
Submitted to the X10 Workshop

Distributed deductive databases, declaratively
The L10 logic programming language

Robert J. Simmons Bernardo Toninho Frank Pfenning
Carnegie Mellon University

{rjsimmon,btoninho,fp}@cs.cmu.edu

Abstract
We present the preliminary design of L10, a rich forward-chaining
(a.k.a. “bottom-up”) logic programming language. L10 allows par-
allel computation to be explicitly specified through the use of
worlds, a logically-motivated concept that has been used to de-
scribe distributed functional programming. An interpreter for L10
runs these logic programs on top of the infrastructure of the X10
programming language, and is responsible for mapping between
L10’s worlds and places, the related X10 construct for describing
distributed computation.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niques]: Logic programming

General Terms Design, Languages

Keywords distributed programming, logic programming, X10

1. Introduction
Forward-chaining logic programming is a way to declaratively
specify many algorithms, particularly those that involve database-
like operations or iteration to a fixed point, in a succinct and natural
way. In this paper, we present the preliminary design and imple-
mentation of the L10 language, which permits explicit declarations
of parallelism through the use of worlds. Worlds do not map pre-
cisely onto X10’s places, and one role of the L10 implementation is
to map worlds onto places in such a way that the maximum amount
of useful parallelism can be exposed.

1.1 Forward-chaining logic programming
Forward-chaining logic programming begins with a set of facts
that represent some structure. For example, this set (or database)
of facts: edge a c edge c a edge d c

edge a d edge c d edge d d
edge b b edge d b


can be used to represent this directed graph:

a bc d

[Copyright notice will appear here once ’preprint’ option is removed.]

Similarly, this set of facts:{
token "x" 1 token "y" 3 token "z" 5
token "+" 2 token "*" 4

}
can be used to represent the string "x+y*z". A set of facts with a
common predicate (like edge or token) is thought of as a relation,
so we can say edge is a two-place relation because edge facts
always have two arguments.

Having represented structures as sets of facts, we specify com-
putation by writing rules. For instance, the following two rules
specify that the path relation is the transitive closure of the edge
relation. The first rule says that any edge is also a path, and the
second rule says that we can extend every path along an edge.

edge X Y -> path X Y.
edge X Y, path Y Z -> path X Z.

In the first rule, edge X Y is the premise and path X Y is the
conclusion. The second rule has two premises (edge X Y and
path Y Z) and one conclusion (path X Z). We use a syntax for
rules which emphasizes that rules are just logical implications; a
reader familiar with Prolog notation would expect to see the second
rule written as “path(X,Z) :- edge(X,Y), path(Y,Z)”

The operational interpretation of these rules is exhaustive for-
ward deduction. This just means that we repeatedly take facts from
our database and try to match them against the premises of our
rules; whenever we succeed, we can add the conclusion of that
rule to the database if that fact is not already present. Once no
new facts can be derived, we say that the database is saturated and
forward deduction terminates. Given the example database above,
this means that we could derive the fact path d b using the first
rule and the fact edge d b. Using this newly-derived path fact,
we could then use the second rule and the fact edge a d to de-
rive path a b. Systems implementing forward-chaining logic pro-
gramming are often called deductive databases, as they perform ex-
haustive forward deduction over databases of facts (like the edge
relation) to compute other databases of facts (like the path rela-
tion).

Forward-chaining logic programming is a natural way of spec-
ifying many important algorithms. Two particularly important
papers in this area are Shieber, Schabes, and Pereira’s work on
specifying parsing algorithms as forward-chaining logic programs
[13] and McAllester’s work on specifying program analyses [9].
McAllester’s work, which also showed that a suitable interpreter
permits high-level reasoning about the asymptotic time complexity
of programs (later extended to space complexity by Liu et al. [7]),
has been particularly influential.

In addition to McAllester’s foundational theoretical work, a pair
of recent projects have shown that large-scale program analysis
for the Java language is possible using simple forward-chaining
rules on top of BDD-based interpreters for forward-chaining logic

1 2011/2/19

programs (in the case of the BDDBDDB project [6, 8, 18, 19])
or other highly-tuned Datalog implementations (in the case of the
DOOP program analysis framework [2, 3]). The experience of the
BDDBDDB project in particular was that the logical specification
of Java pointer analysis, in addition to being orders of magnitude
more concise than hand-tuned analyses written in Java, could be
executed twice as fast as those hand-coded analyses [18].

1.2 Distributed programming with worlds
The foundation of distributed programming in L10 is worlds, which
abstractly represent (potentially) different locations for the storage
and computation of relations. All relations (like edge, path, and
tok) must be explicitly declared in L10 programs, and the declara-
tion of a relation must associate it with some declared world. For
our simple transitive closure program, we could use the following
declarations. The keyword rel stands for “relation,” so this dec-
laration introduces a single world, w and introduces both edge and
path as two-place relations (taking arbitrary terms with type t) that
exist at world w.

w: world.
edge: t -> t -> rel @ w.
path: t -> t -> rel @ w.

