 3)⇔ (3̄⇒ 1̄): If no polynomial of, say, x1 were in I then there would be a
length-1 chain of prime ideals

{0} (〈x1〉 (C[x̄]/I (11)

3⇒ 1: Note that the ideal 〈bi(xi)〉 ⊂ C[xi] has dimension 0. Therefore

I ⊃ 〈b1, . . . , bn〉 ⇒ dim(I) ≤ dim
(
〈b1, . . . , bn〉

)
= 0. (12)

Using the notation of the theorem, if dim(I) = 0 then there exists a finite number
of monomials of the form

xk1
1 · · ·xknn , 0 ≤ k1 < m1, . . . , 0 ≤ kn < mn (13)

forming a basis for the residue classes C[x̄]/I. Which exponents we actually use for
our residue classes is, in part, up to you. In order to systematically pick a C-basis for
the residue classes, one needs to choose an ordering amongs the monomials, and then
eliminate all “large” monomials in favor of “smaller” monomials. This is axiomatized
as

Definition 6 (Monomial order). A monomial order is a total order (that is, antisym-
metric, transitive, and any two monomials can be compared) on the monomials of a
multivariate polynomial ring such that

1. the order respects multiplication by monomials: a < b⇒ ac < bc.

2. any (non-empty) set of monomials has a minimal element.

8

Two notable examples are

• Lexicographic order (“lex”): First compare the exponent of x1; If equal compare
the exponent of x2; If equal compare the exponent of x3; ...

• Graded reverse lexicographic order (“grevlex”): First compare the total degree
(sum of exponents); If equal compare the degree of xn and reverse the result (that
is, 3 > 2⇒ x3

n < x1x
2
n etc.); If equal compare the degree of xn−1 and reverse; ...

Example 1. Consider the ideal I = 〈x2 +xy, x− y2〉 ⊂ C[x, y]. Show that the ideal can
also be written as I = 〈x − y2, y4 + y3〉. Conclude that you can reduce any polynomial
in C[x, y]/I to a linear combination of the 4 monomials 1, y, y2, y3.

In the above example, presenting the ideal as I = 〈x − y2, y4 + y3〉 is an example of a
Gröbner basis for the lexicographic monomial order. This means that the leading terms
(the highest-degree monomial), written LT(p), for all polynomials p ∈ I are generated
by the leading terms in the chosen generators of the ideal,

LT(x− y2) = x, LT(y4 + y3) = y4. (14)

Once we have a Gröbner basis for I, its easy to find a basis of monomials for C[x̄]/I,
you only have to look at the leading terms of the generators of I!

Definition 7 (Gröbner basis). A Gröbner basis (for given monomial order) of an ideal
I ⊂ C[x̄] is a choice of generators I = 〈p1, . . . , pk〉 such that

LT(I)
def
=
{

LT(p)
∣∣∣ p ∈ I} =

〈
LT(p1), . . . ,LT(pk)

〉
(15)

The ideal in Example 1 was, initially, not given by a lexicographic Gröbner basis.
However, the missing generator with leading term y4 ∈ LT(I) can be generated by
systematically subtracting the leading term from two generators. Here, we first subtract
off the x2 term: (

x2 + xy
)
− x
(
x− y2

)
= xy + xy2 ∈ I (16)

The new generator has a smaller leading term xy, but we can subtract it off again and
get (

xy + xy2
)
− y
(
x− y2

)
= xy2 + y3 ∈ I (17)

and, finally, (
xy2 + y3

)
− y2

(
x− y2

)
= y3 + y4 ∈ I (18)

In fact, this method works in general: For any pair of generators, form the so-called S-
polynomial that subtracts off the largest leading term. If you get a novel leading term,
add it to the generators. Repeat until you have formed all S-polynomials and found no
new leading terms. This is known as Buchbergers algorithm and is guaranteed to find
a Gröbner basis in a finite number of steps.

Typically, the actual number of steps in Buchbergers algorithm depends very much
on the monomial order. A rule of thumb is to use the graded reverse lexicographic order,
since it often leads to manageable Gröbner bases. But there are also counterexamples

9

where it produces bases that are exponentially large with the input ideal size, while
other monomial orders fare better. Except for trial and error, there is no known way to
find the monomial order that leads to the smallest Gröbner basis.

Finally, note that the Gröbner basis does not really depend on the base field of the
polynomial ring as long as

• the base field contains all coefficients of the initial generators of the ideal, and

• the base field is either of characteristic 0 or a generic finite field.

Finite fields are slightly tricky, as numerical coefficients can suddenly vanish modulo p.
But such coincidences only happen for finitely many primes and not generically.

For applications, it is often important to use this observation and replace a compu-
tation over the complex numbers with cyclotomics, rationals, or even finite fields. The
latter fields can be represented exactly on a computer, while floating-point numbers can-
not. In particular, in forming the S-polynomials it is crucial to know which polynomial
coefficients subtract to zero, which is numerically unstable.

2 The Sage Mathematics Software System

2.1 Prologue

If you want to perform non-trivial computations in toric geom-
etry then you invariably end up with the problem that it draws
from a wide range of algorithms; you need to solve subproblems
dealing with convex geometry, lattices, and Gröbner bases. Be-
cause some of these are active areas of research themselves, it
is not too surprising that there is no single software written to
address all of these with optimal performance. Various toric
geometry packages have been written on top of general-purpose
systems, for example

• Magma [4] (a.k.a. the “big M” that no physicist has ever heard of) has some
support.

• TorDiv [5] for Maple.

Other toric geometry packages have been written on top of specialized systems that are
very good at things other than toric geometry, for example

• Macaulay2 [6] has a toric variety package.

• Singular [7], too.

• GAP [8] ships with the toric [9] package.

10

Figure 2: The browser-based Sage worksheet interface.

The toric variety package that Andrey Novoseltsev and I wrote differs from all of these
in that it does not reinvent the wheel; Instead we reuse a range of open-source libraries
that provide fast and well-tested implementations of basic algorithms for dealing with
convex geometry, lattices, and Gröbner bases. In fact, this is the philosophy of the
Sage [10] mathematics software system, and all necessary libraries were conveniently
already packaged in it.

Sage is free, open-source math software that supports research and
teaching in algebra, geometry, number theory, cryptography, numeri-
cal computation, and related areas. Both the Sage development model
and the technology in Sage itself are distinguished by an extremely
strong emphasis on openness, community, cooperation, and collabora-
tion: we are building the car, not reinventing the wheel. The overall
goal of Sage is to create a viable, free, open-source alternative to Maple,
Mathematica, Magma, and MATLAB.

2.2 The Sage Notebook

The easiest way of interacting with Sage is the notebook interface, which is a HTML /
Javascript application that runs in every modern web browser. If you have installed Sage
on your computer, you can start the server either via the sage -notebook command
line option or with the notebook() command on the Sage command line. Once you are
in the notebook, you can work with the usual question/response paradigm: You type in
something to evaluate, press Shift-Enter or click on the “evaluate” link, and Sage
shows you the result. In the following I will use the command line interface, however,
because it is easier to typeset. For example

1sage: n = 2+3 # creates new variable "n"
2sage: n
35
4sage: type(n) # or use "_" to refer to the previous result
5<type ’sage.rings.integer.Integer’>

11

Figure 3: Example of tab completion.

The main difference to mathemat-
ical software that you may have
seen before is that Sage is object-
oriented. Roughly, that means that
the implementation of algorithms is
attached to the data. For you, this
means that you usually issue com-
mands in the form data.command

(x,y) instead of command(data,x
,y). These commands that are at-
tached to the data are called meth-
ods to distinguish them from func-
tions/procedures. For example, to
test if an integer is prime you use

6sage: n.is_prime() # object-oriented
7True

instead of is_prime(5).4 One advantage of this approach is that each object, for
example the Sage Integer with value 5 and assigned to the variable n, knows which
commands make sense for it. This allows for tab-completion that only returns the
methods of the object instead of a giant list of all names. In Figure 3, you can see the
tab completion in action.

Once you find method you want to call, you can use the on-line help to learn more
about it, including a list of examples showing how it can be used. To access the help,
append a question mark to the end of the method name as in “variable.method?”.
Note that tab completion and ?-help works only for objects that have been assigned to a
variable, and not for temporaries. For example, while it is perfectly legal to call (2+3)
.is_prime(), neither tab completion nor on-line help will work on (2+3) without
assigning it to a variable first.

2.3 Introduction to Sage

Sage itself is mostly written in Python, and it uses Python5 to interact with the user.
Some slight changes are made to the Python syntax to be more suitable for entering
maths, for example the caret ˆ is parsed as exponentiation instead of bitwise xor and
division of integers yields rational numbers instead of C division. See pages. 14, 15 for
a quick reference [12] of some elementary Sage commands to get you started.

As an example of how to use Sage, let us revisit the Gröbner basis computation of
Subsection 1.4. The first step is to define the polynomial ring and make the generators
x, y known to the global namespace,

8sage: R = PolynomialRing(QQ, 2, ’x, y’, order=’lex’)
9sage: R

4Actually, is_prime(5) works as well. It is a function that is added for convenience and calls
5.is_prime() internally.

5Actually, a version of IPython [11].

12

Figure 4: Example of the on-line help.

10Multivariate Polynomial Ring in x, y over Rational Field
11sage: R.term_order()
12Lexicographic term order
13sage: x, y = R.gens() # or use R.inject_variables()

Then we can define the ideal

14sage: I = R.ideal(xˆ2+x*y, x-yˆ2)
15sage: I.dimension()
160
17sage: I.vector_space_dimension()
184

and compute the Gröbner basis

19sage: I.basis_is_groebner()
20False
21sage: I.groebner_basis()
22[x - yˆ2, yˆ4 + yˆ3]

The ideal is not prime; Similarly to the decomposition of a prime number into a prod-
uct of primes, we can decompose the ideal into prime ideals to find the irreducible
components

13

Sage quick reference

Evaluate cell: 〈shift-enter〉
Evaluate cell creating new cell: 〈alt-enter〉
Split cell: 〈control-;〉
Join cells: 〈control-backspace〉
Insert math cell: click blue line between cells
Insert text/HTML cell: shift-click blue line between cells
Delete cell: delete content then backspace

Command line
com〈tab〉 complete command
bar? list command names containing “bar”
command?〈tab〉 shows documentation
command??〈tab〉 shows source code
a.〈tab〉 shows methods for object a (more: dir(a))
a._〈tab〉 shows hidden methods for object a
search_doc("string or regexp") fulltext search of docs
search_src("string or regexp") search source code
_ is previous output

Numbers
Integers: Z = ZZ e.g. -2 -1 0 1 10^100

Rationals: Q = QQ e.g. 1/2 1/1000 314/100 -2/1

Reals: R ≈ RR e.g. .5 0.001 3.14 1.23e10000

Complex: C ≈ CC e.g. CC(1,1) CC(2.5,-3)

Double precision: RDF and CDF e.g. CDF(2.1,3)
Mod n: Z/nZ = Zmod e.g. Mod(2,3) Zmod(3)(2)

