
ASC Course Final

ASC-TMP final examination for the Toric Varieties
course

You have time until Friday, 13. May 2011.

You can answer the following questions either manually or by a Sage computation. In either case, you
are to work on your own and show your work. You can write down your answers in this worksheet
and share it with user vbraun, create a PDF file and email it to vbraun@stp.dias.ie with a
Subject: that includes your account name, or both.

1. Intersection Theory

Consider the following 4-dimensional toric variety:

lp = LatticePolytope(matrix([[1,0,0,0],[0,1,0,0],[0,0,1,0],
[0,0,0,1],[-1,-1,-3,-3]]).transpose())
X = ToricVariety(FaceFan(lp), coordinate_names='x+')
X.inject_variables()

Defining x0, x1, x2, x3, x4

Q1: List the torus orbits (for example, by the their corresponding cones) that consist of non-smooth
points inX.

Q2: The singular set X is the set of non-smooth points inX. It is the union of the torus orbits of

the previous question. WriteX in terms of homogeneous coordinates.

Q3: Let be one of the Cartier divisors ofX . In terms of homogeneous coordinates,
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what is the intersection ? The intersection consists of how many points?

Q4: Compute the intersection number in the Chow group

2. Crepant Resolutions

A resolution of singularities is called crepant if the canonical class "stays the same".

In general this means that if is the resolution map, then the pullback of
the canonical class onX equals the canonical class on Y .

For a Gorenstein toric variety, the canonical class K is given by a integral support function '
modulo everywhere linear functions. A resolution of Gorenstein toric varieties coming from a
subdivision of the fan is crepant if the support function ' equals the support function ' up to an

everywhere linear function.

Q5: Check that the toric varietyX defined above is Gorenstein.

Here is one possible resolution ofX into a smooth four-fold Y :

resolved_fan = X.fan().subdivide(new_rays=[(0,0,-1,-1)])
Y = ToricVariety(resolved_fan, coordinate_names='y0, y1, y2, y3,
y4, t')
Y.inject_variables()
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[X.is_smooth(), Y.is_smooth()]

Defining y0, y1, y2, y3, y4, t
[False, True]

Q6: Is this resolution crepant?

A Calabi-Yau subvariety is singular because it necessarily
intersects X .

Consider . Setting t and y recovers the
singular Calabi-Yau variety inX. Because the resolution is crepant, the homology class of Z cancels
the canonical class in the adjunction formula in the same way as they cancelled
onX. Hence Z is Calabi-Yau, too. But Z might still be singular because of the form of its defining
equation.

Q7: Show that Z is, in fact, smooth. Therefore, Z is a smooth Calabi-Yau threefold.

3. Hilbert Polynomials

Consider the divisor D (y ) (y )

Q8: Compute the number of sections of , that is, the dimension of the linear space of sections
, for

Q9: Find a quartic polynomial for .
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