The fact that both edge and path are declared at the same world
means that the data about both the edge and path relations will be
mapped to the same X10 place. We could, alternatively, put both
relations at their own worlds with the following declarations:

wEdge: world.
wPath: world.
edge: t -> t -> rel @ wEdge.
path: t -> t -> rel @ wPath.

These declarations would allow the L10 interpreter to potentially
map the two relations to different X10 places. This is probably
not what we want in our simple example, as it means that both of
the rules in our program would have to communicate between X10
places in order to compute the path relation. However, this sort of
communication can be desirable if it allows a single relation (like
edge) to influence multiple computations that happen in parallel.
We will see an example of this in Section 2.1.

The idea of parameterizing relations by worlds is not an arbi-
trary choice; it has a logical basis in the intuitionistic Kripke se-
mantics for modal logics as explored by Simpson [16]. Murphy
has previously shown that Simpson’s explicit worlds can be used
as the basis for a distributed programming language [10, 11]. Mur-
phy’s language, ML5, is a ML-like language for distributed web
programming that is in some ways similar to X10. In both ML5
and L10 different worlds allow data to exist in different physical
locations, but ML5 allows back-and-forth communication between
worlds whereas the communication in L10 is necessarily one-way,
for reasons discussed below.

1.3 Constructive negation with worlds
Worlds have another important use in L10, they stage the compu-
tation by determining the order in which relations are computed.
In the example above where the edge relation is assigned to world
wEdge and the path relation is assigned to world wPath, the rules
set up a dependency between the two worlds – if we are going to
handle computation “one world at a time,” then we have to do any
computation at world wEdge first, before we try to do any compu-
tation at wPath.

This staging has a well-known consequence in terms of the
use of negation and aggregates in logic programming. Nega-
tion must be used carefully in logic programs: a rule such as

“not fact -> fact” can cause inconsistent behavior in a logic
programming interpreter that checks premises (“Is fact in the
database? No.”) and then asserts conclusions (“Okay, then add
fact to the database.”) The theory of stratified negation ar-
gues that some uses of negation make sense. If we have a rule
“not fact1 -> fact2” and if it is possible to stage the compu-
tation to ensure that, when this rule is considered, there can be no
additional facts about fact1, then it is justified to apply the rule
and derive fact2.

Consider the following extension of our previous example. The
first rule forces the edge relation to be symmetric, and the final
rule computes a relation, noedge, that is the difference between
the edge and path relations.

w: world.
w2: world.
edge: t -> t -> rel @ w.
path: t -> t -> rel @ w.
noedge: t -> t -> rel @ w2.

edge X Y -> edge Y X.
edge X Y -> path X Y.
edge X Y, path Y Z -> path X Z.
path X Y, not(edge X Y) -> noedge X Y.

Because the one rule that lets us derive noedge facts refers to the
edge relation negatively, it is critical that the relations be at dif-
ferent worlds, as this allows us to stage all computation pertaining
to the edge relation before we start computing noedge. Further-
more, because the last rule establishes that computation at world
w2 depends on computation on world w, it must also be the case
that world w (where edge is defined) does not depend on world w2.
L10 programs forbid any cyclic dependencies between worlds for
this reason.

While deductive databases have long allowed for stratified nega-
tion of various kinds, they did not have a satisfying logical justi-
fication. Research into constructive provability logic provides the
logical justification for L10’s implementation of staging and strati-
fied negation [14, 15]. The details of the exact relationship between
L10 and constructive provability logic are outside the scope of this
paper, however.

1.4 Summary
L10 is a forward-chaining logic programming language that uses
a logically-motivated notion of worlds for two different purposes:
the explicit declaration of parallelism (Section 1.2) and program
staging, which enables stratified negation (Section 1.3).

Using the same logical mechanism for these two purposes, even
though they are somewhat related, does introduce some tension into
our language. As an example, we might really want the computa-
tion and data for both w and w2 to take place at the same X10 place,
but we are forced to use two different places in order to refer nega-
tively to the edge relation when defining the noedge relation.

The introduction discussed the basic features of the L10 lan-
guage. In Section 2, we will discuss a few more aspects of the L10
language through a series of examples. In Section 3 we will discuss
how Elton, the prototype interpreter for the L10 language, oper-
ates. The Elton implementation is still a work in progress; it will
be available from http://l10.hyperkind.org when released.
In Section 4 we conclude and discuss some future work.

2. Features of the L10 language
In the previous section, we gave an overview of the primary high-
level features of L10: exhaustive forward deduction and explicit
worlds for specifying parallelism and staging computation. In this

2 2011/2/19

section, we will give several more examples that go into more detail
about the features and expressiveness of our language.

