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A B S T R A C T

The fragment assembly approach was initially conceived as an ab
initio strategy for protein structure prediction; however, the use of
fragment libraries is becoming an increasingly popular choice in pro-
tein structure determination as well. While most method develop-
ment efforts have been rightfully directed towards optimization of
the fragment assembly algorithms, we show that their performance
is also strongly dependent on the quality of the underlying fragment
libraries. Here we present an integrated, general-purpose framework
for construction of dynamic fragment libraries and local structure
prediction from sequence. Our method, HHfrag, uses sensitive local
alignment of sequence profiles to detect recurrent protein motifs of
local conservation and build fragment libraries of very high preci-
sion and truly dynamic fragment lengths, solving important limita-
tions of earlier methods. We demonstrate that this approach improves
the performance of traditional ab initio fragment assembly and in-
troduce algorithms for fragment clustering, filtering and blind pre-
diction of local motif conservation. The resulting confidence-guided
framework for local structure prediction is a solid foundation for
context-sensitive torsion angle prediction with higher accuracy. Fi-
nally, we discuss a new algorithm for detection of analogous frag-
ments based on chemical shift similarity, optimal ways of mixing ho-
mologous with analogous fragments and their combined practical use
in fully automated NMR structure determination from sparse data.

Z U S A M M E N FA S S U N G

Das Zusammenfügen von Peptid-Fragmenten wurde ursprünglich
als Strategie für die ab initio Vorhersage von Proteinstrukturen er-
dacht. Die Nutzung von Katalogen solcher Peptid-Fragmente hat sich
jedoch mittlerweile zu einer immer populäreren Möglichkeit für die
Bestimmung von Proteinstrukturen entwickelt. Während die meis-
ten methodischen Entwicklungen bloß darauf abzielen, die Algorith-
men für das Zusammenfügen der Peptid-Fragmente zu optimieren,
zeigen wir, dass die Leistungsfähigkeit all dieser Methoden maßge-
blich von der Qualität der zugrundeliegenden Kataloge von Peptid-
Fragmenten abhängt. Wir präsentieren eine integrative, breit einset-
zbare Software-Architektur für die Konstruktion dynamischer Kata-
loge von Peptid-Fragmenten und die lokale Vorhersage von Prote-
instrukturen ausgehend von der Aminosäure-Sequenz. Unsere Meth-
ode, die wir HHfrag nennen, benutzt empfindliche lokale Alignments
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von Sequenz-Profilen, um wiederkehrende, homologe und lokal kon-
servierte Motive innerhalb von Proteinen zu ermitteln, um damit
schließlich Kataloge von Peptid-Fragmenten zu erstellen, die maßge-
schneidert und dynamisch hinsichtlich ihrer Länge sind. Dadurch
werden wichtige Limitierungen vergleichbarer Methoden überwun-
den. Weiterhin demonstrieren wir, dass unser Ansatz des Zusam-
menfügens von Peptid-Fragmenten in einer verbesserten Leistungs-
fähigkeit bei der ab initio Vorhersage von Proteinstrukturen resul-
tiert, und stellen Algorithmen für das Clustern und Filtern von lokal
konservierten Motiven in Proteinen vor. Die dadurch entstandene,
konfidenz-geleitete Software-Architektur für die lokale Vorhersage
von Proteinstrukturen erlaubt auch die kontext-empfindliche Vorher-
sage von Torsionswinkeln mit hoher Genauigkeit. Zuletzt behandeln
wir einen von uns entwickelten Algorithmus für die Detektion von
analogen Peptid-Fragmenten basierend auf der Ähnlichkeit von che-
mischen Verschiebungen aus NMR-Experimenten, optimale Wege für
die Kombination homologer und analoger Peptid-Fragmente und der-
en gemeinsame praktische Anwendung in vollautomatisierter Struk-
turbestimmung durch NMR-Spektroskopie ausgehend von einer spär-
lichen Datenlage.
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A programmer who subconsciously views himself as an artist
will enjoy what he does and will do it better.

— Donald E. Knuth
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1
I N T R O D U C T I O N

The proteins observed in living organisms are complex and versa-
tile molecules. The cellular function of each protein is directly deter-
mined by the way it folds in 3D space. Obtaining information about
the structure of a given protein is therefore central to understanding
its function. Protein structures can be determined using a number
of experimental approaches, such as X-ray crystallography or NMR
spectroscopy, but these methods require a significant amount of time
and resources. Detailed understanding of the process of protein fold-
ing is a crucially important goal of modern science, because it would
make protein structure determination more accessible, much faster
and cheaper.

When Kendrew et al. determined the first protein structure in 1958,
they were rather disappointed to encounter an overwhelming com-
plexity: “Perhaps the most remarkable features of the molecule are its com-
plexity and its lack of symmetry. The arrangement seems to be almost to-
tally lacking in the kind of regularities which one instinctively anticipates,
and it is more complicated than has been predicated by any theory of pro-
tein structure.”. The complicated nature of protein structures proved
to be really challenging, because more than 50 years later science is
still as puzzled about the process of protein folding as Kendrew and
co-workers were. But one thing we know for sure nowadays — reg-
ularities and common building patterns in protein structures do exist.
Many evidences have been collected for the existence of recurrent
motifs, shared among evolutionary unrelated proteins. The ability to
detect such building blocks opened new possibilities for protein struc-
ture prediction from sequence and structure determination using the
novel fragment assembly approach.

1.1 motivation

The success of the fragment assembly methods for protein structure
prediction has prompted major research efforts for optimization and
improvement of the fragment sampling algorithms and their related
force fields and scoring functions. The topic of fragment optimal-
ity, however, has received significantly less attention during the past
decade. Despite the importance of fragment quality for successful
and efficient ab initio fragment assembly, existing fragment detec-
tion methods demonstrate relatively low precision, hurting the per-
formance of folding algorithms. Little is known about the patterns
of local motif conservation along the protein sequence and how the
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2 introduction

ability to predict the exact locations of conserved recurrent fragments
may influence the performance of local structure prediction. Exist-
ing methods for fragment detection conveniently define fragments
as rigid sequence windows of fixed size. However, this definition is
not supported by any biochemical evidences and neglects the highly
polymorphic nature of structural motifs in proteins, which often vary
in length and internal composition.

These and other open questions — such as the optimal way of com-
bining dynamic fragment libraries with analogous fragments based
on chemical shift similarity — motivated the development of our
general-purpose framework for fragment detection, presented in the
following chapters. We have addressed some important limitations of
earlier methods and designed novel algorithms for dynamic fragment
detection, putting a strong emphasis on accuracy, efficiency and mini-
malism. We describe the theoretical and technical background behind
our framework, measure important aspects of its performance in stan-
dard benchmarks and provide practical examples of its applications
for local structure prediction, ab initio tertiary structure prediction
and NMR structure determination from sparse experimental data.

1.2 synopsis

This work is divided into multiple interrelated chapters, describing
all different facets of our integrated fragment-detection approach.

We begin with a brief review of the existing literature (Chapter 2)
and introduce the notion of recurrent structural motifs, detectable in
sequence space by sensitive profile-comparison methods. Various con-
cepts concerning the use of libraries of such motifs in protein struc-
ture prediction and NMR structure determination are explained in
this background chapter.

Chapter 3 describes in detail the core foundation of our local struc-
ture prediction framework. We introduce HHfrag, an accurate method
for detection of recurrent motifs from sequence. HHfrag improves on
existing dynamic fragment libraries with significantly better precision
and the ability to detect fragments of variable length or gapped na-
ture. We show the utility of this method in Rosetta ab initio protein
structure prediction experiments and demonstrate the improvement
over the use of conventional fragment libraries.

This chapter concludes with the derivation of a novel algorithm
for dynamic motif clustering and enrichment of fragment libraries,
which is employed in HHfrag’s fragment-filtering extension. We pro-
vide the groundwork for blind prediction and quantification of local
motif conservation and demonstrate a practical application of our
algorithm for prediction of torsion angles from sequence with high
accuracy.



1.2 synopsis 3

In Chapter 4 we propose a new method for detection of analogous
fragments with compatible structure, based on chemical shift similar-
ity. This method is useful for fragment detection in unconserved and
low-accuracy regions, when basic experimental NMR data are avail-
able for the protein of interest. We introduce a flexible algorithm for
incorporation of analogous fragments in standard HHfrag dynamic
libraries, which increases their coverage in regions where sequence-
based motif detection meets its physical limitations.

Chapter 5 brings practical applications of our analogous and ho-
mologous fragment-detection methods for the purpose of structure
calculation from NMR data of arbitrary sparseness.

We conclude this work in Chapter 6 with a brief overview of the
software architecture of the our framework, the availability of the HH-
frag software and our contributions to the open-source community.





2
B A C K G R O U N D

Deciphering the protein folding problem remains a fundamental chal-
lenge in structural bioinformatics and biochemistry to date. But al-
though this process is still poorly understood, it is already known that
protein sequences do not adopt unlimited varieties of global and lo-
cal shapes. It has been determined that folding protein chains do not
explore the complete conformational space exhaustively [68]. Rather,
the local structure of each polypeptide segment is biased by the geo-
metrical and chemical properties of its constituent amino acids [13].
This observation prompted the development of structural alphabets
in an attempt to partition known protein structures into a dictionary
of discrete motif prototypes [67]. It has been reported that such frag-
ment libraries may be sufficient to describe all protein folds in terms
of recurrent building blocks [28, 27].

The following sections serve as an introduction to these concepts
and summarize the present state of knowledge about recurrent pro-
tein building blocks and the ways they can be detected or predicted.

2.1 protein structure fundamentals

2.1.1 Protein sequence

Proteins are large polymer molecules, built from amino acid monomer
units. Individual amino acid residues are linked in a linear fashion to
form unbranched polypeptide chains. The sequence of amino acids
of a given protein, termed its primary structure, is genetically encoded
and determines the folded state [9].

All amino acid residues share a common structural pattern (Fig-
ure 2.1): amino group (NH2), carboxyl group (COOH) and a unique
side chain (R) are attached to the central carbon atom (Cα). Polypep-
tide chains are formed by joining the terminal carboxyl group of the
growing chain to the amino group of the next amino acid, thus form-
ing a peptide bond. Each amino acid is uniquely identified by the
chemical nature of its side chain group (R). Genetic code exists for
20 common (and 2 rare extra) amino acids. The amount of possible
amino acid combinations in a single chain is therefore huge; e. g. for
a small chain of size 100 residues there are at least 10020 different
combinations. However, we can cluster all amino acids in a smaller
number of groups based on their physicochemical properties, such as
hydrophobicity, polarity and charge. Members of the same group are
more likely to be observed as interchangeable in conserved protein
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6 background

ϕ11 ψ11

Figure 2.1: Primary structure. Shown is a small polypeptide segment
(residues 10-12), extracted from PDB entry 2l09. A repeating pat-
tern of NH–CαH–C=O atoms forms the backbone of the chain.
Amino acid side chains (R) have been condensed to simple
spheres for clarity.

regions because they have similar properties and provide analogous
chemical environment. Conversely, amino acid substitutions which
involve residues from different categories are very likely to cause
harmful conformational disruptions and loss of function.

Figure 2.1 demonstrates how protein chains can be represented as
monotonic repetitions of a segment of 3 atoms:

. . .− (Ni − Cα
i − Ci)− (Ni+1 − Cα

i+1 − Ci+1)− . . .

When visualizing proteins, we often omit the side chains and use this
representation (part of protein’s backbone) to show the overall direc-
tion of the protein chain. The peptide bond, which links residues i
and i + 1, is partially double. This phenomenon restricts the possibili-
ties for rotation around the peptide bond, leaving only two rotational
degrees of freedom at each position: N − Cα (ϕ angle) and Cα − C (ψ
angle) (Figure 2.1). Since the torsion angles ϕ and ψ are the only de-
grees of freedom, their values for every position in the protein chain
are sufficient to describe the conformation of the backbone.

2.1.2 Secondary structure

During polypeptide synthesis, local interactions between neighboring
amino acids lead to the formation of secondary structure elements. The
most prominent forms of secondary structure observed in proteins
are the alpha helix and the beta strand (Figure 2.2). By visualizing (ϕ, ψ)

values from known proteins, Ramachandran et al. have shown that
due to side chain clashes, not all (ϕ, ψ) combinations are physically
possible. This restricts the Ramachandran plot [68] to a subset of ster-
ically feasible regions, which correspond to well-known secondary
structure elements such as the alpha helix and the beta strand.

http://www.rcsb.org/pdb/files/2L09.pdb


2.1 protein structure fundamentals 7

Figure 2.2: Secondary structure. Shown are two segments of secondary
structure from PDB entry 1ath: antiparallel beta strands forming
a sheet (top) and an alpha helix (bottom). The thick ribbon lines
represent the backbone and side chains are shown as thin lines.
These secondary structures are stabilized by hydrogen bonding,
denoted by dashed lines.

The alpha helix is a more compact secondary structure element
with periodicity of 3.6 residues per turn. It is stabilized by repetitive
patterns of hydrogen bonds between backbone atoms. As intuition
suggests, several amino acid residues are preferred in an alpha heli-
cal context, while other residue types may be undesirable for proper
formation of an alpha helix [7, 63]. Beta strands are significantly more
elongated forms of secondary structure (hence their name). They are
frequently packed in parallel, antiparallel or mixed stacks of strands,
called beta sheets. Beta sheets are stabilized by the formation of hydro-
gen bonding registers between the aligned strands (Figure 2.2).

Rigid regular secondary structure elements are usually connected
by flexible loops of variable length. Loops tend to be exposed to the
protein surface and often form binding sites for other molecules. Un-
like regular secondary structure elements, loops exhibit higher se-
quence variability than the rest of the sequence. Note that such se-
quence and structural variability poses an immediate difficulty in
modeling those regions of the protein molecule.

2.1.3 Structural motifs

Pairs of neighboring secondary structure elements, along with their
flexible loop connectors, form higher level structural motifs called
supersecondary structure elements. One such commonly found struc-
tural motif is the β hairpin, composed of two anti-parallel strands,
connected by a very short turn. Some supersecondary structure ele-
ments demonstrate weak, but still detectable sequence conservation.
This observation allowed the discovery of a number of ubiquitous
supersecondary structural motifs, summarized in the I-Sites [10] frag-

http://www.rcsb.org/pdb/files/1ath.pdb


8 background

ment library (2.4.1). Other elements [27] are entirely defined in terms
if their local structure and may not have detectable sequence prefer-
ences (with the current state of sophistication of our sequence simi-
larity detection techniques). Nevertheless, they still provide a further
evidence that protein structures have modular nature and share a sig-
nificant number of reusable design patterns. It has been proposed
that some supersecondary structures may be part of a vocabulary of
ancient peptides, from which present day folds have evolved [60].

2.1.4 Domains

Long-range interactions between multiple secondary structure ele-
ments and motifs lead to repeated bending of the polypeptide chain.
This results in the formation of a compact, globular structure called
domain. Domains are the manifestation of the third level of struc-
tural organization in proteins, termed tertiary structure. They are re-
garded as the main autonomously folding units in proteins. Polypep-
tide chains are not restricted to single domains however; a given chain
may contain multiple domains. In that case each domain is charged
with a clearly defined, specialized function.

2.2 homology

The advent of fast string matching algorithms allowed protein se-
quences from different organisms to be compared and analyzed for
regions of similarity. This has lead to the discovery of families of
proteins evolved from common ancestors. Such proteins, sharing a
detectable degree of sequence similarity, are said to be homologous. A
fundamental principle in the field of protein evolution states that ho-
mologous domains — or domains sharing a certain level of sequence
identity in general — are very likely to have similar structures as well.
This means that protein structures accumulate evolutionary changes
more slowly than their corresponding sequences. Such claim makes
intuitive sense given the observation that some amino acid substi-
tutions are conservative, i. e. members of the same class of amino
acids have a degree of equivalence and can be used “polymorphi-
cally” without causing functional damage.

When the evolutionary distance between two proteins is increased
above a certain threshold, their corresponding sequences may have
diverged so severely that sequence-based homology detection may
no longer be possible. However, their 3D structures may still share
visible similarity. In such cases the two proteins are remote homologs.
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2.2.1 Sequence alignment

The goal of sequence-based homology detection is to compare a query
sequence against a database of proteins, find the optimal alignment
between each pair of sequences and report matches with significant
degree of similarity. Such type of an algorithm is expected to maxi-
mize the amount of identical or similar (synonymous) residues, but
also allow for gaps to be inserted in either sequence. Gaps in sequence
alignments represent the mutational events of insertion and deletion.

Brute-force enumeration of all possible alignments between two se-
quences, in search for the optimal one, is computationally not feasible.
This problem was solved with the discovery of quadratic-complexity
dynamic programming algorithms for global [64] and local [83] align-
ment. The latter is the basis for the popular BLAST program [1],
which allows very fast sequence database searches. All mentioned al-
gorithms use matrices of log-odds scores and scalar gap penalties to
compute the similarity between each pair of aligned residues. Several
scoring matrices have been developed with BLOSUM62 [43] being
one of the most popular choices.

Traditional sequence alignment methods successfully identify cl-
osely related homologous proteins, which share very similar or even
identical structures. However, sequence-based homology detection
becomes unreliable when the sequence identity between the proteins
in comparison approaches the “twilight zone” (< 25%) [74]. Remote
homology detection is therefore not possible with conventional se-
quence alignment.

2.2.2 Sequence profiles

Since a single sequence represents only one member of a family of
evolutionary related proteins, simple string matching of isolated se-
quences disregards the evolutionary history encoded in a protein fam-
ily. This method is thus not sensitive enough to detect remotely ho-
mologous sequences, whose identity lies within the twilight zone.

