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1 COSMIC RAY IMPLEMENTATION NOTES

1.1 Units, Definitions, etc

The cosmic ray (CR) implementation in the code is activated
with the COSMIC RAYS flag.

CRs are treated as a single-species, ultra-relativistic
(γcr = 4/3) fluid. In the code we evolve the conserved vari-
able Ecr, i, the total CR energy associated with particle i.
This is written out in snapshots, with the flag name “Cos-

micRayEnergy” for all gas particles, in physical code units
(energy = mass× velocity2).

The CR specific energy per unit mass ucr, energy den-
sity ecr, CR pressure Pcr, total pressure P , and sound speed
cs are given by:

ucr = Ecr/mi (1)

ecr = Ecr/Vi = ρi ucr (2)

Pcr = (γcr − 1) ecr (3)

P = Pthermal + Pcr = (γgas − 1)ugas ρ+ Pcr (4)

c2s =
∂P

∂ρ
= γgas(γgas − 1)ugas + γcr(γcr − 1)ucr (5)

The “correct” total pressure, sound speed, etc, are all ac-
counted for in the reconstruction at faces and Riemann prob-
lem (RP). CRs act on the gas in the RP via modifying pres-
sure/sound speed/internal energy. Their adiabatic compres-
sion/expansion is accounted for also, via an operator-split
approach.

1.2 Evolution Equations, Term-By-Term

The evolution equation for the CR energy density follows
Skilling 1971, 1975 (for more details see also Uhlig et al.,
2012).

∂ecr
∂t

=(v + vst) · ∇Pcr −∇ · [(v + vst) (ecr + Pcr)]

+∇ · [vdi ecr]− Γcr + ė∗ + ėAGN (6)

where v is the gas speed, vst is the CR streaming speed,
and vdi is a “diffusion speed” (defined below). Because our
method is Lagrangian, we re-write this with the Lagrangian
derivative d/dt = ∂/∂t+ v · ∇. Then after a bit of algebra,
you get:

ρ
ducr
dt

=− Pcr∇ · v + vst · ∇Pcr −∇ · [vst(ecr + Pcr)]

+∇ · (vdi ecr)− Γcr + ė∗ + ėAGN (7)

Now I’ll go through each of these terms in detail.

1.2.1 Advection & Adiabatic Effects with Gas

(0) Note because we have taken the Lagrangian derivative

above, the pure advection with the gas flow is automatically
accounted for.

(1) −Pcr∇ · v: just adiabatic CR compression/expansion
heating. This is handled via a simple operator split
(one-line) in the hydro routine after the RP is solved.
Hubble-flow terms (for cosmological runs) are accounted
for in this term.

1.2.2 Streaming

(2) vst · ∇Pcr: streaming instability wave-heating term
due to self-excited waves that get rapidly damped in
the plasma. Because vst || (−∇Pcr), this produces an
energy loss from the CRs to the gas. We treat this as a
heating/cooling term: CRs lose energy, gas gains thermal
energy, at a rate dE/dt = |vst| |∇Pcr|Vi. This is operator-
split from the RP. This term is ZERO if you turn on
COSMIC RAYS DISABLE STREAMING. (Note that with
MHD on, as detailed below, this is appropriately modified
because instead of vst || (−∇Pcr), the transport is along
field lines, so there is an extra factor of |B̂ · ∇̂Pcr|2).

(3) ∇ · [vst(ecr + Pcr)]: transport of CRs relative to
gas owing to streaming (this term is also ZERO if you turn
on COSMIC RAYS DISABLE STREAMING). Temporarily
ignore the role of magnetic fields: then the CR streaming
velocity vst is approximately:

vst = −|vst|
∇Pcr
|∇Pcr|

(8)

i.e. the CR streaming occurs opposite the direction of the
CR pressure gradient (my understanding is, if we were do-
ing a full energy-by-energy-bin breakdown of the CRs, the
streaming direction in each energy bin would be along the
direction of the CR number density. If we assume a single
energy regime dominates the pressure and follow that, or as-
sume there is always a power-law momentum distribution,
then these directions are proportional to the CR pressure
direction. So given our single-fluid model for the CRs, we
take this).