2.1 Parallel program analyses
Much recent interest in forward-chaining logic programming has
come from the compiler and program analysis communities; many
important program analyses can be given very concise and natu-
ral specifications, as well as efficient implementations, through the
use of deductive databases [2, 6, 9, 18]. In this section, we consider
a small low-level intermediate language in a compiler with three-
address operations. The goal is to specify liveness and neededness
analysis in logical form, and we will see that the natural specifica-
tions exhibit some parallelism that can be exploited. L10’s worlds
are used both to enable stratified negation and to expose this natural
parallelism.

For the purpose of the example, our language has the instruc-
tions shown below. We use x, y, z for variables, c for constants, ⊕
(op) for binary operations, and ? (cmp) for comparison operations.
We use l for line numbers, which are represented as natural num-
bers (of type nat) in L10; comparisons and addition for natural
numbers are primitives in the language.

The informal notation for these analyses, taken from Pfenning’s
lecture notes for a Compiler Design course (available from http:
//www.cs.cmu.edu/~fp/courses/15411-f09/), is given be-
low on the left; the encoding of these facts in L10 is given on the
right.

l : x← y ⊕ z line L (binop X Y Op Z)
l : x← y line L (move X Y)
l : x← c line L (loadc X C)
l : goto l′ line L (goto L’)
l : if (x ? c) goto l′ line L (if X Cmp C L’)
l : return x line L (return X)

We capture instructions as a type inst, declared on line 6 in
Figure 1. L10 has three built-in types: string, the type of string
constants, nat, the type of non-negative integers, and t, an open-
ended type of arbitrary constants.

2.1.1 Extracting program information
The first phase of the analysis extracts relevant information from
the program, which is represented as facts of the form above. Both
the description of the program and the extracted information are
stored at the L10 world w0. There are three relevant relations here,
at least initially:

• succ l l′: line l has (potential) successor l′ in the program CFG.
• def l x: line l defines variable x.
• use l x: line l uses variable x.

Given a line of code, this first stage in the analysis extracts
the successors, defined variables, and used variables. For instance,
a binary operation has one successor, defines one variable, and
uses two variables, whereas a conditional jump has two (potential)
successors, defines no variables, and uses one variable. These two
rules are logically represented in informal notation as follows:

l : x← y ⊕ z

succ l (l + 1)
def l x
use l y
use l z

J1
l : if (x ? c) goto l′

succ l (l + 1)
succ l l′

use l x

J5

The L10 code for this portion of the analysis can be seen in
Figure 1. The language allows rules to have multiple conclusions,
though all the relations in a conclusion must be defined at the same
world.

1 // Commands
2
3 w0: world.
4 line: nat -> inst -> rel @ w0.
5
6 inst: type.
7 binop: t -> t -> t -> t -> inst.
8 move: t -> t -> inst.
9 loadc: t -> t -> inst.

10 goto: nat -> inst.
11 if: t -> t -> t -> nat -> inst.
12 return: t -> inst.
13
14 // Extracting relevant information
15
16 succ: nat -> nat -> rel @ w0.
17 def: nat -> t -> rel @ w0.
18 use: nat -> t -> rel @ w0.
19
20 line L (binop X Y Op Z) ->
21 succ L (L+1),
22 def L X,
23 use L Y, use L Z.
24
25 line L (move X Y) ->
26 succ L (L+1),
27 def L X,
28 use L Y.
29
30 line L (loadc X C) ->
31 succ L (L+1),
32 def L X.
33 // no variables used
34
35 line L (goto L’) ->
36 succ L L’.
37 // no variables defined
38 // no variables used
39
40 line L (if X Cmp C1 L’) ->
41 succ L L’, succ L (L+1),
42 // no variables defined
43 use L X.
44
45 line L (return X) ->
46 // no successors
47 // no variables defined
48 use L X.

Figure 1. Program analysis: capturing relevant information from
the program.

50 // Liveness analysis
51
52 wLive: world.
53 live: nat -> t -> rel @ wLive.
54
55 use L X -> live L X.
56
57 live L’ U,
58 succ L L’,
59 not (def L U) ->
60 live L U.

Figure 2. Program analysis: liveness.

3 2011/2/19

62 // Constructing the interference graph
63
64 wInter: world.
65 interferes: t -> t -> rel @ wInter.
66
67 def L X,
68 not (line L (move X _)),
69 succ L L’,
70 live L’ Z,
71 X != Z ->
72 interferes X Z.
73
74 line L (move X Y),
75 succ L L’,
76 live L’ Z,
77 X != Z,
78 Y != Z ->
79 interferes X Z.

Figure 3. Program analysis: interference.

2.1.2 Liveness analysis
With succ, def, and use defined, we can now implement liveness
analysis. Liveness involves the introduction of one new relation:

• live l x: at line l, variable x is live.

Usually, liveness analysis is presented in the form of data flow
equations for which we compute a least fixed point. Here, we run
the rules to saturation, which can also be seen as a least fixed point
computation.1 The L10 program for liveness, shown in Figure 2,
transcribes an informal description of liveness: a variable is live
wherever it is used and, if a variable x is live at line l′, it is live at
all the predecessors of l′ that do not, themselves, define x.

