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ABSTRACT
We extend recently-developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbi-
trary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity,
cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffu-
sion, the Hall effect), and turbulent “eddy diffusion.” We study these as implemented in the code GIZMO for both
new meshless finite-volume Godunov schemes (MFM/MFV). We show the MFM/MFV methods are accurate and
stable even with noisy fields and irregular particle arrangements, and recover the correct behavior even in arbitrar-
ily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat
anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for sta-
bilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is
trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for
SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator
and introduces a flux-limited Riemann problem between particles.
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1 INTRODUCTION

Diffusion operators are ubiquitous in physical systems, manifest in
e.g. conduction, viscosity, cosmic ray diffusion/streaming, photon
diffusion (in optically thick media), sub-grid “turbulent eddy” dif-
fusion, passive scalar (e.g. metal) diffusion, Ohmic resistivity, am-
bipolar diffusion, the Hall effect, and more. Most of these are fun-
damentally anisotropic. Magnetic fields, fluid flow, or radiation flux
can all break isotropy and introduce a (local) preferred direction.
The effects are large – for the same initial conditions but different
magnetic field configurations, effects like viscosity or conduction
might dominate the hydrodynamics, or be completely suppressed.
Moreover, anisotropy can introduce qualitatively new behaviors
and physical instabilities (e.g. Balbus 2000; Quataert 2008).

Clearly, it is important to capture these phenomena accurately
in numerical simulations. In regular, non-moving mesh methods
(including fixed-grid and adaptive mesh-refinement [AMR]), the
properties of diffusion equations are reasonably well-understood,
but even in these cases it is highly non-trivial to formulate
anisotropic operators in a numerically stable fashion (see, e.g.
Sharma & Hammett 2007). But for some classes of problems, these
methods are sub-optimal. They tend to produce excessive diffusion
when a fluid is moving rapidly relative to the grid, especially across
contact discontinuities (Tasker & Bryan 2008; Springel 2010; Hop-
kins 2015); have difficulty coupling to N-body gravity methods and
handling self-gravitating hydrostatic equilibrium (Müller & Stein-
metz 1995; LeVeque 1998; Zingale et al. 2002); introduce low-
order errors around refinement boundaries (O’Shea et al. 2005;
Heitmann et al. 2008); and feature inherently preferred directions
which can introduce systematic errors even at high resolution if
physical anisotropies are not aligned with the grid axes (e.g. Peery
& Imlay 1988; Hahn et al. 2010; Hopkins 2015; Hopkins & Raives
2016).

Mesh-free methods can avoid these sources of error, and
so are popular for many problems in astrophysics. However, the
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most popular mesh-free method, smoothed-particle hydrodynam-
ics (SPH) has its own difficulties. For example, SPH requires the
use of artificial diffusion operators to maintain numerical stability,
which can produce greater numerical viscosity and over-smoothing
of shocks and discontinuities compared to Riemann-based shock
solvers (Cullen & Dehnen 2010); it tends to suppress fluid-mixing
instabilities (Morris 1996; Ritchie & Thomas 2001; Agertz et al.
2007); and suffers from zeroth-order errors (“E0” errors; Morris
1996; Dilts 1999; Read et al. 2010) which produce systematic er-
rors that do not converge with resolution alone. Although there have
been dramatic improvements in all of these (see Hopkins 2013;
Rosswog 2014; Hu et al. 2014), the E0 errors cannot be completely
eliminated from SPH without making the method numerically un-
stable (Price 2012b).

Recently, however, Lanson & Vila (2008a,b); Gaburov & Ni-
tadori (2011); Hopkins (2015) have developed a class of new,
mesh-free Lagrangian finite-volume methods which are both high-
order consistent and fully conservative. Similar to moving-mesh
codes (Springel 2010; Duffell & MacFadyen 2011; Gaburov et al.
2012), these new methods appear to capture many of the advan-
tages of AMR and SPH, while avoiding the disadvantages above
(although, of course, they feature their own sources of error such as
enhanced “grid noise” and volume “partition noise”; see Hopkins
2015). In Hopkins 2015 (hereafter Paper I) and Hopkins & Raives
(2016) (Paper II), these are developed for magnetohydrodynamics
(MHD) in the multi-method magnetohydrodynamics+gravity code
GIZMO,1 built on the N-body gravity and domain decomposition
algorithms from GADGET-3 (Springel 2005).

In this paper, therefore, we extend these new methods to in-
clude arbitrary anisotropic diffusion operators. We consider a sys-
tematic comparison of tests in order to determine the degree of
anisotropy that can be reliably treated. In the Appendices, we show

1 A public version of the code is available at http://www.tapir.
caltech.edu/~phopkins/Site/GIZMO.html
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how some parts of the new methods here can also be applied to
SPH.

2 GENERAL DIFFUSION OPERATORS IN MESHLESS
FINITE-VOLUME GODUNOV METHODS

The general diffusion equation in conservative form is:

dU
dt

=−∇·Fdiff (1)

Fdiff =−K · (∇⊗q) (2)

where d/dt is a Lagrangian derivative, and Fdiff a diffusive flux
given by a linear combination of the tensor field K and the gradients
of the field q. We denote the inner product “·” and outer product
“⊗.”

In the mesh-free finite-volume or finite-mass (MFV or MFM,
respectively) formulations of the Lagrangian methods in Gaburov
& Nitadori (2011) and Paper I, we begin from a general conserva-
tion equation of the form DU/Dt = −∇·F and use this to derive
a second-order accurate Godunov-type numerical expression of the
hydrodynamic equations. It is therefore trivial to apply the same
here, giving

d
dt

(V U)i =−
∑

j

F∗diff, i j ·Ai j (3)

where Ai j is the “effective face area” (defined in Paper I; it de-
pends on the inter-element spacing and kernel shape, and reduces
to the geometric faces of a Voronoi tesselation in the limit of a
delta-function kernel). The same would obtain for Cartesian grid
methods and moving-mesh codes, with Ai j the usual inter-face area.
Here F∗diff, i j is the interface value of the flux.

The solution then follows our usual MHD method: we calcu-
late the coefficients, perform a reconstruction step to estimate quan-
tities “at the face,” replace the flux with the solution to a Riemann
problem (RP), and use this to update the conserved quantities. We
will explain this in more detail below.

Note that Eq. 3 is manifestly antisymmetric, so conserved
quantities (V U) are manifestly conserved as desired.

Additionally, we note that the MFM and MFV methods from
Paper I differ only at second order in how they handle advection
between particles. In diffusion-only problems, they are manifestly
identical. Therefore, we do not show both (although we have con-
firmed their identical results), but will, for simplicity, adopt MFM
as our reference method.

2.1 Gradient Estimation & Reconstruction

We require gradients for all quantities; to do this, we adopt the stan-
dard gradient estimator in GIZMO, a moving, second-order accurate
and consistent least-squares estimator. For a scalar f , this is

(∇ f )αi =
∑

j

( f j− fi)
(

W−1
i

)αβ
(x j−xi)

β ω j(xi) (4)

Wαβ
i ≡

∑
j

(x j−xi)
α (x j−xi)

β ω j(xi) (5)

here we assume an Einstein summation convention over the indices
β corresponding to the spatial dimensions, and ω j(xi) is an (arbi-
trary) weight function defined in Paper I. This estimator is second-
order accurate for an arbitrary mesh/particle configuration, mini-
mizes the (weighted) least-squares deviation

∑
jω j | fi +∇ fi ·(x j−

xi)− f j|2, and has been applied in a wide range of different numer-
ical methods (see e.g. Oñate et al. 1996; Kuhnert 2003; Maron &
Howes 2003; Luo et al. 2008; Lanson & Vila 2008a). Note that

Eq. 4 applies to a scalar field f . For a general tensor q, we apply
Eq. 4 separately to every component f = qαβγ... to determine all
partial derivatives needed to construct ∇⊗q and Fdiff. The gradi-
ents are slope-limited as described in Paper I, such that they do not
create new local extrema within the interacting kernel.

In the reconstruction step we must extrapolate the values from
i and j to the left and right sides of the face. For hydrodynam-
ics and MHD, we perform a linear reconstruction of all the MHD
quantities based on their slope-limited gradients (see Paper I). For
additional quantities needed for diffusion, our default approach is a
first-order reconstruction, e.g. (∇⊗q)R,L = (∇⊗q)i, j. This is easy
to implement, and most stable, but comes at the cost of greater nu-
merical diffusion. We have therefore also considered limited tests
using the “double linear” reconstruction of Muñoz et al. (2013).
This amounts to treating ∇⊗ q like any other primitive variable.
In a first loop, we calculate ∇⊗ q with our standard method; in
a second loop, we calculate ∇⊗ (∇⊗q), and use this to linearly
reconstruct (∇⊗q)R,L (or any component of it) like any other prim-
itive variable. This gives a simple, second-order Taylor-series rep-
resentation which implicitly includes an appropriately larger stencil
(since the second pass sums over the values (∇⊗q) j, themselves
constructed from the qk in all neighbors of j). To ensure smooth-
ness, the reconstructed gradients in the double-linear method are
slope-limited with respect to the particle-centered gradients using
the same limiter we adopt for all the usual MHD quantities (see
Paper I).

2.2 The Riemann Problem

We treat diffusion in operator-split fashion from the pure-MHD RP.
We have experimented with several Riemann solvers for the diffu-
sion RP, and find the best compromise between numerical diffu-
sion, stability, and flexibility using the Harten et al. (1983) (HLL)
solver in the Lagrangian frame. In this case:

F∗diff, i j =
λ+ Fdiff,L−λ−Fdiff,R +αλ+λ− (UR−UL)

λ+−λ− (6)

where the maximum/minimum wavespeeds λ+/λ− are determined
appropriate to the problem. Here UR, UL are the appropriate
right/left states reconstructed at the face following Paper I (extrap-
olated from the particle-centered values to the face with the deriva-
tives of U, with a MINMOD slope limiter).

Consider the case where we are using our second-order recon-
struction in a Lagrangian frame. We adopt the wavespeed estimate
from Paper I, λ+ = MAX(vL, vR)+cfast, λ− = MIN(vL, vR)−cfast.
Here cfast is a fastest wavespeed determined by the 1D RP. Then,
because in our default GIZMO method our frame is moving with
v = (vL + vR)/2, in the Lagrangian frame we simply obtain λ+ =
−λ− = |vR− vL|/2 + cfast, in which case the HLL solution reduces
to the Global Lax Friedrich (GLF) function: F∗diff, i j = (Fdiff,L +
Fdiff,R)/2−α(|vR− vL|/2 + cfast)(UR−UL)/2.

Although using the GLF flux in non-Lagrangian methods
tends to be excessively diffusive, here it gives nearly indistinguish-
able results from using the HLL solution with another wavespeed
estimate (e.g. Roe wavespeeds or the exact eigenvalues of the Jaco-
bian ∂F/∂U). This is because the first-order term owing to frame
motion is automatically accounted for by the Lagrangian nature of
the method. Even if we use a double-linear reconstruction, we see
only a tiny (percent-level) increase in diffusion using this particular
form for the RP solution.

