
Developing Verified Programs
with Boogie and Boogaloo

Nadia Polikarpova

Software Verification

October 16, 2013

Chair of Software Engineering, ETH Zurich 1

What is Boogie?

The Language
Imperative constructs

Specification constructs

The Tool
Debugging techniques

Boogaloo to the rescue

Chair of Software Engineering, ETH Zurich 2

Overview

: how to express your intention?

: how to get it to verify?

What is Boogie?

The Language
Imperative constructs

Specification constructs

The Tool
Debugging techniques

Boogaloo to the rescue

Chair of Software Engineering, ETH Zurich 3

Overview

all interaction at
the program level

Chair of Software Engineering, ETH Zurich 4

“Auto-active” verification

VerifierProgram

Specification

Annotations

Logical
Formula

Reasoning
Engine

reuse

Chair of Software Engineering, ETH Zurich 5

Verifying imperative programs

Verifier BVerifier A Verifier C

Logical Formula

Reasoning Engine

Language A Language B Language C

Control flow & state
...

Control flow & state,
built-in types,

framing,...

Control flow & state
...

High-level constructs,
built-in types and

operations, framing, ...

Chair of Software Engineering, ETH Zurich 6

Intermediate Verification Language

Verifier B Verifier C

Logical Formula

Reasoning Engine

Language A Language B Language C

IVL Program

IVL Verifier

Verifier A

Control flow & state

Reasoning Engine I Reasoning Engine IIIReasoning Engine II

Logical Formula I Logical Formula II Logical Formula III

Invariant inference, ...

Chair of Software Engineering, ETH Zurich 7

The Boogie IVL

AutoProof VCC

Z3

boogie

Dafny

Simplify

Chalice

HOL-Boogie

Spec#

Simple yet expressive
procedures

first-order logic

integer arithmetic

Great for teaching verification!
skills transferable to other auto-active tools

Alternative: Why [http://why3.lri.fr/]

http://why3.lri.fr/

Try online [rise4fun.com/Boogie]

Download [boogie.codeplex.com]

User manual [Leino: This is Boogie 2]

Hello, world?

Chair of Software Engineering, ETH Zurich 8

Getting started with Boogie

boogie

http://rise4fun.com/Boogie/
http://boogie.codeplex.com/
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://rise4fun.com/Boogie/Vjvs

What is Boogie?

The Language
Imperative constructs

Specification constructs

The Tool
Debugging techniques

Boogaloo to the rescue

Chair of Software Engineering, ETH Zurich 9

Overview

Booleans: bool

Mathematical integers: int

User-defined: type Name t1, ..., tn;

Maps: <t1, ..., tn>[dom1,...,domn]range

Synonyms: type Name t1, ..., tn = type;

Chair of Software Engineering, ETH Zurich 10

Types

type ref; // references type Person;

type Field t; // fields with values of type t

[Person]bool // set of persons

[ref]ref // “next” field of a linked list

<t>[ref, Field t]t // generic heap

type Array t = [int]t; type HeapType = <t>[ref, Field t]t;

Field refField int

definition

usage

[int]int // array of int

Regular procedural programming language
[Absolute Value & Fibonacci]

... and non-determinism
great to simplify and over-approximate behavior

Chair of Software Engineering, ETH Zurich 11

Imperative constructs

havoc x; // assign an arbitrary value to x

if (*) { // choose one of the branches non-deterministically
statements

} else {
statements

}

while (*) { // loop some number of iterations
statements

}

http://rise4fun.com/Boogie/2NAs

assert e: executions in which e evaluates to false at
this point are bad

expressions in Boogie are pure, no procedure calls

Uses
explaining semantics of other specification constructs
encoding requirements embedded in the source language

debugging verification (see later)

[Absolute Value]

Chair of Software Engineering, ETH Zurich 12

Specification statements: assert

assert lo <= i && i < hi; // bounds check
result := array[i];

assert this != null; // O-O void target check
call M(this);

http://rise4fun.com/Boogie/fqo

assume e: executions in which e evaluates to false
at this point are impossible

Uses
explaining semantics of other specification constructs

encoding properties guaranteed by the source language

debugging verification (see later)

Assumptions are dangerous! [Absolute Value]

Chair of Software Engineering, ETH Zurich 13

Specification statements: assume

havoc x; assume x*x == 169; // assign such that

assume true; // skip assume false; // this branch is dead

havoc Heap; assume NoDangling(Heap); // managed language

http://rise4fun.com/Boogie/2sIT

The only thing the verifier know about a loop
simple invariants can be inferred

[Fibonacci]

Chair of Software Engineering, ETH Zurich 14

Loop invariants

before_statements;
while (c)

invariant inv;
{

body;
}
after_statements;

before_statements;
assert inv;

havoc all_vars;
assume inv && c;
body;
assert inv;

havoc all_vars;
assume inv && !c;
after_statements;