The second rule, on lines 57-60 in Figure 2, makes it clear that
this is a form of backward propagation: from the knowledge that x
is live at l′ we infer that x is live at l under certain conditions. Note
that we are forced to put liveness analysis at a different L10 world
because we refer negatively to the definition of def l x.

2.1.3 Constructing the interference graph
Interference graphs are used for register allocation, and we can
now compute the interference graph from the liveness relation. The
vertices of the interference graph are the variables of the low-level
language. There should be an edge between two vertices x and y
if it is necessary to assign different machine registers to x and y.
Again, one new relation is involved:

• interferes x y: the variables x and y interfere and cannot be
assigned to the same register.

We compute the interference graph by observing that an instruc-
tion that defines a variable x interferes with any variable different
from x that is live in a successor line. The move instruction presents
an exception, because a move instruction l : x ← y does not force
us to assign x and y to different registers: if the two registers are the
same, the move is simply redundant. The L10 code for computing
the interference graph is shown in Figure 3.

Again, the negations are properly stratified: the world w0 that
the line relation is associated with can be staged before world
wInter, and inequality and equality of terms is a primitive for all
types in L10. Unlike liveness, interference itself is not recursive.

1 It is the least fixed point of the operator which extends the database of
facts by all facts arising from executing all applicable rules.

81 // Necessary variables
82
83 nec: nat -> t -> rel @ w0.
84 line L (if X Comp C L1) -> nec L X.
85 line L (return X) -> nec L X.
86
87 // Neededness analysis
88
89 wNeed: world.
90 needed: nat -> t -> rel @ wNeed.
91
92 nec L X -> needed L X.
93
94 needed L’ X,
95 succ L L’,
96 not (def L X) ->
97 needed L X.
98
99 use L Y,

100 def L X,
101 succ L L’,
102 needed L’ X ->
103 needed L Y.

Figure 4. Program analysis: neededness.

105 // Dead-code analysis
106
107 wDead: world.
108 dead: nat -> rel @ wDead.
109
110 def L X,
111 succ L L’,
112 not (needed L’ X) ->
113 dead L.

Figure 5. Program analysis: dead code.

2.1.4 Neededness analysis
So far, the L10 program we have been developing has used worlds
for stratified negation, but we have not explored any opportunities
for parallelism. To illustrate the generality this approach and addi-
tional opportunities for parallelism, we will now consider a needed-
ness analysis, which will inform dead-code elimination. The live-
ness information computed for register allocation is not exactly ap-
propriate, because an assignment such as l : z ← z+x in a loop for
a variable z which is not otherwise used, will flag z as live through-
out the loop, even though l is dead code. Slightly more precise is
neededness. We will define two new relations:

• nec l x: at line l, x is necessary for control flow or as the return
value

• needed l x: at line l, x is needed

The first relation is defined at world w0 like the def, succ, and
use relations. The second relation is seeded by these necessary
variables and propagated backwards, similar to liveness analysis.
We define the relation needed at world wNeed, noting that since this
world does not depend on wLive, both analyses can be staged in
parallel. The L10 code for neededness analysis is given in Figure 4.

4 2011/2/19

1 // Regular expressions
2
3 regexp : type.
4 tok: string -> regexp.
5 emp: regexp.
6 some: regexp -> regexp.
7 seq: regexp -> regexp -> regexp.
8 alt: regexp -> regexp -> regexp.
9

10 // Parsing regular expressions
11
12 w0: world.
13 w1: regexp -> world.
14 token: string -> nat -> rel @ w0.
15 match: {RE: regexp} nat -> nat -> rel @ w1 RE.
16
17 token T I -> match (tok T) I (I+1).
18
19 token _ I -> match emp I I.
20
21 match RE I J -> match (some RE) I J.
22
23 match RE I J,
24 match (some RE) J K ->
25 match (some RE) I K.
26
27 match RE1 I J,
28 match RE2 J K ->
29 match (seq RE1 RE2) I K.
30
31 match RE1 I J -> match (alt RE1 RE2) I J.
32
33 match RE2 I J -> match (alt RE1 RE2) I J.

Figure 6. Regular expression matching.

2.1.5 Dead-code elimination
Having performed a neededness analysis, identifying dead code,
showing in Figure 5, is straightforward: code is dead if it defines a
variable that is not needed. We introduce one final relation:

• dead l: the command at line l is dead code

As we have mentioned, neededness and liveness analysis are
independent as presented above and can proceed in parallel. How-
ever, if we wanted to take into account that no interference can arise
from dead code, we could add a premise not(dead L) for the rules
computing interference. The soundness of this rule then depends on
the fact that no actual instructions will be emitted for dead code. In
this case liveness and neededness can still be computed in parallel,
but the interference graph will require both computations (we will
have to stage wDead before wInter).

2.2 Regular expressions
Our next example is a regular expression matcher, which we will
primarily use to introduce a new concept, worlds indexed by first-
order terms. The type regexp captures the form of regular ex-
pressions over an arbitrary alphabet. Tokens will be represented by
string constants.