Finite fields: Fq = GF e.g. GF(3)(2) GF(9,"a").0

Polynomials: R[x, y] e.g. S.<x,y>=QQ[] x+2*y^3

Series: R[[t]] e.g. S.<t>=QQ[[]] 1/2+2*t+O(t^2)

p-adic numbers: Zp ≈Zp, Qp ≈Qp e.g. 2+3*5+O(5^2)

Algebraic closure: Q = QQbar e.g. QQbar(2^(1/5))
Interval arithmetic: RIF e.g. sage: RIF((1,1.00001))

Number field: R.<x>=QQ[];K.<a>=NumberField(x^3+x+1)

Arithmetic
ab = a*b a

b = a/b ab = a^b
√
x = sqrt(x)

n
√
x = x^(1/n) |x| = abs(x) logb(x) = log(x,b)

Sums:
∑n

i=k f(i) = sum(f(i) for i in (k..n))

Products:
∏n

i=k f(i) = prod(f(i) for i in (k..n))

Constants and functions
Constants: π = pi e = e i = i ∞ = oo

φ = golden_ratio γ = euler_gamma

Approximate: pi.n(digits=18) = 3.14159265358979324
Functions: sin cos tan sec csc cot sinh cosh tanh

sech csch coth log ln exp ...
Python function: def f(x): return x^2

Interactive functions
Put @interact before function (vars determine controls)
@interact

def f(n=[0..4], s=(1..5), c=Color("red")):

var("x");show(plot(sin(n+x^s),-pi,pi,color=c))

Symbolic expressions
Define new symbolic variables: var("t u v y z")

Symbolic function: e.g. f(x) = x2 f(x)=x^2

Relations: f==g f<=g f>=g f<g f>g

Solve f = g: solve(f(x)==g(x), x)

solve([f(x,y)==0, g(x,y)==0], x,y)

factor(...) expand(...) (...).simplify_...

find_root(f(x), a, b) find x ∈ [a, b] s.t. f(x) ≈ 0

Calculus
lim
x→a

f(x) = limit(f(x), x=a)

d
dx (f(x)) = diff(f(x),x)
∂
∂x (f(x, y)) = diff(f(x,y),x)

diff = differentiate = derivative∫
f(x)dx = integral(f(x),x)∫ b

a
f(x)dx = integral(f(x),x,a,b)∫ b

a
f(x)dx ≈ numerical_integral(f(x),a,b)

Taylor polynomial, deg n about a: taylor(f(x),x,a,n)

2D graphics

-6 -4 -2 2 4 6

-1
-0.75
-0.5

-0.25

0.25
0.5

0.75
1

line([(x1,y1),. . .,(xn,yn)],options)
polygon([(x1,y1),. . .,(xn,yn)],options)
circle((x,y),r,options)
text("txt",(x,y),options)
options as in plot.options, e.g. thickness=pixel ,
rgbcolor=(r,g,b), hue=h where 0 ≤ r, b, g, h ≤ 1
show(graphic, options)
use figsize=[w,h] to adjust size
use aspect_ratio=number to adjust aspect ratio
plot(f(x),(x, xmin, xmax),options)
parametric plot((f(t),g(t)),(t, tmin, tmax),options)
polar plot(f(t),(t, tmin, tmax),options)
combine: circle((1,1),1)+line([(0,0),(2,2)])
animate(list of graphics, options).show(delay=20)

3D graphics

line3d([(x1,y1,z1),. . .,(xn,yn,zn)],options)
sphere((x,y,z),r,options)
text3d("txt", (x,y,z), options)
tetrahedron((x,y,z),size,options)
cube((x,y,z),size,options)
octahedron((x,y,z),size,options)
dodecahedron((x,y,z),size,options)
icosahedron((x,y,z),size,options)
plot3d(f(x, y),(x, xb, xe), (y, yb, ye),options)
parametric plot3d((f,g,h),(t, tb, te),options)
parametric plot3d((f(u, v),g(u, v),h(u, v)),

(u, ub, ue),(v, vb, ve),options)
options: aspect ratio=[1, 1, 1], color="red"

opacity=0.5, figsize=6, viewer="tachyon"

Discrete math
bxc = floor(x) dxe = ceil(x)

Remainder of n divided by k = n%k k|n iff n%k==0

n! = factorial(n)
(
x
m

)
= binomial(x,m)

φ(n) = euler phi(n)
Strings: e.g. s = "Hello" = "He"+’llo’

s[0]="H" s[-1]="o" s[1:3]="el" s[3:]="lo"

Lists: e.g. [1,"Hello",x] = []+[1,"Hello"]+[x]

Tuples: e.g. (1,"Hello",x) (immutable)
Sets: e.g. {1, 2, 1, a} = Set([1,2,1,"a"]) (= {1, 2, a})
List comprehension ≈ set builder notation, e.g.
{f(x) : x ∈ X,x > 0} = Set([f(x) for x in X if x>0])

Graph theory

Graph: G = Graph({0:[1,2,3], 2:[4]})
Directed Graph: DiGraph(dictionary)
Graph families: graphs.〈tab〉
Invariants: G.chromatic polynomial(), G.is planar()

Paths: G.shortest path()

Visualize: G.plot(), G.plot3d()
Automorphisms: G.automorphism group(),
G1.is isomorphic(G2), G1.is subgraph(G2)

Combinatorics

Integer sequences: sloane find(list), sloane.〈tab〉
Partitions: P=Partitions(n) P.count()

Combinations: C=Combinations(list) C.list()

Cartesian product: CartesianProduct(P,C)
Tableau: Tableau([[1,2,3],[4,5]])
Words: W=Words("abc"); W("aabca")

Posets: Poset([[1,2],[4],[3],[4],[]])
Root systems: RootSystem(["A",3])
Crystals: CrystalOfTableaux(["A",3], shape=[3,2])

Lattice Polytopes: A=random_matrix(ZZ,3,6,x=7)
L=LatticePolytope(A) L.npoints() L.plot3d()

Matrix algebra
(1
2) = vector([1,2])

(1 2
3 4) = matrix(QQ,[[1,2],[3,4]], sparse=False)

(1 2 3
4 5 6) = matrix(QQ,2,3,[1,2,3, 4,5,6])

| 1 2
3 4 | = det(matrix(QQ,[[1,2],[3,4]]))

Av = A*v A−1 = A^-1 At = A.transpose()

Solve Ax = v: A\v or A.solve_right(v)

Solve xA = v: A.solve_left(v)

Reduced row echelon form: A.echelon_form()

Rank and nullity: A.rank() A.nullity()

Hessenberg form: A.hessenberg_form()
Characteristic polynomial: A.charpoly()
Eigenvalues: A.eigenvalues()
Eigenvectors: A.eigenvectors_right() (also left)
Gram-Schmidt: A.gram_schmidt()
Visualize: A.plot()

LLL reduction: matrix(ZZ,...).LLL()
Hermite form: matrix(ZZ,...).hermite_form()

Linear algebra

Vector space Kn = K^n e.g. QQ^3 RR^2 CC^4

Subspace: span(vectors, field)

E.g., span([[1,2,3], [2,3,5]], QQ)

Kernel: A.right_kernel() (also left)
Sum and intersection: V + W and V.intersection(W)

Basis: V.basis()
Basis matrix: V.basis_matrix()
Restrict matrix to subspace: A.restrict(V)
Vector in terms of basis: V.coordinates(vector)

Numerical mathematics
Packages: import numpy, scipy, cvxopt

Minimization: var("x y z")

minimize(x^2+x*y^3+(1-z)^2-1, [1,1,1])

Number theory
Primes: prime_range(n,m), is_prime, next_prime
Factor: factor(n), qsieve(n), ecm.factor(n)
Kronecker symbol:

(
a
b

)
= kronecker symbol(a,b)

Continued fractions: continued_fraction(x)
Bernoulli numbers: bernoulli(n), bernoulli mod p(p)

Elliptic curves: EllipticCurve([a1, a2, a3, a4, a6])
Dirichlet characters: DirichletGroup(N)

Modular forms: ModularForms(level, weight)
Modular symbols: ModularSymbols(level, weight, sign)
Brandt modules: BrandtModule(level, weight)
Modular abelian varieties: J0(N), J1(N)

Group theory
G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])

SymmetricGroup(n), AlternatingGroup(n)
Abelian groups: AbelianGroup([3,15])
Matrix groups: GL, SL, Sp, SU, GU, SO, GO

Functions: G.sylow subgroup(p), G.character table(),
G.normal subgroups(), G.cayley graph()

Noncommutative rings
Quaternions: Q.<i,j,k> = QuaternionAlgebra(a,b)

Free algebra: R.<a,b,c> = FreeAlgebra(QQ, 3)

Python modules
import module name
module_name.〈tab〉 and help(module_name)

Profiling and debugging
time command : show timing information
timeit("command"): accurately time command
t = cputime(); cputime(t): elapsed CPU time
t = walltime(); walltime(t): elapsed wall time
%pdb: turn on interactive debugger (command line only)
%prun command: profile command (command line only)

23sage: I.primary_decomposition()
24[Ideal (yˆ3, x - yˆ2) of Multivariate Polynomial Ring in x, y over

Rational Field, Ideal (y + 1, x - 1) of Multivariate
Polynomial Ring in x, y over Rational Field]

25sage: I.radical().primary_decomposition()
26[Ideal (y, x) of Multivariate Polynomial Ring in x, y over

Rational Field, Ideal (y + 1, x - 1) of Multivariate Polynomial
Ring in x, y over Rational Field]

So, thought of as a 0-dimensional variety, we obtain V (I) = {(0, 0), (1,−1)}.

2.4 Algebraic Geometry in Sage

The ideal-theoretic commands explored in the previous subsection form the basis for
geometric computations. But you don’t necessarily have to do the translation into
geometry by hand; Sage also has object representing algebraic varieties directly. As an
example, consider the

Example 2 (twisted cubic). The twisted cubic is the subvariety of P3 with homogeneous
variables z0, z1, z2, z3 cut out by the 2× 2 minors of the matrix (z0 z1 z2

z1 z2 z3) .

Since there are three columns, the twisted cubic is defined by three homogeneous
polynomial equations. None of the three equations is implied by the other two. Never-
theless, their common solution set is a 1-dimensional variety.

27sage: P3.<z0,z1,z2,z3> = ProjectiveSpace(3, QQ)
28sage: minors = matrix([[z0, z1, z2], [z1, z2, z3]]).minors(2)
29sage: twisted_cubic = P3.subscheme(minors)
30sage: twisted_cubic
31Closed subscheme of Projective Space of dimension 3 over Rational

Field defined by:
32-z1ˆ2 + z0*z2,
33-z1*z2 + z0*z3,
34-z2ˆ2 + z1*z3
35sage: twisted_cubic.dimension()
361

Let us consider the affine patch where z0 = 1. In this patch, the affine algebraic variety
is

37sage: C = twisted_cubic.affine_patch(0)
38sage: C
39Closed subscheme of Affine Space of dimension 3 over Rational

Field defined by:
40-x0ˆ2 + x1,
41-x0*x1 + x2,
42-x1ˆ2 + x0*x2

In the affine patch, the curve C is actually the intersection of two hypersurfaces:

43sage: A3 = C.ambient_space()
44sage: A3.inject_variables()
45None
46sage: H1 = A3.subscheme(x0*x1-x2)
47sage: H2 = A3.subscheme(x0ˆ2-x1)
48sage: C == H1.intersection(H2)

16

49True

You can use tab-completion to explore further geometric properties.