Now, if there are magnetic fields (MAGNETIC on in
the code), then CRs are locked to field lines and we follow
the usual approach of projecting the gradient onto the field
direction and allowing the transport only in that direction
(just like with conduction, viscosity, etc) – this means

vst = −|vst| B̂
B̂ · ∇Pcr
|∇Pcr|

(9)

B̂ ≡ B

|B| (10)
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For the streaming speed, there is a lot of literature
(Wentzel 1968, Skilling 1971, 1975, Holman 1979, as up-
dated in Kulsrud 2005, Yan & Lazarian 2008, Ensslin 2011).
Grossly simplifying, in the weak-field regime (plasma β �
1), the streaming speed is approximately the gas thermal
sound speed cs, in the strong-field regime it is approximately
the Alfven velocity vA. So we take

|vst| =

{√
c2s + v2

A (MHD on)

cs (MHD off)
(11)

Note that when you put this back into the original equa-
tions, this streaming term has a functional form that looks
like just a diffusion equation, namely:

ρ
ducr
dt

=

{
∇ · (B̂ κst [B̂ · ∇Pcr]) (MHD on)

∇ · (κst∇Pcr) (MHD off)
(12)

with

κst ≡ |vst|
ecr + Pcr
|∇Pcr|

= |vst|
(

γcr
γcr − 1

)
Pcr
|∇Pcr|

(13)

This is then treated like a diffusion equation in our standard
numerical fashion, with this coefficient. Note that the value
of the CR pressure scale-length Lcr ≡ Pcr/|∇Pcr| used in
this computation is limited (for purely numerical reasons,
like most slope-limiters) to a value equal to or greater than
1/3 particle “size”, and less than 200 times the particle size
(because at this point the CRs are already streaming out of
the particle very rapidly, so their coefficient will need to be
re-computed anyways as they move into other particles).

1.2.3 Diffusion (Microscopic & Turbulent)

(4) ∇ · (vdi ecr): “standard” diffusion (not streaming). Here
the “diffusion velocity” is

vdi =

κdi B̂
B̂ · ∇ecr
ecr

= κdi B̂
B̂ · ∇Pcr
Pcr

(MHD on)

κdi
∇ecr
ecr

= κdi
∇Pcr
Pcr

(MHD off)

(14)

where κdi is a diffusion coefficient.
We treat this also as a standard diffusion term to solve

the relevant equations. So if this and streaming are active,
we solve them with the same numerical operation, using the
combined “effective coefficient” κeff = κst + κdi. You can
turn this part (“standard” diffusion) off by setting the flag
COSMIC RAYS DISABLE DIFFUSION

If you set the flag COS-

MIC RAYS DIFFUSION CONSTANT, then the value of
the parameterfile value “CosmicRayDiffusionCoeff” is
set to κdi (this should be input in CODE UNITS, so
code velocity × code length). If this flag is not set, we
will calculate κdi. Canonical Milky Way (MW) values are
∼ 1−10×1028 cm2 s−1 (∼ 20−200 kpc/h×km s−1). But for
physically reasonable assumptions, values of the diffusion
and streaming coefficients in systems unlike the MW (or
different MW regions) could easily be different by factors of
∼ 100, hence our default option being to calculate these.

To explain MW empirically inferred diffusion coeffi-
cients, what is usually required is turbulence on scales of

the Larmor radii of the CR orbits around field lines. This
gives a coefficient which scales as

κdi ∼
vcr rg

3

B2
coherent

B2
random(rg)

(15)

where vcr ∼ c (speed of light) for our assumptions, rg =
p c/(Z eB) ≈ 3× 1012 cmRGV (B/µG)−1 is the gyro radius
(RGV ∼ 1 is the magnetic rigidity in gigavolts for the par-
ticles that dominate the CR pressure, which we will assume
is a constant for the CR fluid; p, Ze are momentum and
charge of particles, respectively), Bcoherent is the large-scale
coherent magnetic field, and Brandom(rg) is the rms random
(turbulent) component of the field on scales corresponding
to the gyro radius.