Using the above with α= 1 gives an effective numerical diffu-
sivity κn ∼ cs |x|i j, which can easily exceed the physical κp ∼ ‖K‖
by large factors at low resolution. We prevent this by replacing

c© 0000 RAS, MNRAS 000, 000–000
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Eq. 6 with the flux-limited equation:

FHLL = MINMOD
(
(1 +ψ)F2, F2 + FU

)
(7)

F2 =
λ+ Fdiff,L−λ−Fdiff,R

λ+−λ− (8)

FU ≡ α
[
λ+λ− (UR−UL)

λ+−λ−

]
(9)

α≡
(
‖K∗ · (∇⊗q)∗‖
‖K∗‖‖(∇⊗q)∗‖

) (
0.2 + r

0.2 + r + r2

)
(10)

r ≡
(
|vR− vL|

2
+ c∗fast

)
‖x j−xi‖‖q∗‖
‖K∗‖‖U∗‖ (11)

where above F2 is the flux we would obtain in the simplest 2nd-
order accurate (but numerically unstable) formulation. FU is the
diffusive flux from the Riemann problem, appropriately limited by
the function α. Here ‖x‖ refers to the Frobenius norm of the tensor
x, and f ∗ refers to the interface value of the primitive variable f ;
where possible we adopt these from the appropriate solution to the
pure-MHD RP, otherwise we approximate f ∗ = ( fL + fR)/2.

The first term in α (in K and ∇⊗ q) limits FU for the
anisotropic case, vanishing as Fdiff does where there is full
anisotropic suppression (even at low resolution). Note that the
form of K · (∇⊗ q) in Eq. 10 follows directly from the form of
Fdiff = K · (∇⊗ q). For the cases where Fdiff is represented by a
different linear combination of gradients, the term in Eq. 10 should
be modified accordingly.

The second term in α ensures α→ 1 at small r and α→ 1/r
at large r (the functional form is motivated by Rosdahl & Teyssier
2015); together with the MINMOD application this prevents the
numerical diffusivity from exceeding physical values by more than
some tolerance parameter ψ. As usual this parameter represents
some tradeoff: increasingψ gives smoother solutions at the expense
of numerical diffusivity. We find our qualitative results are robust
for all 0.05< ψ < 1, and use ψ = 0.1 as our default.

Finally, we also compute a “direct” flux based on pairwise
direct-difference gradients, and use this to restrict F∗diff, i j via:

(F ·A)direct ≡−
[

Ki + K j

2
· (∇⊗q)dir

]
· ‖Ai j‖

x j−xi

‖x j−xi‖
(12)

(∇⊗q)dir ≡
(x j−xi)⊗ (q j−qi)

‖x j−xi‖2 (13)

F∗diff, i j =


0 (SIGN[(F ·A)direct] 6= SIGN[FHLL ·Ai j]

and ‖(F ·A)direct‖> ε‖FHLL ·Ai j‖)
FHLL otherwise

(14)

with the tolerance parameter 0 ≤ ε ≤ 1. We find stable (albeit
slightly more noisy) results in all our problems using values as large
as ε= 2, in fact, and larger values do give improved performance at
low resolution on multi-dimensional tests (e.g. the diffusing ring),
but we adopt ε= 1/2 as our default here.

We note that this is not the only way to stabilize the anisotropic
diffusion equations. For example, Sharma & Hammett (2007) pro-
pose an elegant slope-limiting method; however, it is not obvi-
ous how to extend this to unstructured meshes. Recently, Kan-
nan et al. (2015) implemented the method of Gao & Wu (2013)
for moving-mesh codes. The advantage of their method is that
it is extremum-preserving and generalizes relatively easily to im-
plicit integrators. However, we choose to explore alternatives for
three reasons. First, the Gao & Wu (2013) method implicitly uses
the lower-order “direct” gradients, as opposed to our (in princi-
ple arbitrarily high-order) matrix-based gradient estimator, neces-

sarily making the method lower-order. Moreover in flows where
there is a clear mean-field gradient but large resolution-scale noise,
matrix-based estimators are significantly more robust (see García-
Senz et al. 2012; Mocz et al. 2014; Pakmor et al. 2016). Second,
our method here allows for non-linear flux-limiting terms (e.g. α
above) which allow us to limit numerical diffusion to physical
values even at arbitrarily low resolution (potentially important in
multi-physics problems where the diffusion may, in some places,
dominate only on un-resolved scales). And third, our method here,
unlike most in the literature, allows for any (arbitrarily complex)
tensor q, and/or linear combinations of K and the elements of∇⊗q
in the fluxes (relevant for e.g. radiation transport, Braginskii viscos-
ity, and the Hall effect).

2.3 Timestepping

In addition to the usual timestep limiters (e.g., the CFL condition,
gravitational acceleration-based limiters) which always apply, en-
suring numerical stability in explicit methods for diffusion equa-
tions requires an additional timestep criterion:

∆t ≤ 1
‖K‖

[
‖∇⊗q‖
‖q‖ +

1
∆x

]−2 ‖U‖
‖q‖ (15)

For the simplest diffusion example, ∂U/∂t = κ∂2U/∂x2 and an
appropriately slope-limited gradient, this reduces to the common
expression ∆t ≤∆x2/κ. We also require that the inter-particle flux
between a particle and any neighbors of the conserved V U can-
not exceed half the minimum of the |V U| in the pair, in a single
timestep, but find this criterion is always satisfied if the above (more
strict) criterion is as well.

3 EXAMPLES IMPLEMENTED

We implement this method in the code GIZMO. A number of spe-
cific physical cases have been implemented; our focus here is not
on the microphysics but on the numerical methods. Still, it is useful
to list the relevant examples, both to explicitly see how they corre-
spond to the general formulation above, and to give examples of
the different forms of anisotropy that are physically expected.

3.0.1 Isotropic Passive-Scalar Diffusion

For this simple case, we have

K = κI (16)

q = U = nscalar (17)

where κ is the (arbitrary) diffusion coefficient, I the identity matrix,
and nscalar the scalar density.

3.0.2 Anisotropic Thermal Conduction

Isotropic and anisotropic thermal conduction are represented by:

K = κ⊥ I +κ‖ B̂⊗ B̂ (18)

q = T , U = ρu (19)

where T is the gas temperature, ρ the gas density and u the inter-
nal energy per unit mass, κ⊥ the isotropic diffusion coefficient, κ‖
the anisotropic (parallel) diffusion coefficient, and B̂ ≡ B/|B| the
direction of the local magnetic field. Here we allow either arbitrar-
ily specified κ, or default to the Spitzer conductivity (for κ‖, with
κ⊥ = 0) with a limiter for cases where the implied heat transport
rate exceeds the free electron streaming rate.

c© 0000 RAS, MNRAS 000, 000–000
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3.0.3 Anisotropic Cosmic Ray Diffusion & Streaming

Cosmic rays diffuse along magnetic field lines. Moreover, as shown
by Uhlig et al. (2012), cosmic-ray streaming can be represented
numerically via a diffusion operator. Therefore we have, for the
simple case of a single-species cosmic-ray population

K = (κdiff +κstream) B̂⊗ B̂ (20)

q = Pcr , U = ecr (21)

where Pcr is the cosmic ray pressure (proportional for a single-
species model to the CR number density), ecr≈Pcr/(γcr−1) = ρucr

is the cosmic ray energy density, and κdiff and κstream are the ap-
propriate “effective” coefficients for diffusion and streaming pro-
cesses, respectively.

3.0.4 Turbulent Eddy Diffusion Models

In popular “sub-grid” models for turbulence, the effect of un-
resolved eddies is treated as a diffusion process. Following the
Smagorinsky (1963) model, we model this for e.g. diffusion of a
scalar field via

K = ρ(C ∆x)2 ‖S‖I (22)

q = uscalar =
nscalar

ρ
, U = nscalar (23)

where ∆x is the resolution scale (for our meshless methods, de-
fined to be equal to the rms inter-element spacing inside the ker-
nel), C ∼ 0.1 is a constant calibrated to numerical simulations in
Smagorinsky (1963), and S is the symmetric shear tensor.

3.0.5 Anisotropic Radiation Transport in the Diffusion Limit

In the optically thick limit, the radiative transfer moment equations
are commonly expressed as a diffusion equation. It is convenient to
represent this in the form

Fdiff =−K · (∇·q) (24)

K =
λc
κν ρ

I (25)

q = nνDν , U = nν (26)

where c is the speed of light, κν the opacity at frequency ν, nν
the photon number (or energy) density, λ an optional “radiative
flux limiter,” and Dν the dimensionless Eddington tensor. Note the
∇ · q instead of ∇⊗ q has no effect on our methodology, it sim-
ple re-orders the gradient terms in Fdiff. Various numerical methods
(e.g. flux-limited diffusion and “variable Eddington tensor” meth-
ods) rely on this description.

3.0.6 Anisotropic Viscosity

For a viscous fluid, we have

q = v , U = ρv (27)

where v is the velocity and ρ the density. In this case the form
of Fdiff depends on the viscous parameterization. In the case of a
magnetized fluid, the Braginskii viscosity can be written

Fdiff =−K
[
K̂ : (∇⊗q)

]
(28)

K = 3ν‖

(
B̂⊗ B̂− 1

3
I
)

(29)

K̂ =
K

3ν‖
= B̂⊗ B̂− 1

3
I (30)

while for the un-magnetized case, it is common practice to decom-
pose the viscosity into shear (η) and bulk (ζ) terms, following

Fdiff = Πη + Πζ (31)

Πη =−Kη

[
∇⊗q + (∇⊗q)T − 2

3
(∇·q)

]
, Kη = η I (32)

Πζ =−Kζ (∇·q) , Kζ = ζ I (33)

Here “:” denotes the double-dot-product. As above, the particu-
lar arrangement of K and K̂ within the double-dot-product (for
the magnetized case) or decomposition of ∇⊗ v into shear/bulk
terms have no effect on our methodology; they simply re-order
the gradients of q within Fdiff. As with conduction we allow either
freely-specified η, ζ, ν‖, or can calculate the coefficients accoding
to Spitzer-Braginskii theory with the appropriate limiters. We also
add the corresponding viscous term to the energy equation.

3.0.7 Non-Ideal MHD

Astrophysical non-ideal MHD effects are typically parameterized
as Ohmic dissipation (controlled by the resistivity ηO), the Hall
effect (ηH ) and ambipolar diffusion (ηA). All appear as diffusion
operators in the induction equation; if we operator-split the ideal
MHD term (already solved in GIZMO), we have

dB
dt

=−∇×
[
ηO J +ηH

(
J× B̂

)
−ηA

(
J× B̂

)
× B̂
]

(34)

where J =∇×B. We can, with some elaborate algebra, write this
as an equation in ∇·Fdiff, but it is easier to cast this directly into
the alternative Godunov form:

d
dt

(V U)i =−
∑

j

Ai j×F∗diff, i j (35)

Fdiff = − [KO + KH + KA] · (∇×q) =−K · (∇×q) (36)

KO = ηO I (37)

KA = ηA
(
I− B̂⊗ B̂

)
(38)

KH = ηH

 0 B̂z −B̂y

−B̂z 0 B̂x

B̂y −B̂x 0

 (39)

q = B , U = B (40)

where B̂x, B̂y, B̂z are the components of B̂ and the coefficients are
calculated from the plasma properties. The appropriate magnetic
terms are added to the energy equation.