In a successful attempt to extend the sensitivity of homology de-
tection, sequence profiles have been introduced and subsequently im-
plemented in programs such as PSI-BLAST [2]. The concept behind
sequence profiles is rather intuitive, given the observation that amino
acid preferences in proteins are position-(context) specific. For every
position in the protein sequence of interest, its sequence profile con-
tains a frequency distribution of amino acids, derived from multiple
alignment of the protein with its evident homologs. The sequence pro-
file is used to build a Position-specific scoring matrix (PSSM), which
substitutes the original query sequence in iterative sequence database
searches. The alignment of a PSSM against a sequence is technically
not different from the algorithm for alignment of two sequences, with
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the exception that all pairwise similarity scores are taken directly
from the PSSM itself (rather than a generic scoring matrix).

As expected, this technique increases the homology detection capa-
bilities of BLAST and makes remote homology detection possible.

2.2.3 Hidden Markov models

Pofile hidden Markov models (HMMs)1 are an extension to the ba-
sic idea of sequence profiles. They improve the sensitivity of profile-
based remote homology detection by incorporating information about
position-specific insertions and deletions.Note that if we

extract all match
states with their

respective emission
probabilities from an
HMM, we will get a

classic sequence
profile (2.2.2).

A profile HMM is a probabilistic representation of a protein fam-
ily, which captures the entire information contained in its underly-
ing multiple sequence alignment. HMMs have layered structure (Fig-
ure 2.3). Each layer corresponds to a specific position in the original
query sequence and contains a number of hidden states: match, in-
sertion and deletion. Every hidden state is connected to a number of
neighboring states via position-specific transition probabilities. The
sum of all transitions leaving a given state is 1, thus forming a proper
probability distribution. Deletion states are silent, while match and
insertion states emit amino acids (observations) from their associated
emission distributions. For insertion states, this is the standard dis-
tribution of background amino acid frequencies (i. e. the probability
of observing amino acid A as a result of a random insertion event
in the course of evolution). Match states however emit residues from
a position-specific distribution, derived from the amino acid frequen-
cies in the corresponding multiple alignment column. Figure 2.3 out-
lines the rules that govern transitions between different states and
layers in a typical profile HMM.

The main purpose of building a profile HMM is the ability to search
a database for sequences that are homologous or remotely homolo-
gous to the family represented by the HMM. The theoretical basis
for the mechanism of this search is provided by the Viterbi algorithm
[89], which can be used to compute the most probable alignment of
a sequence with the HMM and its associated probability. Sequences
that match the HMM better than a reference null model are regarded
to be (remotely) homologous and reported as true positive hits. This
approach is implemented in the popular HMMER homology detec-
tion package [29, 26].

2.2.4 HMM comparison

The final step in pushing the boundaries of remote homology detec-
tion was made possible with the introduction of the profile-profile

1 For brevity, the terms HMM and profile HMM will be used interchangeably through-
out the text.
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Dj

IjIs

Mj ES

Figure 2.3: Layout of the profile HMMs in HHpred [84, 44]. Mj, Ij and Dj
represent the match, insertion and deletion hidden states at a
given layer j. S and E are the start/end states respectively and
Is is an insertion state attached to the start state. All possible
transitions leaving a given state are designated by arrows.

comparison methods [75]. Pairwise comparison of sequence profiles
remains the most sensitive remote homology detection strategy to
date.

HHsearch [84] — the current de facto standard for homology de-
tection — refines the idea of profile comparison further. More specif-
ically, HHsearch performs local alignment between pairs of profile
HMMs. For that purpose, both the query protein and the database
must be represented in HMM format. The added computational time
for building a database of HMMs is a good trade off, given the in-
creased sensitivity and precision that this algorithm demonstrates
over earlier remote-homology detection methods. Note that the abil-
ity to perform gapped local alignment between two profile HMMs is
especially valuable, because it allows the detection of relatively short
segments of remote homology (such as supersecondary structures
and ancient peptides). The quality of the alignments produced by
HHsearch is further improved with the incorporation of a secondary
structure term into the scoring function. Each HMM in HHsearch is
therefore built from two components:

1. Sequence profile, computed with multiple rounds of PSI-BLAST

2. Secondary structure: predicted with PSIPRED [49] (for the query
sequence or non-PDB templates) or computed with DSSP [50]
(for all PDB database templates [5])

For every pair of aligned profile layers, HHsearch computes the col-
umn score, which is proportional to the dot product of their emission
distribution vectors:

Saa(qi, pj) = log
20

∑
a=1

qi(a)pj(a)
F(a)

(2.1)
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Here qi(a) and pj(a) are the emission probabilities for amino acid a
in columns i and j. F(a) is the background frequency for the same
amino acid (the chance of observing such amino acid in natural pro-
teins). The total profile alignment score is thus a sum of log-odds. To
measure the significance of the obtained final score, HHsearch com-
pares it to a distribution of scores for random alignments (not indica-
tive of homology). This distribution appears to follow the Gumbel’s
extreme-value model. The p-value, reported for each alignment, is the
probability of observing a random match with equal or better score;
the e-value is the expected number of such random hits. Therefore, e-
values significantly lower than 1 indicate alignments of homologous
proteins.

When the secondary structure score is added to the total sum-of-
odds score, the resulting distribution of random scores no longer fits
the Gumbel model well. To account for this error, HHsearch provides
an alternative to the p-value metric, called HHsearch probability:

P(S) =
Pp(s = S)

Pp(s = S) + Pn(s = S)
(2.2)

where Pp and Pn are score distributions obtained for reference sets
of positive (homologous) and negative (not homologous) alignments
respectively. Since this approach incorporates the secondary structure
score, it has better sensitivity and should be preferred over the use of
e-values.

2.3 structure prediction strategies

The ability to predict the structure of a protein from its bare amino
acid sequence is a fundamental, but still unresolved problem in struc-
tural bioinformatics. Little is known to date about the physical rules
that govern protein folding. It is still not possible to simply “compute"
the structure of a protein de novo.

Although a general physical theory on protein folding is yet to
be discovered, several heuristic approaches have been developed to
circumvent our lack of knowledge about folding proteins from first
principles. Earlier in this chapter (2.2) we introduced the concept of
homology and observed that:

1. homologous proteins have very similar structures

2. remotely homologous proteins, derived from the same evolu-
tionary ancestor, are very likely do adopt similar folds

3. homology and traces of remote homology can be reliably de-
tected with sequence and profile HMM-comparison methods
(2.2.3)
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These observations are the theoretical basis of all successful structure
prediction efforts to date.

2.3.1 Template-based modeling

Homology modeling, also known as comparative modeling, is the most
straightforward and robust structure prediction strategy. This method
relies on sequence-based identification of homologous proteins from
the Protein Data Bank (PDB) [5]. Since highly similar sequences im-
ply identical structures, such homologous structures can be used as
templates for direct modeling.

The PDB database is a central repository for experimentally deter-
mined protein structures. It already contains more than 80000 entries
(and counting). Sequence databases however are growing at a much
faster pace. Nevertheless, PDB has already reached a sufficient level
of fold diversity — it is very likely that novel sequences in the pub-
lic sequence databases would match existing experimental structures
from PDB.

As we saw earlier, closely related homologs can be easily identified
using conventional sequence alignment algorithms, such as BLAST
[1] (2.2.1). The degree of sequence identity between the query se-
quence of unknown structure and its PDB template will determine
whether homology modeling would succeed. Alignments with se-
quence identity of 40% or above will almost always produce very
accurate homology models (i. e. RMSD of 2.0 Å or better) [74]. Note that with the

advent of
HMM-comparison
homology detection
methods, the
traditional
differentiation
between homology
modeling and
threading is steadily
getting less clear.

When the degree of sequence identity approaches the twilight zone,
homology modeling becomes unreliable. At this level of sequence di-
vergence we have reached the limits of conventional sequence align-
ment as a method for template selection. Fold recognition, also known
as threading, is a natural extension to homology modeling, which
makes use of multiple remotely homologous templates to achieve the
exact same goal. An important improvement over standard homology
modeling however is the possibility to combine multiple, not neces-
sarily full-length templates. As discussed earlier (2.2.3, 2.2.4), remote
homology detection is achieved through the use of sensitive profile-
comparison methods. HHpred [44] is a classic threading program,
which uses the HHsearch [84] remote homology detection algorithm
for template selection. Highest ranking PDB homologs are simply
used by HHpred as templates in standard homology modeling with
Modeller [76].

2.3.2 Fragment assembly

Even if no remotely homologous templates can be detected for a given
query sequence, it may still be possible to predict its 3D structure.
Ab initio methods, namely the fragment-based ab initio, have been
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recently developed. These algorithms do not use explicit, long tem-
plates, but rather rely on the fact that evolutionary unrelated protein
structures often share common structural motifs (2.1.3). Some motifs
can be detected using the same remote homology search methods
used in threading. Based on this observation, a number of protein
fragment libraries have recently emerged (2.4).Note that ab initio is

still different from
de novo, i. e. these
methods combine

very short fragments
(“templates”) from
existing structures

as opposed to folding
proteins from first

principles.

The fragment-based ab initio strategy for structure prediction in-
volves a few consecutive steps:

1. Fragment selection. Compatible structural fragments are picked
from template protein structures using profile-profile alignment
and secondary structure matching. This results in the prepara-
tion of a position-specific fragment library, tailored to the query
sequence (2.4.2).

2. Fragment sampling and assembly. Starting from an elongated struc-
ture, fragments are randomly picked from the library and their
torsion angles are inserted at the matching positions in the mo-
del. This procedure is repeated multiple times as part of a Monte
Carlo conformational sampling protocol, guided by a combi-
nation of scoring functions [81, 72]. Since most scoring func-
tions are very approximate and inferred by statistical methods
[82], they do not necessarily represent the real energy landscape
very accurately. The conformational search process is frequently
trapped in local minima, which motivates the need to repeat the
search multiple times with different starting conditions.

3. Decoy selection and model optimization. When a sufficiently large
number of decoy structures have been generated, the entire pool
of decoys is examined in order to select a final set of candidate
models. The final candidate(s) may be a subject to optimization
and high-resolution refinement using more detailed but compu-
tationally expensive force fields.

Rosetta ab initio [72, 55] is one of the most popular fragment assem-
bly methods for protein structure prediction.

2.4 local structure prediction

Earlier in this chapter we saw how local hydrogen bonding leads
to the formation of regions of regular secondary structure along the
polypeptide chain (2.1.2). The DSSP [50] and STRIDE programs [32]
are able to analyze the hydrogen bonding patterns in existing struc-
tures and compute their expected secondary structure, represented by
an eight-state alphabet. However, proteins have traditionally been de-
scribed as linear strings composed of segments adopting only two sec-
ondary structure conformations (helix (H) and strand (E)), connected
by flexible coil or loop regions (C). Prediction of secondary structure
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clustering alignment

target sequence

static fragment library (generic) dynamic fragment library (target-specific)

select representatives collect all matching segments

sequence profiles
from PDB 9-mer segments

Figure 2.4: Fragment library concepts. The static approach (left) produces
compact dictionaries of reusable motifs by clustering of fixed-
length protein segments. The dynamic approach (right) compiles
a comprehensive collection of target-specific fragments, which
can be readily used in ab initio structure prediction.

from sequence is possible thanks to the development of methods like
PSIPRED [49], which is able to perform three-state secondary struc-
ture prediction with high accuracy (70–80%).

However, the discovery of supersecondary structures (2.1.2) and
the emerging hypothesis of a primordial fragment world [60] suggest
that there is more information stored in the local structure of proteins
than simple secondary structure elements. Protein structures are now
viewed as combinations of reusable structural primitives, called frag-
ments.

There are two main approaches to detecting fragments (Figure 2.4).
The first approach focuses on the derivation of a compact, static struc-
tural alphabet. The second one aims at building comprehensive frag-
ment libraries suitable for ab initio protein structure prediction.

2.4.1 Static structural alphabets

Protein chains from the PDB database can be discretized into compact
alphabets of recurrent building blocks. Structural alphabets derived
in this way are usually sufficient to describe virtually all known ex-
perimental structures (as simplified strings of motif identifiers). The
discretization of the structural space is performed by partitioning ex-
isting protein structures into overlapping segments of short length.
Clustering all fragment instances then allows to group analogous seg-
ments and select fragment representatives (Figure 2.4).
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Several attempts have been made to develop structural alphabets
using various fragment sizes and distance metrics for clustering:

• Building Blocks: 6-mers identified using k-means clustering of Cα

Root-mean-square deviation (RMSD) values [88]

• Local structural motifs: 9-mer fragments, described in terms of
torsion angles and identified by unsupervised learning [77]

• Short Structural Building Blocks: 4-mer Cα backbones (HMM) [15,
16, 14]

• Protein Blocks: 5-mer fragments, whose pairwise distance is de-
fined by RMSD of angular values (self-organized map) [23, 22]

• Small Libraries of Protein Fragments: libraries of 4-, 5-, 6-, and 7-
mer fragments, identified by k-means clustering of Cα RMSD
values [57]

• I-Sites: overlapping fragments of 3 to 15 residues (Figure 2.5),
identified using k-means clustering of sequence profiles and fil-
tered by structural criteria (RMSD, maximum deviation in tor-
sion angles) [10]

Most structural alphabets follow a straightforward approach of di-
viding and clustering the protein structure space into a reduced set
of structural motifs. Fragment libraries designed upon this structure-
oriented concept are used in algorithms for fast comparison of protein
structures. Every structure can be encoded as a simple string of struc-
tural motifs and this representation allows efficient fold comparison
using standard alignment algorithms and specialized scoring matri-
ces [87]. However, libraries in this category have limited application
in fold recognition and ab initio structure prediction. The first step
in ab initio fragment assembly (2.3.2) is a sequence-based selection
of compatible fragments from a fragment library. Only those struc-
tural alphabets which provide information about the sequence pref-
erences of their fragment classes can be used for local structure pre-
diction and ab initio 3D structure prediction from sequence. Several
attempts have been made to infer the amino acid preferences of ex-
isting structural alphabets as their secondary property [23]. However,
these approaches are currently not very accurate, which results in a
prohibitively high false-positive rate of fragment assignment.

The first successful attempt to solve this limitation was the devel-
opment of the I-Sites fragment library [10, 12]. The fragments in this
dictionary have been discovered using clustering of sequence profile
segments of fixed length. Detectable sequence conservation is there-
fore the main condition for defining a new I-Site. All fragments are
subsequently examined for a stable sequence-to-structure correlation;
fragment clusters that do not demonstrate conserved 3D shape are
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Figure 2.5: Sample fragments from the I-Sites static fragment library. Seg-
ments of non-homologous, unrelated PDB structures, matching
the sequence profiles of the sample I-Sites, have been extracted
and superimposed. These I-Sites therefore represent recurrent
building blocks in protein structures.

considered unreliable and excluded from the library. The final set of
I-Sites consists of supersecondary structures which are characterized
by the combination of two descriptors:

1. structural — torsion angles of the representative fragment in
each cluster, termed the “paradigm” structure

2. sequence — average sequence profile of all segments in a given
cluster

This property meets the requirements for ab initio protein structure
prediction. Fragment assignment is performed using the nowadays
well-established profile-profile alignment technique for remote ho-
mology detection. Matching fragments are kept and the torsion an-
gles of their paradigms directly assigned to the query sequence of
unknown structure [10, 11]. This method has very high accuracy,
which ensures that most fragment assignments will lead to correct lo-
cal structure prediction. However, it does not demonstrate sufficient
sensitivity: only a small portion of the query sequence is typically
covered with I-Sites assignments. This is a major flaw since high cov-
erage is central to successful ab initio structure prediction.

The concept behind static fragment alphabets in general is very at-
tractive. The ability to describe every protein structure in terms of a
small number of structural motifs holds significant power. Unfortu-
nately, this approach has unresolved intrinsic drawbacks, which re-
stricts its practical applications in protein structure prediction mainly
to the area of loop modeling [30].

2.4.2 Dynamic fragment libraries

The limitations of the structural alphabet approach have been over-
come with the introduction of conventional fragment detection meth-
ods, which produce dynamic, ad hoc fragment libraries. These ap-
proaches do not attempt to describe and summarize all existing struc-
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tural motifs. Instead, they serve a very practical purpose: ab initio pro-
tein structure prediction by fragment assembly (2.3.2). Their goal is
straightforward: given a target sequence of unknown structure, build
a fragment set tailored to the query sequence. Every fragment in a
dynamic library is characterized by matching positions in the target
sequence, compatible sequence profile, compatible secondary struc-
ture and associated list of (ϕ, ψ) torsion angle pairs.

The key properties of a dynamic fragment library are:

1. disposable — the fragment library exists only in the context of
its associated target sequence

2. comprehensive — there must be at least one assigned fragment
for the majority of target residues (ideally for all)

3. accurate — for each covered residue in the target, there must
be at least one fragment in the list of candidates whose torsion
angles are reliable and useful; that is, the 3D structure of most
fragments should match the actual local structure of the target
protein (ideally, the amount of incompatible fragments should
be negligible)

Rosetta’s NNmake fragment detection program [72, 36] is the first
mainstream application of this approach. NNmake compiles dynamic
libraries by excision of structural fragments from a non-redundant
database of experimentally solved structures with high resolution.
The fragment search process uses a sliding window of size 9 residues
to match every sequence segment of the target protein against 9-
mer segments from the database. The matching algorithm performs
profile-profile comparison by computing the city-block distance be-
tween each pair of profiles (note the similarity with I-Sites[10]). The
secondary structure — computed with DSSP [50] for all database
entries and predicted with PSIPRED [49] for the target sequence —
is also taken into account. All sequence profiles are computed with
multiple iterations of PSI-BLAST [2]. Matching database 9-mers are
ranked and top N segments per starting position are kept as the final
list of candidates. The torsion angles of all candidate fragments are
extracted from their respective PDB structures.