Exercise 4. Using Sage, construct the x-axis and the yz-plane as affine algebraic va-
rieties in C3. Take their union. What is its dimension? Decompose it into irreducible
components.

2.5 The Python Language

There are lots of good resources for learning Python. For example, the official Python
tutorial [13]. I’ll just cover a few key concepts to get you started.

2.5.1 List Comprehensions

A list is the basic Python container. It can contain anything:

50sage: [1, PolynomialRing(QQ,2,’x,y’), ’a string’]
51[1, Multivariate Polynomial Ring in x, y over Rational Field, ’a

string’]
52sage: primes_first_20 = primes_first_n(20)
53sage: primes_first_20
54[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

61, 67, 71]

List comprehensions make new lists from old. For example, the squares of the entries

55sage: [iˆ2 for i in primes_first_20]
56[4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681,

1849, 2209, 2809, 3481, 3721, 4489, 5041]

or pick every second entry

57sage: [p for i,p in enumerate(primes_first_20) if i%2 == 0]
58[2, 5, 11, 17, 23, 31, 41, 47, 59, 67]
59sage: primes_first_20[0::2] # can also be done with the slicing

operator
60[2, 5, 11, 17, 23, 31, 41, 47, 59, 67]

2.5.2 Control Flow

For loops can only run over a elements of a list or more general iterators. But there is
no special syntax to loop over a range of integers, you have to use the range() function
to generate lists of subsequent integers to loop over:

61sage: log = []
62... for i in range(0,5):
63... temporary_variable = 1
64... log.append(’i = ’+str(i))
65... log.append(’End of loop’)
66sage: log
67[’i = 0’, ’i = 1’, ’i = 2’, ’i = 3’, ’i = 4’, ’End of loop’]

17

Note also that blocks like the loop body are marked by indentation, which is a Python
specialty and generally not found in other languages. Therefore, Python code must be
consistently indented and the interpreter will catch some indentation mistakes for you.

2.5.3 Functions

Defining functions is rather straightforward. Note that the function body must again
be indented to make clear where it starts and where it ends:

68sage: def hello_world():
69... return ’Hello, World!’

Once we have declared the function, we can call it as usual

70sage: hello_world()
71Hello, World!

2.5.4 Classes

Finally, here is a quick overview over how to declare new classes. I’m assuming here that
you have seen another object-oriented language before. Otherwise you can skip over it,
we will not need it in the following.

A class must always inherit from somewhere, possibly from the Python base object.
Here is a class with a single method and a data member:

72sage: class foo(object):
73... def bar(self):
74... return ’method bar() of class foo.’
75... y = 1 # data member

Note again that the indentation is crucial! Instantiation is then rather straight-forward:

76sage: x = foo()
77sage: x
78<__main__.foo object at 0x5543090>

Finally, we can call the method and access the data member:

79sage: x.bar()
80method bar() of class foo.
81sage: x.y
821

2.6 Cython and Scientific Computation

Python is an interpreted language, so you can write
Python code and immeadiately execute it without a com-
pile/link/execute cycle. Also, you can inspect objects and
call methods directly from the command line. The disad-
vantage is speed: An integer, say, is not represented by
a machine integer but wrapped in a PyObject C struct.

18

To sum two integers, say, Python first has to figure that the PyObjects represent in-
tegers, then add the integers, then allocate memory for the resuling new PyObject,
store the integer, and update its internal reference counting.

The most basic way of speeding up evaluation of symbolic expressions is to create
and store the intermediate expression trees. Then, during the evaluation, the inter-
preter doesn’t have to wrap intermediate results over and over into objects of the in-
terpreter. For example, this done in Sage with fast_callable() and in Mathematica
with Compile[]. But that will only help with evaluating some kinds of expressions,
and not improve arbitrary code. Moveover, the result is still a far cry from the perfor-
mance you would get from straight C/C++ code.

The reason why C/C++ code is so much faster is that the compiler and optimizer
can apply vast knowledge about the CPU architecture because they directly control the
resulting machine code. For example, often-used variables can be stored in registers
directly in the CPU instead of the main memory. And accessing the main memory
takes ≥ 100 clock cycles on modern architectures. Hence, ideally, all speed-critical code
should be passed through an optimizing compiler. But writing C/C++ code is difficult
and making it pass data to/from the Python interpreter is even worse. The solution
to this dilemma is Cython, which essentially transforms Python code into C/C++. It
makes use of a few Python language enhancements to, for example, specify the type of
variables. Cython also automatically generates the necessary code to pass variables from
Python to C/C++ and back. By compiling the C/C++ source into a shared library
and dynamically loading it into the current Python session, you can use the result as
if it were a Python function. For example, take this sample procedure that adds the
integers from 0 to 99:

83sage: def python_sum_0_99():
84... s = 0
85... for i in range(0,100):
86... s += i
87... return s
88sage: python_sum_0_99()
894950

The analogous Cython version is almost identical6

%cython
def cython_sum_0_99():

cdef int i, s
s = 0
for i in range(0,100):

s += i
return s

Cython translates this into the following C code

int __pyx_v_i;
int __pyx_v_s;
int __pyx_t_1;
__pyx_v_s = 0;
for (__pyx_t_1 = 0; __pyx_t_1 < 100; __pyx_t_1+=1) {

6Note that the %cython magic only works in the Sage worksheet and not on the command line.
There, you have to use the cython() function.

19

__pyx_v_i = __pyx_t_1;
__pyx_v_s = (__pyx_v_s + __pyx_v_i);

}

together with C comments to help relate the generated source back to the Cython code.
In the interest of breverety I removed these comments in the above code snippet. As
advertised, the inner loop now uses plain machine integers and no Python objects any
more. We can get accurate timing with the timeit() function:

8sage: timeit(’python_sum_0_99()’)
9625 loops, best of 3: 206 µs per loop
10sage: timeit(’cython_sum_0_99()’)
11625 loops, best of 3: 176 ns per loop

So the Cython version runs about 1000 times faster!

Exercise 5. Remove the cdef int i,s line from the Cython version. Does it still
work? Look at how the loop body is now implemented in the generated C source code.

3 Affine Toric Varieties

3.1 Schemes

Given the ideal I = 〈x2〉 ⊂ C[x], the associated variety is V (I) = {0}. The variety is the
same as the variety of the radical

√
I = I(V (I)) = 〈x〉. It is a pity that we are loosing

information when going to the variety, it would be much nicer if we could associate to I
the point 0 “with multiplicity two”. An affine scheme is precisely that, a generalization
of an affine algebraic variety that keeps track of the “multiplicities”. One might be
tempted to define a scheme directly as being equivalent to the ideal I. But that is not
quite satisfactory. For example, the ideals 〈x〉 and 〈y〉 ⊂ C[x, y] are definitely different
ideals. Yet we would like to treat them as isomorphic schemes, since they are both a flat
hyperplane C ⊂ C2 with unit multiplicity. Instead, we define a scheme as the geometric
space defined via its functions.

First, consider an ordinary variety X = V (I) associated to an ideal I ⊂ C[x̄]. What
are the functions on it? Any polynomial in C[x̄] defines a function on X. But any two
polynomials whose difference is in I(X) yield the same function, since the polynomials in
I(X) vanish on X. Therefore, the ring of polynomial functions on X is the quotient ring
C[x̄]/I(X). The elements are equivalence classes of polynomials modulo the equivalence
relation

p ∼ q ⇔ p− q ∈ I(X). (19)

We can now generalize this definition to any ideal I ∈ C[x̄], not necessarily of the form
I(X) for some variety X. The ideal defines a quotient ring C[x̄]/I, which we can think
of as the ring of functions defining the scheme. We write

Definition 8 (Affine scheme). Given a ring R (for example, R = C[x̄]/I), we denote
the corresponding affine scheme by Spec(R), the spectrum of the ring R. Two schemes
are isomorphic if their defining rings are.

20

Exercise 6. Describe the scheme Spec
(〈
x2y − xy, xy2 − y2

〉)
. Hint: Compare the

irreducible components of the variety with the primary decomposition of the defining
ideal.

No, really. What is a scheme?

I have not formally defined what an affine scheme is as we do not need the machinery in
general. Really, you should think of the scheme as being the geometric object defined
by the ring of functions C[x̄]/I. All geometric properties, like the dimension, are defined
in terms of algebraic properties of the ideal I. But inquiring minds want to know more.
So let me give you some of the salient points. For more details that you will care to
know, see [14].

In fact, defining a scheme is very much analogous to how you would define a smooth
manifold. There are essentially three sucessive layers of structure. First of all, a manifold
is a set of points. The second layer is the topology, that is, you have to define which
subsets of points are called “open”. Together, this defines a topological space. To
furthermore define a smooth manifold X, you need to pick a subset C∞(X) ⊂ C0(X) of
“smooth” functions amongs the continuous functions. Usually, you do this by choosing
smooth transition functions. At each level, you can make extra choices. There are
usually multiple topologies on a given set of points, and multiple smooth structures on
a give toplogical space.

Schemes, by comparison, also start at the level of sets. For a given ring R, the affine
scheme Spec(R) is the set of prime ideals in R. On top of that, there is the Zariski
topology. So the scheme Spec(R) is a topological space, but that is not all. Finally, a
scheme knows about its ring of functions. As with smooth manifolds, there are usually
multiple choices at each level. All three together, the set of prime ideals with a topology
and a choice of its ring of functions, constitute a scheme.

Example 3. Consider the (non-reduced) scheme Spec
(
C[x]/〈x2〉

)
. The only7 prime

ideal in C[x]/〈x2〉 is 〈x〉. So as a set, the scheme consists of a single point. The
topology on a single point is uniquely defined. So far, everything is the same as the
reduced scheme Spec(C[x]/〈x〉), which also contains a single single point, namely the
prime ideal 〈0〉. The difference between these two schemes is the ring of functions.

3.2 Cones and Lattices

Here is a generalization of a polynomial ring that we can use to define new schemes.
Lets start with the polynomial ring C[x̄] = C[x0, . . . , xd] in d variables. We can think
of it as formal C-linear combinations of monomials; Addition is the formal addition and
multiplication is defined by distributivity and the semigroup law(

xm1
1 xm2

2 · · ·x
md
d

)
·
(
xn1

1 x
n2
2 · · ·x

nd
d

)
= xm1+n1

1 xm2+n2
2 · · · xmd+nd

d (20)

on monomials. The (Abelian) semigroup of monomials is just (Z≥)d, the semigroup of
d-tuples of nonnegative integers with componentwise addition.

7In particular, the zero ideal is not prime.

21

σ∨

Figure 5: A 2-d cone.

We can define interesting new rings by exchang-
ing the semigroup (Z≥)d for a different semigroup.
The easiest generalization is to go from the integral
points in the positive d-orthant to the integral points
in any cone. For simplicity, we require the cone to
be rational polyhedral:

Definition 9 (rational polyhedral cone). A rational
polyhedral cone σ is a subset

σ = spanQ≥

{
r1, . . . , rn

}
⊂ Qd. (21)

We usually scale each generating ray to be integral,
ri ∈ Zd.