4 NUMERICAL TESTS

4.1 Diffusing Sheet

For a first test in Fig. 1, we study a simple discontinuity in one di-
mension, q = qL for x< 0, q = qR for x> 0, with all other proper-
ties fixed. To focus on the diffusion equations, we turn off all MHD
forces (for now). We also simulate this in a 3D box (with an ar-
bitrarily large periodic domain), because although it is essentially
a 1D problem, sensitivity to particle arrangement makes accurate
solution much more challenging in 2D or 3D. Finally, we also add
noise (which is critical to test for numerical instability): we add a
uniform random value to q between ±0.05qL, for all particles.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 1. Diffusing sheet test (§ 4.1). A 3D box (N = 64 elements across
plotted x-range) is initialized with a step-function discontinuity (x = 0) in
diffusing quantity q. The solution is scale-free in units shown, and inde-
pendent of the physics (we confirm identical behavior for implementations
of passive-scale diffusion, conduction, cosmic rays, turbulent eddy diffu-
sion, radiation transport in the diffusion limit, viscosity, and Ohmic resis-
tivity; § 3). We consider isotropic and anisotropic cases with diffusion ten-
sor K = K (B̂⊗ B̂), with parallel, partially-aligned, and perpendicular fields
B. In each case we compare our mesh-free finite-element methods (MFM,
our MFV method is manifestly identical on these problems; § 2) to exact
solutions.

4.1.1 Isotropic Case

In the isotropic case, after the noise has been (quickly) damped
away,2 this has the trivial analytic solution

q(x, t) =
qR + qL

2
+

qR−qL

2
Erf
[

x√
4κ t

]
(41)

The solution is completely self-similar so the absolute values of all
quantities are irrelevant; the only numerically important quantity
is the number of resolution elements over which the contact dis-
continuity has been diffused ∼

√
4κ t/∆x (as we evolve the solu-

tion, it becomes better-resolved). We therefore plot results at fixed√
4κ t/〈∆x〉.

Our results converge well to the analytic solution with both
methods even at low resolution (

√
4κ t/〈∆x〉 & 4). Because the

initial noise is grid-scale, it should be damped away on a small
timescale

√
4κ t/〈∆x〉 ∼ 1; we confirm this.

Note that the solution here is independent of the physics; we
have explicitly verified that our implementations of passive-scalar
diffusion (n ∝ q(x, t) above), conduction (T ∝ q with K = κ⊥I),
cosmic rays (ecr ∝ q, with K = κdiff I), eddy diffusion (n ∝ q),
isotropic radiation transport (nν ∝ q with Dν = I/3), viscosity
(B = 0 with vx = vz = 0, vy ∝ q, and ζ = 0), and Ohmic resis-
tivity (By ∝ q) all give identical results on this test (given the same
diffusivity), as they should.

2 We have considered both a perfect step-function initial condition, and (al-
ternatively) initializing the profile with the analytic solution corresponding
to time t0 such that

√
4κ t0/〈∆x〉 ≈ 2. These are indistinguishable after a

short time (
√

4κ t0/〈∆x〉 & 4).
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MFM: default
MFM: N=2048, NNGB=256

MFM: noise x10
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Figure 2. Anisotropic sheet (as Fig. 1) with varied ICs (§ 4.1.3). We com-
pare (1) A “default” case with resolution N = 64 particles across the plotted
range in the x-direction (≈ 4 particles across the range of diffusion at this
time, in MFM), and effective neighbor number NNGB = 32 within the ker-
nel partition function. Particles are initially in a cubic lattice, with noise in q
equal to 2.5% of the jump value. (2) High-resolution (N = 2048) and neigh-
bor number (NNGB = 256, with a quintic kernel function). (3) Initial noise
= 25% of jump value. (4) Initial particles laid down randomly (according
to a Poisson distribution). Our MFM results are indistinguishable from each
other and the exact solution in each case.

4.1.2 Anisotropic Case

Next we consider the anisotropic case. Here we take K = κ B̂⊗ B̂
with κ and B̂ constant and |B̂| = 1. In this case, the solution is
identical to the isotropic case but with κ→ κ |B̂ · x̂|2 = κ B̂2

x , so it is
entirely specified by the absolute value of the projection of B̂ in the
gradient (x̂) direction, |B̂x|.

We have considered ∼ 100 values between −1 ≤ B̂x ≤ 1 to
check for pathological behavior; these are summarized with three
representative cases shown here: |B̂x| = 0 (perpendicular fields,
which should completely suppress diffusion), |B̂x| = 1 (parallel
fields; the solution should be identical to the isotropic case), and
|B̂x|= 1/

√
2. For all scalar diffusion cases (passive scalars, cosmic

rays, eddy diffusion, conduction) this gives identical results. For
our radiation diffusion, we make the system anisotropic by instead
taking D = n̂⊗ n̂, with n̂ = B̂ constant. We confirm this produces
exactly identical solutions to the cases above.

Our MFM method is able to handle all three cases accurately;
we confirm that there is zero diffusivity for the perpendicular case
(up to machine precision, if our initial q depends on x alone) and
that the parallel case exactly matches the isotropic case. Conver-
gence is again good even at low resolution

√
4κ t/∆x & 4, and (we

show below) the results are insensitive to noise or particle order.

4.1.3 Dependence on Particle Order, Resolution, Noise, and
Neighbor Number

Fig. 2 considers variations of the anisotropic sheet. In order to test
whether our methods are sensitive to the local arrangement of par-
ticles, we have considered (in both 2D and 3D tests) an initial parti-
cle distribution following (1) a regular square lattice, (2) uniformly
randomly-distributed particles over the volume (a Poisson distribu-
tion), (3) a glass (generated from the random distribution), and (4)
a densest sphere packing. In 2D we have also considered a regular
triangular and hexagonal grid. For our MFM/MFV method, the re-
sults are almost indistinguishable (after the initial noise is damped)
in every one of these cases (even the “worst-case” Poisson distribu-
tion, shown in Fig. 2), clearly demonstrating that the method does
not depend sensitively on particle order.
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Figure 3. Anisotropic diffusing sheet problem, as Fig. 1 (N = 64), but here
focusing on two special cases where the solution is not the same as in Fig. 1
(see § 4.1.4). There is no analytic solution for the cases shown, so, we
compare a converged solution from ATHENA. Left: Braginskii viscosity
(§ 3.0.6). The initial discontinuity is in vy only, but this form of viscosity
generates vx 6= 0 at later times. We consider two cases: B̂ = (1, 1, 0)/

√
2

(upper; this should produce non-zero diffusion) and B̂ = (0, 1, 0) (lower;
this should have vanishing diffusion). Right: Hall effect (§ 3.0.7). The ini-
tial discontinuity is in By (Bx = constant, Bz vanishes). We consider a case
which should diffuse (Bx 6= 0; upper) and one which should be suppressed
(Bx = 0; lower). MFM and ATHENA agree well in all cases.

We consider resolution tests, varying both the absolute res-
olution and number of kernel neighbors. Our MFM/MFV results
are well-converged even with just ∼ 4− 8 resolution elements
across the jump (i.e. (

√
4κ t)/∆x & 4). The convergence rate of

our method is also independent of neighbor number, as shown in
Paper I and Paper II (going to larger neighbor number simply trades
a reduction in noise for increased numerical diffusivity).

We have also tested for sensitivity to initial noise, varying the
seed noise level from 0−25% of the jump level. In all cases our re-
sults are stable and do not qualitatively change with respect to this.
Likewise, the steepness of the initial discontinuity has no effect on
our results (whether we begin with the full solution at a resolved
scale, or a perfectly steep discontinuity across a single particle).

4.1.4 Braginskii Viscosity and the Hall Effect

Two cases in § 3 are more complicated, even in a simple diffusing
sheet setup. These are Braginskii viscosity (§ 3.0.6) and the Hall
effect (§ 3.0.7). In both, q is a vector (v or B, respectively), and
even if we initialize a gradient only in one element of that vector
and set the other elements to vanish everywhere, the form of the
diffusion operator leads to growth of other components of q. Math-
ematically, the anisotropic part of the diffusion operator in most
cases is a projection operator; here, it also includes a rotation oper-
ator. This leads to different non-linear solutions and makes it more
challenging to achieve stability.

Therefore we consider these cases specifically in Fig. 3. Since
the non-linear solutions do not have analytic forms even for this
simple test, we compare to a converged, high-resolution (N =
2048 across the plotted domain), one-dimensional solution from
the well-tested grid-based code ATHENA (Stone et al. 2008). We
run ATHENA in its most accurate constrained-transport, PPM-CTU

(highest-order) mode. For simplicity, we do not disable the other
hydrodynamic forces, but these are not dominant. To avoid certain
boundary condition effects in ATHENA we initialize the test prob-
lem in slightly different fashion: we take

q = 1.5−0.5
(

1 + Erf
[

x−0.25
0.01

]
−Erf

[
x + 0.25

0.01

])
(42)

For the Braginskii problem, we take initial v = (0, q, 0) and con-
sider both B̂ = (1, 0, 0) (which should produce zero diffusion)
and B̂ = (1, 1, 0)/

√
2 (which should diffuse); we take ρ = u = 1,

and |B| = 10−6 to be small so it has no effect on the dynamics
except to control the anisotropy. For the Hall problem, we take
vanishing initial velocities and B = 10−6 (0, q, 0) (no diffusion)
B = 10−6 (1, q, 0) (diffusion). Our MFM simulations are run in 3D
boxes with resolution N = 128 across the plotted domain.

Fig. 3 shows these develop non-zero vx and Bz, despite
these vector components initially vanishing. In both cases our
MFM/MFV methods produce solutions in excellent agreement with
ATHENA, even well into non-linear evolution. Both cases with dif-
fusion, and cases with full anisotropic suppression, are captured.

4.2 Diffusion Across a Moving, Rotated, Shearing Contact
Discontinuity

We next consider a more challenging variation of the diffusion
sheet, illustrated in Fig. 4. We (1) re-enable our normal MHD
physics. (2) Insert a contact discontinuity at x = 0 (the location of
the jump in q) with a density jump of a factor of 2, so the diffusion
(of some passive scalar) is across the discontinuity. This implies a
different particle arrangement (since our particles are equal-mass)
across x = 0. (3) Make the discontinuity shearing, with vy = x/2.
This means the particle geometry around the diffusing interface is
constantly being re-arranged. (4) Uniformly boost the system by
vboost = (10, 3, 2)cs. (5) Rotate the entire system by +35◦.

None of these changes the physical solution for the diffusion.
However they are all, in principle, numerically challenging. Be-
cause our methods are fully Lagrangian, our solutions are trivially
invariant to the boost (4) and rotation (5) operations. This is not
the case, however, for Eulerian methods. Our MFM method is also
invariant to (1) and (2), i.e. the evolution of a stable contact dis-
continuity produces vanishing fluxes, and the gradient estimator is
explicitly insensitive to particle arrangement within the kernel for
linear gradients (this is not always the case in other Lagrangian
methods such as SPH, where solutions around contact discontinu-
ities can depend on particle arrangement; see references in § 1).

Fig. 4 shows that, despite these complications, our MFM so-
lution still agrees very well with the exact result. There is some
noise around x = 0, introduced by the shear (3), particularly around
the contact discontinuity, but it is not visible on the scale plotted.
This constant re-arrangement of the particles (hence constant re-
arrangement of the effective faces and implicit mesh) introduces
“grid noise” (for detailed discussion of this noise term see Duffell
& MacFadyen 2014; Hopkins 2015; Mocz et al. 2015; Pakmor et al.
2016).