This fragment detection strategy is similar to the way the I-Sites mo-
tifs have been discovered. In fact this procedure routinely re-discovers
existing I-Site fragments. However, it does not sacrifice profile sensi-
tivity by averaging the sequence profiles over all fragment instances;
NNmake simply keeps all such instances as useful fragments. As ex-
pected, this leads to significantly increased sensitivity and coverage,
which makes the method very well suited for ab initio structure pre-
diction. However, as it was the case with I-Sites, fragment libraries
compiled with NNmake have fixed fragment size. This is a notable
drawback which often hurts accuracy (Chapter 3).
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2.5 nmr structure determination

Protein structures are traditionally determined by X-ray crystallogra-
phic methods. In recent years however, Nuclear magnetic resonance
(NMR) spectroscopy has been developed for solving the structure of
small proteins. NMR spectroscopy is currently the method of choice
for studying the structure of proteins in solution.

2.5.1 Chemical shifts

NMR methods exploit the magnetic spin property of the atomic nu-
clei in protein molecules. When placed in a strong magnetic field
and excited with radio frequency pulses, hydrogen atoms emit ra-
dio frequency radiation, which is registered by the instrument. The
frequency of this radiation is characteristic to some extent for the nu-
cleus that emits it — it depends on its chemical nature and concrete
molecular environment [9]. This frequency (ν) is measured relative to
a reference (νre f ) to obtain a corresponding chemical shift (δ):

δ = 106(ν− νre f )/νre f (2.3)

expressed in parts per million (ppm).
Once the chemical shift values are assigned to the individual amino

acids along the polypeptide chain, the information contained in them
can be used for protein structure determination [91]. For example,
chemical shift data has been successfully combined with ab initio pro-
tein structure prediction methods [17, 80]. Such methods rely on scan-
ning known experimental structures for short analogous fragments
with similar chemical shift patterns. Detected fragments are then used
in a Rosetta-like fragment assembly folding protocol (2.3.2).

There is a well-pronounced correlation between the secondary struc-
ture of proteins and their chemical shifts [92]. This observation is used
in programs like TALOS [21, 79] and DANGLE [18] to predict local
structure (torsion angles and secondary structure elements). This is
achieved by calculating the so-called secondary chemical shifts (δ) for
each observed chemical shift (δobs):

δ = δobs − δre f (r, n) (2.4)

where δre f (r, n) is the random coil chemical shift of nucleus n in amino
acid type r. The reference chemical shift values in this equation are
obtained for peptides in a “random-coil” conformation, which refers
to an unfolded polypeptide chain with no secondary structure. The
secondary chemical shift is a quantity that depends on the secondary
structure of the protein. For example, in beta strands C-α atoms tend
to have negative secondary shifts, while C-β atoms lean towards pos-
itive values.
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2.5.2 NOE spectra

Nuclear Overhauser effect (NOE) is a phenomenon widely used in
2D or higher dimensional NMR experiments to obtain information
about hydrogen atoms that are located close in space. The data from
such experiments can be used to compute the 3D structure of proteins,
since the pairs of contacting residues in NOE spectra are often located
far apart in the amino acid sequence. These long-range contacts are
converted into distance restraints and used in a structure calculation,
based on the observation that every NOE peak corresponds to a pair
of hydrogen atoms, separated by a distance of up to 5-6Å.

The main challenge with this method is the interpretation of the
raw data. NOE spectra contain information about contacting protons
and higher-dimensional experiments provide additional information
about other chemical elements that are covalently linked to the inter-
acting hydrogen atoms. However, NOE spectra do not specify where
these atoms are located on the amino acid sequence. Software applica-
tions consuming NOE data must therefore guess the correct mapping
(cross-peak assignment) — a non-trivial end error-prone task. The ini-
tial step in this process is matching the position of every NOE peak
in frequency space (ω1, ω2) against the list of chemical shift values ωi
within a small tolerance ∆ω. Such strategy would rarely produce a
single match for a given NOE peak, hence very few NOE peaks can
be assigned to a pair of chemical shifts unambiguously.

Several algorithms have been developed in an attempt to automate
the task of cross-peak assignment and cope with its inherent ambi-
guity. Early attempts focused on using unambiguous assignments
only, which significantly hurts their performance (since the major-
ity of peaks cannot be assigned unambiguously). This motivated the
development of ambiguous distance restraints in ARIA [65, 66]. Fur-
thermore, iterative cross-peak assignment was established as a computa-
tionally demanding, but successful strategy for NOE assignment and
structure calculation. This approach is implemented in the widely
used packages ARIA and CYANA [37, 39]. On each iteration, these
programs compute a preliminary structure from the current list of
assigned NOEs; then this structure is used to guide the NOE assign-
ment on the next cycle.

The lack of accepted measures of quality for NMR models poses
a second challenge for this method. NMR structure calculation can
be envisioned as a process of fitting parameters (coordinates) to ex-
perimental data, but most structure calculation approaches do not
provide quantitative measure of the goodness of fit. This issue was ad-
dressed in the Bayesian framework of ISD [70, 40, 71], which com-
putes 3D coordinates along with their associated “error bars” and
weights the experimental data optimally to avoid under or over fit-
ting.
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H H F R A G : D Y N A M I C F R A G M E N T L I B R A R I E S

3.1 introduction

In Chapter 2 we introduced the concept of homology and discussed
how methods for sensitive homology detection have made protein
structure prediction possible. Homologous templates can be routinely
selected from a growing collection of experimentally determined pro-
tein structures, stored in the Protein Data Bank [5]. The size and di-
versity of the PDB library are therefore critical factors, which deter-
mine the performance of structure prediction methods. This claim is
intuitively valid for all comparative modeling algorithms (2.3.1), but
also holds for ab initio approaches [81], which depend on fragment
detection and fragment assembly (2.3.2).

Recent reports suggest that PDB has already grown to a level of
diversity that is sufficient for practical structure prediction purposes
[97]. New experimental structures are being published with a stable
rate, however, the share of novel folds observed in new structures is
getting surprisingly low. Even more peculiar is the evidence that the
small number of newly discovered folds often reuse common struc-
tural motifs (2.1.3, 2.4.1), already seen in non-homologous PDB struc-
tures [28]. Novel folds tend to enrich the PDB library with new com-
binations of known building blocks and rarely introduce new motifs.

Our ability to detect homology has improved significantly with the
development of methods for pairwise comparison of sequence pro-
files (2.2.2). Conventional sequence alignment is sufficient for tem-
plate selection when direct homologs of the query protein are present
in PDB (2.3.1). However, sensitive profile alignment methods suc-
ceed at template detection even when the sequence identity level
is lower than the critical threshold of 30%, termed the twilight zone
[74]. Since structures accumulate evolutionary changes more slowly
than sequences, such remotely homologous templates are guaranteed to
be useful for comparative modeling, although the percentage of se-
quence identity may indicate a massive sequence divergence.

But even when the most sensitive profile-profile comparison meth-
ods fail to identify a sufficiently long template for comparative model-
ing, there is still hope for successful structure prediction. Using local
alignment of sequence profiles, we are often able to reveal relatively

Some of the material in this chapter has been previously published and adapted
from Kalev et al. (2011) [51] and Kalev et al. (2013) [52]. Used with permission.
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short segments local similarity, although the proteins in comparison
may belong to different, unrelated superfamilies and adopt differ-
ent folds. Remarkably, these short regions of profile similarity are
often ubiquitous and may demonstrate conserved structural proper-
ties (local structure, geometry or contacts). The sequence-to-structure
correlation of such recurrent motifs has been studied in the I-Sites
fragment library [10], which has proven useful in protein structure
prediction [11].

I-Sites is an early attempt to summarize known motifs into a com-
pact, static structural alphabet (2.4.1) [67]. This approach to local
structure prediction produces accurate results, but suffers from insuf-
ficient coverage. When the query sequences contain instances of any
I-Sites motifs, the I-Sites scanning algorithm succeeds at their identifi-
cation with acceptable precision. However, I-Sites motifs rarely span
more than one third of the whole sequence. The remaining connect-
ing regions would therefore remain unassigned, i. e. only the local
structure of a small fraction of the query backbone can be predicted.
Another important limitation of I-Sites (and static alphabets in gen-
eral) is that all fragments have a fixed size. The associated local struc-
ture prediction algorithm must therefore use a sliding window of that
size to assign fragments to the query. While many recurrent super-
secondary structures demonstrate a conserved core region, matching
a canonical I-Site, motif instances tend to vary at their termini and
sometimes contain internal gaps or insertions. These two problems
render the sliding window approach impractical. The first problem
— the variability of fragments at their tails, was addressed with the
preparation of complementary fragment libraries of increasing frag-
ment length (3 to 15 residues). However, this approach is still ineffi-
cient in comparison to a truly dynamic, context-dependent fragment
assignment, since it is not practically possible to capture the complete
spectrum of mutational variability at the termini. The second problem
— the presence of internal gaps and insertions, is less prevalent, but
remains completely unaddressed by static approaches.

NNmake — the fragment detection module of Rosetta [72, 55] —
solves the coverage problem by introducing the notion of dynamic
fragment libraries (2.4.1). This method builds customized and com-
prehensive fragment sets, which are more suitable for ab initio struc-
ture prediction. In more conserved regions of the query (i. e. poten-
tial I-Site instances), we expect dynamic libraries to be as accurate as
static methods for local structure prediction. However, in less con-
served regions (i. e. variable I-Site-linking segments) the increased
coverage of dynamic fragment search comes at the cost of signifi-
cantly reduced precision. Another important limitation of this method
is that dynamic fragments typically come in a fixed, predetermined
size (usually 9 residues) [13, 81, 48]. This is a technical decision which
simplifies the implementation, because it makes a sliding window
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profile search possible. However, it does not appear to be supported
by any biological justification. Moreover, the fixed fragment size hurts
the precision of this method even in conserved regions, because not
all paradigm motifs from I-Sites have core regions of size 9 residues.
For example, whenever the prototype of a motif is shorter, NNmake
may include unnecessary tails with incompatible torsion angles. Sim-
ilarly to I-Sites, NNmake provides no answer to the internal gap or
insertion issue, although it has the advantage of using a much bigger
source library of fragments, thus theoretically increasing the chance
of observing a fragment instance with the same set of internal muta-
tions.

3.2 motivation

HHpred [44] has been one of the most successful comparative mod-
eling servers in recent years. It outperforms many rival methods,
thanks to its HHsearch module — a very sensitive algorithm for
remote homology detection. This is achieved by pairwise compari-
son of profile HMMs — a concept employed by other static and dy-
namic fragment detection methods such as I-Sites and Rosetta NN-
make, which compare conventional sequence profiles. However, un-
like those methods, HHsearch uses a dynamic programming algo-
rithm to perform actual alignment between each pair of profiles, thus
detecting variably sized regions of local similarity.

This property reveals its potential application in fragment detec-
tion, where it can be used to address the limitations of existing ap-
proaches, one of which is the fixed fragment size. As already dis-
cussed, fragments of variable sizes are desirable, because most frag-
ment instances deviate to a varying extent from the canonical I-Site
paradigms at their termini, core, or both. Resolving this issue will
therefore have an immediate positive impact on the performance of
fragment detection. Given the random sampling nature of the cur-
rent ab initio methods for structure prediction (2.3.2) and NMR-based
determination (2.5.1), improving the quality of fragment detection is
expected to boost the performance of fragment assembly. The use of
fragments of higher quality will intuitively improve the decoys built
with ab initio methods. When a fragment library is enriched with use-
ful and accurate fragments, this also reduces the frequency of erro-
neous Monte Carlo moves while sampling the library, thus speeding
up the conformational search.

With these observations in mind, we designed a novel fragment
detection method, which combines the strengths of existing static
and dynamic fragment libraries, while adequately resolving their lim-
itations. Our method, called HHfrag [51], takes advantage of HH-
search’s highly sensitive remote homology detection to discover local
regions of structural similarity, shared across different folds. Instances
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of such conserved motifs are directly excised from experimental pro-
tein structures. The resulting dynamic fragment libraries possess the
following properties:

1. dynamic — customized to the query sequence and maximizing
its coverage (i. e. no attempt is made to compile a structural
alphabet), thus appropriate for ab initio protein structure predic-
tion or determination by fragment assembly;

2. flexible, context-specific — fragments are variable in length and
also allow for gaps and gapped fragment assignments, unlike
earlier fragment detection methods;

3. accurate — fragments with maximum precision within and near
conserved supersecondary structures (i. e. known I-Sites).

A fragment library that contains more variability than a static dic-
tionary and that is, at the same time, more precise than the dynamic
Rosetta approach, allows for more efficient sampling of the conforma-
tional space. This implies that an ab initio model of the target struc-
ture can be built in fewer trials and out of better decoys. Later in this
chapter we demonstrate the application of our fragment library in ab
initio structure prediction using a modified Rosetta ab initio protocol,
adjusted to work with fragments of variable length.

3.3 the fragment detection algorithm

HHfrag is a dynamic fragment detection method, which can be view-
ed as an extension to the HHsearch template selection algorithm [84].
While HHsearch runs in local alignment mode by default, it has been
specifically developed for detection of longer threading templates. It
has not been therefore optimized for fragment detection, although it
is capable of identifying short conserved regions. Running HHsearch
on a pair full-length HMMs is likely to produce a local alignment,
but there is no guarantee that the alignment will be optimal in terms
of locally conserved supersecondary structures. Very often HHsearch
discards a single local match as insignificant, because a short super-
secondary structure match does not provide enough evidence of ho-
mology between the proteins in comparison. To force HHsearch in
“strictly local” mode and obtain a locally optimal alignment for a
short motif, one has to restrict the aligned area to the region includ-
ing the motif itself and its nearby residues. This goal is achieved in
HHfrag by splitting the fragment search into two phases (Figure 3.1):

1. Detection of optimal query segments — the aim is to decom-
pose the query sequence into segments which contain instances
of known recurrent building blocks. This decomposition is very
approximate, i. e. the boundaries of each segment are not opti-
mal, but always exceeding or equal to the actual ones.
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Figure 3.1: Outline of the HHfrag algorithm. During the first phase (a), HH-
frag scans the query profile for conserved supersecondary struc-
tures and identifies their approximate boundaries. Excised query
segments are then used to scan a library of experimental struc-
tures for matching motif instances (b). At this stage HHfrag de-
termines the actual boundaries of each motif and compiles a dy-
namic fragment library.
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2. Fragment extraction — at this stage HHfrag must determine
the actual boundaries of each motif, find and excise instances of
it from the library of experimental structures (PDBS25). This is
achieved by performing local alignment of each query segment
against the full length templates from PDBS25.

A flowchart of the full algorithm is shown in Figure 3.1. The key
component of the fragment detection strategy is HHsearch [84], which
is used for HMM-HMM alignment with pseudocounts and secondary
structure scoring enabled.

3.3.1 Preparation

HHfrag uses HHsearch for profile alignment. All input sequences
must therefore be converted to HHM (HHsearch HMM) format. We
use the standard HHpred toolchain [44] to create all required pro-
file HMMs. This involves generation of multiple alignments with 8
rounds of PSI-BLAST and inclusion e-value of 0.001 [2].

Secondary structure information is also included in the profile and
used for fragment detection. For all database templates experimen-
tal structures are available, so we use DSSP [50] to compute the sec-
ondary structure. The query sequence does not have a 3D structure
and thus PSIPRED [49] is used to obtain an approximate secondary
structure prediction.

Each final HMM comprises amino acid emission probabilities and
secondary structure propensities. To increase the sensitivity of the
search, we also use emission and transition pseudocounts, computed
with HHmake ([51] — supplementary material).

All fragments, contained in a dynamic HHfrag library, are real
structural motifs, extracted from experimental PDB structures. The
database of template structures, called PDBS25HMM or just PDB25
for brevity, is a compact, non-redundant subset of PDB. It is based on
the April, 2010 build of PDBselect25 [35], which contains PDB struc-
tures filtered at 25% identity (4824 chains in total). Every entry in
PDBS25 comprises of a profile HMM (built with the method outlined
above) and a corresponding high-resolution structure.

3.3.2 Motif decomposition

During the first phase of the algorithm, HHfrag attempts to decom-
pose the query profile HMM into conserved motifs and identify their
approximate locations (Figure 3.1). As discussed earlier, HHsearch
runs in “template homology detection” mode by default and dis-
misses many local matches as insignificant. To trigger the desired lo-
cal search behavior, we must restrict the length of the aligned HMMs
to the area in or around each motif.
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This is achieved by chopping the query profile into a nested list of
segments of increasing size, from 6 to 21 residues (Figure 3.1). The
motif segmentation routine simply slices out all HMM layers within
the selected segment. A new HMM is then created by copying the
sliced out layers and the HMM is finalized by adding start and end
states, connected to the first and last layers, respectively, with a tran-
sition probability of 1. At a given column c, the slicing procedure
results in a list of candidate segments spanning layers (c, c + 6) to
(c, c + 21) and anchored at the same starting position c. Note that this
technique disregards any prior information about the location of the
motif. Most of the resulting segments will hence contain either trun-
cated motifs, or elements with extra flanking residues. In the event of
truncation, it can be assumed that the resulting profile segment will
be partially damaged and possibly dysfunctional. By comparing all
candidate profile segments against the template profiles (PDBS25) we
can therefore identify the segment(s) with preserved integrity: intact
segments will produce more consistent and more abundant matches.
The query segment, having the maximum number of hits, is believed
to contain the intact motif and is chosen as the optimal query segment
at the given position c.

After shifting the origin of segmentation by three residues down-
stream, we repeat the same procedure in order to obtain the next
optimal query segment at position 1+ 3× i. This is repeated until the
C-terminus of the query sequence is reached. At the end of the last it-
eration, this yields a list of partially overlapping query segments with
variable length and increasing start positions. Every optimal segment
contains an intact motif, but its exact position within the segment will
be determined in the next phase.