Match the token a: a tok "a"
Match the empty string: ε emp
Match r once or more: r+ some RE
Match r1 and r2 in sequence: r1r2 seq RE1 RE2
Match either r1 or r2: r1 | r2 alt RE1 RE2

35 db1 = (token "f" 0, token "o" 1,
36 token "o" 2, token "EOF" 3)
37 @ w1 (seq (tok f) (some (tok o))).
38
39 db2 = (token "b" 0, token "o" 1,
40 token "o" 2, token "EOF" 3)
41 @ w1 (seq (tok f) (some (tok o))).

Figure 7. Regular expression querying.

Other common regular expressions can be defined with these prim-
itives; for example, r? ≡ (r | ε) and r∗ ≡ (ε | r+).

Having described regular expressions, we can describe a regular
expression matcher. We will use two relations. As in the introduc-
tion, the string we are trying to match against the regular expression
will be represented by the set of facts in the token relation, and we
will introduce a three-place relation match which takes a regular
expression and two positions, represented as natural numbers.

The fundamental difference between this example and those we
have seen in the previous sections is that the match relation is as-
sociated with a world indexed by the matched regular expression.
The declaration of the indexed world w1 on line 14 of Figure 6 ac-
tually defines a family of worlds w1(RE). When the head of a rule
is a relation associated with world w1(RE) for some specific RE, the
premises can refer to a relation associated with world w1(RE’) if
RE’ is a subterm of RE. For instance, relations associated with the
world w1(alt emp (tok "a")) can depend on relations associ-
ated with worlds w1(emp) and w1(tok "a"), but not on relations
associated with the world w(tok "b"). As we will later see, this is
crucial to ensure termination of our matcher.

The declaration of the match relation has to specify the re-
lationship between the arguments of the relation and the world’s
index. We do this by assigning a name, RE, to the first argument
when we declare the match relation on line 16 of Figure 6. The no-
tation “{RE: regexp} nat ->...” is equivalent to the notation
“regexp -> nat ->...” that we have been using, but it allows
the argument to be named and mentioned later on in the declara-
tion. Names can always be provided, so we could also have written
“{RE: regexp} {I: nat}...” if we wanted.

The rules that define the match relation, lines 17-33 in Figure 6,
give the meaning of each regular expression constructor in a fairly
straightforward manner. We can match a token if it occurs in a
database (line 18); given an arbitrary token in a position i, we can
always match the empty string in that position (line 20); if the string
from i to j matches r1 and the string from j to k matches r2, then
the string from i to k matches r1r2 (lines 27-29).

2.2.1 Testing regular expressions
As discussed in the introduction, we encode a string as a series of
facts, so the string "foo" is represented as this database:{

token "f" 0 token "o" 2
token "o" 1 token "EOF" 3

}
and the string “boo” is represented as this database:{

token "b" 0 token "o" 2
token "o" 1 token "EOF" 3

}
If our regular expression of interest is f(o+), then we can con-
clude that the string matches the regular expression if the fact
match (seq (tok "f") (some (tok "o"))) 0 3 is deriv-
able from the database describing the string.

As mentioned in Section 1.1, the rules in a program are applied
to known facts to derive new facts until no new information can
be derived. We may then wonder how can our regular expression

5 2011/2/19

43 // Adding negation to regular expressions
44
45 neg: regexp -> regexp.
46
47 token _ I,
48 token _ J,
49 I <= J,
50 not (match RE I J) ->
51 match (neg RE) I J.
52
53 db3 = (token "d" 0, token "a" 1,
54 token "a" 2, token "EOF" 3)
55 @ w1 (seq (neg (alt (tok "b") (tok "c")))
56 (some (tok a))).
57
58 db4 = (token "b" 0, token "a" 1,
59 token "a" 2, token "EOF" 3)
60 @ w1 (seq (neg (alt (tok "b") (tok "c")))
61 (some (tok a))).

Figure 8. Regular expressions with negation, and two queries that
try to match the strings “daa” (db3) and “baa” (db4) against the
regular expression ¬(b | c)(a+).

matcher reach saturation, considering we can apparently always
derive match emp 0 0, then match (alt emp emp) 0 0, and
so on forever. Most deductive databases would not even allow a
program like the one in Figure 6, because the rules dealing with
alternation (r1 | r2) on lines 31 and 33 of Figure 6 violate range
restriction, a common requirement that all variables mentioned in
a conclusion appear in a premise. This is a recurring pattern in
forward-chaining logic programs, and a usual solution is to add
a new relation, subterm(RE), which enumerates the subterms of
the regular expression we are interested in. Then, the rules on
lines 31 and 33 of Figure 6 could be given the additional premise
of subterm(alt RE1 RE2), which would make the rules range
restricted.