A detailed comparison with grid-based methods is outside the
scope of this paper; however, this problem is very challenging for
such codes. A moving contact discontinuity, especially one not
aligned with the grid, produces large numerical diffusivity at low
resolution (see Hopkins 2015; Springel 2010). Using ATHENA to
run a version of this problem with anisotropic conduction, we find
the numerical diffusivity exceeds the physical diffusion even in the
isotropic case unless we use more than ∼ 512 elements across the
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Figure 4. Diffusion across a super-sonically moving, rotated, shearing con-
tact discontinuity (§ 4.2), as Fig. 1, with full MHD physics enabled. Top:
Illustration of the initial problem setup. We measure properties along the
x′ axis, perpendicular to the initial discontinuity in density and q. We con-
sider an isotropic case (middle) and an anisotropic, perpendicular (fully-
suppressed; bottom) case. The contact discontinuity means the particle ar-
rangement is different on either side of x′ = 0, and the shear field means
that the arrangement of neighbor particles is constantly changing. These do
not destroy our solution.

plotted range (compared to 64 here); even higher resolution is re-
quired for the anisotropic case.

4.3 Sinusoidal Temperature Distribution

Fig. 5 considers a one-dimensional test problem in which a scalar q
follows a sinusoidal distribution from Arth et al. (2014). This tests
the same physics as the later stages of the diffusing sheet, but is
much “easier” (since it is 1D and there is never a steep gradient).
No other MHD physics are active, and we take a periodic box of
unit length L = 1, with unit density and sound speed and γ = 5/3,
with the physical solution

q(t, x) =
3
2

+ sin (2π x) exp
(
−4π2 K B̂2

x t
)

(43)
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Figure 5. Diffusion of a sinusoidal pulse (q ∝ sin(2π x); § 4.3), in a 1D
periodic box with 0 < x < 1 with N = 64 elements across the x-range.
We show anisotropic cases with perpendicular (full suppression) and par-
allel (no suppression) fields. In the perpendicular case, the initial pulse
does not evolve; in the parallel case, the amplitude of the pulse decays as
exp(−π2 4K t) (we show results at 4K t = 1/5).

−0.2 −0.1 0.0 0.1 0.2
x / (K′t)

−0.10

−0.05

0.00

0.05

0.10

q(
x,

t)
−

q(
x

=
0,

t=
0)

Parallel (B̂x = 1)

MFM
Exact

−0.2 −0.1 0.0 0.1 0.2
x / (K′t)

Perpendicular (B̂x = 0)

Figure 6. Diffusion with a variable diffusivity K and diffused quantity q
(§ 4.4). Both vary linearly in x̂. The box is 3D with N = 64 elements across
the x-range, but the results are converged (up to tested N = 4096). We con-
sider anisotropic cases with parallel (left; no suppression) and perpendicular
(right; full suppression) fields.

initialized at t = 0. We have confirmed (as expected) that all the
conclusions from our diffusing sheet tests apply in this test.

4.4 Variable Diffusivity

We previously took K to be constant. Here, consider the case
q(x, t = 0) = q0 + q′ x, K(x, t) = K0 + K′ x; this produces the
analytic solution q(x, t) = q(x, t = 0) + q′K′ t. In the simple
anisotropic case with K = K B̂⊗ B̂ this becomes q(x, t) = q(x, t =
0) + |B̂|2x q′K′ t. We consider this in the same 3D box setup as be-
fore (here with large enough distance in the x-direction so that the
boundary conditions do not enter the considered domain).

The results are shown in Fig. 6. Our methods perform well in
both the anisotropic case and (more trivially, therefore not shown),
the isotropic case.

4.5 Gaussian Pulse

We now consider a multi-dimensional problem – the diffusion of
a quantity injected as a δ-function instantaneously into a homoge-
nous background. In a periodic box of unit size, we initialize a 3D,
spherically-symmetric Gaussian for q centered on the origin, where
the diffused quantity is treated as a passive scalar with all other
background properties constant (so no other MHD effects appear).

c© 0000 RAS, MNRAS 000, 000–000
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MFM Isotropic

EXACT

Anisotropic

|q|0 1

Figure 7. Three-dimensional Gaussian pulse test (§ 4.5). A Gaussian distri-
bution of the diffused quantity q is injected at the center with initial spheri-
cally symmetric width ε= 0.05. We plot a slice through the x− y plane, at
time t = 0.8 for diffusivity K = 0.01, in a box of unit size with 1282 ele-
ments. Color denotes |q|, scaled linearly, in arbitrary units (so we simply set
MAX[|q|] = 1). Left: Isotropic diffusion. The Gaussian simply expands; all
methods accurately capture the exact solution (bottom). Right: Anisotropic
diffusion with K = K B̂⊗ B̂ and B̂ = x̂. The distribution should expand only
in the x-direction. MFM captures this, with minor artifacts from the initial
particle arrangement which converge away at higher resolution.

In the isotropic case, this evolves as:

q(x, t) =
q0 (2π)−3/2

(ε2 + 2κ t)3/2 exp
[
−1

2

(
x2 + y2 + z2

ε2 + 2κ t

)]
(44)

where q0 is an arbitrary normalization, κ is the diffusivity, t the time
since the problem was initialized, and ε defines the initial width of
the distribution (ε→ 0 becomes a δ-function; larger ε correspond
to starting from an already-evolved solution). We take ε = 0.05,
comparable to our inter-particle spacing, so that there is a well-
defined gradient in our initial condition.

In the anisotropic case, if we assume K = K B̂⊗ B̂ with con-
stant (in space and time) B̂, we can always define our axes so that
B̂ = x̂; then this evolves as:

q(x, t) =
q0 (2π)−3/2

ε2 (ε2 + 2κ t)1/2 exp
[
−1

2

(
x2

ε2 + 2κ t
+

y2 + z2

ε2

)]
i.e. q diffuses normally along B̂, and not perpendicular.

Fig. 7 shows the results. The isotropic case is easily recov-
ered accurately (even at lower resolution than shown). MFM is also
able to recover the anisotropic case; however at low resolution (a
643 box) the agreement is not perfect, as some artifacts from the
grid structure (here particles were initially laid in a Cartesian grid)
are present. These are invisible by-eye if we go to > 2563 reso-
lution, although still measurable in the L1 error norm. In multi-
dimensional problems such as this, the perpendicular width of
structures must, in general, be a few particles across before com-
plete anisotropy can be fully captured. This is required so that a
reliable gradient in the relevant direction can be determined (simi-
lar to the requirement in grid-based codes).

MFM: 642 MFM: 1282 Exact

MFM: 642 MFM: 1282t = 0.8

t = 0.05

Figure 8. The diffusing ring test problem (§ 4.6; style as Fig. 7). A “hot
spot” (high-|q|) within a small radial annulus is initialized with pure az-
imuthal fields; this should diffuse into a ring without additional radial dif-
fusion. We compare MFM at two different resolutions (labeled), and both
early (top) and late (bottom) times. For early times there is an approximate
analytic solution, shown; for late times there is no analytic solution, but the
high-|q| material should remained confined to the same radial annulus as
at early times, gradually diffusing around the ring until it is isothermal. In
MFM/MFV we see good agreement with the expected behaviors at both
times, even at low resolution. There is some numerical radial diffusion, but
this gradually converges away as we go towards higher resolution.
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Figure 9. Convergence in the diffusing ring test (Fig. 8), with our MFM
method. We plot the L1 error norm in q averaged over the domain as a
function of the number of elements on a side N1D, at a fixed time t = 0.2.
Convergence is close to the ideal linear scaling (dotted red).

4.6 Diffusing Ring

A more challenging version of this problem is diffusion with az-
imuthal anisotropy, following Parrish & Stone (2005); Sharma &
Hammett (2007, 2011). In a periodic box of unit size centered on
the origin and cylindrical (r, φ, z) coordiates, ρ= u = 1, v = 0, and
purely azimuthal magnetic fields B = B0 φ̂, we initialize q(t = 0) =
q0 + q1(exp[−(1/2) [(r− r0)

2/δr2
0 +φ2/δφ2

0]]. Here q0 and q1 are
an arbitrary background and normalization (we take q0 = 10−10 and
q1 = 1), δr0 = 0.05 and r0 = 0.3 define a Gaussian ring at radius
r0 of width δr, and δφ0 = 0.5 is an initial Gaussian spread about
φ= 0 in the φ̂ direction. We assume K = K B̂⊗ B̂.

Because the fields are purely azimuthal, the quantity should
diffuse in the purely azimuthal direction, “around the ring,”
rather than in the radial direction. At early times, this has
an exact solution of the same functional form: q(t > 0) =
q0 + q1(t)(exp[−(1/2) [(r − r0)

2/δr2
0 + φ2/δφ2]] where δφ2 =

c© 0000 RAS, MNRAS 000, 000–000
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MFM t = 0.1 t = 4

Figure 10. Diffusing ring test for radiative diffusion (§ 4.6.2; style as
Fig. 7), where the diffused quantity q = qDν is an anisotropic tensor, with
Dν = φ̂⊗ φ̂ (i.e. a purely azimuthal Eddington tensor). We initialize a small
(r = 0.1), thin (δr = 0.01), azimuthally symmetric ring (in a box of unit
length); the ring should expand with speed≈ K/r and remain thin. The res-
olution here is 642, and we show the result at early (t = 0.1; top) and late
(t = 4; bottom) times. MFM captures the physically correct behavior.

δφ2(r, t) = δφ2
0 + 2K r−2 t (with normalization q1(r, t) = q1(t =

0)(δφ0/δφ)). This assumes we can neglect the periodic bound-
ary conditions around the ring – i.e. is valid for δφ� π (hence
early times). At late times, the diffusion from both directions self-
intersects on the opposite side of the ring, and there is no simple
exact solution. Eventually, though, as t→∞, the system becomes
isothermal within each azimuthal annulus. This is a challenging
problem even in high-order grid codes (see Parrish & Stone 2005).

Fig. 8 compares the results at early and late times, at two
different resolution levels. As before, MFM is able to capture the
azimuthal anisotropy. Even at low resolution (642), there are only
weak grid artifacts, but these and the amount of perpendicular dif-
fusion improve at higher resolution. At late times, for comparison,
in the fixed-grid code ATHENA on a Cartesian mesh (where the
preferred direction of the grid is not the azimuthal direction), it
requires going to ∼ 2562 resolution before the diffusion properly
“wraps” into a ring at all (see e.g. Sharma & Hammett 2011); our
1282 case resembles a∼ 5122 case with ATHENA. And we note that
we have not aligned the particles with the anisotropy (the particles
are in a regular triangular lattice).

Note that we have tested both the 2D ring version of this prob-
lem and the 3D version, where the ring becomes a cylinder elon-
gated in the ẑ direction and the box is periodic in that direction. The
results are very similar in both cases.