If we assume a Kolmogorov spectrum, with B2
coherent ≈

B2(r ∼ Ldrive ∼ kpc), then you get a reasonable

κdi ∼ 3R
1/3
GV × 1028 cm2

s

(
µG

|B|

) 1
3
(
Ldrive

kpc

) 2
3

(16)

Similar to our modeling of sub-grid turbulent phenomena,
we can (very crudely) estimate Ldrive ∼ P/|∇P |, i.e. as the
pressure gradient scale length. Note, in simulations without
MHD, we have no value of B, so we simply assume pres-
sure equilibrium (|B|2/2 ∼ Pthermal) to obtain an “effective”
value we can insert in the equation above.1

However, if the flow is sufficiently smooth, or the field
sufficiently weak (e.g. IGM), this can give an unphysically
large κdi. This can occur if the effective streaming/diffusion
velocity were > c or if the gradient scale length of pressure in
e.g. the streaming term were much larger than the mean free
path ∼ 3 × 1025 cm/(nH/cm−3). Therefore we also enforce
this as a cap, but it is almost never relevant.

Finally, if COSMIC RAYS DIFFUSION CONSTANT is
not set, then the run-time parameter “CosmicRayDiffusion-

Coeff” multiplies κeff (sum of streaming and diffusion coef-
ficients). So the default value is 1.

1 Alternatively, similar to how we estimate the local “random”

component for e.g. turbulent diffusion models, we can estimate

B2
random(h) on the resolution scale h by |B2

random(h)|1/2 ≈
|∇ ⊗ B|h (where here, |∇ ⊗ B| refers to the Frobenius norm
– i.e. squared sum of all components – of the matrix ∇ ⊗ B).

We then assume a Kolmogorov spectrum for B (B2
random(r) ∼

B2
random(h) (r/h)2/3; note even in super-sonic MHD turbulence,

the B spectra are not too different from this, we think). This
gives:

κdi ∼ 2× 1028 cm2

s
R

1/3
GV

(
µG

|B|

) 1
3
(

|B|
h |∇ ⊗B|

)2 (
h

100 pc

) 2
3

(17)

Note that in a Kolmogorov cascade, this is resolution/scale-
independent. But this allows for e.g. local amplification of fields

in regions like GMCs that can depart from a galactic-disk scale

cascade; moreover if we are not in a turbulent cascade (but a
laminar flow), then this (qualitatively correctly) will give a very

large κdi. And it attempts to self-consistently account for differ-

ent driving scales (which will vary in different systems). However,
I find it can be considerably “noisier”, since the local gradients

vary a lot, so you will (even in a well-resolved cascade) have re-
gions where the B-field gradients are locally flat, and it can screw

up this estimator.

c© 0000 RAS, MNRAS 000, 000–000



CR Notes 3

1.2.4 Cooling (Hadronic & Coulomb Losses)

(5) Γcr: This represents “cooling losses” of CRs to gas
and radiation. Requires COOLING be on. Note that if
COSMIC RAYS DISABLE COOLING is set, Γcr = 0 even
if COOLING is on. We adopt the estimate for combined
hadronic plus Coulomb losses from Volk 1996 and Ensslin
1997 as synthesized and updated in Guo & Oh 2008. Putting
in cosmological hydrogen mass fractions, this gives:

Γcr = 7.51× 10−16 s−1ecr (1 + 0.22 ñe)
( nH

cm−3

)
(18)

where nH is the hydrogen number density and ñe is the
number of free electrons per hydrogen nucleus.

Following their estimate, ∼ 1/6 of the hadronic losses
(the term which is independent of ñe) and all of the Coulomb
losses (the term in ñe), are thermalized and go into heating
the gas, so

ėgas = 7.51× 10−16 s−1ecr (0.17 + 0.22 ñe)
( nH

cm−3

)
(19)

1.2.5 Injection & Losses in Star Formation & Feedback

(6) ė∗: This represents injection and losses of CRs via star
formation and feedback. When a gas particle turns into
stars, we assume the CR energy carried by the particle is lost
(this is almost always negligible on a galaxy scale, and is just
for numerical convenience so we don’t have to deal with how
to redistribute this energy). If GALSF FB SNE HEATING is
active (our standard FIRE SNe model), then a fraction ε
equal to the run-time parameter CosmicRay SNeFraction of
the initial kinetic energy of SNe is injected as CRs. So when-
ever there is a SNe or fast stellar wind “injection” event,
we calculate the initial kinetic energy (i.e. before cooling
losses), take ε of this, and inject that into the neighboring
gas particles (with the same kernel weighting as for the SNe
energy/momentum). Note that we require the initial ejecta
velocity be above some threshold which I have somewhat
arbitrarily chosen to be 500 km s−1, namely so that AGB
ejecta (at low speeds) aren’t contributing to this (just SNe
and fast stellar winds). Canonical values of ε are ∼ 0.1.