Example 4. The origin {0} as well as the whole
space Qd are rational polyhedral cones.

Note that there are two ways to describe cones,
using rays or using inequalities. The cone in Figure 5
is

σ∨ = spanQ≥

{
(1

0) , (1
2)
}

=
{

(xy)
∣∣ 0 · x+ 1 · y ≥ 0, 2 · x− 1 · y ≥ 0

}
(22)

In fact, these are dual descriptions: the coefficients of the inequalities are rays of the
dual cone. The dual cone can again be described by inequalities, whose coefficients are
the original rays. So dualizing a cone twice reproduces the cone one started with. For
example, the dual cone to the cone in Figure 5 is

σ∨∨ = σ = spanQ≥

{
(0

1) , (2
−1)

}
=
{

(xy)
∣∣ 1 · x+ 0 · y ≥ 0, 1 · x+ 2 · y ≥ 0

}
(23)

For reasons that will remain mysterious until we reach Part II, we will always use
the dual cone to define toric varieties. Given a cone σ∨ ⊂ Qd, its integral points σ∨∩Zd
form a semigroup and allows us to define a ring C[σ∨ ∩Zd] analogously to a polynomial
ring.

Definition 10 (Affine toric variety). Let M ' Zd be a lattice in MQ ' Qd. The affine
toric variety defined by the dual cone σ∨ ⊂MQ is the affine scheme

Pσ = Spec
(
C[σ∨ ∩M]

)
. (24)

The analogue of the variables generating the polynomial ring are the irreducible
lattice points in σ∨ ∩M , that is, the non-zero lattice points that cannot be written as
a sum of two other non-zero points in σ∨ ∩M .

Definition 11 (Hilbert basis). The set of all non-zero irreducible elements in σ∨ ∩M
is called a Hilbert basis.

A Hilbert basis always exists and forms a minimal generating set for the semigroup
σ∨ ∩M . It is unique if the cone is strictly convex, that is, it does not contain a straight
line through the origin. For the cone in Figure 5, it is

22

90sage: sigma_dual = Cone([(0,1),(2,-1)]).dual()
91sage: sigma_dual
922-d cone in 2-d lattice M
93sage: sigma_dual.rays()
94(M(1, 0), M(1, 2))
95sage: sigma_dual.Hilbert_basis()
96(M(1, 0), M(1, 2), M(1, 1))

It is convenient to denote the generators by variables analogous to polynomial rings.
We set

x def= (1
0)M , y def= (1

2)M , z def= (1
1)M . (25)

These satisfy one relation

(1
0)M + (1

2)M = 2 (1
1)M ⇔ xy = z2 (26)

Therefore, we can identify the semigroup ring of σ∨ ∩M with the quotient ring

C[σ∨ ∩M] = C[x, y, z]
/
〈xy − z2〉. (27)

By rewriting the semigroup ring as a quotient of a polynomial ring, we see that the
affine toric variety Pσ is also the affine algebraic variety V (〈xy − z2〉) ⊂ C3.

Exercise 7. Let Z2 act on C2 = SpecC[X, Y] by (X, Y) 7→ (−X,−Y). Show that the
ring of Z2-invariant polynomials in C[X, Y] is isomorphic to C[σ∨ ∩M] as in eq. (27).
Conclude that Pσ ' C2/Z2.

3.3 Torus Action and Orbifolds

Let C× = C−{0} be the complexification of U(1). We observe that we can let the alge-
braic torus (C×)d act on the monomial x(m1,...,md) associated to the point (m1, . . . ,md) ∈
σ∨ ∩M as the phase

(χ1, . . . , χm) · x(m1,...,md) =

(
d∏
i=1

χmi
i

)
x(m1,...,md). (28)

This extends to a group action on the semigroup ring C[σ∨ ∩M] and, hence, to a group
action on the affine toric variety Spec(C[σ∨ ∩M]). There is one maximal-dimensional
orbit where all coordinates are non-zero, which we call the maximal torus or big torus.
Here, torus always means the algebraic torus (C×)d. We can think of the algebraic torus
as the maps M → C× respecting the group law, that is, as group homomorphisms

(C×)d = Hom(M,C×) (29)

Something special happens if we refine the lattice M , or, equivalently, make the dual
lattice N def= M∨ more coarse. That is, consider the case where we have a finite-index
sublattice N ′ ⊂ N with dual lattices M = N∨ and M ′ = (N ′)∨. Clearly, the semigroup
ring

C[σ∨ ∩M] ⊂ C[σ∨ ∩M ′] (30)

23

is a subring. How can we characterize it? First, let us express the sublattice relations
as short exact sequences

0 −→ N ′ −→ N −→ N/N ′ −→ 0

0 −→ M −→M ′ −→M ′/M −→ 0

(31)

with G def= N/N ′ a finite Abelian group. It implies [15] that

0 −→ Hom(M ′/M,C×)︸ ︷︷ ︸
'G

−→ Hom(M ′,C×) −→ Hom(M,C×) −→ 0. (32)

So the algebraic torus action on C[σ∨∩M ′] is almost the same as the action on C[σ∨∩M])
except that it “spins faster”, and there is a finite subgroup G that acts trivially on a
monomial m′ ∈ M ′ if and only if it is actually in the sublattice M ⊂ M ′. In other
words,

C[σ∨ ∩M] = C[σ∨ ∩M ′]G (33)

is the subring of G-invariants. Hence, the inclusion N ′ → N induces the quotient

Spec
(
C[σ∨ ∩M]

)
' Spec

(
C[σ∨ ∩M ′]

)/
G (34)

Consider the case where the cone is simplicial, that is, rational polyhedral and σ∨ =
span{r1, . . . , rd} ⊂ Qd is the cone over a (d − 1)-simplex. We can take the coordinates
of the ri to be integral. The lattice M = Zr1 ⊕ · · · ⊕ Zrd is then a sublattice of the
standard lattice M ′ = Zd. Then Spec(C[σ∨∩M ′]) = Cd is just the ordinary affine space,
and Spec(C[σ∨ ∩M]) = Cd/G is an orbifold.8

To summarize,

Proposition 1. We can distinguish three successively more singular cases:

• If the strictly convex cone is smooth, that is, σ∨ = span{e1, . . . , ed} is GL(d,Z)-
equivalent to the standard d-orthant, then Spec(C[σ∨∩M]) = Cd is the d-dimensional
affine space. This is the only smooth affine toric variety.

• If the strictly convex cone σ∨ = span{r1, . . . , rd} is simplicial, then Spec(C[σ∨ ∩
M]) = Cd/G is an orbifold.

• If the strictly convex cone σ∨ = span{r1, . . . , rk}, k > d is not simplicial then the
toric variety has a singularity that is not an orbifold.

Exercise 8. What about non-strictly convex cones? Consider the full space σ∨ = Q ⊂
Q. What is the semigroup ring? Show that

Spec
(
C[σ∨ ∩M]

)
= C×. (35)

Generalizing 8, if we split a non-strictly convex cone σ∨ = ρ∨ × Qk ⊂ Qd into a
(d− k)-dimensional cone times an affine subspace, then

Spec
(
C[σ∨ ∩M]

)
= Spec

(
C[ρ∨ ∩M]

)
×
(
C×
)k

(36)

8Here and in the following, orbifold will always mean a quotient by a finite group.

24

3.4 The Conifold

A singularity that occurs very often is the conifold, which is the simplest non-quotient
singularity. In terms of toric geometry, it is defined by the non-simplicial cone over a
minimal lattice square at distance 1:

97sage: conifold = toric_varieties.Conifold()
98sage: conifold.is_smooth()
99False
100sage: conifold.is_orbifold()
101False
102sage: square_cone = conifold.fan().generating_cone(0)
103sage: square_cone.rays()
104(N(0, 0, 1), N(0, 1, 1), N(1, 0, 1), N(1, 1, 1))
105sage: patch = conifold.affine_algebraic_patch(square_cone)
106sage: patch
107Closed subscheme of Affine Space of dimension 4 over Rational

Field defined by:
108z0*z2 - z1*z3

The conifold is not smooth because the hypersurface equation is not transverse at z̄ =
(0, 0, 0, 0). More precisely, the singularities are the variety of the Jacobian ideal

Jac(f) =

〈
f,

∂f

∂z0

, . . . ,
∂f

∂z3

〉
(37)

For the conifold, it is

109sage: Jac = patch.Jacobian()
110sage: Jac
111Ideal (z0*z2 - z1*z3, z2, -z3, z0, -z1) of Multivariate Polynomial

Ring in z0, z1, z2, z3 over Rational Field
112sage: A4 = patch.ambient_space()
113sage: origin = A4.subscheme(A4.gens()) # the origin (0,0,0,0)
114sage: A4.subscheme(Jac) == origin
115True

The most basic invariant of an isolated hypersurface singularity is its Milnor number,
which is the vector space dimension of C[x̄]/ Jac(f(x̄)). For the conifold, it is one:

116sage: Jac.vector_space_dimension()
1171

In fact, the converse is also true: A 3-dimensional isolated singularity of Milnor num-
ber one is a conifold. Note, however, that higher Milnor numbers no longer uniquely
determine the singularity.

Exercise 9. Use Sage to compute the Milnor number of the singularity C2/Zn for n ∈
{2, 3, . . . , 10}.

Since drawing 3-dimensional cones in a recognizable way requires some graphical
designer skills, we use the following 2-dimensional notation.

Definition 12 (Toric diagram). A toric diagram is a 2-dimensional lattice polytope. It
determines a 3-dimensional cone by embedding it at distance 1 and taking the cone over
it. That is, by assigning the point at (x, y) 7→ ray (1, x, y).

25

Figure 6: The toric diagram for the Z5 hyperconifold.

Exercise 10. In Figure 6 is the toric diagram for the conifold as well as the so-called
Z5-hyperconifold [16, 17]. Show that it is the Z5-quotient of the conifold.

26

Part II

Global Aspects

4 Coordinate Patches and Compact Varieties

To build interesting manifolds, one needs to patch together the (by themselves) rather
boring local charts. For toric varieties, there is actually much more structure in the local
charts as they can be very complicated singularities. Still, there is no topology: each
affine toric variety corresponding to a strictly convex dual cone is a conical singularity
and can be contracted to a point. To get any non-trivial topology, we need to patch
together local affine toric varieties.

As an example, consider the projective plane P2, which happens to be also a toric
variety. In terms of homogeneous coordinates [z0 : z1 : z2] = [λz0 : λz1 : λz2], it is
covered by three affine patches

U0 =
{

[1 : z1 : z2]
∣∣ z1, z2 ∈ C

}
,

U1 =
{

[z0 : 1 : z2]
∣∣ z0, z2 ∈ C

}
,

U2 =
{

[z0 : z1 : 1]
∣∣ z0, z1 ∈ C

}
.

(38)

To specify how the charts are glued together, we can either define gluing maps ϕij :
Ui ∩ Uj → Ui ∩ Uj or write each patch as a scheme and “patch” the defining rings. For
example, starting with coordinates (x, y) ∈ U0,

ϕ01(x, y) = [1 : x : y] = [1
x

: 1 : y
x
] =

(
1
x
, y
x

)
∈ U1

ϕ02(x, y) = [1 : x : y] = [1
y

: x
y

: 1] =
(

1
y
, x
y

)
∈ U2.