4.6.1 Convergence

Note that our diffusing ring setup is slightly different from that in
Sharma & Hammett (2007, 2011) and Kannan et al. (2015), who
used this problem to measure the convergence properties of their
method. We have therefore also compared initial conditions which
match their choice: we initialize a step-function discontinuity with
q = q0 and q = q1 inside or outside (respectively) of an annulus
0.25< r< 0.35 and−π/6<φ< π/6. The qualitative results with
all methods are identical to those shown in Fig. 8.

Fig. 9 quantifies the convergence (in 2D tests using this initial
condition) by measuring the L1 norm of q at time t = 0.2 relative
to a high-resolution solution (20482) interpolated to the particle po-
sitions. We find a convergence rate L1 ∝ N−0.9, close to the ideal
∝ N−1. This is competitive with and in some cases superior to the
implementations studied in fixed-grid and moving-mesh codes in
Sharma & Hammett (2007, 2011); Kannan et al. (2015). However
we caution that we are comparing to our own high-resolution so-
lution, not an exact solution (because none exists); so systematic
errors which may converge more slowly do not appear.

4.6.2 Tensor Diffusion: The Radiative Diffusion Case

Interestingly, if we consider the radiative diffusion version of this
problem, the behavior is qualitative different. Take Dν = n̂⊗ n̂ and
n̂ = φ̂ (define K ≡ λc/(κν ρ)); because the anisotropy is inside the
first gradient in the diffusion equation (i.e. we have F = K∇· [(φ̂⊗
φ̂) |q|] as opposed to F = K (φ̂⊗ φ̂) ·∇|q|), the solution is distinct.
For an azimuthally symmetric U = nν = nν(r) and n̂ = φ̂, the diffu-
sion equation for scalar q reduces to ∂q/∂t = −(K/r)∂q/∂r, i.e.
the ring expands radially with a speed = K/r. Fig. 10 shows the
results of this test. In our MFM/MFV methods, the ring expands as
expected, and the correct qualitative behavior is captured even at
extremely low resolution (∼ 322).

4.7 Anisotropic Diffusion-Driven Instabilities: MTI & HBI

We now consider two instabilities specific to anisotropically con-
ducting plasmas: the magneto-thermal instability (MTI) and heat-
flux driven bouyancy instability (HBI) (Balbus 2000; Quataert
2008). These have been studied in various astrophysical contexts
as drivers of turbulence, convection, and mechanisms to enhance
or suppress conduction; our specific problem setup is motivated by
the studies in Parrish & Stone (2005); Parrish et al. (2008); Parrish
& Quataert (2008); McCourt et al. (2011); Kannan et al. (2015).

Here, we are not interested in the physics of the instabili-
ties themselves, but they are useful numerical tests for several rea-
sons. (1) They require accurate coupling of the anisotropic conduc-
tion to the magneto-hydrodynamics of the flow (not guaranteed in
operator-split methods). (2) They are specific to anisotropic con-
duction and are suppressed with isotropic conduction, so directly
test whether isotropic numerical diffusion can overwhelm physical
diffusion. (3) They test the ability of the anisotropic conduction op-
erator to recover small-amplitude seed perturbations. (4) They lead
to non-linear, sub-sonic turbulence, which is particularly challeng-
ing for mesh-free methods (historically, SPH) to treat accurately
(see e.g. Bauer & Springel 2012; Price 2012a), and require that our
operator preserves anisotropy even in a turbulent flow.

4.7.1 High-Resolution Tests

Following Parrish & Stone (2005); Parrish et al. (2008); Parrish &
Quataert (2008); McCourt et al. (2011); Kannan et al. (2015), we
initialize a 2D box in x− z coordinates with an analytic constant
gravitational acceleration g = −ẑ, size L = 1/10, resolution 2562,
polytropic γ = 5/3, and conductivity K = 0.01 (K = K I for the
isotropic case, K = K B̂⊗ B̂ for the anisotropic case). For the MTI,
we initialize u = (3/2)(1− z/H) with H = 3, and B = 10−11 x̂,
with a seed velocity perturbation3 v =M0 cs sin(4π x/L) ẑ with
M0 = 10−2. For the HBI, u = (3/2)(1 + z/H) with H = 2, and
B = 10−11 ẑ and v = M0 cs [sin(3π z/L) x̂ + sin(4π x/L) ẑ]. The
density ρ(z) is initialized so that the initial pressure gradient bal-
ances gravity with 〈ρ〉 = 1 in the box. The domain is divided ver-
tically into three equal sub-domains of length L/3; the top and

3 In our high-resolution tests, we use a seed velocity perturbation with mag-
nitudeM0 = 10−2 instead ofM0 = 10−4 as in Parrish & Stone (2005);
Parrish et al. (2008); Parrish & Quataert (2008). This was chosen for com-
putational convenience. Because we use an explicit integration method, the
timestep for high resolution in a small spatial domain becomes very short
(∼ 10−5). Using the smaller seed velocity requires approximately an order-
of-magnitude longer runtimes to develop non-linear behavior, so we adopt
the larger seed for high-resolution tests. However we explicitly show in
§ 4.7.2 below that our MFM method can accurately capture very small seed
velocities even at much lower resolution ∼ 322.
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Figure 11. Magneto-thermal instability (MTI) and heat-flux driven bouyancy instability (HBI) tests (§ 4.7), with our MFM method. Top: MTI: The initial
condition (left) is a 2D box of length L = 0.1, with 2562 resolution elements, with a vertically stratified atmosphere with dT/dz < 0 (temperature decreases
upwards), in equilibrium with a constant vertical gravitational field g = −ẑ and conductivity κ = 0.01. Magnetic field lines are shown at different times t;
these are initialized with trace values aligned along x̂. Color denotes |B|, increasing linearly from the minimum to maximum values at each time (cyan to
purple to magenta, respectively; see Fig. 13 for quantitative values). With no diffusion, or isotropic diffusion (K = κ I; center), the system is stable and the
field configuration should be preserved. With anisotropic diffusion (K = κ B̂⊗ B̂; right), the system is unstable and develops convection. This re-orients the
field to be initially near vertical (at e.g. the time shown), then breaks up into turbulence and the field becomes isotropic. The characteristic timescale is the
bouyancy time ∼ 1.7 in these units. Bottom: HBI. The resolution and conductivity are the same but the initial atmosphere now has dT/dz > 0, and initial
B̂ = ẑ. Again with no diffusion or isotropic diffusion, the system is stable. With anisotropic diffusion, the HBI amplifies transverse motions that re-orient the
field to be perpendicular (B̂→ x̂). MFM recovers all of the expected behaviors for both instabilities with anisotropic diffusion, and correctly suppresses them
with isotropic diffusion.

bottom layers have isotropic conduction (i.e. are buoyantly neu-
tral) while the central layer has anisotropic conduction (this follows
the previous studies and reduces the sensitivity to boundary condi-
tions). The boundaries are periodic in x̂; and constant-temperature
reflecting boundaries in ẑ. Note that a sharp, reflecting and conduct-
ing “wall” is particularly challenging to implement in mesh-free
methods. We treat the reflecting boundaries as follows: a layer (3
particles deep) of boundary particles with fixed positions and tem-
peratures is placed at z< 0 and z> L. For every interaction between
a boundary particles and normal particle (gradient calculation, the
hydrodynamic operations, etc), the boundary particle is assumed to
have all specific properties matched to the normal particle, except
the temperature (fixed to the IC value), velocity and magnetic field
(which follow the usual reflection rules) and density (adapted to
give equal pressure, given the different temperatures).

Both of these ICs represent a stably stratified atmosphere.
With no conduction, or isotropic conduction, the system should
remain in equilibrium and the seed perturbations should damp.
With anisotropic conduction, provided a large enough diffusivity
(as chosen here) such that the system is approximately isother-

mal along field lines, the instabilities should grow and eventually
re-orient the field lines. In the MTI (vertical temperature profile
dT/dz< 0), the small vertical velocity grows into large, non-linear
convective cells which carry the field lines and re-orient the field
in the vertical direction, until the cells cross the domain and the
fixed-temperature boundary conditions produce sustained turbu-
lence. In the HBI (dT/dz > 0), the initial mixed perturbation gen-
erates growing separation/compression of field lines, which leads
to horizontal motions that try to stretch the field lines horizon-
tally, until the instability saturates when the field lines are hori-
zontal and suppress further convection. In both the HBI and MTI,
the characteristic timescale is the bouyancy time |g∂ lnT/∂z|−1/2

(∼ (1.7, 1.4) in code units for our MTI and HBI setups, respec-
tively).

Fig. 11 shows the results of these tests at a few bouyancy
times, using our MFM method. Recall the relatively large initial
perturbation here means non-linear behavior can develop in just a
couple bouyancy times, and we see that occur in the anisotropic
case. The qualitative behavior of the non-linear HBI and MTI
compares well to that seen in Parrish & Stone (2005); Parrish &
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t = 13 MFM t = 18

t = 23 t = 50

Figure 12. Development of the MTI in an MFM simulation at low (322)
resolution, now with a box of side-length L = 1. Field lines are shown
as Fig. 11. Initially small seed velocity perturbations grow in the verti-
cal direction and become the convective cells. Once the cells reach the
box boundaries (t & 25, the convection is sustained by the constant-
temperature, reflecting boundary conditions and produces sustained turbu-
lence that isotropizes the magnetic field. Again, MFM can capture all the
important behaviors even at very low resolution, especially for the larger
box studied here which produces larger Mach numbers (here ∼ 0.03) com-
pared to Fig. 11. The bouyancy time for this setup is ∼ 1.7.

Quataert (2008); McCourt et al. (2011). In both MTI and HBI, the
cases with isotropic diffusion show (correctly) no evidence of in-
stability, and the initial perturbations are eventually fully damped.

4.7.2 Low-Resolution Tests

To explore late-time evolution and resolution effects, we now con-
sider an initial condition which is identical to our high-resolution
tests, but with lower resolution 322 and larger box size L = 1 (these
both allow larger timesteps), smaller seed velocityM0 = 10−4, and
larger conductivity K = 0.1 (to preserve the desired limit where the
conduction is sufficiently fast).

Fig. 12 shows the time evolution of the MTI in one of these
runs; we obtain similar (good) behavior in our low-resolution MTI
runs. In both cases, even at 322 resolution, the instabilities are (cor-
rectly) completely suppressed with isotropic diffusion. Quantita-
tively, the results from these runs are shown in Fig. 13.

In MFM, we see the MTI grow (despite the very low resolu-
tion), going non-linear after ∼ 10− 20 bouyancy times (similar to
high-resolution cases with the same seed perturbation amplitude;
Parrish & Stone 2005; McCourt et al. 2011; Kannan et al. 2015),
at which point the convective plumes re-order the magnetic field
from horizontal to vertical. At late times, the plumes break up into
sustained, non-linear convection, which isotropizes the field (al-
though this is known to be sensitive to the boundary conditions).
The fluctuations around isotropy owe to the ongoing turbulence
(and are smaller at higher resolution). The saturated Mach num-
bers ∼ 0.01− 1 are larger than those in the smaller L = 0.1 box,
as expected based on the scaling seen in McCourt et al. 2011.
Both qualitative and quantitative evolution compare favorably to
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t / tbouyancy
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B̂
2 z

HBI

0 50 100 150
t / tbouyancy

Figure 13. Time evolution of our low-resolution MTI (left) and HBI (right)
simulations from Fig. 12 (§ 4.7.2). Top: rms Mach number (volume-
averaged) in the center of the computational domain, as a function of
time. Bottom: Mean squared z-component of the magnetic field orientation,
B̂2

z = (B̂ · ẑ)2. In MFM, the instabilities develops and velocities increase
from their seed values rapidly around t ∼ 10− 20 tbouyancy. The magnetic
fields are rapidly re-oriented at the same time. In the MTI, fields go from
horizontal to vertical, then the sustained convection with steady-state Mach
numbers∼ 0.03−0.1 (given the large box-size L = 1) isotropizes the fields
(red dotted line represents isotropic fields). The fluctuations about isotropy
owe to the low resolution. In the HBI, fields go from vertical to isotropic,
but the large Mach numbers (∼ 0.02), low resolution, and boundary con-
ditions here cause an overshoot that sustains fluctuations around isotropy
until the velocities decay to . 0.01cs, at which point the instability rapidly
completes the horizontal re-orientation of the field.

higher-resolution studies in fixed-grid and moving-mesh schemes
(McCourt et al. 2011; Kannan et al. 2015).