3.3.3 Fragment extraction

Once motif decomposition is completed for all 1 + 3 × i iterations,
HHfrag must identify the actual boundaries of each motif in the
query profile and collect matching fragment instances from the PDBS-
25 library. This is achieved by performing local alignment of each
optimal query segment against the full-length template HMMs in
PDBS25. As in the previous stage, HHsearch [84] is used for HMM-
HMM comparison. This results in local HMM alignments that are
equal to in length or shorter than the original query segments, possi-
bly containing internal gaps as well. Using the information encoded
in the alignments, HHfrags successfully achieves all of its final goals:

1. identifies the start and end positions of all conserved motifs in
the query dynamically;

2. collects matching fragment instances from experimental PDB
structures (PDBS25) and builds a dynamic fragment library;



28 hhfrag : dynamic fragment libraries

3. collects gapped fragments, containing short internal insertions
or deletions in the linkers, connecting the neighboring secondary
structures.

The algorithm completes by excising all matching fragments from
their respective PDB structures and building a position-specific frag-
ment library in Rosetta [72] format. An HHfrag library however com-
prises of fragments of variable length, from 6 to 21 residues. The num-
ber of fragments assigned to each query position is also variable. For
highly conserved regions, i. e. those corresponding to known I-Sites
[10] or other abundant motifs, this number will be very high, often
in the order of hundreds. For highly unconserved or linker regions
HHfrag will extract few or no matches at all.

3.4 characteristics of dynamic fragments

We define three intuitive performance metrics, which are sufficient to
compare the performance of various fragment libraries and measure
their quality objectively:

1. global precision — the percentage of true positives among all frag-
ments assigned to the query;

2. local precision — the percentage of true positive assignments,
which cover a specific region or a single residue;

3. coverage — the percentage of query residues that are covered by
at least one true positive fragment [59].

A fragment is considered to be a true positive, if it matches the local
structure of its target protein accurately. Several metrics can be used
to compare the structural similarity of short fragments [10, 57, 59].
We have chosen to use the popular Cα-RMSD and apply a threshold
value of 1.5 Å, denoting a true positive (compatible) hit. The RMSD
metric is length-dependent, which suggests that it might be adequate
for comparison of constant length fragments only. Guided by this
intuition, we considered the development of length-independent sim-
ilarity metric, but found that the overall picture of our results did
not change [51] (see supplementary data of [51] for detailed analysis).
We therefore use the conceptually simpler definition of a true posi-
tive based on conventional RMSD, adopted as a structural alphabet
similarity metric by other authors [57].

3.4.1 Contextual variability

The core mechanism behind HHfrag has emerged from an early at-
tempt to rebuild the I-Sites [10, 12] fragment library using HHsearch
[84] as a profile comparison backend. This approach, named StaticHH,
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(a) I-Sites

(b) HHfrag

Figure 3.2: Modular fragment structure. Many fragments can be decom-
posed into elements of two or more connected sub-fragments.
(3.2a) Superimposition of several overlapping I-Sites motifs.
These fragments have been assigned to the same region of the
query sequence, because their sequence profiles are very similar.
(3.2b) Corresponding gapped fragments (green, red) and frag-
ments with flexible boundaries, found by HHfrag.

successfully identifies most I-Sites. However, it suffers from the same
limitations as other structural alphabets, which directed our efforts at
dynamic fragment detection and lead to the development of HHfrag.

A closer look at Figure 3.2 reveals some of those limitations. During
the development of StaticHH, we noticed that the most abundant frag-
ments have core regions, which can be linked to corresponding I-Sites.
The fragment core alone is unfortunately not sufficient to describe all
instances of a fragment as their lowest common denominator. Most
fragments tend to demonstrate hierarchical, modular arrangement.
Proteins often omit arbitrary elements from these modular motifs,
which renders their clustering and generalization difficult.

One typical modular fragment is shown in Figure 3.2. It is com-
posed of two elements — an alpha helix and a beta strand, which
are interestingly also defined as independent I-Sites paradigms. I-
Sites therefore contains highly redundant and overlapping fragments,
which is a legitimate attempt to address the hierarchical nature of the
motifs. The protein structure shown on the figure contains a “full in-
stance” of the fragment. Searching for instances of this fragment in
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PDBS25 with HHsearch reveals a broad spectrum of variability. Some
proteins contain only one of the two elements and these combina-
tions are covered by I-Sites. Other structures however, like the one
shown on the figure, contain an additional third element, which has
no corresponding I-Site. A peculiar subset of the second group of
matches is comprised of “full instances”, which may contain a short
internal insertion or deletion between the second and the novel third
element. In addition, the tails of the shorter I-Sites fragments do not
fit the overall shape of the actual motif very well. These two observa-
tions demonstrate the disadvantages of using rigid fragments of fixed
length and suggest that there is no optimal length for fragment detec-
tion. A fully dynamic method for fragment assignment is expected to
produce more accurate local structure predictions.

Our study shows that the prevalence of gaps in fragment instances
is not very high. On average, only 9% of all HHfrag motifs contain
any gaps and 8% of all best-fitting fragments are indeed gapped. This
is a relatively small, but not negligible number. The gap-detection ca-
pabilities of HHfrag are therefore not essential when the template
database is able to provide ungapped alternatives to all motifs. How-
ever, the ability to detect insertions and deletions could be crucial in
the event that PDBS25 contains only very few instances of a given
structural motif [51].

3.4.2 Precision and coverage

A key design goal behind HHfrag is establishing a balance between
good precision and high coverage. As expected from a dynamic frag-
ment detection method, HHfrag demonstrates significant improve-
ment over structural alphabets in terms of coverage. Unlike earlier
dynamic methods however, HHfrag does not sacrifice precision in
exchange (Figure 3.3).

Figure 3.3a shows an example where HHfrag may look outper-
formed by Rosetta in terms of coverage: NNmake reaches 87% cover-
age at RMSD threshold of 1.4 Å, whereas HHfrag covers 76% of all
target residues at the same cutoff. However, coverage alone can be
a misleading metric, unless the precision of the fragment library is
also taken into account. A high level of coverage ensures that most
query positions are covered by at least one correct assignment. But
it does not provide any guarantees that the correct fragments can be
easily identified and extracted from the library. Most fragment assem-
bly protocols rely on random sampling of fragments from each list of
competing candidates. The frequency of picking a correct fragment
will therefore have a significant impact on their performance. This
frequency — the percentage of true positive fragments in a given li-
brary, also known as its precision — is typically reasonably high for
static structural alphabets like I-Sites. It is surprisingly low, however,
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Figure 3.3: Coverage and precision for benchmark protein 3nzl at increasing
RMSD cutoffs.

for dynamic approaches such as Rosetta NNmake. Figure 3.3b shows
that for the same target protein, HHfrag has 1.5-fold higher global
precision than Rosetta.

We can get a better understanding of the physical meaning of
these numbers by comparing the local precision of HHfrag and NN-
make fragment libraries (Figure 3.4; complete set of diagrams can
be found in [51], supplementary material). The residue-wise preci-
sion diagrams for both methods have clearly observable patterns of
high-accuracy peaks, connected by regions of low motif conservation.
However, the peaks found in all Rosetta NNmake diagrams have a
very characteristic triangular shape. The precision of these libraries
drops rapidly as we move away from the maximum. In comparison,
HHfrag produces peaks which have more rectangular shape, keep-
ing the area of high accuracy broader. These observations are easily
explained if we consider the mechanism of action of both methods.
NNmake uses a sliding window of fixed size for fragment detection,
thus disregarding any contextual variability of the fragments (3.4.1).
This approach leads to accumulation of a large number of truncated,
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Figure 3.4: Local residue-wise precision of HHfrag and NNmake libraries at
default RMSD cutoff (1.5Å), compiled for target 3nzl. Each blue
bar indicates the percentage of true positive fragments, which
cover a given target residue. The grey background corresponds
to the false positive rate, and the white regions are completely
unassigned.

sub-optimal fragments. They may contain correct motif cores, but are
often concatenated with unwanted tails, which extend from the core
and exceed the boundaries of the actual motif. In contrast, HHfrag
uses a local alignment algorithm to determine the correct boundaries
of each fragment and rarely conquers unnecessary residues from
neighboring linker regions (Figure 3.5). This is a key property of the
HHfrag algorithm, which significantly improves the local precision of
our method and contributes to the demonstrated high accuracy (3.5).

3.4.3 Link to structural alphabets

Dynamic fragment detection has been developed as an extension
to the idea of structural alphabets, aiming at improved local struc-
ture prediction coverage, accomplished by fragment excision from
less conserved or uncommon motifs. Dynamic fragment libraries can
therefore be regarded as supersets of known structural alphabets, i. e.
HHfrag and NNmake routinely re-discover known I-Sites prototypes.
But what is the nature of the he high-accuracy peaks, observed on
local precision diagrams (Figure 3.4)? Our study confirms the expec-
tation that these regions are strongly correlated with the I-Sites motifs.
The I-Sites profiles align to query regions where HHfrag assigns frag-
ments with great precision (80 ± 18% on average). This fact makes



3.4 characteristics of dynamic fragments 33

(a)

(b)

Figure 3.5: Fragment maps, generated with HHfrag (3.5a) and Rosetta NN-
make (3.5b). Shown are top 4 NNmake and all HHfrag fragments
assigned to target 3nzl (thick backbone). All fragments were su-
perimposed onto the native structure of the target. As already
evident from Figure 3.4, residues 35-55 (thicker backbone) are
covered with more accurate HHfrag motifs. Transitional regions,
connecting the high-accuracy peaks, exhibit high variability and
lower recurrence.
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intuitive sense, since most I-Sites are highly recurrent motifs, which
possess strong sequence profiles (making their detection relatively
easy and reliable). Our data also confirm that HHfrag libraries are
proper supersets of the I-Sites structural alphabet, thus fulfilling one
of the major design goals of the project.

The unassigned and low-accuracy regions, seen on the local preci-
sion diagrams, are highly variable (Figure 3.5). These are regions of
uncertainty, where no reliable local structure prediction is possible
due to the lack of sequence conservation. Such parts of the protein
molecules, often located in linkers and loops, need to be modeled
using a brute-force approach during ab initio structure prediction.
The fact that HHfrag does not assign fragments to uncertain regions
(“white regions” in the fragment map) should be considered a feature
rather than a shortcoming, because it encodes important information
about the query protein. However, current structure prediction pro-
tocols such as Rosetta AbinitioRelax [55, 55] may not be able to take
advantage of this information (discussed in detail in 3.6).

3.5 benchmark

The performance of our dynamic fragment search method was tested
on 105 target sequences, taken from the CASP9 competition [62]. The
experimental structures of these proteins have been published af-
ter May, 2010 and therefore do not appear in our template library
(PDBS25).

For each target, we compiled a dynamic fragment library with HH-
frag and compared its performance to a reference Rosetta 9-mer frag-
ment map. We used the same performance metrics described in detail
earlier (3.4). To compute the coverage and precision of each library,
we extracted the Cα backbones of all member fragments and super-
imposed them onto the native structure of the target at their respec-
tive positions, as determined by the corresponding fragment search
method. Figure 3.5 shows the result of a sample superimposition.

1 3 5 7 9 11 14 17 20 23 26 29
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Figure 3.6: Length distribution of all fragments, extracted by HHfrag in the
benchmark.

Figure 3.6 demonstrates the distribution of fragment lengths, found
by dynamic HHfrag searches. This distribution peaks at a value of
seven. The average fragment length is 10.3± 3.6 — a result in close

http://www.predictioncenter.org/casp9
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Figure 3.7: Global precision and coverage at RMSD cutoff of 1.5 Å. Each
bar corresponds to a benchmark target, taken from CASP9. The
height of the bar denotes the global precision of the correspond-
ing library. All targets are ordered by decreasing modeling diffi-
culty (red: FM, yellow: FM/TBM, green: TBM). The black curve
indicates the coverage for each specific target.

accordance with earlier reports [13]. However, the distribution also
demonstrates a significant probability for detecting much longer frag-
ments. This result justifies the use of dynamic libraries of variable
fragment length and confirms the validity of the method.

Figure 3.7 summarizes the performance of HHfrag and NNmake
in this benchmark. HHfrag obtains an average precision of 62± 16%,
which is a significant improvement over NNmake (38 ± 17%). The
overall improvement is two-fold on average and for some targets
achieves a dramatic increase by a factor of 4 to 6. These results are
consistent across all CASP target categories (Free modeling (FM) and
Template-based modeling (TBM)).

The average sequence coverage achieved by HHfrag is 71 ± 13%.
When the analysis is restricted to residues, part of regular secondary
structure elements, the coverage rises to 84± 14. The fraction of residues
that remain completely unassigned (white regions) is 19± 12%. This
is a significant improvement over static libraries [10] and an accept-
able loss in coverage compared to the dynamic NNmake method
(90± 6%). This result highlights a fundamental property of our dy-
namic fragment detection method, compared to probabilistic frag-
ment sampling from generative statistical models, such as TorusDBN
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[8]. In fragment detection by profile database searches, some residues
will never receive fragment assignments because they are not part of
conserved, recurrent motifs (i. e. in loops, linkers or flexible tails). In
some cases the database of templates is simply not diverse enough to
provide adequate fragment matches. In either case, however, the lack
of fragment assignments is an important signal for the client applica-
tion that reliable local structure prediction is theoretically not possible
within the specified region of the protein. In probabilistic fragment
sampling, on the other hand, there is always a non-zero chance that
every residue will be covered as long as we sample long enough. With
infinitely large number of samples drawn from the model, the cover-
age will approach 100%, but the precision may drop to prohibitively
low values if the native fragment is not contained in the high proba-
bility density region.

Although 90.8% of all true positive fragments have uninterrupted
structure, HHfrag has detected gapped fragments at least once for 98
out of 105 benchmark proteins. Most gaps in our dynamic fragments
tend to be located in or around the central residue of each fragment.
On average, about 70% of all gaps are concentrated in the central
regions of the motifs, often located between two elements of a multi-
segment motif. As expected, such gaps are always very short. 70% of
all gaps span a single residue and the number of gaps spanning more
than 2 residues is negligible. With the current degree of structural di-
versity of our PDBS25 library, gapped assignments did not influence
the overall performance of HHfrag in a major way. However, 8.4% of
all best-fitting fragments per query position contain gaps, which sug-
gests that gap detection may be useful when the number of available
local templates is limited.

3.6 ab initio structure prediction with hhfrag

The advantages of our dynamic fragment detection method have been
further demonstrated in ab initio protein structure prediction. A sim-
ple modification of the original Rosetta AbinitioRelax [72] application
allows the use of variable length fragments along with this popu-
lar method. At this instance we would like to point out that poten-
tially better results could be obtained by fragment assembly proto-
cols, specifically optimized to utilize the extra information, encoded
in HHfrag libraries (3.6.1). Nevertheless, the standard Rosetta proto-
col is sufficient for most practical applications.

3.6.1 The impact of precision and coverage

We have seen that HHfrag produces fragment libraries with the fol-
lowing properties:

• high accuracy — enriched with high-quality fragments;
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Figure 3.8: The impact of fragment precision and coverage on Rosetta mod-
eling. Shown are the distributions of TM-scores for decoys built
with Rosetta. Three different libraries have been prepared by ex-
cision of 9-mer fragments from the experimental structure of the
target protein (2kxy): optimal, gapped and noisy. The percent-
age of good decoys was 90, 41 and 22% respectively. See 3.6.1 for
discussion.

• discontinuity — some regions of the fragment map do not con-
tain any assigned fragments by design;

• compactness — HHfrag libraries tend to contain lower number
of fragments than their NNmake counterparts.

To study the effects of these properties on Rosetta ab initio mod-
eling, we conducted a number of conceptual protein reconstruction
experiments with idealized fragment libraries. The goal of each ex-
periment was to test the ability of Rosetta to recover a protein struc-
ture from optimal fragments, i. e. using a library of 9-mers, extracted
from the native structure of the protein. Figure 3.8 shows the decoy
distributions, obtained in each experiment.

Rosetta successfully recovered the protein in the control test, per-
formed with a library of maximal precision and coverage (90% good
decoys). Intuitively, we found that mixing the optimal library with
random fragments hinders the folding process, reflected by dramatic
decrease in the number of near-native and good decoys (22%). This
result confirms the expectation that the use of libraries of greater pre-
cision and smaller size results in much faster and more efficient con-
formational sampling.

Next, we examined the impact of discontinuity on ab initio model-
ing and found that gaps in the fragment map have highly negative
effects. We used an optimal fragment set, containing only a single-
residue gap at an arbitrary loop position. Even with this simplified
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Figure 3.9: Distribution of decoy TM-scores, built with HHfrag (black) and
NNmake (orange) fragments. The decoys were generated with a
modified Rosetta AbinitioRelax application. All resulting decoys
were superimposed onto the native structure of the correspond-
ing target using local fit and then the TM-score was calculated
(higher is better). Structures with a TM-score of 0.4 or greater
have correct fold.
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Figure 3.10: Correlation between Rosetta energy and TM-score for decoys
of target 2l02. The lowest-energy decoys, generated by each
method, are shown in Figure 3.11.
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Figure 3.11: Lowest energy Rosetta decoys for target 2l02, built with HHfrag
(left) and NNmake fragments (right). The native structure is
shown at the center. The rank of each decoy is shown next to its
structure. All decoys have been superimposed onto the native
structure.

setup, the distribution of good decoys was shifted towards decoys
of poor quality (41% decoys with correct fold). To work around this
issue, HHfrag implements a "hybrid mode", in which gaps in the
fragment map can be complemented with an arbitrary filling, such
as structural alphabet prototypes or position specific NNmake frag-
ments. Section 3.7 provides a more sophisticated complementation
approach, which detects both unassigned and low-accuracy regions.