(39)

Hence, we are led to identify the patches as affine schemes9

U0 = Spec
(
C[x, y]

)
, U1 = Spec

(
C
[

1
x
, y
x

])
, U2 = Spec

(
C
[

1
y
, x
y

])
. (40)

We recognize these three affine patches as the affine toric varieties corresponding to the
three dual cones in Figure 7. Perhaps surprisingly, if we dualize the dual cones σ∨0 , σ∨1 ,
σ∨2 ∈MQ to get the cones σ0, σ1, σ2 ∈ NQ then they fit together nicely, see Figure 8!

What is so special about the cones fitting together as in Figure 8? Note that any two
2-dimensional cones σi and σj intersect in a 1-dimensional cone σij. The corresponding
affine toric variety

Spec
(
C[σ∨01 ∩M]

)
= Spec

(
C[x, x−1, y]

)
= C× × C = U0 ∩ U1 (41)

is precisely the overlap of the two charts Spec(C[σ∨0 ∩M]) and Spec(C[σ∨1 ∩M]). Finally,
there is a triple overlap σ012 = {0}, which is also a rational polyhedral cone. The
associated toric variety

Spec
(
C[σ∨012 ∩M]

)
=
(
C×
)d

(42)

is precisely the maximal torus. In general, if and only if the cones fit together then the
overlap is a lower-dimensional toric variety times a torus factor (C×)k. This is crucial for
matching the torus action on each patch together to a torus action onto glued variety.

9The notation C[1x] means simply polynomials in 1
x .

27

y

x

σ ∨
0

1/x

y/x

σ ∨
1

1/y

x/y

σ ∨
2

Figure 7: Dual cones (in M) defining the three affine patches of P2.

σ02

σ01

σ12

σ0

σ1

σ2

Figure 8: The cones (in N) defining the three affine patches of P2.

5 Toric Varieties

5.1 Fans

A fan is the generalization of Figure 8 for arbitrary cones:

Definition 13 (Fan). A fan Σ is a finite set of strict convex polyhedral cones σ ⊂ NQ
such that

1. for each cone σ ∈ Σ, each face is also a cone of Σ.

2. any two cones σ, ρ ∈ Σ intersect in a common face.

So each fan contains cones of various dimension. The cones that generate the fan by
taking faces and intersections are It is common usage to denote the lattice intersecting
the faN by N and its dual lattice, corresponding to Monomials) by M .

Sage implements various ways to define a fan. The most straightforward one is to
specify the generating cones:

118sage: P2_fan = Fan([Cone([(1,0),(0,1)]), Cone([(0,1),(-1,-1)]),
Cone([(-1,-1),(1,0)])])

119sage: P2_fan
120Rational polyhedral fan in 2-d lattice N
121sage: P2_fan.ngenerating_cones()
1223
123sage: c0, c1, c2 = P2_fan.generating_cones()
124sage: c0
1252-d cone of Rational polyhedral fan in 2-d lattice N
126sage: c0.rays()
127(N(0, 1), N(1, 0))

The fan can clearly be stratified by the dimension of the cones. The standard notation
is that Σ(k) denotes the subset of k-dimensional cones of the fan:

128sage: P2_fan(1)
129(1-d cone of Rational polyhedral fan in 2-d lattice N, 1-d cone of

Rational polyhedral fan in 2-d lattice N, 1-d cone of Rational
polyhedral fan in 2-d lattice N)

130sage: P2_fan(0)
131(0-d cone of Rational polyhedral fan in 2-d lattice N,)

Sage will also check that the given cones do indeed form a fan, and raise an error
otherwise.

Exercise 11. Use Sage to test which set of cones generates a fan:

1. in Q2, the first quadrant and the ray (−1,−1).

2. in Q2, the first quadrant and the ray (1, 1).

3. in Q2, the first quadrant and the lower half plane.

4. in Q3, span{(3,−1, 0), (−1,−2, 2), (3, 0,−1)} and span{(−1,−1, 1), (−1,−2, 2),
(2,−2, 1)}. What is their intersection? What are their facets, that is, codimension-
1 faces?

29

If you have many generating cones then every ray of the fan tends to appear multiple
times as a cone generator. This quickly becomes cumbersome, and it would be easier to
specify the cones by the ray indices instead of having to repeat the coordinates of the
rays over and over again. This is the other supported syntax for constructing an fan:

132sage: rays = [(1,0), (0,1), (-1,-1)]
133sage: cones = [[0,1], [1,2], [2,0]]
134sage: alternate_P2_fan = Fan(cones, rays)
135sage: alternate_P2_fan.is_equivalent(P2_fan)
136True

5.2 Gluing

Each fan Σ determines a toric variety analogous to the example in Section 4. Every
cone σ (irregardless of its dimension) is an d-dimensional affine toric variety Pσ, and the
relative position of the cones determines how they are glued together.

Definition 14 (Toric variety). A fan Σ ∈ NQ defines a toric variety by gluing

PΣ =
⋃
σ∈Σ

Spec
(
C[σ∨ ∩M]

)
. (43)

In particular, the trivial cone 〈〉 corresponds to the algebraic torus P〈〉 = (C×)d and
is a dense Zariski-open subset. The algebraic torus acts on itself in the straightforward
way, and this action extends to an action on the whole toric variety. One can show that
the reverse is also true, and the definition is equivalent to

Definition 15 (Alternative definition of toric variety). A toric variety is a d-dimensional
variety X that contains a dense Zariski-open algebraic torus TN = (C×)d ⊂ X such that
the action of TC on itself extends to an action on X.

So we can also think of toric varieties as the (partial) compactifications of an algebraic
torus, and this point of view is the origin of their name.

Exercise 12. Consider the weighted projective space P2[1, 2, 3]. It is one of the example
toric varieties in Sage, and you can construct it via toric_varieties.P2_123().
Describe the patches and their singularities.

5.3 Torus Orbits

The trivial cone corresponds to the maximal torus TN = (C×)d. The one-dimensional
cones 〈ri〉 define the toric variety

P〈ri〉 = Spec
(
C[〈ri〉∨ ∩M]

)
= C×

(
C×
)d−1

(44)

that contains the maximal torus as a dense open subset and the (d − 1)-dimensional
orbit {0} × (C×)d−1. We can continue this process and isolate a torus orbit for each
cone of the fan. Note that the (d− 1)-torus factor corresponds to evaluating the (d− 1)
monomials perpendicular to the ray 〈ri〉. This construction generalizes to

30

Definition 16 (Torus orbit). For each k-dimensional cone σ ∈ Σ, let

O(σ) = Hom
(
σ⊥ ∩M, C×

)
'
(
C×
)d−k ⊂ PΣ (45)

be the torus orbit associated to the cone σ.

In fact, these are the only torus orbits in the toric variety. The

Theorem 4 (Cone-orbit correspondence [15]). ?? There is a one-to-one correspondence
between the cones σ ∈ Σ and the torus orbits O(σ).

Explicitly writing down the torus orbits in general will be easier once we have intro-
duced homogeneous coordinates in Section 7, and we will postpone further discussion
until then. However, a few basic properties are clear:

• O(〈〉) = TN ' (C×)d,

• O(〈ri〉) ' {0} × (C×)d−1, and

• dimO(σ) = d− dim(σ) for all cones σ ∈ Σ.

Exercise 13. Show that on P2 defined by the fan Figure 8, the three affine patches can
be written as10

Uσ =
⋃
τ≤σ

O(τ). (46)

5.4 Orbit Closures

Each TN = (C×)d orbit is necessarily of the form (C×)k for some k ≤ d. To get interesting
subvarieties, we should compactify the torus orbits O(σ) by adding limit points.

Definition 17 (Orbit closure). For any cone σ ∈ Σ, let V (σ) = O(σ) be the closure of
the torus orbit associated to σ.

This amounts to adding lower-dimensional torus orbits. The resulting orbit closure
is again a toric variety, and its fan is determined by the cones τ ∈ Σ of the ambient fan
that contain σ.

FIXME: define Star

Theorem 5. For any cone σ ∈ Σ, the orbit closure is the toric variety

V (σ) = PStar(σ). (47)

Taking the orbit closure associated to a cone reverses inclusions,

σ > τ ⇔ V (σ) ⊂ V (τ) ∀σ, τ ∈ Σ (48)

In Figure 9, we draw the partially ordered set of cones and orbit closures on P2 to
illustrate the inclusion-reversing correspondence.

10This is true in general.

31

σ0 ∩ σ1 ∩ σ2

σ0 ∩ σ1 σ1 ∩ σ2 σ0 ∩ σ2

σ0 σ1 σ2

[∗ : ∗ : ∗]

[∗ : ∗ : 0] [0 : ∗ : ∗] [∗ : 0 : ∗]

[1 : 0 : 0] [0 : 1 : 0] [0 : 0 : 1]

Figure 9: Poset of cones and poset of orbit closures for P2.

5.5 Lattice Polytopes

FIXME
define support, compact, face fan

Exercise 14. Construct the fan of P2 from Figure 8 as the face fan of a polytope.

5.6 Resolution of Singularities

subdivision = blow-up

Exercise 15. Recall the Z5 hyperconifold from 10. In the worksheet FIXME:URL, you
can find all 80 triangulations of the toric diagram. Every triangulation gives a partial
resolution of the hyperconifold. How many triangulations yield complete resolutions ,that
is, get rid of all singularities?

6 Topology

6.1 Cartier and Weil Divisors

Especially in the physics literature, the two notions of divisor are often confused. They
are

Definition 18 (Weil divisor). A Weil divisor is a formal Z-linear combination of
codimension-one algebraic subvarieties.

and the other one is

Definition 19 (Cartier divisor). A Cartier divisor is a Weil divisor where every sub-
variety is locally cut out by a single meromorphic function.

A special kind of a Cartier divisor is a principal divisor (f) which is a divisor that is
cut out by a global meromorphic function f . Here, by “cut out” we mean that we count
the algebraic subvarieties with their zero order or minus their pole order.

32

Example 5. The meromorphic function x
y2 on C2 3 (x, y) defines the principal divisor(

x

y

)
= V (x)− 2V (y) ∈ Div

(
C2
)
. (49)

Now, clearly every Cartier divisor is Weil, so we find that principal (Cartier ⊂
Weil. Are there Weil divisors that are not Cartier? Yes, as the following example
demonstrates:

Example 6. Consider the conifold V (I) with I = 〈ab + uv〉 ⊂ C[a, b, u, v]. Then
D = {a = 0, u = 0} is a Weil divisor that is not Cartier.

Exercise 16. Check that D is indeed a codimension-one subvariety. What are local
coordinates on D? Compare D with the Cartier divisors a = 0 and u = 0.

However, if the variety is smooth then the notions of Weil and Cartier divisor coin-
cide. This is why it is often not mentioned. But even if one is only interested in smooth
varieties, they are often constructed as smooth subvarieties of singular ambient spaces.
To summarize, there are three important types of divisors on a variety X:

• principal divisors Div0(X),

• Cartier divisors CDiv(X), and

• Weil divisors Div(X).