For the HBI, the instability goes non-linear on a similar
timescale to the MTI, but the Mach numbers slowly decay as the
field re-aligns. Interestingly, for the L = 1 box, there is an interme-
diate period of isotropic fields, before the instability completes their
horizontal re-alignment; this does not appear in the L = 0.1 box, so
we suspect it owes to the larger turbulent “overshoot” through the
unstable zone induces by the first phase of the instability, which
must be damped before the re-alignment can complete.

4.8 Hall MRI

As discussed in § 4.1.4, the Hall effect presents unique numeri-
cal challenges; therefore, we now consider the magneto-rotational
instability (MRI) with a Hall term and Ohmic resistivity (“Hall
MRI”). This again involves the effects of anisotropic diffusion on
plasma instabilities and turbulence. The effects of the Hall term
are especially important in the context of proto-stellar and proto-
planetary disks (for reviews, see Balbus 2003; Wardle 2007), and
have been studied in detail using Eulerian methods (Flock et al.
2011; Simon et al. 2011; Bai 2011; Simon et al. 2015).

The MRI itself is astrophysically interesting in a wide range
of contexts involving magnetized disks, and is numerically partic-
ularly interesting because it has historically proven challenging for
SPH methods to correctly capture its growth (see e.g. Rosswog &
Price 2007; Price & Bate 2008; Dolag & Stasyszyn 2009). In Pa-
per II and Hopkins (2016), we consider extensive studies of the
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MFM (X0 = 2) MFM (X0 = −2)

IG-SPH (X0 = 2) IG-SPH (X0 = −2)
Figure 14. Hall MRI tests (§ 4.8). We compare the field lines (as Fig. 11)
well into non-linear evolution. The initial condition is a 2D R− z shear-
ing box of length L = H (the pressure scale length) with 1282 resolution, a
constant field B0 ẑ, trace pressure/velocity perturbations, and explicit Ohmic
resistivity (with magnetic Reynolds number ReM,0 = 10∝ 1/ηO) and Hall
effects (with Hall parameter X0 ∝ 1/ηH ). Opposite signs of X0 correspond
to the identical setups with opposite signs of B; this has no effects unless the
Hall term is present. Results are shown at t ≈ 6 torbital (torbital = 2π/Ω). Left:
For X0 ≥ 0, modes should grow quickly. In the non-linear state, the fastest-
growing modes become bigger than the box, leading to the horizontal chan-
nel modes seen; these increase |B|without limit. Right: For−4 . X0 .−2,
growth is slower and smaller modes grow fastest, leading to near-isotropic
MRI turbulence in the saturated state as opposed to channel modes.

MRI in ideal MHD (X0 = 0, ReM,0 →∞) in GIZMO. We showed
that our MFM and MFV methods recover the correct linear growth
rates and non-linear properties in good agreement with well-tested
higher-order Eulerian codes such as ATHENA. We also showed that
at least some SPH schemes were capable of doing the same (albeit
with greater noise), if a larger neighbor number is used.

Here, we follow Sano & Stone (2002) and consider a sim-
plified test problem. We adopt a 2D axisymmetric shearing box
from Guan & Gammie (2008); this is locally Cartesian with
one coordinate (x) representing the radial direction and the other
coordinate (z) the vertical direction, representing a small, az-
imuthally symmetric “ring” about the midplane of a disk in a Ke-
plerian potential. Details of the boundary conditions and gravi-
tational terms, as implemented in GIZMO, are in Paper II (this
is the same box used for the MRI simulations therein). The
box has initially constant density ρ0 = 1, side-length L = 1 =
H (where H ≡ (2/γ)1/2 cs,0/Ω is the scale-height), orbital fre-
quency Ω = 1, mean pressure P0 = c2

s,0/γ = Ω2/2 (γ = 5/3),
spatially uncorrelated random pressure and velocity fluctuations
with uniform distribution and |δP|/P0 = |δv|/cs,0 ≤ 0.5× 10−2,
and uniform vertical field B = B0 ẑ. The MRI is then character-
ized by three numbers, the plasma beta β0 ≡ P0/(v2

A,0 ρ0) = 3200
(vA,0 ≡ |B0|/(4πρ0)

1/2); the magnetic Reynolds number ReM,0 ≡
v2

A,0/(ηO Ω) = 10, which determines the Ohmic resistivity ηO; and
the Hall parameter X0 ≡ cB0 Ω/(2π ene,0 v2

A,0), which determines
ηH = |X0|v2

A,0 (2Ω)−1 (|B|/|B0|)(ρ0/ρ) (we assume the free elec-
tron fraction is constant).

Figs. 14-15 show the resulting evolution of the magnetic
fields, for X0 = +2, 0,−2,−5. For X0 = 0 (no Hall term), we sim-
ply have the MRI with explicit resistivity. In 2D shearing boxes,
the fastest-growing modes for ReM,0 = 10� 1 should have growth
rates only slightly smaller than the 0.75Ω expected in the ideal
limit; once non-linear, they should form an inverse cascade until
horizontal channel modes appear which grow without limit. For
X0 > 0, the behavior should be essentially identical, with slightly
faster mode growth at higher X0. When X0 <−4, the system is fully
stable against the MRI, and the initial perturbations should decay.
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Figure 15. Growth of the volume-averaged magnetic pressure (relative to
the initial thermal pressure P0) in the mean-field Hall MRI tests. We show
results for different initial Hall parameters X0 = +2, 0,−2,−5 (as la-
beled), at low resolution (322; thin lines) and intermediate resolution (1282;
thick lines). We also show the expected analytic maximum linear growth
rate (|B|2 ∝ exp(1.5 t Ω); dotted black line), which should be close to the
simulated growth rate for X0 ≥ 0. The growth for X0 ≥ 0 is similar to the
ideal MHD case (as expected), with growth rates in good agreement with the
analytic expectation for 1282 resolution, and late-time formation of chan-
nel modes (Fig. 14). Growth rates are suppressed at very low resolution,
as expected from the MRI studies in Paper II. For X0 = −2, linear growth
is suppressed and the magnetic field strength saturates when the system
saturates in MHD turbulence (also as expected). For X0 = −5, the system
should be stable against MRI growth; we confirm this and that the initial
seed noise damps at the expected rate (decay rate∼Ω). All the results here
are in good agreement with well-tested Eulerian codes (see e.g. Sano &
Stone 2002, Fig. 5).

At intermediate−4< X0 < 0, the MRI should grow but with a sup-
pressed maximum growth rate (for finite ReM). Within this range, as
X0 becomes more negative (larger |X0|), smaller-scale modes grow
faster, until for X0 . −2 there is no critical scale at all; because of
this, the system can saturate for many orbital periods with steady-
state MRI turbulence (as the growing small-scale, high-k modes
prevent the formation of low-k channel modes). We confirm all
these behaviors here (compare Fig. 5 in Sano & Stone 2002). As
expected and shown in detail in Paper II, the linear growth rates are
suppressed at very low resolution (∼ 322), but rapidly approach the
analytic solution at higher resolution. Moreover, we note that we
have re-run every problem in Sano & Stone (2002) with our MFM
method (varying β0, ReM,0, X0, and the box size; considering zero
net-field cases; and their whistler wave test problem) and confirm
identical qualitative behavior.

Note that, for −4 < X0 < 0, given our setup, the instanta-
neous Hall parameter X ∝ |B|−1 and magnetic Reynolds number
ReM ∝ |B|2, so as modes grow non-linear (|B| increases), the sys-
tem moves closer to the ideal MHD limit. Because our problem
has finite ReM,0 = 10, if we begin with −2.1 < X0 < 0, there is
a fastest-growing mode, with relatively large wavelengths (λmax ≈
0.03H, 0.09H for X0 =−2,−1). During the turbulent phase, these
modes can increase |B| non-linearly, which in turn increase the
fastest-growing mode growth rate and wavelength, and suppress
the growth of the smaller-scale modes. This can eventually trigger a
runaway inverse cascade that produces the channel modes seen for
X0 ≥ 0. We find that, if λmax is well-resolved, this occurs eventu-
ally if X0 ≥−2 (for ReM,0 = 10), although it in some cases requires
∼ 100 orbital times. For X0 <−2.1, we confirm the turbulence re-
mains essentially indefinitely.
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4.9 Other Multi-Physics Problems

We have also vetted our algorithms in other non-linear problems
where diffusion is not necessarily the primary physics. For ex-
ample, we have considered a Sedov-Taylor blastwave with ther-
mal conduction, and a shocktube with physical viscosity follow-
ing (Sijacki & Springel 2006). We find good agreement between
our MFM method and ATHENA; small differences are dominated
by the known numerical differences in their solution of the normal
MHD equations (see Paper I-Paper II), not the sub-dominant diffu-
sion terms. Therefore we do not consider these problems good tests
of the diffusion treatment in itself (and do not study them further
here). But they do serve as a validation that the diffusion operators
here behave properly when coupled to additional dynamics.

A methods paper specifically devoted to the implementa-
tion of radiation transport is in preparation, where we compare
the flux-limited diffusion, optically-thin variable Eddington tensor
(OTVET; Gnedin & Abel 2001), and M1 moment closure approxi-
mations and consider several dynamical test problems designed to
study the radiation-hydrodynamics of ionizing photons (Khatami et
al., in prep). A similar detailed study of the cosmic ray implemen-
tation, including cosmic ray pressure effects and the role of cosmic
ray streaming (as well as diffusion) is also in preparation (Chan et
al., in prep).

As a “stress test” of our implementations, we have also run
full cosmological simulations of galaxy formation using the Feed-
back in Realistic Environments (FIRE) models (Hopkins et al.
2014; Faucher-Giguere et al. 2015; Ma et al. 2015, 2016; Chan
et al. 2015; Muratov et al. 2015; Oñorbe et al. 2015), with GIZMO
in its MFM mode. These simulations include gas, stars, super-
massive black holes, and dark matter, self-gravity, cosmological in-
tegrations, cooling physics and gas chemistry, star formation, and
feedback from stars in the forms of photo-heating, radiation pres-
sure, stellar winds, and supernovae. We have considered cases with
MHD and using the Spitzer-Braginskii coefficients for anisotropic
conduction and viscosity, and Smagorinski eddy diffusion for met-
als. The results are presented in Su et al. (2016). For our purposes
here, since there is no known “right” answer for such simulations,
we consider these only to be useful tests of numerical stability
under extreme conditions. Critically, we see no evidence for nu-
merical instability or unphysical features owing to the addition of
anisotropic diffusion operators in these simulations.