1.2.6 Injection from AGN

(7) ėAGN: Injection from AGN. This is currently not imple-
mented in the main code, but I have a version with a few
different ideas I have been playing with, and wanted to list it
here for completeness. Obviously, we can do a similar thing
to the SNe model above, and choose some fraction of the ac-
cretion energy to inject as BH feedback in the form of CRs.
This can be done in the immediate vicinity of the BH (es-
pecially trivial), or some distance from the hole (mimicking
something like Deborah’s “bubbles” model).

1.3 MHD vs. Non-MHD

For all cases of interest, there is no question that the MHD
version of these equations is “more correct.” Other than
some hand-waving about equipartition, there isn’t much mo-
tivation for the non-MHD versions of the equations above
– these can be seriously wrong (qualitatively and quantita-
tively, by orders of magnitude). But most of the work ap-
plying CRs to galaxies has ignored magnetic fields, so it’s

useful to have this option as a “straw-man” to see how badly
this may (or may not) do.

1.4 Tests

I’ve run a number of simple tests. The numerical im-
plementation of the terms is well-tested. Whether the
terms/scalings/etc are reasonable under all cases or could
extrapolate to strange behaviors is another question alto-
gether.

(a) CR shocktube: from Pfrommer et al. 2007. Only
includes the RP and adiabatic terms ((0)-(1) above).
Checks basic shock-capturing, adiabatic evolution, ability
to solve 2-fluid RP. 1D/2D/3D looks good.

(b) Diffusing sheet/vortex (1D/2D/3D): Basic diffu-
sion problem, here with constant coefficient of diffusivity,
no gas dynamics (only diffusion) - tests whether numerical
integration of diffusion equation behaves appropriately (and
is numerically stable, which is actually highly-non-trivial
for diffusion equations solved explicitly). Good.

(c) Injection & Cooling test: simple test with injec-
tion and/or cooling terms turned on in a box with no
dynamics and constant injection rate, to see if energy
grows/decays in time at expected rate (i.e. the implemen-
tation isn’t bugged-up). Good.

(d) Isolated (non-cosmological) galaxies: with adia-
batic equation of state, old Springel & Hernquist model,
and FIRE physics. For MW like galaxy, reasonable coef-
ficients for diffusion (had them print out everything as
it ran). No crashing/obvious bugs in newest code. CR
energy approaches quasi-equipartition with magnetic and
turbulent energies in the dense (multi-phase gas). Turning
off CR cooling/loss terms it builts up a thick, CR-pressure
supported disk (as expected). Weak wind if no other FB
present. Basically none of this is rigorous since there is no
exact solution to compare to here, but it is a “sanity check”
as well as useful de-bugging.

(e) Cosmological zoom with FIRE physics. Only run
briefly to make sure no glaringly-obvious bugs, but not
extensively tested.

2 EVOLVING CRS WITH THE M1 (AS
OPPOSED TO PURE-DIFFUSION, M0 OR
FLD-LEVEL) APPROXIMATION

Consider CR transport (ignore cooling, advection, stream-
ing, etc). We approximate this via diffusion but really we
should solve the collisionless Boltzmann equation (CBE).
Just like for RT with FLD, M1 etc., we can take the first
and second moments of the CBE to obtain:

∂eν
∂t

+∇ · Fν = Sν − (c̃/λν) eν (20)

1

c̃

∂Fν
∂t

+ c̃∇ · Pν = −λ−1
ν Fν (21)
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where eν is the CR energy density within some differential
energy bin; Fν is the corresponding flux, Pν is the pres-
sure tensor, and c̃ is the free-streaming propagation speed.
The right hand side represents sources/sinks/scattering,
with Sν the source function and λν is the mean-free path
(MFP). Integrate over the CR energy spectrum ν (or equiv-
alently consider a single-bin). Assume for now that the
only sources/sinks are isotropic scattering (we can simply
operator-split the cooling term, same as we do now). Then
the RHS of the energy equation vanishes, but the RHS of
the flux equation remains (with λ−1

ν the MFP to scattering).
Since we’re in something like the kinetic MHD limit the pres-
sure tensor term takes the form ∇·Pν → B̂ (B̂ ·∇Pν) (for the
fully-anisotropic case); or if we assume isotropic transport
(P = P I) then ∇ · Pν → ∇Pν . Recall Pν = (γcr − 1) eν .