They are almost always infinitely generated groups, that is, have no finite-dimensional
Z-basis. In general these groups can be difficult to study since they contain so much
information. On a toric variety PΣ, however, there is a brutal yet effective way to make
them finite-dimensional: Restrict to divisors that are torus orbits, that is,

• torus-invariant principal divisors Div0,TN (PΣ) = M ,

• torus-invariant Cartier divisors CDivTN (PΣ), and

• torus-invariant Weil divisors DivTN (PΣ).

In particular, the torus-invariant Weil divisors are just the Z-linear combination of the
codimension-1 orbits:

DivTN (PΣ) =
⊕
ρ∈Σ(1)

Z · V (ρ). (50)

6.2 Rational Equivalence

The Weil divisor group Div(X) and the Cartier divisor group CDiv(X) are almost always
gigantic groups. For example, projective varieties admit families ft : X → P1, t ∈ C of
meromorphic functions. Then every one of the uncountably many principal divisors (ft)
is an independent basis element in the two divisor groups. In order to cut this down
to a manageable group, we mod out the principal divisors. This amounts to identifying
divisors that can be continuously deformed within a one-parameter holomorphic family.
The resulting quotient groups carry odd names:

33

• Divisor class group Cl(X) = Div(X)
/

Div0(X)

• Picard group Pic(X) = CDiv(X)
/

Div0(X)

We will have more to say about the Picard group in Subsection 8.1, but in the remainder
of this section we will focus on the divisor class group.

Theorem 6. If the fan Σ ⊂ NQ is not contained in a hyperplane in NQ, then the
sequence

0 −→M
(χ)−→ DivTN (PΣ) −→ Cl(PΣ) −→ 0 (51)

is exact. The first arrow maps m ∈M to the principal divisor (χm).

In particular, the divisor class group of a toric variety is a finitely generated Abelian
group. This also proves that an elliptic curve C/Λ cannot be a toric variety because its
divisor class group is infinitely generated. A Weil divisor on a curve is a formal linear
combination of points D =

∑
i∈I ai −

∑
j∈J bj. One invariant of the divisor class is the

total number of points |I| − |J | ∈ Z. But there is another continuous-valued invariant
on an elliptic curve. Recall

Theorem 7 (Abel’s theorem). Let Z2 ' Λ ⊂ C be a lattice and E = C/Λ the cor-
responding elliptic curve. There exists a meromorphic function on E with prescribed
zeroes at a1, . . . , an ∈ C and poles at b1, . . . , bn ∈ C if and only if

a1 + · · ·+ an = b1 + · · ·+ bn mod Λ. (52)

Hence, the sum in C of the points a1 + · · · + an − b1 − · · · − bn ∈ C/Λ is also an
invariant of the divisor class group of the elliptic curve C/Λ. In fact, one can show that

Cl
(
C2/Λ

)
' Z×

(
C2/Λ

)
(53)

6.3 Chow Group

Dividing out the rational equivalence of divisors gets rid of the “obvious” families of
divisors that come from deforming the defining equations of the divisor by a principal
divisor. One should ask oneself if one can repeat this with algebraic cycles (formal
linear combinations of subvarieties) of arbitrary dimension. In fact, this is possible.
Two k-dimensional algebraic cycles C1, C2 are rationally equivalent if they both live on
a (k + 1)-dimensional algebraic variety D and are rationally equivalent as divisors on
C1, C2 ∈ Div(D).

Just like the divisor class group, the Chow group is an Abelian group. In general, it
is not finitely generated. For toric varieties, there is a toric version of the Chow group
where the generating cycles are the torus orbit closures and the rational equivalence
is equivalence in torus-invariant families. This toric version is, by definition, finitely
generated. And, similarly to the divisor class group, the toric Chow group equals the
whole Chow group. Sage can compute the Chow group

137sage: dP7 = toric_varieties.dP7()

34

138sage: A = dP7.Chow_group()
139sage: A
140Chow group of 2-d CPR-Fano toric variety covered by 5 affine

patches
141sage: A.degree()
142(Z, Zˆ3, Z)

and the Chow cycles associated to orbit closures V (σ), σ ∈ Σ

143sage: cone = dP7.fan(1)[3]
144sage: A(cone)
145(0 | 0, 1, 0 | 0)

The Chow group is very useful for intersection theory because it contains the maximal
information about the algebraic cycles; Rational equivalence is the finest equivalence
that one can reasonably impose. The downside, however, is that you can only intersect
cycles that are transverse or can be made transverse. Sage implements the intersection
of an arbitrary-dimension Chow cycle with a Cartier divisor, for which there exists a
toric algorithm:

146sage: a = A(cone)
147sage: D = dP7.divisor(2)
148sage: a.intersection_with_divisor(D)
149(1 | 0, 0, 0 | 0)

Finally, when computing intersection numbers we often end up with a 0-cycle and want
to count the number of points. This is done with the count_points() method:

150sage: a.intersection_with_divisor(D).count_points()
1511
152sage: D1 = dP7.divisor(2)
153sage: D2 = dP7.divisor(3)
154sage: A(D1).intersection_with_divisor(D2).count_points()
1551

6.4 The Cohomology Ring

Definition 20 (Stanley-Reisner ideal). Let Σ ∈ NQ be a fan with rays Σ(1) = {ρ1, . . . ,
ρr}. The Stanley-Reisner ideal (in the formal variables x1, . . . , xr) is the ideal

SR(Σ) =
〈
xi1 · · ·xik

∣∣∣ span{ρi1 , . . . , ρik} 6∈ Σ
〉
⊂ Z[x1, . . . , xr]. (54)

We write SRQ(Σ) = SR(Σ)⊗Z Q for the analogous ideal with base ring Q.

Theorem 8 (Cohomology of compact toric varieties [18, 19]). Let Σ ∈ NQ be a complete
fan with r = |Σ(1)| rays.

• if Σ is smooth,11 then the integral cohomology ring of the toric variety is

H•
(
PΣ,Z) = Z[x1, . . . , xr]

/(
SR(Σ) + Lin(Σ)

)
(55)

with all generators xi having degree 2.

11A fan is smooth (simplicial) if every cone is.

35

• if Σ is simplicial, then the rational cohomology ring of the toric variety is

H•
(
PΣ,Q) = Q[x1, . . . , xr]

/(
SRQ(Σ) + LinQ(Σ)

)
(56)

with all generators xi having degree 2.

Suspiciously absent in the theorem is the case where Σ is not simplicial. In that
case the cohomology ring is more complicated and there is no description in terms of a
quotient of a polynomial ring. In particular, it need not be purely even-dimensional.

Exercise 17. Compute Z[x1, . . . , x4]/(SR + Lin) for the conifold. Compare with the
singular cohomology.

Advantages: Fast
In the smooth case H2k(PΣ,Z) = Ak(PΣ,Z), see [19].
Disadvantages: doesn’t work for singular varieties

36

Part III

Divisors and Line Bundles

7 Homogeneous Coordinates

So far, we always constructed toric varieties by patching local charts. This is rather
tedious, and one should try to find an analogue of homogeneous coordinates as used in
projective spaces. In fact, such an analog exists and reduces to the usual homogeneous
coordinates if your toric variety happens to be projective space. To generalize the
homogeneous coordinates, consider a fan Σ with |Σ(1)| = r rays (one-dimensional cones).
We know that each ray corresponds to a TN -invariant divisor, which should be cut out by
setting one of the homogeneous coordinates to zero. So there should be r homogeneous
coordinates and r − d rescalings to produce a d-dimensional toric variety. You might
remember that the divisor class group12

Cl(PΣ) = Ad−1(PΣ) ' Zr−d ⊕ (finite group), (57)

which is suggestive that it might play a role. Finally, there must be some disallowed
values for the homogeneous coordinates, otherwise they would parametrize a contractible
space. Explicitly, the homogeneous coordinate construction of a toric variety is [20]

PΣ =
CΣ(1) − Z

Hom
(
Ad−1(X), C×

) ' Cr − Z
(C∗)n−r × Ad−1(X)tors

, (58)

where we still have to define the details of the quotient group action, the exceptional
set Z, and what we mean by quotient.

Let me start with the quotient group action, and recall the short exact sequence
eq. (51),

0 −→M
(χ)−→ DivTN (PΣ) −→ Ad−1(PΣ) −→ 0 (59)

which dualizes to

0 −→ Hom
(
Ad−1(PΣ), C×

)
−→ Hom

(
DivTN (PΣ), C×

)
−→ Hom

(
M, C×

)
−→ 0.

(60)
An element of Hom(DivTN (PΣ), C×) is a choice of multiplicative constant λi for each
ray 〈ri〉 ∈ Σ(1). It induces the trivial map M → C× if

1 =
∏

λ
〈ri,m〉
i ∀m ∈M. (61)

In this case, it defines a map Ad−1(PΣ)→ C×. Hence,

Hom
(
Ad−1(PΣ), C×

)
=
{

(λ1, . . . , λr) ∈ (C×)Σ(1)
∣∣∣ 1 =

∏
λ
〈ri,ej〉
i ∀ej

}
, (62)

where the ej are a basis for the M -lattice.

12Here and in the following I will assume that the fan Σ ⊂ NQ is not contained in a hyperplane.
Geometrically, this means that the toric variety does not decompose as a product of a k-dimensional
toric variety times a torus factor (C×)d−k. The reason is that, otherwise, the structure of the divisor
class group is slightly more complicated, see Theorem 6.

37

Exercise 18. Consider the face fan Σ of the lattice tetrahedron ∇ = conv{(−3,−2, 4),
(0, 1, 0), (1, 0, 0), (2, 1,−4)}. Use Sage to compute A2(PΣ) = Z×Z4. Find the two maps
[D1]→ λ, [D2]→ µ corresponding to the two homogeneous rescalings[

x0 : x1 : x2 : x3

]
=
[
λx0 : λx1 : λx2 : λx3

]
∀λ ∈ C×,[

x0 : x1 : x2 : x3

]
=
[
x0 : µx1 : µ2x2 : µ3x3

]
∀µ ∈ {1, i, i2, i3} ' Z4.

(63)

Second, we need to find the exceptional set Z. This needs to be chosen such that
the divisors {xi = 0}, i ∈ I only intersect if the corresponding orbit closures V (ρi) do
intersect. By the cone-orbit correspondence ??, this is the case if and only if there exists
a cone σ ∈ Σ containing all rays ρi ∈ σ for all i ∈ I. We saw a very similar condition
already in the Stanley-Reisner ideal, 20. We can hence formulate the exceptional set as

Z =
⋃

(
∏

i∈I xi)∈SR(Σ)

V (〈xi|i ∈ I〉) =
⋃

{i1,···ik}
span{ρi1 ,...,ρik}6∈Σ

{
xi1 = · · · = xik = 0

}
. (64)

Finally, the notion of quotient can be rather complicated in general.
The homogeneous coordinates make it easy to write down the orbit closures V (σ).

For example,

• the maximal torus the subset where all homogeneous coordinates are non-vanishing,
and

• the divisors V (〈ri〉), 〈ri〉 ∈ Σ(1), are of the form {xi = 0}.