5 DISCUSSION

We present numerical discretizations of general anisotropic ten-
sor diffusion operators for Lagrangian hydrodynamics methods,
specifically for both recently-developed meshless finite-mass or
finite-volume (MFM/MFV) Godunov schemes. We implement
these in the multi-method code GIZMO, with the specific imple-
mentations relevant for passive scalar diffusion, non-ideal MHD
(Ohmic resistivity, the Hall effect, and ambipolar diffusion), sub-
grid “turbulent eddy diffusion” models, anisotropic conduction
and viscosity (shear/bulk or Braginskii), cosmic ray diffusion and
streaming, and anisotropic radiation diffusion (with a variable Ed-
dington tensor).

We consider a variety of test problems. In all cases, our finite-
element MFM/MFV schemes can produce accurate solutions, even
at low resolution, and are numerically stable. The schemes are
also manifestly conservative. They are able to recover correctly the
anisotropic cases, up to and including complete suppression with
perpendicular magnetic fields. We show this is true regardless of
the local particle arrangement/disorder (even in “worst case” sce-

narios where the particle arrangement is totally random), and re-
gardless of the “neighbor number” in the spline. For some cases
of great astrophysical interest, e.g. diffusion across a moving con-
tact discontinuity which is not aligned with the grid, these methods
(by virtue of being Lagrangian and mesh-free) may exhibit sub-
stantially reduced numerical diffusion compared to non-moving,
grid-based codes (e.g. AMR methods) at the same resolution. The
MFM/MFV methods are able to capture subtle instabilities driven
by anisotropic diffusion (e.g. the magneto-thermal and heat-flux
driven bouyancy instabilities, and Hall MRI).

The particular form we adopt for the flux-limited Riemann
problem is non-trivial, and should be useful for other explicit
anisotropic diffusion methods. Stabilizing these methods without
introducing excessive numerical diffusion is challenging, espe-
cially in irregular/unstructured meshes or mesh-free configurations.
The method we propose has the advantage that it trivially general-
izes to arbitrarily high-order (and complicated) gradient estimators
and slope-limiters, as well as higher-order reconstruction of the gra-
dients at the faces (we simply replace the left and right states in
Eqs. 7-11 with their appropriate values); it also admits arbitrarily
complex tensors for both the diffusivity and diffused quantities (as
opposed to many methods which are specific to scalar diffusion).
And the flux computation is pair-wise and negligible in cost com-
pared to the MHD Riemann problem solution. It therefore is of
interest not just to mesh-free methods but also moving-mesh and
AMR methods.

At least some aspects of our new method here can also be
applied to SPH. Because GIZMO is a multi-method code which in-
cludes an optional SPH solver, we present an application of this
in Appendix A. There we note that some of the low-order errors
in other SPH-based anisotropic diffusion formulations can be re-
solved by application of the higher-order matrix gradient estima-
tors here, but this in turn requires application of a flux-limiter akin
to what we use here, to stabilize the method. We show that the re-
sulting “integral-Godunov” SPH behaves well in at least a subset
of our tests.

The major dis-advantage of our method is that it does not triv-
ially generalize for implicit solvers (see Appendix B). This is a sub-
ject that merits investigation in future work, since implicit methods
can often provide a large speed boost to certain types of problems.
However, the methods here are amenable to significant acceleration
via super-timestepping, which can provide a comparable speedup
as described in Appendix C.
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APPENDIX A: APPLICATION TO SPH

As described in Paper I & Paper II, GIZMO is a multi-method code:
users can run with our meshless Godunov (MFM or MFV) hydro-
dynamic methods detailed in the main text, or SPH, if desired.

Isotropic diffusion in SPH is generally well-handled by the
hybrid-derivatives formulation of Brookshaw (1985); we confirm
this in GIZMO. Anisotropic cases are more difficult. Español &
Revenga (2003) derived a second-order accurate generalization of
the Brookshaw (1985) method, but Petkova & Springel (2009) and
Arth et al. (2014) show that it is (catastrophically) numerically un-
stable when the degree of anisotropy is large. They both derived
the minimum correction/dissipation term necessary to stabilize the
equation, giving the hybrid-derivatives SPH equation:

d(V U)a

dt
=

ma

ρa

∑
b

mb

ρb
xT

ab

[
Ka + Kb

|x|2ab

]
· (A1)[

(∇a Wab +∇b Wab)
2

⊗ (qb−qa)
]

where xab = xa − xb. Unfortunately, both Petkova & Springel
(2009) and Arth et al. (2014) show that this is fundamentally unable
to capture significant anisotropy – essentially, Eq. A1 represents a
linear combination of∼1 part isotropic diffusion for every∼5 parts
anisotropic diffusion. Thus, the incorrect physical equations are be-
ing solved, and the errors (the isotropic part) do not converge with
resolution. Even in a simple diffusing slab, this gives systemati-
cally incorrect solutions, and effects which depend on anisotropy
(the MTI, HBI, diffusing ring) cannot be captured.

A more accurate treatment follows the “gradients of gradients”
method as in Sijacki & Springel (2006). Because second-kernel
derivatives are unstable and catastrophically noisy, and succes-
sive application of the first-order consistent SPH gradient operator
yields a non-conservative formulation (Morris 1996; Price 2012b),
one applies instead a pair of conjugate first-order and zeroth-order
SPH gradient estimators, giving:

d(V U)SPH
a

dt
=
∑

b

mamb

(Ka · 〈∇⊗q〉a
Ωa ρ2

a
·∇aWab

+
Kb · 〈∇⊗q〉b

Ωb ρ2
b

·∇bWab

)
(A2)

where Ωa ∼ 1 is a correction term accounting for variations in the
smoothing length h (see Springel & Hernquist 2002), and the SPH
first-order consistent derivative operator 〈∇⊗q〉a is given by

〈∇⊗q〉αβ...a,SPH =
∑

c

mc

Ωaρa
(qc−qa)

β... (∇aWac)
α (A3)

Eq. A2 has primarily been used for isotropic diffusion (Sijacki
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Figure A1. Top: Diffusing sheet test as Fig. 1, but comparing smoothed-
particle hydrodynamics (SPH) methods as described in § A. The “hy-
brid derivatives” HD-SPH method (Eq. A1) is unable to capture proper
anisotropy, as is well-known, so we will not consider it further. Our new
“integral-Godunov” SPH method, which borrows the higher-order matrix
gradient estimators and same flux-limited Riemann solution from the MFM
method in the main text, gives very similar results to MFM. Bottom: Bragin-
skii viscosity and Hall effect as Fig. 3, in IG-SPH. The hall effect is captured
well; there is some noise in Braginskii viscosity owing to the residual “E0”
SPH errors and interaction between the explicit and “artificial” viscosity in
SPH.

& Springel 2006; Tsukamoto et al. 2013; Wurster et al. 2014),
but recently was applied for anisotropic non-ideal MHD terms in
Tsukamoto et al. (2015); Wurster et al. (2016). However, two prob-
lems remain. (1) Eq. A3 has a low-order error: for a constant gradi-
ent (q = q0 +q′ x), the gradient returned by Eq. A3 is∇q = q′ (x̂+
ε) where the error term ε∼O(h0) depends only on the particle ar-
rangement in the kernel (εx = −1 +

∑
xca fca, εy, z =

∑
(y, z)ca fca

where fca ≡ (xca/|xca|)(mc/Ωaρa)∂Wca/∂|xca|) so does not con-
verge with resolution. (2) Similar, Eq. A2 is zeroth-order, giving
error terms ∼O(q′′ h0) +O(q′ h−1).

We can potentially improve on this, using our insight from
the main text. For (1), replace the standard SPH estimator of
〈∇ ⊗ q〉a,SPH (Eq. A3) in Eq. A2 with the second-order accu-
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IG-SPH (X0 = 2) IG-SPH (X0 = −2)

Figure A2. Top: Diffusing ring test as Fig. 8. Middle: Low-resolution MTI
test as Fig. 11-12, for both anisotropic and isotropic diffusion. Bottom: Hall
MRI test as Fig. 14. IG-SPH performs comparably to our MFM method
on the diffusing ring. In the dynamical problems (MTI and Hall MRI), IG-
SPH is able to capture some of the qualitative behavior, but known SPH
challenges with highly sub-sonic turbulence produce the noise shown (and
slower mode growth) and generate some instability even in the isotropic
case (which should be stable). These may be fix-able, but are outside the
scope of the diffusion operator itself.

rate moving least-squares estimator (∇⊗ q)matrix
a from our MFM

method (Eq. 4). This is the same estimator used in so-called “inte-
gral” SPH formulations (García-Senz et al. 2012; Rosswog 2014).
Unfortunately (as noted by those authors), this alone leads to a nu-
merically unstable method. But we can remedy this by replacing
the usual SPH fluxes with our flux-limited Riemann solution. To
do this we modify Eq. A2, symmetrizing the density and smooth-

ing length terms as they appear, giving:

d(V U)SPH
a

dt
=−

∑
b

ASPH
ab ·FSPH

diff (A4)

ASPH
ab ≡

mamb

ρaρb
(∇aWab +∇bWab) (A5)

FSPH
diff =−1

2

(
Ka · (∇⊗q)matrix

a + Kb · (∇⊗q)matrix
b

)
(A6)

and then replace FSPH
diff → F∗diff solved exactly as in § 2.2, identifying

Fdiff,R = Kb (∇⊗ q)matrix
b (and likewise L and a). Note that this is

now effectively a Godunov-type method, with the “SPH effective
face area” ASPH

ab . We therefore refer to this method as “integral-
Godunov” (IG) SPH. Finally, note that this does not fully resolve
issue (2) above; doing so requires replacing ASPH

ab with a more con-
sistent face estimator; of course, replacing this with our MFM faces
gives exactly our MFM method in the main text (the only difference
then would be how the other hydro equations are solved).

Figs. A1-A2 show a series of tests of this modified IG-SPH
method. First we simply verify the well-known conclusion that the
HD-SPH form (Eq. A1) is unable to handle anisotropic diffusion.
In contrast our IG-SPH method performs comparably to our MFM
method (not surprising, given how similar they are) on simple dif-
fusion sheet problems and e.g. the diffusing pulse and ring tests.
We have also compared the “gradients of gradients” SPH method
(Eq. A2); if the particle order is ideal this is comparable to our IG-
SPH method, but if we seed initial noise in the field q or particle
distribution, then it is significantly more noisy, and it fails to con-
verge with resolution alone (keeping neighbor number fixed) on the
diffusing ring test – this is of course expected from our caveats (1)-
(2) above. Where IG-SPH shows some issues in Figs. A1-A2: the
Braginskii viscosity test, MTI, HBI, and Hall MRI tests, the prob-
lems appear to primarily owe to known difficulties with the SPH
hydrodynamics operators (e.g. artificial viscosity triggering imper-
fectly, and low-order hydrodynamic errors generating noise in sub-
sonic turbulence) – there are various ways to improve these errors
but since they are not in the diffusion operators themselves they are
outside the scope of this paper.