3.6.2 Free modeling

The performance of our high-precision dynamic fragment libraries
was tested in Rosetta ab initio protein folding experiments (Figure 3.11;
see also supplementary data of [51]). We modified the original Rosetta
AbinitioRelax application to accept fragments of variable length and
generated decoys for a subset of the proteins in our benchmark. Ini-
tially, we found 15 targets for which the BAKER-ROSETTASERVER
[55] has submitted CASP9 models with comparable or better quality
than HHpredA [44]. We picked the 11 shortest, single-domain targets
of up to 150 residues to provide favorable input for Rosetta. 1000
decoys were generated for each target in this subset using default
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parameters and stock NNmake fragments. In four cases Rosetta pro-
duced successful results under the following requirements:

• average TM-score [95, 96] to the native structure greater than
the random (0.17);

• at least 2% of good decoys (TM-score > 0.4, i. e. models with
correct fold).

The final benchmark set comprises of four targets: 3nzlA, 2l01A,
2l02A and 2l09A. 1000 decoys were generated for each target using
variable length HHfrag libraries in place of the regular NNmake 9-
mers, using the same set of input parameters and 3-mers. In all in-
stances, we observed a positive shift in the distribution of TM-scores
(Figure 3.9) and better energy funnels (Figure 3.10), confirming in-
creased structure prediction accuracy (Figure 3.11). HHfrag shifts the
position of the most populated TM-score bin and increases the frac-
tion of good decoys (TM-score > 0.4) by 31, 26, 14 and 29%, respec-
tively. Although the best decoys generated with both methods have
practically the same TM-score, good decoys are produced 1.4–16.0
times more often when using dynamic HHfrag libraries.

3.7 filtering and enrichment

Earlier in this chapter, we discussed how the local precision varies
along the query sequence. We demonstrated the existence of high-
accuracy regions, which generally correspond to conserved I-Sites
motifs. The ability to identify those regions reliably holds a strong
potential. Local and global structure prediction methods, which uti-
lize fragments, may use this information to recognize high-quality,
credible local structure predictions. Once identified, the most reliable
fragments should receive higher weight and take precedence in the
course of fragment assembly.

3.7.1 The confidence score

Dynamic fragment maps are composed of redundant fragments, cov-
ering identical target positions. Each fragment provides a list of tor-
sion angles and Cα coordinate values, extracted from its parent PDB
structure. All fragments, assigned to a given position, are at least par-
tially overlapping. We can compute the structural divergence between
every pair of fragments and build a corresponding adjacency matrix.
Thus, for every target position we define a fragment cluster, which is
a graph with the following properties:

1. Recurrence (r) — refers to the sequence conservation of a struc-
tural motif. The recurrence of a given fragment is measured
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by counting the number of motif instances in a non-redundant
database of templates (PDBS25). We compute the recurrence of
a target position and its fragment cluster by simply counting the
number of assigned fragments, covering this position, which is
the number of vertices in the corresponding cluster.

2. Consistency (c) — reflects the structural homogeneity of the frag-
ments. We measure the consistency of a cluster by calculating
the percentage of structurally similar pairs of fragments. Two
vertices are considered similar if the weight of the edge con-
necting them, measured by the Cα-RMSD distance between the
two fragments, is lower than a critical threshold. As usual, we
use a distance threshold set to 1.5 Å.

When these two properties are used in combination, we can obtain in-
formation about the reliability of the fragments, contained in a given
cluster and covering a specific target position. This observation has
several practical implications: (i) high-accuracy regions can be char-
acterized quantitatively in terms of their fragment consistency and
recurrence and (ii) each high-quality cluster can be compressed by
exclusion of incompatible fragments. To quantify the goodness of a
given fragment cluster, we compute the confidence of assignment C for
its associated target position i:

C = c log10 r =
e
|E| log10 |V| (3.1)

where the recurrence |V| is the number of fragments in the cluster,
|E| is the total number of edges and e is the number of edges be-
low 1.5 Å. The recurrence term in this expression is a weighting fac-
tor. Highly conserved motifs like the GD box [3] have a recurrence
of 50–100 or more and this impacts the confidence positively, mul-
tiplying the structural consistency term by a whole factor. Clusters
of size greater than 10 are up-weighted since 10 is the critical num-
ber of HHsearch hits, below which the program switches to a less
strict, greedy hit ranking algorithm [84]. At r = 10, the logarithm of
the recurrence is 1 and the confidence is determined entirely by the
degree of structural consistency. Clusters of size less than 10 are as-
sociated with increasing uncertainty and thus severely penalized. We
can follow the same intuition to deduce the natural thresholds for the
confidence metric:

1. C < 0.8: uncertainty. This confidence threshold is equivalent to
a small fragment cluster (10 instances) at consistency equal to
HHfrag’s high precision for I-Sites (80%) or a highly recurrent
motif (100 instances) at low precision (40%).

2. C = 1: transitional zone. Confidence value of 1 corresponds to a
rare motif (10 instances) with maximum structural conservation



42 hhfrag : dynamic fragment libraries

or a highly abundant motif (100 instances) at moderate consis-
tency of 50%.

3. C > 1: credible local structure prediction, that is guaranteed
to be accurate. For example, a confidence value of 1.4 can be
obtained for a highly consistent cluster (70%) of size 100.

We measured the confidence values for all fragment clusters in the
HHfrag benchmark and found good correlation between confidence
and local RMSD (Figure 3.13). Detailed experimental confirmation of
these predicted thresholds is presented in Section 3.7.3.

3.7.2 The outlier rejection algorithm

Each fragment cluster contains an arbitrary number of outliers — false
positive fragments or fragment instances, whose local structure devi-
ates from the canonical motif prototype. Here we introduce a greedy
filtering algorithm, which is designed to identify and eliminate out-
liers reliably. This results in more homogeneous clusters, thus increas-
ing the overall precision of our dynamic fragment libraries. The frag-
ment with the lowest average distance to its adjacent vertices, termed
the centroid, is finally selected as cluster’s representative. By reducing
each compact cluster to a single consensus fragment, HHfrag pro-
duces filtered fragment libraries of very low complexity. This prop-
erty is highly desirable when fragment libraries are used for local
structure prediction [57]. Non-redundant libraries however may also
be used for very fast and efficient ab initio fragment assembly [51].

We represent each fragment cluster by a standard adjacency sets
data structure, giving a space complexity of O(V + E). The BuildClus-
ter procedure (Algorithm 1) creates a sparse undirected graph G by
computing the RMSD of each pair of overlapping fragments F, cov-
ering a given target position i. Each cluster keeps track of the total
sum of pairwise distances (W); cluster members (v) also maintain
an updated sum of all edges incident to them (Wv). Note that frag-
ment clusters do not necessarily form complete graphs, because the
sequence overlap between some pairs of fragments is shorter than
required for a meaningful RMSD calculation.

The goal of the rejection algorithm is to enhance the structural con-
sistency of a given cluster by performing a minimum number of ver-
tex deletions. A given cluster is said to be stable, when the average
RMSD distance between all adjacent vertices (D) is lower than the
standard threshold of 1.5 Å:

Ds =
1
|E| ∑

(u,v)∈E
ω(u, v) ≤ 1.5 (3.2)

The RejectVertex procedure (Algorithm 2) performs fragment rejec-
tions iteratively, until cluster stability is reached. On every iteration,
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Algorithm 1 Cluster initialization.

1: procedure BuildCluster(F, i)
2: G = EmptyGraph()
3: visited = ∅
4: G.W = 0
5: for each u ∈ F do
6: if u.QStart ≤ i ≤ u.QEnd then
7: for each v ∈ F do
8: if (v, u) /∈ visited then
9: visited = visited ∪ {(u, v)}

10: if u.QStart ≤ i ≤ u.QEnd then
11: if Overlap(u,v) ≥ 6 then
12: G.V = G.V ∪ {u, v}
13: δ = Distance(u, v)
14: G.Adj[u][v] = G.Adj[v][u] = δ

15: u.W = u.W + δ

16: v.W = v.W + δ

17: G.W = G.W + δ

18: end if
19: end if
20: end if
21: end for
22: end if
23: end for
24: return G
25: end procedure
26:

27: procedure Distance(u, v)
28: return Cα RMSD of common residues
29: end procedure

we probe all vertices by calculating the average distance D′v when
vertex v is excluded from the cluster. This is given by the following
greedy criterion:

D′opt = min
v∈V

∑
e∈E

ω(e) − ∑
u∈N(v)

ω(u, v)

|E| − |N(v)| (3.3)

where N(v) is the adjacency list of vertex v and ω(u, v) is the distance
between fragments u and v. The vertex, whose exclusion leads to the
most significant drop in D′ towards stability (D ≤ 1.5 Å), is selected
for rejection and deleted. Each removal requires linear time of O(|V|),
needed to update all adjacency sets (linear complexity) and recalcu-
late the sum of weights Wv of affected vertices (constant time per
vertex). If no vertex removal is found to decrease the mean distance
D, this cluster is not able to shrink further. Such clusters are said to be
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Algorithm 2 Outlier rejection. See also Algorithm 3.

1: procedure ShrinkCluster(G)
2: while G.D > 1.5 and |G.V| > 1 do
3: outlier = nil
4: D′opt = ∞
5:

6: for each v ∈ G.V do
7: D′v = (G.W − v.W)/(|G.E| − |v.Adj|)
8: if D′v < Dopt then
9: outlier = v

10: D′opt = D′v
11: end if
12: end for
13:

14: if D′opt < G.D then
15: RejectVertex(G, outlier)
16: else
17: Error("Diverging cluster")
18: end if
19: end while
20:

21: return ComputeCentroid(G)
22: end procedure

diverging, which indicates heterogeneous aggregates of false positive
fragments. The filtering process is terminated in such case, rendering
the corresponding target position unassigned. The same negative re-
sult is also obtained in the event of cluster exhaustion before stability
has been reached. The maximum number of iterations thus equals
the number of vertices |V|. The amount of work performed on each
iteration k is proportional to the number of nodes |Vk| on iteration
k (to compute the candidate for rejection) plus additional |Vk| (to re-
move the candidate and update all adjacency sets and cached average
distances). The worst-case running time of RejectVertex is hence given
by:

|V|

∑
k=1

2|Vk| = Θ(|V|2 + |V|) (3.4)

However, most clusters reach stability much earlier than k = |V| num-
ber of iterations, so the average running time is in practise better.

Once all outliers have been removed, the average RMSD distance
in the cluster Ds is now 1.5 Å or less. We define the representative frag-
ment as the centroid of the cluster (Algorithm 3), which is the vertex
with the lowest average distance to all of its adjacent nodes. Since
cluster vertices have variable number of incident edges, we require
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Algorithm 3 Supporting procedures.

1: procedure RejectVertex(G, outlier)
2: G.V = G.V − {outlier}
3: G.Adj = G.Adj− {outlier}
4: for each v ∈ G.V do
5: if outlier ∈ G.Adj[v] then
6: G.W = G.W −ω(v, outlier)
7: v.W = v.W −ω(v, outlier)
8: G.Adj[v] = G.Adj[v]− {outlier}
9: end if

10: end for
11: end procedure
12:

13: procedure ComputeCentroid(G)
14: centroid = nil
15: Dmin = ∞
16: for each v ∈ G do
17: if |G.Adj[v]|/|G.V| ≥ 0.5 then
18: if v.D < Dmin then
19: centroid = v
20: Dmin = v.D
21: end if
22: end if
23: end for
24: return centroid
25: end procedure

the centroid to be a vertex, connected to a significant percentage of
the nodes (≥ 50%).

3.7.3 Filtered fragment libraries

The filtering algorithm and the confidence metric form the basis of
an HHfrag extension, which is designed to build filtered fragment
libraries of lower complexity and very high local precision. For each
query position, HHfrag compiles a fragment cluster of all assigned
fragments, as outlined in the previous sections. Incompatible frag-
ments in each cluster are rejected and a single representative frag-
ment per cluster is selected. After filtering out the outliers, the library
is enriched with high-quality fragments. For high-accuracy regions,
this always results in a centroid local precision of 100%, i. e. represen-
tative fragments in those regions are guaranteed to have compatible
local structure. This is illustrated in Figure 3.12. After filtering the
fragment library from Figure 3.4, we obtain a list of position-specific
representative fragments. The local precision of the resulting library
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Figure 3.12: Local precision of representative fragments for benchmark tar-
get 3nzl. The fragment library, shown in Figure 3.4, was filtered
using HHfrag’s outlier rejection extension. The local precision
of each representative fragment is shown as a bar, placed at
its corresponding query position. The height of each bar was
calculated as a binary measure: 100% if centroid’s RMSD is at
most 1.5 Å, 0% if greater. The confidence values for all query
positions are shown as a green curve.

of centroids is 100% for all high-accuracy regions, observed on the
original diagram (see Figure 3.12 for details on how this is calcu-
lated). The confidence curve correlates well with the observed local
precision pattern, dropping rapidly in regions where inaccurate cen-
troids have been selected. Similar results were obtained after filtering
all remaining CASP9 targets from the standard HHfrag benchmark
(per-target data available in [52], supplementary material).

Figure 3.13 shows the overall correlation between the local accu-
racy of all cluster centroids and their confidence in our benchmark.
A weak confidence value (0.1–0.6) is a clear signal for the presence
of a low-accuracy region. Higher confidence values (0.8–1.0) indicate
generally conserved motifs, which sometimes cannot be predicted
reliably. The overall centroid precision in this confidence interval is
80 ± 17% with an average RMSD to native structures of 1.0±0.9 Å.
Confidence greater than 1.0 guarantees an accurate and reliable local
structure prediction with a very low chance for an error. The overall
precision in such regions reaches 92± 13% with an average RMSD
to native structures as low as 0.58± 0.57. These results confirm the
theoretical confidence thresholds, derived in Section 3.7.1.



3.7 filtering and enrichment 47

Confidence

R
M
S
D

Figure 3.13: Reliability of the confidence metric. Shown is a correlation plot
between the confidence of 1000 arbitrary fragment clusters and
the Cα-RMSD to the native structures of their corresponding
representative fragments.

3.7.4 Confidence-guided prediction of torsion angles

We use the filtered fragment libraries and their associated representa-
tive fragments for direct prediction of torsion angles from sequence.
For each position i in a given query protein, we build a fragment
cluster and compute the centroid fragment, as outlined earlier. The
torsion angle pair (ϕi, ψi) of the representative fragment at target posi-
tion i is extracted from centroid’s experimental structure and directly
reported as the final prediction at that position. Confidence values
of 0.8 or greater indicate reliable predictions within a local region of
high accuracy.

We used the familiar set of CASP9 [62] proteins to benchmark the
accuracy of centroid-based torsion angle prediction. For each target,
we obtained a prediction of its torsion angles with the procedure,
described above. The prediction accuracy is measured by the mean
absolute error (MAE) between the predicted (P) and experimental (E)
torsion angle values:

MAE =
1

∑N
i=1 Li

N

∑
i=1

Li

∑
j=1
|Pij − Eij| (3.5)

where N is the number of proteins and Li is the number of residues
in protein i of confidence greater than a chosen cutoff (C > x). All
predicted and experimental torsion angles are computed in degrees
within the [−180◦, 180◦] range. To keep the error values in that range
as well, we apply the following rule when calculating the absolute
angular errors |AEij|:
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Method Confidence MAE (ϕ) MAE (ψ)

TANGLE 0.8 31.9 ± 34.9◦ 90.7 ± 30.6◦

ANGLOR 0.8 18.7 ± 25.8◦ 86.4 ± 43.0◦

HHfrag 0.8 18.6 ± 27.0◦ 22.5 ± 36.2◦

TANGLE 0.0 34.2 ± 36.4◦ 87.4 ± 32.3◦

ANGLOR 0.0 23.5 ± 30.0◦ 84.7 ± 47.6◦

HHfrag 0.0 25.4 ± 34.7◦ 34.9 ± 48.9◦

Table 3.1: Torsion angle prediction performance. Shown are the mean abso-
lute errors of ϕ and ψ torsion angle prediction for high-confidence
(C ≥ 0.8) and all residues (C ≥ 0) in our benchmark.

|AEij| =


|AEij + 360| if AEij < −180

|AEij − 360| if AEij > +180

|AEij| otherwise

(3.6)

We tested the performance of our centroid-based torsion angle pre-
dictor on 106 protein targets from the CASP9 competition [62]. The
mean absolute errors (MAE) of predicted ϕ and ψ angles were com-
pared against the values, obtained using two machine learning meth-
ods for torsion angle prediction from sequence: ANGLOR [94] and
TANGLE [85]. The overall precision of HHfrag in comparison to these
methods is reported in Table 3.1.

When regions of any confidence are considered, our method pre-
dicts ϕ angles with slightly lower accuracy than ANGLOR (2◦ higher
MAE), but better than TANGLE. For ψ angles however, HHfrag is sig-
nificantly more accurate, improving on both ANGLOR and TANGLE
by a 50◦ lower MAE (Figure 3.14). The observed MAE of HHfrag is
25.4◦ for ϕ and 34.9◦ for ψ angles on average.

As expected, the quality of torsion angle prediction with HHfrag
improves further when the confidence score of each query position is
taken into account (Figure 3.15). In target regions of C ≥ 0.8, the
average MAE drops by 6.8◦ and 12.4◦ for ϕ and ψ angles respec-
tively (Table 3.1). Generally, the MAE of HHfrag predictions gradu-
ally decreases as we discard regions of lower confidence (Figure 3.15).
Such an improvement is less pronounced for ϕ angle predictions with
ANGLOR (−4.8◦) or TANGLE (−2.3◦) and completely lacking when
these methods are used to predict ψ angles (Table 3.1; Figure 3.15).