In general, we can write the orbit-cone correspondence as the correspondence between
the cone σ = 〈ri1 , . . . , rin〉 and the orbit

V (σ) = O(σ) =
{
xi1 = · · · = xin = 0

}
(65)

8 Sheaves

8.1 Line Bundles and Cartier Divisors

By definition, a Cartier divisor is equivalent to a local holomorphic function fi on each
affine patch Ui. The functions do not have to fit together to a global function, but can
differ by a C×-valued function

ϕij =
fj
fi

: Ui ∩ Uj → C×. (66)

Note that fi can and will have zeroes and poles at the divisor, but they are at the same
place as the zeroes and poles in fj since they cut out the same divisor. So the quotient
is, indeed, a well-defined function. But the collection of C×-valued transition functions
is nothing but the defining data of a holomorphic line bundle.

FIXME: isomorphism classes

38

Theorem 9. If the fan Σ ⊂ NQ is not contained in a hyperplane in NQ, then the
sequence

0 −→M
(χ)−→ CDivTN (PΣ) −→ Pic(PΣ) −→ 0 (67)

is exact.

8.2 Support Functions

Both the divisor class group Cl(PΣ) and the Picard group Pic(PΣ) of a toric variety are
finitely generated Abelian groups, that is, of the form Zr ⊕ Zt1 ⊕ · · · ⊕ Ztk . But what
is the precise relation between these groups? By definition, a Cartier divisor is a Weil
divisor so there is an embedding

CDiv(PΣ)
/

Div0(PΣ) = Pic(PΣ) ⊆ Cl(PΣ) = Div(PΣ)
/

Div0(PΣ). (68)

What is the defining data of a toric Cartier divisor? Let’s take a closer look at the
short exact sequence eq. (67). In general, a principal divisor is given by the zeroes and
poles of a function. But a torus-invariant principal divisor is given by the zeroes and
poles of a Laurent monomial, otherwise it would not be fixed by the torus action. We
see that specifying a torus-invariant principal divisor amounts to picking m ∈ M . A
torus-invariant Cartier divisor is given by a principal divisor mσ ∈ M on each affine
patch Spec(C[σ∨∩M), fitting together on overlaps. What does this matching condition
translate into for the mσ? Note that mσ ∈ M can be thought of as a integral linear
function on σ ∈ NQ. It turns out that for the local principal divisors to fit together, the
linear functions mσ must fit together into a continuous piece-wise linear function on the
fan. Therefore, we define

Definition 21. Let Σ ⊂ NQ be a fan. An integral support function is a function
f : |Σ| → Q such that

1. f is linear on each cone σ ∈ Σ.

2. f(n) ∈ Z for all lattice points n ∈ |Σ| ∩N .

The set of all integral support functions is denoted SF(Σ, N).

The integral support functions form a finitely generated Abelian group under point-
wise addition, which is canonically isomorphic to

SF(Σ, N) = CDivTN (PΣ) (69)

the torus-invariant Cartier divisor group. To find the underlying Weil divisor, just
evaluate the function on the ray generator:

CDivTN (PΣ) 3 D =
∑
ρ∈Σ(1)

〈mρ|ρ〉 · V (ρ) ∈ DivTN (PΣ) (70)

Finally, we can mod out the (globally) principal divisors to obtain

39

Theorem 10 (Picard group). The Picard group of a toric variety PΣ, Σ ∈ NQ, that is,
the isomorphism classes of line bundles, is

Pic(PΣ) = SF(Σ, N)
/
M, (71)

the integral linear support functions modulo everywhere linear integral functions on NQ.
Moreover, the Picard group is torsion-free.

If every cone is smooth, then its easy to see that the Weil divisor data defines a
integral support function. But once non-smooth cones appear, specifying the values on
the rays may not define an integral support function. Analogous to the classification 1 of
cones into smooth, simplicial, and everything else, we can distinguish three successively
more singular cases.

Proposition 2. • If the fan Σ is smooth, then Pic(PΣ) = Cl(PΣ).

• If the fan Σ is simplicial, then Pic(PΣ) ⊂ Cl(PΣ) has finite index.

• If the fan Σ is simplicial, then Pic(PΣ) ⊂ Cl(PΣ) is a sublattice of strictly lower
rank.

8.3 Global Sections

We found that Cartier divisor classes Pic(PΣ) correspond to line bundles. Generalizing
to Weil divisor classes Cl(PΣ) yields the more general reflexive sheaves, which we can
think of as line bundles with singularities. They share many properties of line bundles.
In particular, the relation to homogeneous coordinates remains the same, that is, global
sections of reflexive sheaves can be written as homogeneous polynomials. Every O(D)
has lots of meromorphic sections, but by global sections we mean holomorphic sections,
that is, without poles. For example, OPd(n) has global sections (the degree-n homoge-
neous polynomials) for n ≥ 0 but not for n < 0. If the divisor class group is of rank > 1
then the divisors with nonnegative coefficients define a cone:

Definition 22. A Weil divisor D =
∑
aiDi is effective, written D ≥ 0, if all coefficients

ai ∈ Z≥ are nonnegative.

This definition very much depends on the actual divisor and not just its class, for
every effective divisor there is some rationally equivalent divisor that is not effective.

Because of the torus action, the global sections form a representations of the algebraic
group TN = Hom(M,C×) ' (C×)d. We can simplify the problem of finding global
sections by restricting to a fixed irreducible representation, which are labelled by the
lattice points m ∈ M . The associated irrep is the torus character χm, which is a
function on the maximal torus V (〈〉) ' (C×)d. However, it does not necessarily extend
to a holomorphic function on the whole toric variety, as there may be poles along the
(d − 1)-dimensional torus orbits V (ρ), ρ ∈ Σ(1). Assuming that the toric variety is
compact, if we take χm to be a global function then there must be poles somewhere.
However, we can think of χm also as a local trivialization on the maximal torus of some

40

line bundle O(D). Then it will depend on the transition function whether or not χm

extends to a global section. This will be the case if D cancels the poles of the effective
divisor (χm), that is, it extends to a global section of D if and only if (χm)+D ≥ 0. This
condition is a finite set of linear constraints on the lattice points m ∈M that contribute
a single global section each. Hence, the allowed region is a polyhedron

Definition 23 (The polyhedron of a divisor). Given a torus-invariant Weil divisor
D =

∑
ρ aρV (ρ), let

PD
def
=
{
m ∈MQ

∣∣ 〈m,uρ〉 ≥ −aρ for all ρ ∈ Σ(1)
}
. (72)

The integral points in the polyhedron PD are then the global sections of D:

Proposition 3. Let D be a torus-invariant Weil divisor. Then the global sections of
O(D) are

Γ
(
PΣ,O(D)

)
=

⊕
(χm)+D≥0

C · χm =
⊕

m∈PD∩M

C · χm (73)

Sage can compute the polyhedron of a divisor as well as convert the points m ∈ M
into homogeneous polynomials:

156sage: X = toric_varieties.dP8()
157sage: D = X.divisor([0,1,1,1])
158sage: P_D = D.polyhedron()
159sage: P_D.Vrepresentation()
160[A vertex at (1, -1), A vertex at (2, -1), A vertex at (-1, 1), A

vertex at (-1, 2)]
161sage: P_D.integral_points()
162[(1, -1), (2, -1), (-1, 1), (-1, 2), (0, 0), (1, 0), (0, 1)]

For convenience, you don’t have to manually construct the polyhedron of the divisor.
You can just use methods of the divisor to compute the global sections.

163sage: D.sections()
164(M(1, -1), M(2, -1), M(-1, 1), M(-1, 2), M(0, 0), M(1, 0), M(0, 1)

)
165sage: D.sections_monomials()
166(y*zˆ2, t*zˆ3, xˆ2*y, t*xˆ3, x*y*z, t*x*zˆ2, t*xˆ2*z)

Note that the polyhedron PD need not be full-dimensional. Clearly it can be empty or
of any intermediate dimension. For example, consider

167sage: X = toric_varieties.dP8()
168sage: D1 = X.divisor([0,1,0,1])
169sage: D1.polyhedron()
170A 1-dimensional polyhedron in QQˆ2 defined as the convex hull of 2

vertices.
171sage: D1.sections()
172(M(1, -1), M(-1, 1), M(0, 0))

Exercise 19. Find a divisor D on the weighted projective space P2[1, 2, 3] such that PD
is not a lattice polytope.

example: elliptic fibrations

41

8.4 Cohomology

9 Positivity

9.1 Ampleness

Kähler metric
gij̄(z, z̄) = ∂i∂̄j̄K(z, z̄)

ω = gij̄(z, z̄) dzi dz̄ j̄ = ∂∂̄K(z, z̄).
(74)

Kähler potential

K(z, z̄) = ln
∑
α,β̄

hαβ̄sαs̄β̄, span{s1, . . . } = Γ(X,O(nD)), n� 1 (75)

Metric must be positive definite, which turns out to be a constraint for the divisor
D.

Definition 24. A Cartier divisor D ∈ Pic(PΣ) with corresponding function ϕD ∈
SF (Σ, N) is ample if and only if ϕD is strictly convex.

A strictly convex support function does not always exist! One tautological case
where it does exists is when the cones of the fan are the linear regions of a strictly
convex support function.

In particular, the resolution of a singularity X̂ → X corresponding to a subdivision
of the fan may fail to be Kähler even if the singular variety X is. This is so because
subdividing a cone can change the strictly convex condition on the facets of the cone,
for example the conifold.

The existence of a Kähler resolution is guaranteed if the subdivision of each gener-
ating cone σ is induced from a strictly convex support function that is equal to zero on
the facets ∂σ.

9.2 The Canonical Bundle

Consider a holomorphic (d, 0)-form on a d-dimensional variety. In a local patch U0, it
is of the form

f0(z1, . . . , zd) dz1 ∧ · · · ∧ dzd (76)

The holomorphic transition functions and analytic continuation determine the coefficient
fi then in each other coordinate patch Ui. We can phrase this as saying that there is
a rank-1 sheaf of (d, 0)-forms. If the variety is smooth then this is a line bundle, but
for singular varieties we have to admit more general sheaves. Specifying a different
f0(z1, . . . , zd) in the first patch yields a different section of the same sheaf of (d, 0)-
forms. This sheaf is called the canonical sheaf (or bundle). On general grounds we
can write it as O(K) for some Weil divisor class K, the canonical divisor class or just
canonical class. The class of K is uniquely specified by the toric variety, but the actual
divisor depends on the coefficient of the (d, 0)-form in the initial patch.

42

The importance of the canonical class is that it determined purely by the intrinsic
geometry of the variety. It is one of the most fundamental invariants of a variety, and
the properties of the canonical divisor are important quantities. On a toric variety, you
can find the canonical sheaf from the monad presentation of the tangent sheaf. The
result is that

Theorem 11. On the toric variety PΣ defined by the fan Σ ∈ NQ, the canonical class
is

KPΣ
= −

∑
ρ∈Σ(1)

V (ρ). (77)

One class of varieties that you might have encountered before are called Fano:

Definition 25. A variety X is called Fano if it is smooth and its anticanonical class
−KX is ample.

Note that some authors do not require a Fano to be smooth. I will use the convention
that Fano implies smooth unless it is specified otherwiese.