Putting this all together the Eqs. become:

∂ecr

∂t
= −∇ · Fcr (22)

κcr

(γcr − 1) c̃2
∂Fcr

∂t
+ κcr B̂ (B̂ · ∇ecr) = −Fcr (23)

where we have defined the diffusivity κcr ≡ c̃ λcr (γcr − 1).

On timescales > t0 ≡ κcr/[(γcr − 1) c̃2], the solution
to the flux equation rapidly converges to steady-state, i.e.
the ∂Fcr/∂t term becomes negligible and Fcr = −κcr B̂ (B̂ ·
∇ecr). Plugging this into the energy eqn. gives ∂ecr/∂t→ ∇·
[κcr B̂ (B̂ ·∇ecr)], i.e. the normal diffusion equation. Just like
with, say FLD for RT, our normal diffusion approximation
drops the ∂Fcr/∂t term completely, but keeping it as above
is actually more accurate. On small spatial/time-scales, the
behavior is streaming (wave/ray like), while on larger scales,
the behavior is diffusive.

Like M1, this method requires we explicitly evolve the
fluxes Fcr, but by replacing a second-order PDE with a pair
of first-order PDEs (just solving two normal advection equa-
tions), the nasty numerical-diffusion timestep constraint
(∆t < h2/κ, where h is the resolution) is avoided. Instead
stability only requires a Courant condition (∆t < h/c̃). And
its much easier to numerically stabilize the fluxes (avoiding
some of the nasty issues with flux-limiters and local maxima
that we have run into with TK’s experiments). The approach
is numerically straightforward, accurate, numerically stable,
and allows the more generous timestep condition.

As before we fix κcr. But now we have the parame-
ter c̃. Note that this only appears in the ∂Fcr/∂t term in
the flux Eqn. – it determines the timescale on which the
flux reaches equilibrium. Physically for an ultra-relativistic
fluid, c̃ = c, but this would give very small timesteps. So
we can use a “reduced speed of light” (RSOL). Now, un-
like RT, where on large scales in the optically-thin case
the solution can become free-streaming, so RSOL can intro-
duce unphysical artifacts if you aren’t careful about choos-
ing it big enough, here it has a much weaker effect. As
I said all it really does it control how quickly the solu-
tion converges to the flux-equilibrium. This timescale is
t0 ≈ 2.8 × 105 yr (κcr/3 × 1028 cm2 s−1) (c̃/1000 km s−1)−2.
As long as this is significantly less than the dynamical times
of interest on the scales of the CR diffusion scale-height,
Eliot and I dont think it should make a significant differ-
ence. Again, in steady-state, the c̃ term vanishes so it has
no effect on the solution – it only influences how rapidly you

approach steady-state. So you can choose quite small values
and still meet this condition.

I’ve done preliminary tests with TK’s test setup (the
older, low-res MW he sent me). I get quite reasonable val-
ues of Fγ/Fsf for this implementation (for κ = 3 × 1028,
I get values of a couple ×10−5). More importantly these
are only weakly sensitive to c̃ over a wide range. I’ve tried
c̃ = 30, 100, 300, 500, 1500, 5000, 15000, 30000 km s−1. For
the values c̃ & 500 km s−1 the dependence on c̃ of any quan-
tity (total CR energy, mean energy density, Fgamma, energy
density in high-energy gas, CR scale height/length) is very
weak (Fgamma changed by ∼ 20% over a factor of ∼ 50
change in c̃). Below that speed, the results did depend more
strongly on c̃ (with Fgamma getting larger at lower c̃, which
makes sense, since the CRs take longer to build up a strong
flux in response to a strong energy density gradient, gener-
ated in dense gas by SNe depositing them) – ∼ 100 km s−1

is also where t0 is about equal to the galaxy dynamical time
in the inner regions.

For large κcr, this seems like it may therefore be a more
efficient approach.
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