Adding an explicit subterm predicate is unnecessary in L10.
When we made the regular expression argument an index to the
world w1, it restricted us to writing programs where the derivabil-
ity of a fact of the form match RE I J could only depend on
the derivability of a fact of the form match RE’ I’ J’ if RE’
was a subterm of RE. Because we always know the form of the
fact that we want to derive – in the motivating example, it was
match (seq (tok "f") (some (tok "o"))) 0 3 – then we
can simply ask L10 to only do the exhaustive forward-chaining
necessary to prove this fact (if it is, in fact, provable). To this end,
whenever we request that L10 do exhaustive forward reasoning, we
annotate the initial database with a world that limits how far satura-
tion goes. This prevents the computation from diverging, since the
problematic facts exist at worlds which are known to be irrelevant
and so will never be considered.

To review, L10 implements a notion of limited saturation: by
annotating worlds with terms and requiring that facts at indexed
worlds only depend on facts at the same world when the index
is a subterm, we can capture a class of algorithms that naturally
saturate, but only up to a point. If an indexed world depends a non-
indexed world – in the regular expression example, w1 depends on
w0 – then all instances w1(E) of the indexed world depend on the
non-indexed world. This feature serves the three purposes: it makes
programs more concise by removing the need for extra subterm
premises; it increases efficiency, since we only compute facts that
exist in worlds that are relevant to the current computation; and
it increases the number of opportunities for parallel evaluation,

w0 wLive wInter

wNeed wDeadPlace
B

Place
A

Figure 9. Place assignment for the program from Section 2.1

since having worlds that depend on terms allows many more worlds
to be independent from each other so that L10 may perform the
computation in parallel. This last point will be discussed further in
Section 3.

2.2.2 Regular expressions with negation
As a final example, we will consider one extension to our regular
expression program: the negation of a regular expression neg(R)
(or, informally, ¬r). The rule, given on lines 47-51 of Figure 8, is
straightforward – a string from i to j matches the regular expression
¬r if it does not match the regular expression r.

While the intuitive meaning of the rule for negated regular
expressions is clear, it is not immediately obvious that this use
of negation is justified, as we are referring to the negation of the
match relation to prove something about the match relation. It
is justified since the world w1 is indexed by a regular expression.
The subterm ordering on regular expressions, which in the previous
section allowed us to perform limited saturation, also ensures that
we can stage computation at world w1(RE) before considering
computation at world w1(neg(RE)).

This use of stratified negation is one instance of locally stratified
negation, which was first considered by Przymusinski [12].

3. Elton, the L10 interpreter
Elton is a prototype interpreter for the L10 language; it is written
in a combination of X10 and Standard ML. The latter is currently
used for parsing; ultimately we anticipate replacing the Standard
ML parser with a parser written in L10, so that the language will
be written entirely in L10 and X10. The interpreter will be available
from http://l10.hyperkind.org when it is released.

Within a particular stage – that is, when performing computa-
tion at a particular world – the interpreter is not fundamentally dif-
ferent than a deductive database. Currently, this part of Elton uses
inefficient data structures; we plan to implement indexed tuple-at-a-
time evaluation that validates McAllester’s cost semantics (at least
when all evaluation is at a single X10 place) [9].

3.1 Static scheduling
A unique aspect of Elton is that it enables parallelism by mapping
different stages to different places in a coherent way. When a
query is made, the interpreter will statically assign different stages
to different X10 places depending on the number of places that
are available. When none of the worlds are indexed, this is done
by making a breadth-first search of the world dependency graph.
For example, if we made the change suggested in Section 2.1
to make interference analysis at world wInter dependent on the
dead code analysis at world wDead, then a query of the form
db = (...)@wInter will schedule computation on two different
places as long as more than one place is available. One way of
scheduling this query is shown in Figure 9, where the arrows
between worlds represent dependencies.

The result of this breadth first search is a task list for every
X10 place. In the case of Figure 9, place A will derive the def,
succ, use, and nec relations (at world w0), then will derive liveness
information (at world wLive), and then will block until the dead
code analysis is finished at place B. Once the dead code analysis

6 2011/2/19

w0 w1(¬(b | c)(a+))

Place
C

Place
B

Place
A

w1(¬(b | c))

w1(a+)w1(a)

w1(b | c)

w1(b)

w1(c)

Figure 10. Place assignment for the queries in Figure 8

finishes, it will use that information to compute the interference
graph (at world wInter). Simultaneously, the process at place B
will immediately block until the basic relations are derived at place
A; when this information has been derived, the process at place
B computes neededness analysis (at world wNeed) and then the
interference analysis (at world wInter).

3.2 Scheduling indexed worlds
The story is somewhat more interesting in the case when some of
the worlds are indexed. In these cases, a breadth first search of
the (relevant) subterm indices of the world will be performed until
either 1) all subterms have been considered or else 2) the amount
of unique branches exceeds the available parallelism. In the second
case, once we have at least n different subterms of the original term
distributed among n different places, then all of the subsequent
subterms of those terms will be staged at the same world.