HHfrag does not always select optimal centroids in low-confidence
regions (C < 0.8) as the lack of sufficient recurrence and consistency
of such clusters hinders the filtering algorithm. However, in transi-
tional zones (C ≥ 0.8), the deviation from the optimal MAE becomes
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Figure 3.14: Distributions of the absolute errors of predicted torsion an-
gles. Shown are the distributions of ϕ and ψ prediction errors
for high-confidence (right) and all target residues (left) in our
benchmark.

negligible and for high-confidence regions (C ≥ 1) our method is
guaranteed to extract torsion angles from the best-fitting fragment at
each position (Figure 3.15). These results highlight the importance of
taking the local conservation landscape into account and confirm the
utility of our confidence-guided prediction strategy.

3.7.5 Applications

In the previous section we saw that the confidence metric is a reliable
predictor for the locations of the high-accuracy regions, also called
high-confidence zones. This enables client applications to use the confi-
dence as a guide for reliability of local structure prediction and utilize
fragments from confident zones with higher priority. Here we discuss
some practical applications of filtered HHfrag libraries.

3.7.5.1 Ab initio structure prediction

In Section 3.6.1 we demonstrated that traditional ab initio fragment as-
sembly methods such as Rosetta AbinitioRelax [72, 55] are designed
for use with continuous fragment maps of maximum coverage. The
interrupted nature of the HHfrag libraries may therefore be seen as
a significant shortcoming. We resolve this incompatibility between
HHfrag and Rosetta with the algorithm for preparation of hybrid,
gapless fragment libraries. We start with a raw variable length frag-
ment set, produced by a standard HHfrag run. As discussed earlier,
HHfrag libraries demonstrate patterns of high-confidence motifs, con-
nected by low-accuracy linkers (low number of assignments, mostly
incompatible loop segments) or gaps (no assignments at all). Both
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Figure 3.15: Torsion angle prediction accuracy at increasing confidence cut-
offs. We measured the mean absolute error (MAE) of ϕ and ψ
angle prediction at increasing confidence cutoffs. For each cut-
off, we computed the ϕ and ψ MAE for all target residues in our
benchmark, having a confidence greater or equal to the cutoff.
The optimal curve shows the MAE calculated for the best-fitting
fragments in each cluster.

unassigned and low-confidence regions can be envisioned as “gaps”
in the fragment map, which require brute-force modeling. Using a
confidence threshold of 0.6–0.7 (see Section 3.7.1 and Section 3.7.3 for
justification), our algorithm can identify all low-accuracy query po-
sitions and mark them as eligible for complementation. All gaps are
then filled with fragments from structural alphabets, chemical shift
libraries (Chapter 4), or NNmake. Complementation with NNmake
and CSfrag fragments has been implemented as a standard HHfrag
extension in CSB (Section 6.3), which is designed to ensure compat-
ibility of HHfrag with classic ab initio modeling applications (Sec-
tion 6.3). We discuss the utility of this method in Chapter 5, where we
describe a protocol for protein structure determination using hybrid
fragment libraries.

3.7.5.2 Local structure prediction

The confidence metric provides a convenient and reliable framework
for local structure prediction. We showed that cluster centroids, as-
signed to high-confidence regions (C ≥ 1), are guaranteed to have
accurate local structure. Client applications, such as ISD [70, 71], can
use this information to increase the accuracy of local structure pre-
diction. The CSB API [53], presented in Chapter 6, exposes the Torsio-
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nAnglesPredictor class, which can be used to extract residue-wise tor-
sion angle predictions from filtered HHfrag libraries and centroids,
guided by the confidence score [52]. The centroid-based approach for
torsion angle prediction from sequence is also implemented as an
HHfrag extension in the latest version of the software (Section 6.3).
We discuss a practical application of this method in Chapter 5, where
the centroid-based torsion angle predictor is used to derive angular
restraints for high-confidence regions in a protein structure determi-
nation protocol.

3.7.5.3 Secondary structure prediction

The fragment filtering procedure can also be used for three and eight-
state secondary structure prediction. The most successful strategy in
our experience involves a combined approach. In low-confidence re-
gions (C < 0.8), we take a standard secondary structure prediction
(PSIPRED [49]). In regions with higher confidence, we compute the
consensus secondary structure among all fragments, survived the li-
brary filtering procedure.

3.8 conclusion

In this chapter, we introduced the static and dynamic methods for
fragment-based local and 3D structure prediction. We explained how
the PDB database can be used as a comprehensive source of con-
served supersecondary motifs, shared among proteins from different
folds. Using the most sensitive methods for sequence profile compar-
ison, such motifs can be detected and compiled in customized frag-
ment libraries, suitable for ab initio protein structure prediction.

Building upon these concepts, we developed HHfrag — a novel
method for profile HMM-based fragment detection, designed to com-
bine the strengths of earlier static and dynamic approaches, while
at the same time addressing their common limitations. HHfrag is
the first method capable of detecting fragments of variable length
and gapped nature, which leads to a significant improvement in local
structure prediction accuracy. We showed that our method achieves
a good balance between coverage and precision, improving the ac-
curacy of fragment detection over dynamic methods like Rosetta NN-
make, at the expense of 19± 15% loss in sequence coverage. Although
the presence of unassigned fragment map regions is a disadvantage
for traditional ab initio modeling, we showed that unassigned regions
are usually part of unconserved segments, which need special treat-
ment (i. e. sequence-based local structure prediction is not possible
due to the lack of sequence conservation). We demonstrated that the
locations of conserved motifs in a protein sequence can be predicted
by examining the recurrence and structural homogeneity of detected
fragments. The resulting confidence score correlates well with the
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local RMSD of the representative fragments and allows prediction
of torsion angles from sequence with better accuracy than existing
machine learning methods. The ability to discriminate between low-
and high-accuracy zones, along the development of filtered and low-
complexity fragment libraries, opens interesting possibilities for use
of HHfrag in local structure prediction and NMR structure determi-
nation.

Finally, the advantages of using libraries, enriched with high-quality
fragments, were demonstrated in Rosetta ab initio folding experiments.
By substituting the standard NNmake fragment detection module of
Rosetta with HHfrag, we demonstrated that our dynamic fragment
libraries improve the performance of traditional ab initio protein struc-
ture prediction. We observed enrichment of high-quality decoys, ac-
companied by faster sampling and improved energy funnels. This
improvement is attributable to the use of dynamic fragment libraries
of greater precision. We showed that HHfrag’s ability to capture the
contextual variability of detected motifs is one of the main contribut-
ing factors in this direction.

However, structure prediction by fragment assembly is not the only
field of application of HHfrag. Fragments can be useful for many pur-
poses. For example, fragment-based methods have been used in the
recent structure determination of mitochondrial uncoupling protein
2 [4]. For such reasons, the main focus of our study was the develop-
ment of a broader, general-purpose framework for accurate local pro-
tein structure prediction from sequence. In the following chapters we
will see how HHfrag fragment libraries can be used in combination
with sparse and low-quality experimental data for NMR structure
determination.
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A N A L O G O U S F R A G M E N T L I B R A R I E S

4.1 introduction

HHfrag belongs to the family of traditional sequence-based methods
for local structure prediction. All methods in this class rely on the
observation that many reusable structural motifs in fact demonstrate
a degree of sequence conservation. Our ability to detect these scarce
sequence signals has recently improved significantly, thanks to the
development of algorithms for pairwise alignment of profiles and
HMMs (2.2) [84]. These algorithms have reached a level of sensitiv-
ity, sufficient enough to ensure detection of virtually all recurrent
structural motifs, observed in experimental structures across differ-
ent folds. It is therefore justified to assume that the identification of
conserved supersecondary structures poses no principal challenge to
modern dynamic fragment detection methods. However, the expecta-
tion that protein structures are simply combinations of conserved mo-
tifs has not seen experimental confirmation. While reusable sequence
motifs clearly do exist [10], they rarely span protein sequences in their
entirety. This important observation was discussed in detail as part of
HHfrag’s framework for filtering and enrichment (3.7). We showed
that dynamic fragment libraries have a non-uniform precision along
the query sequence, alternating between high- and low-confidence re-
gions or gaps. Our analysis has previously confirmed that these are
typically regions where no sequence-based fragment detection will
ever succeed: loops, linkers or unstructured termini [51]. This is a
fundamental limitation of all methods for fragment detection based
on sequence profiles, which stems from the fact that some sequence
regions are too variable, not part of regular secondary structure and
therefore not instances of reusable structural motifs. Such regions
have little chance to receive reliable local structure prediction.

Earlier we saw that fragment map interruptions have a strongly
negative effect on the performance of Rosetta [72] fragment assembly
(3.6.1). A high level of sequence coverage is in general a desirable
property for any fragment library, regardless of its purpose. But how
can we increase the coverage of a given fragment library, if some re-
gions of the query cannot be detected, because they are naturally not
part of conserved, remotely homologous motifs? To address this issue,
we need to incorporate additional experimental information. Chem-
ical shift data, obtained in NMR experiments, is an ideal candidate
for this practical purpose. The correlation between local structure in
proteins and secondary chemical shifts is a well-known phenomenon

53
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(2.5.1). Algorithms for alignment of chemical shifts have been used for
template selection [34], thus revealing their potential for detection of
analogous structures. Recently, methods for ab initio fragment assem-
bly have been successfully combined with chemical shift data, result-
ing in novel approaches to NMR structure determination [78, 80, 17].
This suggests that chemical shift data may be used for analogous
fragment detection as a supplement to the inherently more reliable
remote homology-based approach. When combined with sequence-
derived fragment libraries, analogous fragments can be used to fill
any gaps exposed in low-confidence regions and increase the overall
coverage of the fragment libraries.

To address the limitations of sequence-based methods for fragment
detection, we developed CSfrag — a method for construction of anal-
ogous fragment libraries, based on chemical shift similarity detection.
This chapter begins with the derivation of a chemical shift scoring
function, used to detect structural fragments with similar chemical
shift patterns. The PDB library [5] contains an insufficient number
of NMR structures at present; however, recent developments have
made chemical shift prediction possible [42]. By matching experimen-
tal shifts of query segments against predicted shifts for PDB tem-
plates, CSfrag collects compatible fragments with analogous struc-
ture and compiles a fragment library. We also describe the algorithm
behind new HHfrag extensions, designed to complement gaps and
low-confidence regions in traditional HHfrag libraries with chemical
shift (CS) fragments.

4.2 the chemical shift scoring function

We begin with a detailed description of our chemical shift scoring
model and its derivation.

4.2.1 Formal definition

To evaluate the similarity between two structural segments of equal
length L, we first calculate their cumulative chemical shift score C,
which is the sum of all pairwise chemical shift scores for all L posi-
tions:

S(query, subject) =
L

∑
i=1

∑
n∈{nuclei}

Sn(∆δi,n) (4.1)

where ∆δi,n is the difference in secondary chemical shift values for nu-
cleus n between the query and subject segments at alignment column
i:

∆δi,n = δ
query

i,n − δ
subject

i,n (4.2)
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We consider the chemical shifts of 5 nuclei: CA, CB, C, N and HA.
By convention, the chemical shift differences ∆δi,n are always calcu-
lated by subtracting the secondary shifts of the query from those of
the subject. All secondary shifts are computed directly from their raw
values by following the DANGLE approach [18]. We define the pair-
wise score Sn for a pair of residues qi, si and a given nucleus type n
as the likelihood ratio:

Sn(∆δi,n) = log2
Pn(∆δi,n|pos)
Pn(∆δi,n|neg)

(4.3)

i. e. the probability of observing a secondary shift difference ∆δ as
part of a true positive match, divided by the corresponding probabil-
ity for a negative (random) pair of residues. We take the logarithm
base 2 of this ratio, thus the pairwise score is measured in bits. This
is a familiar concept, resembling the scoring of amino acid pairs in
classic sequence alignment [25]. The log-odds ratio is expected to be
greater than zero for true positive pairs and lower than zero for true
negatives. The total score for two structural segments of length L is
obtained by summation of the pairwise bit-scores over all segment
positions i and nuclei n (Equation 4.1). Segments with compatible
structure are therefore expected to have positive total scores, while
random matches and mismatches in general will lean towards nega-
tive values of the total chemical shift score C.

The following section outlines the derivation of the Pn densities.

4.2.2 Model estimation

To calculate the positive- and negative-pair probabilities Pn, we col-
lected secondary shift differences from a large set of experimental
protein structures and evaluated their empirical distributions. Exper-
imental chemical shift data was taken from the latest release of the
VASCO database [90, 69]. There are 408 VASCO entries included in
the non-redundant PDB database PDBselect25 [35]. Recall that the
same database has been previously used as the basis of PDBS25-
HMM — HHfrag’s library of fragment templates (3.3.1). We refer to
the intersection between VASCO and PDBS25 as the Non-redundant
VASCO (nrVASCO) database. Predicted chemical shifts for the entire
PDBS25 library were additionally computed using the SHIFTX2 meth-
od [42].

To build the empirical distributions Pn, we calculated experimental
versus predicted secondary shift differences ∆δn for each nrVASCO
chain. This resulted in 5 sets of secondary shift differences and thus 5
different empirical distributions, one for each nucleus type (CA, CB,
N, C and HA).

Positive residue pairs were extracted from structurally similar pro-
teins — homologous or analogous — taken from our non-redundant
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PDBS25 database. For every nrVASCO protein, we simply collected
the full list of its DALI [47] structural neighbors, discarding those
not found in PDBS25. Each structural neighbor was then aligned
against its matching nrVASCO protein using TMalign [96]. Positive
secondary shift differences were finally obtained from all aligned re-
sidue pairs part of alignments with a TM-score > 0.6.

10 5 0 5 10

CA

10 5 0 5 10

CB

8 6 4 2 0 2 4 6 8

C

20 15 10 5 0 5 10 15 20

N

2 1 0 1 2

HA

Positive
Negative

Figure 4.1: Empirical distributions of secondary chemical shift differences
∆δn for each nucleus type n. Positive is the distribution of match-
ing (structurally similar) pairs Pn(∆δi,n|pos) and Negative indi-
cates mismatching (random) pairs — Pn(∆δi,n|neg). The probabil-
ity density functions of the corresponding Generalized Normal
fits are shown as solid curves.

Negative residue pairs were extracted from random structural align-
ments. For each nrVASCO entry, we obtained structural alignments
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Nucleus Positive Negative

µ b β µ b β

CA 0.02 1.32 1.1 -0.08 4.23 2.2

CB 0.06 1.32 1.0 0.08 2.41 1.2

C 0.12 1.52 1.4 -0.13 3.42 2.1

N 0.23 4.39 1.4 0.17 7.08 1.9

HA 0.00 0.27 1.0 -0.01 0.66 1.4

Table 4.1: Estimated parameters of the Generalized Normal distribution for
secondary shift differences ∆δ. Positive is the distribution of match-
ing (structurally similar) pairs and Negative indicates mismatching
(random) pairs.

with 5 randomly selected PDB25 structures (TM-score < 0.2) and ex-
tracted negative secondary shift differences from all unaligned residue
pairs.

The empirical distributions of positive and negative secondary shift
differences are shown in Figure 4.1. In all instances, the histograms
resemble heavy-tailed distributions, such as the Laplace distribution,
but also demonstrate some Gaussian properties. These two models
are combined in the flexible Generalized Normal distribution, which
was found to approximate the empirical data well. Its Probability den-
sity function (PDF) is given by:

p(x|µ, b, β) =
β

2bΓ(1/β)
e−(|x−µ|/b)β

(4.4)

This PDF has three parameters:

• µ: location; this is the median of the chemical shift differences of
the corresponding nucleus type;

• β: shape;

• b: scale; defined as:

b =

√
Γ(1/β)

Γ(3/β)
∗ 1

n

n

∑
1
(xi − µ)2 (4.5)

At β = 1, this density takes the form of a Laplace distribution and
the Gaussian is defined at β = 2. We can estimate its parameters
using the maximum-likelihood method. The estimated parameters for
all 10 distributions of positive and negative pairs are summarized in
Table 4.1 and the agreement between the estimated model and the
empirical data is depicted in Figure 4.1.
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4.2.3 Performance

4 3 2 1 0 1 2
Score (bits)

CA

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
Score (bits)
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Score (bits)
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1.5 1.0 0.5 0.0 0.5 1.0
Score (bits)
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Figure 4.2: Distributions of the pairwise chemical shift score Sn for each
nucleus type n. Positive is the score distribution of all match-
ing (structurally similar) residue pairs from Figure 4.1 and Nega-
tive indicates mismatching (random) pairs. The average bit-score
gain per residue for each set is given in Table 4.2.

The empirical distributions of positive (i. e. structurally compatible)
residue pairs are generally more narrow than the corresponding neg-
ative distributions. The difference is more pronounced for CA and C
nuclei, followed by HA. This suggests that the chemical shifts of CA
and C nuclei will have significantly larger contribution to the total
chemical shift score. To measure the ability of our scoring model to
discriminate between structurally similar fragments, we evaluated all
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positive and negative shift differences using the pairwise score from
Equation 4.3. Thus, for each chemical shift type n, we computed the
log-odds ratio Sn(∆δn):

Sn(∆δn) = log2
Pn(∆δn|µ+, b+, β+)

Pn(∆δn|µ−, b−, β−)
(4.6)

where the model parameters, marked with “+”, are the estimated pa-
rameter values for positive pairs and “-” indicates negative. The dis-
tribution of all pairwise scores, obtained in this way, is shown in
Figure 4.2. Structurally similar residue pairs tend to achieve positive
pairwise scores, while the score distributions for true negative pairs
are shifted to the left and are less steep. These figures also confirm
the initial observation that CA and C, followed by HA nuclei, have
stronger potential to distinguish between compatible and structurally
dissimilar residue pairs. The exact contributions by all chemical shift
types are shown in Table 4.2.

Nucleus Positive Negative Difference

CA 0.421 -0.535 0.956

CB 0.110 -0.125 0.235

C 0.332 -0.462 0.794

N 0.095 -0.099 0.193

HA 0.227 -0.265 0.492

sum 1.185 -1.486 2.670

Table 4.2: Total bit-score gain by chemical shift type. The Positive column
contains the average of all pairwise bit-scores, obtained for residue
pairs from similar 3D structures. Negative indicates the average bit-
score for mismatching (random) pairs.