The best-known Fano manifolds are the del Pezzo surfaces, which are P1 × P1 and
the blow-up of P2 in 0, . . . , 8 sufficiently general points. The self-intersection of the
canonical class is called the degree, it is 8 for P1 × P1

173sage: P1xP1 = toric_varieties.P1xP1()
174sage: K = P1xP1.K()
175sage: P1xP1.integrate(K.cohomology_class()ˆ2)
1768

and 9 − k for the blow-up Blk(P2) of P2 at k points. The Fano surfaces of degree
(9−k) ≤ 6⇔ k ≤ 3 are toric varieties. If k ≥ 4, then the del Pezzo surface has complex
structure moduli, while toric varieties are determined by purely combinatorial data and,
therefore, have no continuous complex structure moduli. This is Bl4(P2) and further
blow-ups cannot be toric varieties.

FIXME: picture

9.3 Gorenstein

The Gorenstein property limits exactly how singular a variety can be, namely

Definition 26 (Gorenstein toric variety). The toric variety PΣ is called Gorenstein if
and only if KΣ is a Cartier divisor.

A smooth variety is Gorenstein because all Weil divisors are Cartier. But thats not
true in general, and one can easily find examples of non-Cartier canonical divisors.

Exercise 20. Find an example of a non-Gorenstein toric variety.

It turns out that arbitrarily singular Fano varieties are often too badly behaved, and
one needs to impose some sort of regularity. The good notion that allows some but not
all singluarities turns out to be Gorenstein. Since Gorenstein also hints at non-singular
varieties we implicitly allow certain compact singluar Fano varieties in

43

Definition 27. A Gorenstein Fano variety is a compact variety X such that the anti-
canonical divisor KX is both Cartier and ample.

The particular importance of Gorenstein Fano toric varieties is that they are the ones
that are given by reflexive polytopes, which plays a crucial part in mirror symmetry.

Definition 28. Let ∇ ∈ NQ a polytope containing the origin. The polar polytope is

∇◦ =
{
m ∈MQ

∣∣ 〈m,n〉 ≥ −1 ∀n ∈ ∇
}

(78)

One can easily see that taking the polar twice yields the original polytope, ∇◦◦ = ∇.
But note that the definition does not refer to the lattices. In fact, the polar of a lattice
polytope is usually not a lattice polytope any more. For example,

177sage: nabla = Polyhedron(vertices=[(-1,-1),(1,0),(0,2)])
178sage: nabla.is_lattice_polytope()
179True
180sage: delta = nabla.polar()
181sage: delta.is_lattice_polytope()
182False
183sage: delta.Vrepresentation()
184[A vertex at (9/5, -3/5), A vertex at (-6/5, -3/5), A vertex at

(-3/5, 6/5)]

In fact, in each dimension there are finitely many lattice polytopes whose polar is again
a lattice polytope:

Definition 29. A reflexive polytope is a lattice polytope whose polar is again a lattice
polytope.

Exercise 21. Use Sage to draw the 16 reflexive polytopes in dimension 2. Hint: Use
ReflexivePolytopes(2). For each one, construct the toric variety defined by its face
fan and check that the anticanonical divisor is Cartier and ample.

We will come back to the relation with Calabi-Yau manifolds in Section 10.

9.4 Kahler and Mori Cone

For a 3-dimensional variety, the Kähler cone is the subset of the J ∈ H1,1(X) satisfying∫
C

J > 0,

∫
S

J ∧ J > 0, . . . ,

∫
X

J ∧ · · · ∧ J > 0. (79)

44

Part IV

Mirror Symmetry

10 Calabi-Yau Hypersurfaces

In order to compactify string theory from 10 to 4 dimensions, the space-time (at least
far away from any black holes) should look like R3,1 × M (6), where M (6) is some 6-
dimensional space. Of course the metric and other fields have to obey their equations of
motion, and understanding the most general solution is still an active field of research.
However, a particular subclass of admissible compactification manifolds is relatively
well-understood, the Calabi-Yau manifolds. By definition, these are compact Kähler
manifolds with vanishing first Chern class. For our purposes, can be characterized as
the compact smooth subvarieties of a toric variety with trivial canonical bundle.

From the toric expression for the canonical divisor Theorem 11 it is clear that O(K)
is never trivial. So toric varieties are never Calabi-Yau manifolds. Instead, we will
construct Calabi-Yau manifolds from hypersurfaces in toric varieties. In general, the
canonical class of a hypersurface Y ⊂ X is governed by the adjunction formula

KY =
(
KX + [Y]

)∣∣
Y

(80)

The easiest example would be quintic, that is, a degree-5 hypersurfaces in the projective
space P4. The fan of P4 contains 5 rays, all linearly equivalent to each other. Therefore,
there is only one divisor class, the hyperplane class H ∈ Pic(P4). The canonical class is

KP4 = −
∑
ρ∈Σ(1)

Dρ = −5H (81)

To cancel the canonical class, the hypersurface must be in the class [5H], that is, the
zero set of a quintic homogeneous polynomial. Here is one particular quintic:

185sage: P4 = toric_varieties.P(4)
186sage: P4.anticanonical_hypersurface(monomial_points=’vertices’)
187Closed subscheme of 4-d CPR-Fano toric variety covered by 5 affine

patches defined by:
188a0*z0ˆ5 + a2*z1ˆ5 + a1*z2ˆ5 + a3*z3ˆ5 + a4*z4ˆ5
189sage: P4.anticanonical_hypersurface(monomial_points=’vertices’,

coefficients=[1]*5)
190Closed subscheme of 4-d CPR-Fano toric variety covered by 5 affine

patches defined by:
191z0ˆ5 + z1ˆ5 + z2ˆ5 + z3ˆ5 + z4ˆ5

But the most generic hypersurface has 126 monomials. Minus dimGL(5,C) = 25 rescal-
ings leaves 101 complex structure moduli. Moreover, there is

192sage: P4.Kaehler_cone()
1931-d cone in 1-d lattice

a single Kähler modulus.

45

11 Periods and Picard-Fuchs Equations

The canonical class being trivial, KY = 0, means that there is a nowhere vanishing
holomorphic section of O(KY) = O. So in local coordinates there is a (3, 0) form

Ω = Ω(z1, z2, z3) dz1 ∧ dz2 ∧ dz3 (82)

whose coefficient does not vanish anywhere on the Calabi-Yau manifold Y .

12 The Mirror Map

Bibliography

[1] D. E. Knuth, The art of computer programming, vol. 3. Addison-Wesley Longman
Publishing Co., Boston, MA, USA, 2nd ed., 1998. 1.1

[2] T. Becker and V. Weispfenning, Gröbner bases, vol. 141 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1993. A computational approach to
commutative algebra, In cooperation with Heinz Kredel. 1.4, 3

[3] H. Derksen and G. Kemper, Computational invariant theory. Invariant Theory
and Algebraic Transformation Groups, I. Springer-Verlag, Berlin, 2002.
Encyclopaedia of Mathematical Sciences, 130. 1.4

[4] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The user
language,” J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational
algebra and number theory (London, 1993). 2.1

[5] F. Berchtold, J. Hausen, and M. Widmann, “TorDiv,” http://www.mfo.de/
organisation/institute/hausen/TorDiv/index.html. 2.1

[6] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in
algebraic geometry.” Available at http://www.math.uiuc.edu/Macaulay2.
2.1

[7] G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular 3.0,” a computer
algebra system for polynomial computations, Centre for Computer Algebra,
University of Kaiserslautern, 2005. http://www.singular.uni-kl.de. 2.1

[8] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12,
2008. http://www.gap-system.org. 2.1

[9] D. Joyner, “GAP package toric,”
http://www.opensourcemath.org/toric. 2.1

[10] W. Stein et al., Sage Mathematics Software (Version 4.6.2). The Sage
Development Team, 2011. http://www.sagemath.org. 2.1

46

http://www.mfo.de/organisation/institute/hausen/TorDiv/index.html
http://www.mfo.de/organisation/institute/hausen/TorDiv/index.html
http://www.math.uiuc.edu/Macaulay2
http://www.singular.uni-kl.de
http://www.gap-system.org
http://www.opensourcemath.org/toric
http://www.sagemath.org

[11] F. Pérez and B. E. Granger, “IPython: a System for Interactive Scientific
Computing,” Comput. Sci. Eng. 9 (May, 2007) 21–29. 5

[12] W. Stein and P. Jipsen, “Sage Quick Reference,”
http://wiki.sagemath.org/quickref. 2.3

[13] G. van Rossum, The Python Tutorial.
http://docs.python.org/tutorial. 2.5

[14] D. Eisenbud and J. Harris, The Geometry of Schemes, vol. 197 of Grad. Texts in
Math. Springer-Verlag, New York, 2000. 3.1

[15] D. A. Cox, J. B. Little, and H. Schenck, Toric Varieties. American Mathematical
Society, 2011. 3.3, 4

[16] R. Davies, “Quotients of the conifold in compact Calabi-Yau threefolds, and new
topological transitions,” 0911.0708. 10

[17] R. Davies, “Hyperconifold Transitions, Mirror Symmetry, and String Theory,”
1102.1428. 10

[18] W. Fulton, Introduction to Toric Varieties. Princeton University Press, 1993. 8

[19] V. I. Danilov, “THE GEOMETRY OF TORIC VARIETIES,” Russian
Mathematical Surveys 33 (1978), no. 2, 97. 8, 6.4

[20] D. A. Cox, “The homogeneous coordinate ring of a toric variety,” J. Algebraic
Geom. 4 (1995), no. 1, 17–50. 7

[21] P. Berglund, S. H. Katz, and A. Klemm, “Mirror symmetry and the moduli space
for generic hypersurfaces in toric varieties,” Nucl.Phys. B456 (1995) 153–204,
hep-th/9506091.

47

http://wiki.sagemath.org/quickref
http://docs.python.org/tutorial
http://arXiv.org/abs/0911.0708
http://arXiv.org/abs/1102.1428
http://arXiv.org/abs/hep-th/9506091

	I Local Structure
	Affine Varieties
	Affine Algebraic Varieties
	The Ideal of a Variety
	Dimension
	Gröbner Bases

	The Sage Mathematics Software System
	Prologue
	The Sage Notebook
	Introduction to Sage
	Algebraic Geometry in Sage
	The Python Language
	List Comprehensions
	Control Flow
	Functions
	Classes

	Cython and Scientific Computation

	Affine Toric Varieties
	Schemes
	Cones and Lattices
	Torus Action and Orbifolds
	The Conifold

	II Global Aspects
	Coordinate Patches and Compact Varieties
	Toric Varieties
	Fans
	Gluing
	Torus Orbits
	Orbit Closures
	Lattice Polytopes
	Resolution of Singularities

	Topology
	Cartier and Weil Divisors
	Rational Equivalence
	Chow Group
	The Cohomology Ring

	III Divisors and Line Bundles
	Homogeneous Coordinates
	Sheaves
	Line Bundles and Cartier Divisors
	Support Functions
	Global Sections
	Cohomology

	Positivity
	Ampleness
	The Canonical Bundle
	Gorenstein
	Kahler and Mori Cone

	IV Mirror Symmetry
	Calabi-Yau Hypersurfaces
	Periods and Picard-Fuchs Equations
	The Mirror Map
	Bibliography