=

http://rise4fun.com/Boogie/lODt

The only thing the verifier knows about a call
this is called modular verification

[Abs and Fibonacci]

Chair of Software Engineering, ETH Zurich 15

Procedure contracts

procedure P(ins) returns (outs)
free requires pre’;
requires pre;
modifies vars; // global
ensures post;
free ensures post’;

{ body; }

assume pre;
body;
assert post;

=call outs := P (ins);
assert pre;
havoc outs, vars;
assume post;

=
&& pre’;

&& post’;

http://rise4fun.com/Boogie/XjTs

How do we express more complex specifications?
e.g. ComputeFib actually computes Fibonacci numbers

Uninterpreted functions

Define their meaning using axioms

[Fibonacci]

Chair of Software Engineering, ETH Zurich 16

Enhancing specifications

function fib(n: int): int;

axiom fib(0) == 0 && fib(1) == 1;
axiom (forall n: int :: n >= 2 ==> fib(n) == fib(n-2) + fib(n-1));

http://rise4fun.com/Boogie/kZl9

What is Boogie?

The Language
Imperative constructs

Specification constructs

The Tool
Debugging techniques

Boogaloo to the rescue

Chair of Software Engineering, ETH Zurich 17

Overview

Chair of Software Engineering, ETH Zurich 18

What went wrong?

BoogieProgram

Specification

Annotations

Proceed in small steps [Swap]
use assert statements to figure out what Boogie knows

Divide and conquer the paths
use assume statements to focus on a subset of executions

Prove a lemma [Non-negative Fibonacci]
write ghost code to help Boogie reason

Look at a concrete failing test case [Array Max]
Boogaloo to the rescue!

Chair of Software Engineering, ETH Zurich 19

Debugging techniques

http://rise4fun.com/Boogie/OnpC
http://rise4fun.com/Boogie/rQV2
http://rise4fun.com/Boogie/q3G

Try online [cloudstudio.ethz.ch/comcom/#Boogaloo]

Download [bitbucket.org/nadiapolikarpova/boogaloo]

User manual
[bitbucket.org/nadiapolikarpova/boogaloo/wiki/User_Manual]

Chair of Software Engineering, ETH Zurich 20

Getting started with Boogaloo

http://cloudstudio.ethz.ch/comcom/#Boogaloo
https://bitbucket.org/nadiapolikarpova/boogaloo
https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/User Manual

Print directives

[Array Max, print the loop counter]

Bound on loop iterations

N = 1000 by default

[Array Max, comment out loop counter increment]

Chair of Software Engineering, ETH Zurich 21

Features

assume {: print “hello, world”, x + y } true;

--loop-max=N -l=N

http://cloudstudio.ethz.ch/comcom/#Boogaloo
http://cloudstudio.ethz.ch/comcom/#Boogaloo

Boogie is an Intermediate Verification Language (IVL)
IVLs help develop verifiers

The Boogie language consists of:
imperative constructs ≈ Pascal

specification constructs (assert, assume, requires,
ensures, invariant)

math-like part (functions + first-order axioms)

There are several techniques to debug a failed
verification attempt

Boogaloo helps by generating concrete test cases

Chair of Software Engineering, ETH Zurich 22

Conclusions

Backup slides

Chair of Software Engineering, ETH Zurich 23

!(a[x] > 1001)a[x] > 1001

x == 1000!(x == 1000)

Chair of Software Engineering, ETH Zurich 24

How it works: an Example

procedure Test(a: [int]int, x: int)
requires (forall i: int :: a[i] > i);

{
if (x == 1000) {

assert a[x] > 1001;
}

}

Path constraints Valid executions

forall i: int :: a[i] > i 1: Test(a = [1000 -> 1001],
x = 1000) failed

2: Test(a = [1000 -> 1002],
x = 1000) passed

3: Test(a = [], x = 0) passedZ3

fast

partial implementation

declarative

verificatio
n

Chair of Software Engineering, ETH Zurich 25

Evaluation
Program (LOC) Correct Buggy

N T (sec) N T (sec)

Fibonacci (40) 20 6.4 0 0.0

TuringFactorial (37) 21 0.2 3 0.0

ArrayMax (33) 46 0.4 0 0.0

ArraySum (34) 46 0.3 1 0.0

BinarySearch (49) 46 0.0 0 0.1

DutchFlag (96) 20 3.8 1 0.0

Invert (37) 20 13.3 2 0.0

BubbleSort (74) 10 6.5 2 0.1

QuickSort (89) 10 2.0 2 0.1

QuickSortPartial (79) 10 16.7 2 0.1

ListTraversal (49) 20 2.5 2 0.0

ListInsert (52) 7 164.5 1 0.0

Split (22) - 0.0

SendMoreMoney (36) - 0.3

Primes (31) 8 0.2

NQueens (37) 15 1.2