On average, true positive CA and C chemical shifts generate 0.4 and
0.3 bits per residue, while HA atoms contribute with roughly half of
this amount (0.2). Considering all chemical shift types, the average
yield per positive residue pair is greater than zero (1.185 bits), while
structurally dissimilar residue pairs have a negative average bit-score
(-1.486).

4.3 analogous fragment picking

The chemical shift scoring model forms the basis of CSfrag — our
method for detection of fragments with compatible (analogous) local
structure. This is done by matching the experimental chemical shifts
of the query protein against predicted chemical shifts of known pro-
tein structures. Sequence segments with similar chemical shifts are
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expected to have similar local structure, so the structural fragments
extracted in this way can be used to fill the gaps in remote homology-
based fragment libraries. Detected fragments may have either homol-
ogous or analogous nature; their sequence similarity is irrelevant and
therefore not measured.

4.3.1 Preparation

CSfrag uses the familiar non-redundant database of experimental
structures as a source of fragments (Section 3.3.1). Recall that PDBS25
is derived from PDBselect25 [35], a database of PDB chains filtered at
25% sequence identity. We have found that this database represents
the entire diversity of fragments in PDB and thus can be used as
a PDB substitute for faster searching. However, less than 10% of all
PDBS25 structures have been determined by NMR spectroscopy and
provide chemical shift data. For such reasons, we need to approx-
imate the chemical shifts for all remaining proteins by obtaining a
prediction with SHIFTX2 [42]. Each PDBS25 entry is therefore charac-
terised by:

1. experimental structure;

2. list of chemical shifts (CA, CB, C, N and HA).

All raw chemical shifts are converted to secondary shifts by sub-
tracting them from the corresponding random coil reference values.
This is done using the DANGLE method [18], as implemented in the
RandomCoil CSB API [53]. More specifically, we compute sequence-
corrected secondary chemical shifts, by subtracting each raw shift
from the random coil value and then applying a sequence context-
specific correction within a window of ±2 residues.

4.3.2 Fragment extraction

The fragment extraction algorithm slices the query into a nested ar-
ray of segments and matches them exhaustively against all templates
in PDBS25. The simplest implementation uses a sliding window of
short size, typically 7, 8 or 9 residues; we have identified 7 as a
very good candidate. More sophisticated, variable-length fragment
search is trivially implemented using a standard dynamic program-
ming algorithm for sequence alignment, where the scoring matrix is
substituted with the chemical shift scoring model from Section 4.2.
As discussed earlier, the pairwise bit-score score is negative for “mis-
matches” and positive for “matches”, which makes it ideal for inclu-
sion in a sequence alignment algorithm. In this chapter, we stick to
the sliding window approach. This is only a proof-of-concept imple-
mentation, i. e. we use a sliding window to simplify the interpreta-
tion of the results by excluding any confounding factors. However,
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all practical implementations of CSfrag should prefer the alignment
approach.

The sliding window-based implementation of CSfrag is straightfor-
ward. We obtain a nested array of all query segments of size 7, ex-
tract their experimental chemical shifts and compute corresponding
secondary shifts for each nucleus type n in {CA, CB, N, C, HA}. For
each segment, we use a sliding window of segment’s length to scan
every chain in PDBS25 for matching predicted secondary shifts. This
is done by computing the experimental minus predicted secondary
shift differences ∆δi,n on every position i in the 7-mer window, for
each nucleus type n (where available). The total chemical shift score
Sseg for this segment is computed from the extracted differences ∆δ

according to Equations (4.1) and (4.6), where the Generalized Normal
model is initialized with the estimated parameters from Table 4.1. The
top 50 segments, whose score is greater than a cutoff, are kept as can-
didates. Finally, CSfrag collects all surviving candidates, orders them
by score and builds a position-specific fragment library in Rosetta
NNmake format [72, 55].

To define a meaningful chemical shift score cutoff, we used the
mean bit-score yield of structurally similar residue pairs from Ta-
ble 4.2. On average, positive pairs generate 1.034 bits per residue,
considering all 5 chemical shift types. Chemical shift score cutoffs
greater than 1.0 × L (i. e. 7 bits for 7-mer fragments) are therefore
good candidates. The standard cutoff in CSfrag is set to 1.1 bits per
residue.

4.3.3 Gap-filling with analogous fragments

As discussed earlier, low-confidence and unassigned regions in HH-
frag fragment maps correspond to unconserved segments, where re-
mote homology detection efforts are in vain. This issue can be ad-
dressed by complementation of those regions with chemical shift frag-
ments.

For regular HHfrag fragment maps, we propose the confidence-
guided complementation procedure as already implemented for NN-
make fragments (Section 3.7.5). We measure the confidence of each
cluster along the query sequence and mark for complementation all
positions with confidence of C < 0.8. All low-confidence positions are
then filled with analogous fragments, centered around each marked
position. This procedure ensures a very high coverage at the expense
of a possibly reduced global precision.

Filtered HHfrag libraries are best complemented using a double
filtering strategy. We first filter the analogous library using the stan-
dard outlier rejection algorithm (Section 3.7.2). Filtered chemical shift
fragments are then mixed with the raw HHfrag fragment map. The
mixed library is filtered once again to produce a final filtered frag-
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ment map. This method increases the coverage and simultaneously
preserves and even enhances the precision of filtered HHfrag libraries
(Figure 4.4).

The gap-filling and double-filtering protocols are implemented in
the latest version of HHfrag and CSfrag, available as part of the CSB
toolbox (Section 6.3).

4.4 benchmark

The performance of CSfrag libraries was evaluated on a set of 22
CASP9 targets. This is the number of HHfrag benchmark proteins
(Section 3.5), for which experimental chemical shifts are available in
VASCO [90, 69]. We used the same performance metrics as earlier —
global precision, local precision and coverage (Section 3.5). For each
target, we computed a constant-length library of analogous 7-mers,
using the CSfrag procedure from Section 4.3.2. Next, we applied the
double filtering algorithm from Section 4.3.3 to combine the exist-
ing HHfrag dynamic libraries with analogous fragments and once
again measured the coverage and the precision of the resulting com-
plemented fragment sets.

The sequence coverage of analogous libraries is very high and re-
sembles the values, which we have seen for NNmake (88± 6% over
the 22 CASP9 targets). On average, CSfrag covers 90± 14% of the tar-
get residues. When all 50 fragments per position are considered, the
coverage is close to optimal. Chemical shift-derived fragment libraries
are therefore ideal candidates for complementation of the gapped
HHfrag fragment maps, thus achieving their main design goal.

The chemical shift similarity, however, is a less reliable indicator
of structural conservation. While sequence relatedness is usually a
strong indicator of spatial similarity, matching secondary shift pat-
terns do not necessarily translate to identical 3D structures. Similar
chemical shifts generally imply similar secondary structure, but this
does not always suffice to guarantee identity of two supersecondary
structures in 3D, because the geometry of some fragments is deter-
mined by mid-range contacts, formed between individual secondary
structure elements. The lack of sufficiently large number of experi-
mental structures solved by NMR spectroscopy imposes the need to
use crystal structures with predicted chemical shifts. This is an addi-
tional factor, which affects the precision of this method negatively.

For such reasons, analogous libraries, compiled with CSfrag, have
lower precision than their HHfrag counterparts. The average preci-
sion of CSfrag is 36± 14% — a number, almost identical to the one ob-
tained for NNmake (Section 3.5). These results make intuitive sense,
given the observation that secondary shifts are known to correlate
with secondary structure. This is further confirmed by examination
of the local accuracy of CSfrag (Figure 4.3). The local precision pat-
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Figure 4.3: Local precision of CSfrag, NNmake and HHfrag libraries, com-
piled for target 2l06 at standard cutoff (1.5 Å). Each blue bar
indicates the percentage of true positive fragments, which cover
a given query residue. The grey background corresponds to the
false positive rate, and the white regions are completely unas-
signed. The dark overlay on the first diagram represents the local
precision of a 7-mer fragment library, compiled by matching the
predicted secondary structure of the target against the computed
secondary structures of all PDBS25 templates.

terns strongly resemble the ones, observed for NNmake and pure
secondary structure-based fragment detection. However, CSfrag ob-
tains higher global precision than the simple method of matching pre-
dicted versus computed secondary structure. This confirms the utility
of using chemical shift-based detection of analogous fragments and
justifies the added computational time.
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Figure 4.4: Local precision of the complemented double-filtered library for
target 2l06. Shown are the standard filtered HHfrag library (bot-
tom) and complemented, double-filtered library (top), prepared
using the algorithm from Section 4.3.3. Note how the addition of
analogous fragments and the double filtering approach lead to
the closure of gaps at positions 40–50 and 80–90 and simultane-
ously increase the precision of the filtered library.

We found that analogous fragments can also be used to aid the
preparation of filtered fragment libraries using HHfrag’s filtering ex-
tension. However, chemical shift-derived libraries were shown to con-
tain high rates of false positives, which hinders the filtering process.
We address this issue with the double filtering algorithm, described
in Section 4.3.3. Considering only the 22 NMR targets from CASP9,
filtered HHfrag libraries achieve an average precision of 50 ± 15%
and a mean coverage of 60± 15%. After complementing the raw HH-
frag libraries using double filtering, the average precision increases
to 62± 12% and the coverage reaches 77± 11%. While the double fil-
tering procedure does not retain CSfrag’s near-complete coverage, it
increases the coverage of our high-precision filtered libraries signifi-
cantly (see Figure 4.4 for a specific example).

4.5 conclusion

We discussed the use of experimental NMR data for fragment de-
tection. Secondary chemical shifts have been found to correlate with



4.5 conclusion 65

local structure and this property can be exploited to extract analo-
gous fragments with compatible structure. Building upon this con-
cept, we developed a chemical shift scoring model, which can be in-
corporated in alignment algorithms and used to measure the simi-
larity of structural fragments. Our fragment detection method, called
CSfrag, compares segments of experimental chemical shifts against
a non-redundant database of predicted chemical shifts. High-scoring
segments from experimental structures are then excised to build a
position-specific library of analogous fragments.

Analogous fragment libraries have significantly lower precision than
the remote homology-based fragments, detected with HHfrag. How-
ever, the chemical shift matching approach has a clear advantage in
low-confidence regions, because it does not rely on motif sequence
conservation. Therefore, the analogous fragment libraries compiled
with CSfrag are especially useful in HHfrag’s procedure for comple-
mentation of regions of low accuracy and fragment map gaps. Recall
that fragment map interruptions are highly undesirable when a given
library is used in traditional ab initio fragment assembly. To address
this problem, we proposed a simple and efficient method for gap-
filling with analogous fragments. In addition, a flexible algorithm al-
lows HHfrag to incorporate analogous fragments during the filtering
phase, improving the coverage and precision of filtered fragment li-
braries significantly.





5
N M R S T R U C T U R E D E T E R M I N AT I O N W I T H
H H F R A G

5.1 introduction

The fragment assembly approach to protein structure prediction is
a flexible framework for 3D modeling, whose practical applications
extend beyond the boundaries of ab initio structure prediction from
sequence. Fragment libraries can be used in conjunction with exper-
imental NMR data for fully automated protein structure determina-
tion [78, 80, 17]. This method relies on using traditional sequence pro-
file fragments of detectable remote homology in combination with
analogous fragments with compatible chemical shifts [38]. The pro-
cess of structure calculation from homologous or analogous fragments
is in fact identical to conventional ab initio structure prediction using
fragment libraries. Differences may rather arise in the way the gen-
erated structures are scored and validated against the experimental
data. The question of fragment optimality, however, is currently an
underrepresented topic in this line of research. As a result, poten-
tially useful contextual information such as fragment length variabil-
ity, degree of local motif conservation and long-range contacts be-
tween pairs of co-occurring fragments may currently be unexplored.

Here we describe an application of our local structure prediction
framework (Chapter 3, Chapter 4) in NMR structure determination
from sparse data sets. Our method relies on HHfrag [51] as a source
of remotely homologous fragments of variable length, which capture
the contextual variability of detected motifs and their actual sequence
boundaries accurately. We utilize our confidence-guided framework
for local structure prediction [52] to identify regions of local motif con-
servation and incorporate this information as a valuable additional
constraint in the structure calculation protocol. To increase the frag-
ment library coverage at regions where no conserved motifs can be
detected, we use the chemical shift-scoring facilities of CSfrag for ex-
traction of analogous fragments with compatible structure. We con-
clude this chapter with practical examples of successful protein struc-
ture determination with this approach in combination with classic
Rosetta ab initio fragment assembly [72].

5.2 structure calculation from sparse data

Our structure calculation protocol comprises of the following com-
ponents: (i) dynamic HHfrag libraries of variable fragment length,

67
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complemented with analogous chemical shift fragments; (ii) hybrid
HHfrag centroids as a source of residue-wise torsion angle restraints
in high-confidence regions; and optionally (iii) experimental 3D-NOE
spectra as a source of distance restraints. Details on each individual
component of the structure calculation protocol are provided next.

5.2.1 Hybrid fragment libraries

Hybrid fragment libraries were prepared using the gap-filling algo-
rithm, described earlier (see Section 3.7.5 and Section 4.3.3).

For a given protein target, we first compiled a standard variable-
length fragset with HHfrag. Recall that HHfrag [51] uses informa-
tion from sequence profiles and predicted secondary structure to ex-
tract remotely homologous motifs from a non-redundant subset of
the PDB database [5].

Next, we prepared a library of analogous 7-mers using assigned
experimental chemical shifts as input. CSfrag computes secondary
shifts from the input values for CA, CB, C, N and HA nuclei and scans
the HHfrag database of templates (PDBS25) for 7-mer segments with
matching predicted secondary shifts. We kept at most 25 of the best
scoring fragments per starting position, having a cumulative chemical
shift score of at least 7.7 bits (1.1 bits per residue). The complexity of
the resulting library of analogous 7-mers was reduced by running CS-
frag in filtering mode, which produces a compact library of centroids
(using the familiar fragment clustering algorithm from Section 3.7).

The chemical shift-derived centroids were finally used as a filling
for confidence-guided complementation with HHfrag (Section 3.7.5).
Dynamic fragment map regions of confidence C ≤ 0.7 were consid-
ered unreliable and complemented with CSfrag centroids to achieve
a near-complete sequence coverage, without simultaneously increas-
ing the complexity of the library significantly. We used the resulting
hybrid library along with a modified Rosetta ab initio in place of the
standard 9-mer fragset.

5.2.2 Angular restraints

Each hybrid fragment library was additionally used as a source of
torsion angle restraints. The idea is to restrict the degrees of freedom
of the folding protein chains in regions where HHfrag is guaranteed
to produce near-native local structure prediction (high-confidence re-
gions).

We used the centroid-based torsion angle predictor, part of HHfrag
[52] (Section 3.7). After analyzing the structural consistency and re-
currence of the fragments in a given complemented fragset, HHfrag
extracts ϕ and ψ angle predictions from the representative fragments
at each target position. We used all torsion angle predictions of very
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Figure 5.1: Extraction of predicted local (intra-fragment) and long-range
(inter-fragment) contacts from dynamic fragment libraries.

high confidence (C ≥ 1) as a direct source of angular restraints in
Rosetta:� �
Dihedral C i-1 N i CA i C i CIRCULARHARMONIC phi 0.35

Dihedral N i CA i+1 C i+1 N i+1 CIRCULARHARMONIC psi 0.35� �
where phi and psi are the torsion angles of the representative frag-
ment at target position i in radians and 0.35 is the σ parameter of the
dihedral constraint in Rosetta:

f (x) =
(

NearestAngle(x, Xrep)− Xrep

σ

)2

(5.1)

5.2.3 Distance restraints

Information about mid- and long-range contacts can be incorporated
in the structure calculation protocol when experimental 3D NOESY
data are available. We used a standard algorithm for reading unas-
signed NOE peaks and relating them back to the actual residues in
the protein sequence [37]. For each proton endpoint of a given NOE
peak, this procedure scans the list of assigned chemical shifts for en-
tries within a small range of ±0.2 ppm. Unfortunately, most NOE
data sets contain extremely ambiguous proton-proton contacts, mean-
ing that the endpoints of a given peak can be assigned to multiple
chemical shift candidates. To derive an unambiguous list of contacts
from a given NOE spectrum, we propose a basic filtering algorithm,
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Target Range Best (frag.) Best (superfrag.) Selected

2kmmA 2-62 0.71 0.78 0.78

2kruA 6-51 0.68 0.73 0.73

2kj6A 34-95 0.54 0.88 0.54

2l9rA 11-60 0.78 0.55 0.78

2ln3A 1-76 0.73 0.41 0.73

2kifA 3-96 0.64 0.46 0.64

2la6A 14-99 0.53 0.57 0.57

2lojA 20-63 0.53 0.48 0.53

2lahA 12-160 0.69 0.29 0.69

2kpmA 23-82 0.50 0.47 0.50

2ltmA 11-107 0.38 0.58 0.58

2lciA 1-127 0.64 0.26 0.26

2ltlA 15-119 0.44 0.44 0.44

2kk1A 39-135 0.43 0.44 0.44

Table 5.1: TM-scores of the best Rosetta models, obtained with hybrid frag-
ment libraries (denoted as fragments) and distance restraints de-
rived from filtered 3D NOE spectra (superfragments). The best de-
coys from both sets were additionally tested for compatibility with
the unfiltered NOE spectra. The decoy explaining a higher num-
ber of NOE peaks is indicated in the last column.

which validates the raw NOE contacts against a list of predicted intra-
and inter-fragment contacts (Figure 5.1).

The extraction of inter-fragment contacts follows a straightforward
procedure. We modeled the backbone of each fragment onto the tar-
get sequence using SCWRL4 [58] and protonated the resulting full-
atom chains with Reduce [93]. Pairs of hydrogen atoms within an
absolute distance of up to 6 Å were considered NOE-visible and ex-
tracted as short-range contacts.