As a concrete example, the regular expression queries from
Figure 8 can be scheduled as shown in Figure 10 if there are at
least three places available. On the other hand, if there are only
two unique places, then it will definitely be the case that w1(b)
and w1(c) are staged at the same X10 place, as b and c are both
subterms of (alt b c).

This assignment is interesting in part because it is effectively
the kind of search performed by a backward-chaining interpreter
for logic programs in the style of Prolog. A consequence of this
strategy is that programs have to be structured in such a way that
we can effectively perform this search: if we have some third
L10 world named w2 in the regular expression example and a
one-place relation matchN at w2, then we cannot write the rule
“match RE 0 N -> matchN N.” The world w2 is potentially de-
pendent on w1(RE) for every regular expression RE, but because
there are countably many of these worlds, we cannot perform static
scheduling for all of them at query time.

The example above is a bit contrived, but there are more re-
alistic programs that are precluded by the requirement of static
scheduling; relaxing this constraint is an important direction for
future work.

3.3 Integration with X10
We have specified a query syntax for triggering computations, but
have not specified how the resulting saturated databases can be
queried. One reason for this is that we expect such queries to
be performed through an API within X10. While it is convenient
to have a concrete syntax for specifying L10 rules, many of the
uses of L10 logic programs are to provide data to functional or
imperative programs (such as register allocation in the case of our
alias analysis). Elton will eventually be accessible through an X10
library that allows the programmer load L10 programs, specify
databases, and query results. Similar APIs exist for many deductive
database/programming language combinations; examples include
Dyna, which exposes an API to C++ [4] and a McAllester-style
interpreter that exposes an API to Standard ML [17].

4. Conclusion and future work
We have described the preliminary design and implementation of
L10, a logic programming language that uses explicit worlds to
stage computation and that uses the infrastructure of X10 to take
advantage of implicit parallelism in programs. There are many
immediate opportunities to extend L10 to add expressiveness, and
there is also much to explore and evaluate in terms of efficiently
executing L10 programs in the context of X10. We will conclude
by discussing some of this future work.

4.1 Program transformations to optimize communication
Because it can be comparatively costly to transmit data from one
place to another in a language like X10 with a partitioned global
address space (PGAS), it is important to be very clear about when
non-local communication can take place. The current model for
L10 execution is that all necessary information is transmitted to the
world associated with the conclusion(s) and dealt with there. How-
ever, this is not always the optimal behavior. Consider the following
code from the interference analysis (lines 67-72 in Figure 3):

def L X,
not (line L (move X _)),
succ L L’,
live L’ Z,
X != Z ->

interferes X Z.

It is entirely possible that the X10 place assigned to world w0 (asso-
ciated with the relations def, line, and succ) will not be the same
as the X10 place assigned to world wInter for the interferes
relation. If the former is at place A and the latter is at place B, the
evaluation of this rule will begin the following steps:

• Transmit every fact def L X from place A to place B.
• For each such L and X, transmit whether or not there exists a Y

such that line L (move X Y) from place A to place B.
• For each remaining L, transmit all the L’ such that succ L L’

from place A to place B.
• . . .

The result, in other words, is a large amount of potentially un-
necessary communication between the two X10 worlds. In par-
ticular, the variable L is not used at all in the last two premises
or the conclusion. It seems much better to transmit from place A
to place B all pairs of variables X and L’ such that, for some L,
def L X, not (line L (move X _)), and succ L L’ hold si-
multaneously. In unpublished work, Henry DeYoung has consid-
ered program transformations for epistemic logic programs that
deal with these sorts of optimizations in a distributed setting, and
applying his work to L10 should allow us to automatically trans-
form programs in a way that decreases communication costs.

4.2 Foundations in constructive provability logic
The theoretical basis for L10 is intended to be constructive prov-
ability logic [15], an intuitionistic modal logic that allows strati-
fied negation to be modeled as regular intuitionistic negation. Con-
structive provability logic allows the logic to analyze the proofs
of propositions at accessible worlds, which is consistent with our
discussion of the relationship between L10 worlds and stratified
negation.

However, the theory of constructive provability logic is still
lacking a few critical elements that must be addressed in order to
ensure that L10 as we have presented it here has a consistent logical
basis. The first issue is that existing formalizations of constructive
provability logic only capture propositional logic even though L10
allows for first-order quantification. Similarly, the introduction of

7 2011/2/19

indexed worlds is unique to L10 and is not modeled in current
formalizations of constructive provability logic.

A final theoretical issue is that, while we only used negation in
this paper, we would sometimes like to use more general aggre-
gates. In the program analysis example, aggregates would allow us
to find the maximum line number Lwhere X is live, or the total num-
ber of variables that interfere with Y, or the list of all line numbers
containing conditional jumps. We have used constructive provabil-
ity logic as the starting point for a proof-theoretic justification for
stratified negation in deductive databases; we hope to be able to use
the same framework to explain the operation of aggregates.