APPENDIX B: IMPLICIT METHODS

In the main text we solve the diffusion equations explicitly. Quali-
tatively speaking, we update U according to

(V U)n+1 = (V U)n + ∆t
d(V U)

dt

n+1/2

(B1)

where n refers to the timestep and n + 1/2 refers to drifting all
quantities to a half-timestep before calculating d(V U)/dt (see Pa-
per I for details).

The explicit solver has the advantages of computational sim-
plicity, extension to high-order gradient operators/reconstruction
methods, allowing non-linear flux limiters, and trivially general-
izing to hierarchical adaptive timesteps as we use in our code (akin
to “sub-cycling”). However, the disadvantage is that it requires a
timestep limit of the form in Eq. 15 (quadratic in the resolution).
In some situations this can become extremely small; in these cases,
implicit methods are popular. In the implicit case, we take

(V U)n+1 = (V U)n + ∆t
d(V U)

dt

n+1

(B2)

Petkova & Springel (2009) show how to cast the isotropic SPH
hybrid-derivatives diffusion equation in this form, and then re-cast
it as a linear equation of the form M · (VU)n+1 = (VU)n for a
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vector (VU) of elements (VU)a (representing each resolution el-
ement a), and matrix M. This can then be solved over all particles
in a global timestep using a conjugate-gradient inversion. Unfortu-
nately, for our MFM/MFV methods, deriving an implicit method is
more challenging. If we simplify by using a first-order reconstruc-
tion of ∇⊗q (with corresponding limiters), and (for now) neglect
the extra diffusion terms from the Riemann problem, and assume a
scalar q, then Eq. 3 for d(VU)/dt gives us

(VU)n+1
a =(VU)n

a (B3)

+
∆t
2

∑
b

(
Ka 〈∇q〉n+1

a + Kb 〈∇q〉n+1
b

)
·θab Aab

where θab is the limiter function based on comparing the implied
flux here to the “direct flux” per Eq. 14. Combining this with Eq. 4
for the gradient estimators, re-arranging and simplifying, we obtain

M · (VU)n+1 =(VU)n (B4)

Mab ≡δab +
∆t
2
ζb

Vb

[
Kbµ

S
b ·
(

Ãab + ÃS
b δab

)
+
∑

c

Kcµcb ·
(

Ãac− ÃS
c δac

)]
(B5)

Ãab ≡θab Aab , µab ≡ βaW−1
a xbaωb(xa) (B6)

ÃS
a ≡
∑

c

Ãab , µS
a ≡

∑
c

µac (B7)

where δab is the Kronecker delta, ω and W−1 are defined in Eq. 4,
and β is the slope-limiter for 〈∇⊗q〉 (see Paper I). Now, add the
diffusive terms from the Riemann problem, F→ F + Fdiss where
Fdiss = αλ(UR−UL) = αabλab [ua− ub + (ηab/2)(∇ua +∇ub) ·
xba] if we use a second-order reconstruction of UR and UL. Here
λ= |vR− vL|/2 + cfast and ηab is the appropriate limiter for the UR,
UL reconstruction, both as defined in the text. This gives us

M→M + Mdiss (B8)

Mdiss
ab ≡−

∆t
2Vb

[
2
(
ϕab−ϕS

b δab

)
+µS

b ·
(
Λab +ΛS

b δab

)
−
∑

c

µcb ·
(
Λac +ΛS

cδac

)]
(B9)

ϕab ≡αabλab |Ã|ab , Λab ≡ ηabϕab xba (B10)

ϕS
a ≡
∑

c

ϕac , ΛS
a ≡

∑
c

Λac (B11)

The difference between MFM and IG-SPH simply amounts to the
appropriate value for Aab.

If the limiter functions θab, ηab, αab, and βa were independent
of (VU), then we could again perform a simple sparse-matrix inver-
sion to update (VU). Obviously even in this limit, the matrix terms
are quite complicated: note the extra summations over the index
“c” that appear, which owe to the higher-order gradient estimator
we adopt and cannot be eliminated without lowering the order of
the gradient approximation. But the real problem is that the higher-
order accuracy and stability of our MFM/MFV methods depends on
the limiters being non-linear functions of both Ua,b and ∇⊗ qa,b

(itself a sum over Ua,b). Of course, non-linear global elliptical equa-
tions can be solved, but using an iterative root-finding method to
solve for (VU), we would have to repeat the summation over U to
determine ∇⊗qa,b and re-compute the limiter functions between
each iteration. Combined with a global timestep, this would make
the implicit solver much more expensive than sub-cycling our ex-
plicit solver (defeating the purpose).

In the limit where the problem is sufficiently smooth, well-
resolved, and there is good particle order, θ, η, β→ 1 and α→ 0.

Adopting these values and implementing the sparse matrix inver-
sion, we are able to confirm our conclusions for the few test prob-
lems that satisfy these criteria. However, with these values fixed,
the method is numerically unstable. We can stabilize the method
for problems with unresolved gradients (still assuming good parti-
cle order) by taking θ, β, α→ 1, η→ 0, but this produces excessive
numerical diffusion, especially at low resolution. Unfortunately, we
see no obvious way to achieve the combination of accuracy and sta-
bility in the text (given the method studied here) without involving
non-linear terms in ∇⊗q, which are prohibitive for most implicit
methods. However, it is possible that a semi-implicit method simi-
lar to the one in Sharma & Hammett (2011) could be implemented,
where a subset of the flux components which do not require strong
limiters are solved implicitly while the others (where the limiters
apply) are updated explicitly.

APPENDIX C: SUPER-TIMESTEPPING

Another method to allow larger timesteps in explicit methods for
elliptic/parabolic equations is so-called “super-timestepping” (see
Alexiades et al. 1996; Gurski & O’Sullivan 2010; Meyer et al.
2012, 2014, and references therein).

A super-timestep ∆ts is composed of N sub-steps δt j

∆ts =

N∑
j=1

δt j (C1)

The diffusion equations are calculated and updated as usual on each
sub-step δt j, however, these are essentially Runge-Kutta sub-steps
in the sense that stability is not guaranteed at after any individual
sub-step δt j, but only on the super-step ∆ts.

Alexiades et al. (1996) show that the optimal timesteps which
satisfy the necessary stability conditions on ∆ts and simultaneously
maximize ∆ts for a given N are given by

δt j = ∆texpl

[
(1 +ν)− (1−ν) cos

(
π (2 j−1)

2N

)]−1

(C2)

where ∆texpl is our usual explicit timestep given by Eq. 15 and
0<ν <λmin/λmax (where λmin and λmax are the smallest and largest
eigenvalues of the diffusion equation). As ν→ 0, the total time ∆ts

covered by the same number N of substeps (and computations) in-
creases, with the limit ∆ts→ N2 ∆texpl as ν→ 0. Thus this method
can provide a speedup of up to a factor N.

This is trivial to implement in explicit methods with a global
timestep, and we have done so here. Although all problems shown
in the text use the standard, non-optimized explicit timestep ∆texpl,
we have re-run all of them enforcing a global timestep and using the
super-timestepping scheme with varying N and ν. Care is needed,
since overly-aggressive timestepping can lead to a loss of accuracy
even while maintaining stability (see discussion in § D). In practice,
we find N ∼ 5−10 and ν ∼ 0.04 give substantial speed-ups (factor
∼ 2.5− 3 on the problems here) without any measurable loss of
accuracy (consistent with the studies in Alexiades et al. 1996; Choi
et al. 2009 and Tsukamoto et al. 2013, who show good accuracy is
maintained for ν & 1/N1/2).

Moreover, it is straightforward to generalize this to our indi-
vidual timestepping scheme. In this scheme, particles have inde-
pendent timesteps but are discretized into hierarchical powers-of-
two timebins (see Paper I and Springel 2005); this ensures they re-
main synchronized. If we take each δt j and “round down” the near-
est (smaller) power-of-two bin, it is straightforward to show that the
stability condition in Alexiades et al. (1996) is still satisfied (more
easily, in fact). The tradeoff is that the timesteps are no longer quite
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“optimal” (not as large as possible). However, for careful choices of
N and ν (such as the values above), the difference in the super-step
∆ts (the sum of the δt j) is only ∼ 10% below optimal.

Note that this is a first-order time integration scheme, which
makes it particularly easy to implement. Still greater accuracy
may be achieved with higher-order schemes following Meyer et al.
(2012, 2014), but we have not experimented with these.

APPENDIX D: TIMESTEP LIMITS WITH
SUPER-TIMESTEPPING OR IMPLICIT SOLVERS

With either implicit methods or super-timestepping, although for-
mal stability is guaranteed for large time-steps, accuracy is not. For
any test problem, we can simply vary the timestep until a desired
accuracy is reached. However for more general problems, it is use-
ful to have a more general timestep constraint.

Regardless of the diffusion problem, MHD must obey the
usual CFL condition ∆t < CCFL ∆x/vsig (where vsig is the stan-
dard signal velocity accounting for particle relative motions and
their fastest wavespeeds). Additional physics (e.g. gravity, radia-
tion, cooling) come with their own timestep constraints. Note that,
for hyperbolic equations, we cannot circumvent these conditions
using either of the acceleration schemes above; they are always en-
forced.

There is no rigorous equivalent condition for the diffusion
equation with implicit/super-timestepped solvers, but as pointed
out by many authors (e.g. Choi et al. 2009; Gurski & O’Sullivan
2010; Tsukamoto et al. 2013), motivated by hyperbolic problems,
we can define an effective diffusive signal speed vdiff ∼ ‖K‖‖∇⊗
q‖/‖U‖. Using this to define an analogous Courant condition on
the super/implicit timestep:

∆timplicit/super <CCFL ∆x
‖U‖

‖K‖‖∇⊗q‖ (D1)

we find reasonably good accuracy so long as CCFL < 0.5. For more
details we refer to Sharma et al. (2010) who rigorously demonstrate
that such a criterion is the correct one for regimes where the diffu-
sion equation behaves advectively (e.g. cosmic ray streaming, or
our variable-diffusivity test problem).

Note that when there are un-resolved gradients, this re-
duces (assuming U ∼ q) to the usual explicit timestep-limiter,
∆t < ∆x2/‖K‖, as we might expect.4 When the gradients are
well-resolved, however, larger timesteps are allowed: for super-
timestepping, this amounts to a speedup by a factor∼ Lgrad/(N ∆x)
where N is the number of sub-steps and Lgrad = ‖q‖/‖∇⊗q‖ is the
gradient scale length. In practice, for most of the test problems in
this paper, this translates to a maximum speedup of a factor of ∼ 3
in super-timestepping before a noticeable loss of accuracy appears.
Given the large overhead of the implicit methods, for the few cases
where we can use them (e.g. “standard” SPH), we actually see rel-
atively little speedup (factor < 2). However, if we considered the
same problems, in stages with resolved gradients, at much higher
resolution, the difference between the simple explicit method used
in the text and either implicit or super-timestepped methods should
grow accordingly.

4 On some problems – for example the diffusing sheet with perpendicular
fields, implicit methods remain accurate even with much larger timesteps
compared to Eq. D1. However, the only cases we find this is true are ones
where the solution is steady-state or equilibrium (in which case arbitrarily
long timesteps should not, in principle, be problematic). For all realistic
problems we consider which feature actual dynamics, a criterion like Eq. D1
is needed to maintain accuracy.
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