To predict inter-fragment contacts, we inspected each possible pair
of fragments in a given HHfrag library. For each pair, we scanned
the PDBS25 database for structures in which the same pair of frag-
ments co-occurs. This was performed by running HHsearch [84] with
the HMM profiles of the fragments as queries and intersecting the
resulting hit lists. Each time a pair of fragment instances in a given
PDB chain were found to be in contact, i. e. having at least one pair
of hydrogens within a distance of 6 Å, and separated by relatively
conserved amount of residues in the primary structure of the chain,
we nominated the fragment pair as a superfragment. All superfrag-
ment hydrogen-hydrogen contacts within a cutoff of 6 Å were finally
extracted as NOE-visible long-range contacts.
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To obtain the final list of filtered NOE contacts, we intersected the
set of ambiguous NOEs with the set of all predicted fragment and
superfragment contacts. Surviving NOEs were kept and incorporated
in the structure calculation as bounded Rosetta distance constraints:� �
AtomPair Ni i Nj j NOE BOUNDED 1 6 0.5 0.5� �
where the minimum distance was is to 1 Å, the upper bound is
6 Å and 0.5 is the standard deviation parameter of the constraint.
Since Rosetta has no built-in support for full-atom models and con-
straints, we considered only H and HA main-chain contact endpoints,
while all side-chain contact endpoints were approximated as cen-
troids (CEN).

5.3 performance

We used 14 protein targets from CASD [73] to evaluate the perfor-
mance of our structure determination protocols. Table 5.1 summa-
rizes the results of Rosetta structure calculations using hybrid frag-
ment libraries (Section 5.2.1) with angular restraints (Section 5.2.2)
and filtered NOEs (Section 5.2.3). We computed 200 decoys per target
and superimposed them onto their respective native structures using
a local fitting procedure. The quality of each decoy was evaluated by
computing its TM-score [95]. Recall that a TM-score greater than 0.4
generally indicates a correct fold.

When using predicted torsion angles and HHfrag libraries com-
plemented with analogous fragments, we were able to obtain decoys
with correct fold in all instances (Table 5.1). The best decoys for 11
out of 14 targets had TM-scores greater than 0.5, which indicates
structures of very high quality. These decoys were sampled with very
modest computational resources (less than 200 trials per target). They
can be further optimized using conventional NOE-based structure
calculation programs, thus our protocol reduces the required compu-
tational time for structure calculation significantly.

Better decoys were obtained for 5 targets after the incorporation of
distance restraints from filtered NOEs and superfragments (Table 5.1).
However, the addition of distance restraints does not always increase
the sampling rate of near-native decoys and the quality of the best
decoys (Table 5.1). In some instances (2l9r, 2nl3, 2lah and 2lci), the in-
corporation of distance restraints in fact aggravates the performance.
This is caused by highly noisy NOE spectra, which cannot be reliably
filtered using predicted long-range contacts from superfragments. As
a result, the filtered distance restraints lack some important long-
range contacts, but include false-positive contacts at the same time.
The combined action of these two negative factors may pose a signif-
icant challenge for the current Rosetta protocol.



72 nmr structure determination with hhfrag

2kmmA 2kruA

2la6A
2lojA

2l9rA2kj6A

2ln3A 2kifA

Figure 5.2: Superimposition of the final Rosetta models from Table 5.1 onto
their corresponding experimental structures.

To discriminate between these two extreme cases and blindly elimi-
nate all NOE-derived decoys of low quality, we examined the compat-
ibility of each pair of alternative decoys (with and without distance
restraints) with the experimental data. After building protonated full-
atom models, we extracted all pairs of NOE-visible contacts using a
distance cutoff of 6 Å. This procedure is identical to the one used for
the extraction of long-range contacts from superfragments. The de-
coy containing a higher number of unfiltered NOE peaks is selected
as the final, winning model (see Table 5.1 and Figure 5.2).

5.4 conclusion

We introduced a practical approach to automated protein structure
determination using sparse experimental data (chemical shifts and
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3D NOE spectra) and the HHfrag local structure prediction frame-
work, described in previous chapters. Our structure calculation proto-
col is based on the classic Rosetta ab initio fragment assembly and uses
variable-length sequence motifs (from HHfrag) in combination with
analogous fragments (from CSfrag) and angular restraints, derived
from confidence-guided local structure predictions with HHfrag. We
demonstrated that this protocol can reduce the computational time
needed to obtain initial models of high quality, and can be used as a
solid starting point in fully automated NMR structure determination.





6
T H E C S B O P E N - S O U R C E P R O J E C T

This chapter is a brief overview of the software behind all algo-
rithms, which have been described so far. We discuss the architec-
ture of our software tools and present some key elements of their
design and application programming interface. The software, which
has emerged as part of our work, has been released to the pubic do-
main free of charge as part of the CSB open-source project. Develop-
ers seeking detailed documentation and support, or those willing to
contribute to our community effort, are invited to visit the homepage
of the project at CodePlex.

6.1 introduction

The Python programming language is becoming an increasingly pop-
ular choice in research. Python’s comprehensive numerical libraries
and its dynamic type system render this platform an attractive en-
vironment for rapid application development. The rapid prototyp-
ing paradigm has seen wide adoption in scientific projects, because
it facilitates experimentation with new techniques or features with
minimal effort. However, the systematic use of ad hoc scripting soon
turns into a burden, preventing efficient code reuse and hindering
further development and agility. The industry-standard solution to
these problems is the use of continuously developed, well-abstracted
and tested software libraries. Productivity in building solid, reliable
and extensible bioinformatics applications could significantly benefit
from the practice of using carefully engineered libraries.

Here we introduce the Computational structural biology toolbox
(CSB) — a Python library, designed for solving problems in the field
of structural bioinformatics [53]. The project was conceived as a triv-
ial separation of HHfrag’s executable components from its generic ab-
stractions; however, it has quickly expanded as a full-fledged Python
framework. CSB APIs have been designed to meet the following de-
sign goals: (i) reusability and extensibility, (ii) clean interfaces, (iii)
granular and well-encapsulated abstractions, (iv) use of classic design
patterns, (v) preference of obvious, self-documenting design and (vi)
testability.

All algorithms, described in earlier chapters, are implemented as
thin client applications (sometimes called protocols or apps), which

Some of the material in this chapter has been previously published and adapted
from Kalev et al. (2012) [53]. Used with permission.
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consume the core library APIs. The CSB library improves over existing
packages, such as Biopython [20], with its granular, consistent and ex-
tensible object model, but also provides new features like a compre-
hensive statistical API and support for new abstractions and file for-
mats. The current version provides mature APIs for working with bi-
ological macromolecular structures, sequences, sequence profiles and
fragment libraries, but also involves a significant amount of statisti-
cal modules, including many probability distributions and samplers.
We put a strong emphasis on quality and reliability achieved through
continuous attention to good design and best practices in test engi-
neering.

6.2 api overview

CSB is composed of several highly branched, hierarchical Python
packages. The core library can be divided into bioinformatical (csb.bio-
.*) and statistical (csb.statistics.*) APIs.

6.2.1 Core abstractions

All fundamental biological abstractions are part of the csb.bio names-
pace. For example, csb.bio.sequence defines the base AbstractSequence
and AbstractAlignment interfaces and provides a number of useful im-
plementations of these abstractions, such as Sequence, SequenceAlign-
ment, and StructureAlignment. As suggested by its name, csb.bio.hmm
deals with HHpred and its profile HMMs [84], while csb.bio.fragments
contains all supporting objects behind our fragment detection algo-
rithms. A package of central importance, part of the csb.bio names-
pace, is csb.bio.structure, which defines a common infrastructure for all
remaining modules with essential objects like Structure, Chain, Residue
and Atom.

The architecture of the Structure abstract model in CSB is shown
in Figure 6.1. Structure instances are hierarchical objects, which im-
plement the Composite pattern [33]. Each level in the composite tree
(Structure, Chain, Residue or Atom) is represented by a class, derived
from the base AbstractEntity, and supports iteration over its imme-
diate sub-entities. Every entity thus exposes a standard set of opera-
tions, such as AbstractEntity.transform() and AbstractEntity.items, which
automatically propagate down the tree when invoked at an arbitrary
level. All members of the composite data structure can therefore be
treated polymorphically via a uniform interface, which allows the im-
plementation of flexible composite iterators [33]. Clients are also free
to define their own, pluggable AbstractEntity implementations.
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AbstractEntity
+items

+components()
+transform()

return
Iterator(children)

Residue Chain Structure

return EmptyIterator()

Atom
+items * * *

Figure 6.1: The Structure model in CSB. Structure is the root entity in a multi-
level composite aggregation. Each node in the composite imple-
ments a uniform AbstractEntity interface and supports iteration
over its sub-entities. The leaf nodes (Atom) have no children and
thus return a null iterator.

6.2.2 I/O

CSB exposes an I/O API for a broad variety of biological file formats
(csb.bio.io). For example, csb.bio.io.hhpred is the first publicly available
Python module to date for working with HHpred’s HMM and result
files [84]. Another module, csb.bio.io.mrc, contains cryo-electron den-
sity map processing utilities, while csb.bio.io.clans provides readers
and writers for CLANS files [31]. Extensive PDB file manipulation is
supported using our PDB API, which is part of csb.bio.io.wwpdb.

CSB contains a fast, reliable and extensible PDB parser model with
novel features. The architecture of our PDB parsers is detailed in Fig-
ure 6.2. The base AbstractStructureParser is a TemplateMethod [33],
which defines a common backbone for all PDB parsing schemes. Con-
crete parser implementors must define how the PDB header will be
handled through a special hook method, in order to complete the im-
plementation. The main PDB parser in CSB —- RegularStructureParser,
differs significantly from existing solutions such as Biopython. Reg-
ulafStructureParser reads and initializes all residues from SEQRES,
rather than the ATOM fields in the file. ATOM records are subse-
quently mapped to the residue objects using a simple and very fast
alignment algorithm. Therefore, the resulting Chain products always
contain the complete primary structure of the PDB chain, as governed
by the SEQRES fields. This feature eliminates the need to relate the
PDB atoms back to the real sequence of the protein in question –
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a process which is often difficult and error-prone. A fallback parser
for PDB files with no header fields is also provided — LegacyStruc-
tureParser. The PDB parsers in CSB are typically consumed through
a dedicated StructureParser factory, which transparently determines
which parser implementation to instantiate, given a specific PDB file.

AbstractResidueMapper

AbstractStructureParser
-mapper : AbstractResidueMapper

#parseHeader()
+parse() : Structure

LegacyStructureParser
#parseHeader()

RegularStructureParser
#parseHeader()

parseHeader()
parseAtoms()
mapResidues()

read sequence
from ATOMs

read sequence
from SEQRES

Figure 6.2: Basic architecture of the PDB parsing model in CSB. The base
AbstractStructureParser is a TemplateMethod (parse), which de-
fers the PDB header handling and sequence initialization to im-
plementing subclasses through a hook (parseHeader). Implemen-
tors may fine-tune the mechanism of structure parsing by over-
riding a number of granular hook methods (not shown). Each
parser maintains an instance of a concrete ResidueMapper Strat-
egy, which is used to relate the ATOM records back to the se-
quence and assemble the final structure.

The residue mapping algorithm is properly abstracted in a dedi-
cated ResidueMapper strategy [33], thus allowing alternative mapping
strategies to be employed and exchanged at runtime. When bench-
marked over the complete PDB database, the standard SEQRES map-
ping algorithm FastResidueMapper fails for about 250 structures. This
is frequently an indication of a PDB format issue, which is an un-
recoverable error. In this case, AbstractStructureParser will immedi-
ately switch to a less strict RobustResidueMapper, based on a classic
Needleman–Wunsch global alignment [64]. This algorithm is 100%
fail-safe, but unlike FastResidueMapper, it has quadratic running time
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AbstractEstimator
+estimate(x)

return new
Density

AbstractDensity
+estimator

+evaluate(x)
+random()
+estimate()

estimator.estimate()
load estimated
parameters

Figure 6.3: Architecture of the probability density functions in CSB.

and space requirements, which accounts for a noticeable overhead.
However, the PDB parser context rarely switches to this mapping
strategy, thus achieving excellent balance between speed and uncom-
promising precision.

We compared the performance of RegularStructureParser with PDB
I/O modules from alternative libraries: Biopython [41], PyCogent [19]
and the C++-based OpenStructure [6]. As expected, OpenStructure
was the fastest and parsed 4000 PDB entries with 0.09s per structure.
CSB is positioned between Biopython (0.19s) and PyCogent (0.43s)
with 0.32s per structure, which suggests that the SEQRES mapping
feature comes with an acceptable performance overhead.

6.2.3 Statistics API

CSB is bundled with a collection of statistical models in the csb.statis-
tics namespace. All probability distributions are derived from a com-
mon AbstractDensity object. The evaluate hook controls how imple-
mentors compute their corresponding PDF values. This model also
supports the notion of pluggable estimators through a classic Strat-
egy [33] (Figure 6.3).

Among the implemented density functions are standard uni- and
multivariate probability distributions such as the Normal and the
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Gamma distribution, but also more exotic distributions such as the
Multivariate Normal Inverse Gaussian distribution, used to model
multivariate heavy-tailed data. Several estimators based on maximum
likelihood and Gibbs sampling are implemented. We also provide a
general framework for Markov chain Monte Carlo simulation and im-
plementation of standard schemes such as random walk Metropolis
Hastings, Hamiltonian Monte Carlo [24] and replica-exchange Monte
Carlo [86].

6.3 csb apps

CSB comes with a simple framework for writing console applications
(csb.apps). These applications could be seen as short protocols, built on
top of the core library and consuming its APIs. The main concept be-
hind this framework is to allow rapid application development, while
simultaneously ensuring reusability and sharing of app modules and
components. Each CSB app is designed to operate seamlessly in two
alternative contexts:

a. executable — as a standard console application;

b. component — as a regular Python object, which can be instan-
tiated and reused without side effects, such as causing unex-
pected system exits or standard output stream writes.

Each release is bundled with a number of pre-installed, open-source
applications. For example csb.apps.hhfrag provides HHfrag [51], the
dynamic fragment detection and confidence-guided torsion angle pre-
diction method, discussed in Chapter 3. Two supplementary apps are
provided for building sequence profiles (csb.apps.buildhmm) and mea-
suring the local precision of fragment libraries (csb.apps.precision). Our
chemical shift-based method for detection of analogous fragments
(Chapter 4) is fully implemented in csb.apps.csfrag and provides a
compatible interface. Both HHfrag and CSfrag are tightly integrated
and can be used in conjunction to replicate the various fragment fill-
ing and filtering protocols described so far, without the need of con-
suming the Python API directly. The supporting PDBS25 database
required to run HHfrag and CSfrag can be obtained from the official
release package at:

csb.codeplex.com/releases

BFit is another CSB app, which can be used to perform robust
superposition of protein structures [61]. Every release package con-
tains also EMBD, an application for sharpening of cryo-electron mi-
croscopy maps [46] using non-negative deconvolution, and Promix,
an application implementing Gaussian mixture models for identify-
ing rigid domains in structure ensembles [45].

http://csb.codeplex.com/releases
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6.4 development

CSB is being developed under a continuous integration model. The
reliability of each production release is controlled by CSB’s built-in
high-coverage unit test framework. Stable builds are regularly re-
leased to the Python Package Index (PyPi), CodePlex and Debian
repositories. Portability is also an essential design goal, so CSB works
without modification on every major platform (Windows, Linux, Mac)
and any modern Python interpreter (version 2.6 or higher, including
Python 3).

Our package is distributed under a permissive MIT license, which
allows direct integration in other open-source or proprietary software
projects. Detailed tutorials, technical API documentation, complete
source code and release packages can be obtained from the web site
of our project at:

csb.codeplex.com.

http://csb.codeplex.com




7
O U T L O O K

This work describes a comprehensive framework for local structure
prediction from sequence and chemical shift data with a strong em-
phasis on fragment precision and correct detection of motif bound-
aries. We demonstrated that our dynamic approach to fragment de-
tection improves the performance of existing fragment assembly al-
gorithms for protein structure prediction or structure determination.
We provide feature-complete, unit-tested, open-source APIs to facili-
tate the adoption of our algorithmic contributions. HHfrag was addi-
tionally designed as a stand-alone fragment extraction module, which
can be readily incorporated into existing protein structure prediction
and structure determination protocols.

While keeping compatibility with earlier methods, our work intro-
duces an assortment of novel features, whose potential may be re-
vealed by further development of the fragment assembly approach.
For example, the current Rosetta folding protocol is optimized for
fragments of constant length and cannot take advantage of the rich
information encoded in HHfrag’s gapped fragments and discontinu-
ous fragment maps. Especially interesting are the prospects of tight
integration between the ISD method for structure determination and
HHfrag’s confidence-guided framework for prediction of local motif
conservation.

In conclusion, with this work we have overcome important limi-
tations of the sequence-based fragment detection approach and con-
tributed valuable new developments in the field of local structure
prediction.
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P U B L I C AT I O N S

Some ideas and figures have previously appeared in the following
publications:

• Kalev I and Habeck M. Confidence-guided local structure pre-
diction with HHfrag. PLOS ONE. 2013.

– Text and figures from this manuscript appear in Chapter 2,
Chapter 3 and Chapter 5.

• Kalev I, Mechelke M, Kopec KO, Holder T, Carstens S and Habeck
M. CSB: a Python framework for structural bioinformatics. Bioin-
formatics. 2012.

– Text and figures from this manuscript appear in Chapter 6.

• Kalev I and Habeck M. HHfrag: HMM-based fragment detection
using HHpred. Bioinformatics. 2011.

– Text and figures from this manuscript appear in Chapter 3.
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