There are several additional ways we are interested in using
explicit worlds to increase the expressiveness of L10 programs.
For instance, it may be possible to use worlds in the setting of
constructive provability logic to model LDL++’s choice operators
and XY-stratification [1] or to express preferences for some facts or
rules over others when making arbitrary choices [5].

4.3 Distributed worlds
A final observation is that, in this paper, we have only really con-
sidered using worlds indexed by structured terms where all the
subterms could be obtained statically. Another way of distributing
worlds indexed by strings or integers is by using a hash function to
distribute relations over all available places.

Allowing worlds to be indexed by string keys that are not known
in advance would require a significant change to the static schedul-
ing presented in Section 3, but the result would be the ability to
describe MapReduce-style computations in L10. The key produced
by the map function, a string, would be the index to a world, and
thus would get sent to one of the available places based on the hash
of the string, at which point an aggregate could be used to collect
all keys and apply the reduce function to the result.

Furthermore, if negation was not involved, it would not nec-
essarily be problematic to allow worlds indexed by some key to
refer to instances of the same world indexed by a different key.
This would be valuable in the program analysis example: if the
line relation describing the program, as well as the def, use, and
line relations, could be distributed between multiple X10 places,
it might allow the program analysis and similar programs to utilize
more parallelism than is exposed when we use non-indexed worlds.

Acknowledgments
Henry DeYoung contributed important insights to this paper. Sup-
port for this research was provided by an X10 Innovation Award
from IBM, and by the Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) through the
Carnegie Mellon Portugal Program under Grants NGN-44 and
SFRH / BD / 33763 / 2009.

References
[1] F. Arni, K. Ong, S. Tsur, H. Wang, and C. Zaniolo. The Deductive

Database System LDL++. Theory and Practice of Logic Program-
ming, 3(1):61–94, 2003.

[2] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification
of sophisticated points-to analyses. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA ’09), pages 243–261, 2009.

[3] M. Bravenboer and Y. Smaragdakis. Exception analysis and points-to
analysis: better together. In Proceedings of the International Sympo-
sium on Software Testing and Analysis (ISSTA ’09), pages 1–12, 2009.

[4] J. Eisner, E. Goldlust, and N. A. Smith. Compiling comp ling:
Weighted dynamic programming and the Dyna language. In Proceed-
ings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing (HLT-EMNLP),
pages 281–290, 2005.

[5] H. Ganzinger and D. A. McAllester. Logical algorithms. In Pro-
ceedings of the 18th International Conference on Logic Programming,
pages 209–223, 2002.

[6] M. S. Lam, J. Whaley, B. Livshits, M. C. Martin, D. Avots, M. Carbin,
and C. Unkel. Context-sensitive program analysis as database queries.
In Proceedings of the Symposium on Principles of Database Systems
(PADS ’05), 2005.

[7] Y. A. Liu and S. D. Stoller. From datalog rules to efficient programs
with time and space guarantees. ACM Transactions on Programming
Languages and Systems, 31(6):21:1–21:38, 2009.

[8] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for Java. In
Proceedings of the 3rd Asian Symposium on Programming Languages
and Systems. Springer LNCS 3780, 2005.

[9] D. A. McAllester. On the complexity analysis of static analyses.
Journal of the ACM, 49(4):512–537, 2002.

[10] T. Murphy VII. Modal Types for Mobile Code. PhD thesis, Carnegie
Mellon University, 2008. Available as technical report CMU-CS-08-
126.

[11] T. Murphy VII, K. Crary, R. Harper, and F. Pfenning. A symmetric
modal lambda calculus for distributed computing. In Proceedings
of the 19th Annual IEEE Symposium on Logic in Computer Science,
pages 286–295, 2004.

[12] T. C. Przymusinski. On the declarative semantics of deductive
databases and logic programs. Morgan Kaufmann Publishers Inc.,
1988.

[13] S. M. Shieber, Y. Schabes, and F. C. N. Pereira. Principles and
implementation of deductive parsing. Journal of Logic Programming,
24(1–2):3–36, 1995.

[14] R. J. Simmons and B. Toninho. Principles of constructive provability
logic. Technical Report CMU-CS-10-151, School of Computer Sci-
ence, Carnegie Mellon University, 2010.

[15] R. J. Simmons and B. Toninho. Constructive provability logic, 2011.
Submitted, available from http://l10.hyperkind.org.

[16] A. K. Simpson. The Proof Theory and Semantics of Intuitionistic
Modal Logic. PhD thesis, University of Edinburgh, 1994.

[17] J. M. Uecker. A library for bottom-up logic programming in a func-
tional language. Bachelor’s thesis, Jacobs University Bremen, 2010.

[18] J. Whaley. Context-Sensitive Pointer Analysis using Binary Decision
Diagrams. PhD thesis, Stanford University, 2007.

[19] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog and
binary decision diagrams for program analysis. In Proceedings of
the 3rd Asian Symposium on Programming Languages and Systems.
Springer LNCS 3780, 2005.

8 2011/2/19

