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linského 9, 812 37 Bratislava, Slovak Republic.

M. Fikar Institute of Information Engineering, Automation, and Mathematics, De-
partment of Information Engineering and Process Control, Faculty of Chemical
and Food Technology, Slovak University of Technology in Bratislava, Radlin-
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CHAPTER 1

Before You Begin

1.1 What is dynopt

dynopt is a set of MATLAB functions for determination of optimal control trajectory by
given description of the process, the cost to be minimised, subject to equality and inequality
constraints, using orthogonal collocation on finite elements method.

The actual optimal control problem is solved by complete parametrisation both the con-
trol and the state profile vector. That is, the original continuous control and state profiles
are approximated by a sequence of linear combinations of some basis functions. It is as-
sumed that the basis functions are known and optimised are the coefficients of their linear
combinations. In addition, each segment of the control sequence is defined on a time interval
whose length itself may also be subject to optimisation. Finally, a set of time independent
parameters may influence the process model and can also be optimised.

It is assumed, that the optimised dynamic model may be described by a set of ordinary
differential equations (ODE’s) or differential-algebraic equations (DAE’s).

This collection of functions extend the capability of the MATLAB Optimization Toolbox,
specifically of the constrained nonlinear minimisation routine fmincon.

1.2 What is New in this Version

Version 4 introduces several new properties of the package:

• three type of constraints can be defined in the same time: constraints in t0, constraints
over full time interval [t0, tf ], and constraints in tf . Previously only one of them was
possible.

• time independent parameters are introduced into the process function, objfun function
and confun.
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1.3. HOW TO USE THIS MANUAL

1.3 How to Use this Manual

This manual has four main parts:

Chapter 2 introduces implementation of orthogonal collocation on finite elements method
into general optimisation problems.

Chapter 3 provides a tutorial for solving different optimisation problems.

Chapter 4 provides a detailed reference description of dynopt function. Reference descrip-
tions include the function syntax, detailed information about arguments to the func-
tion, including relevant optimisation options parameters.

Chapter 5 provides some more examples solved by dynopt, their definitions and solutions.

1.4 Installing dynopt

dynopt code does not need any special installation procedure. To use dynopt, just add the
Dynamic Optimisation Tool directory dynoptim into the path by addpath environment.

As mentioned before, dynopt is a set of functions that extend the capability of the MAT-
LAB Optimization Toolbox. That means, that for using dynopt this toolbox has to be
provided. To determine if the Optimization Toolbox is installed on your system, type this
command at the MATLAB prompt:

ver

After entering this command, MATLAB displays information about the version of MATLAB
you are running, including a list of all toolboxes installed on your system and their version
numbers. If the Optimization Toolbox is not installed, check the Installation Guide for
instructions on how to install it.

dynopt has been developed and tested since MATLAB 6.5 (R13). The results in this
guide are obtained with MATLAB 2010a using new SQP solver. It is quite usual that
results obtained and convergence criteria achieved with different versions of MATLAB or its
toolboxes can produce slightly different (better, worse) results.

2



CHAPTER 2

Dynamic Optimisation

This chapter deals with dynamic optimisation in general. The chapter starts with several
dynamic optimisation problem definitions. Finally, this chapter ends with the NLP problem
formulation.

2.1 Optimisation Problem Statement

The objective of dynamic optimisation is to determine, in open loop control, a set of time
dependent decision variables (pressure, temperature, flow rate, current, heat duty, . . . ) that
optimise a given performance index (or cost functional or optimisation criterion)(cost, time,
energy, selectivity, . . . ) subject to specified constraints (safety, environmental and operating
constraints). Optimal control refers to the determination of the best time-varying profiles in
closed loop control.

2.1.1 Cost Functional

The performance index (cost functional or optimisation criterion) can in general be written
in one of three forms as follows:

Bolza form

J (u(t),p) = G(x(tf ),p, tf ) +
∫ tf

t0

F(x(t),u(t),p, t)dt (2.1)

Lagrange form

J (u(t),p) =

∫ tf

t0

F(x(t),u(t),p, t)dt (2.2)

Mayer form

J (u(t),p) = G(x(tf ),p, tf ) (2.3)

where

3



2.2. OPTIMAL CONTROL PROBLEM SOLUTIONS

J (·) – optimisation criterion,

G(·) – component of objective function evaluated at final conditions,
∫ tf

t0
F(·)dt – component of the objective function evaluated over a period of time,

x(t) – vector of state variables,

u(t) – vector of control variables,

p – vector of time independent parameters.

Note that all three forms are interchangeable and can be derived one from another. In the
sequel, Mayer form will be used.

2.1.2 Process Model Equations

The behaviour of many of processes can in general be described either by a set of ordinary
differential equations (ODE’s) or by a set of differential-algebraic equations (DAE’s) as
follows:

Mẋ(t) = f(x(t),u(t),p, t), x(t0) = x0 over t0 ≤ t ≤ tf (2.4)

with initial condition for states x0 which may also be a function of some time independent
parameters. Here M is a constant mass matrix. This ODE or DAE system forms equality
constraint in optimal control problem.

2.1.3 Constraints

Constraints to be accounted for typically include equality and inequality infinite dimensional,
interior-point, and terminal-point constraints [10]. Moreover, they may be written in the
following canonical form similar to the cost form (2.3):

Ji(u(t),p) = Gi(x(ti),p, ti) (2.5)

where ti ≤ tf , i = 1, . . . , nc, and nc is the number of constraints.

2.2 Optimal Control Problem Solutions

There are several approaches that can solve optimal control problems. These can be divided
into analytical methods that have been used originally and numerical methods preferred
nowadays. In this work only numerical methods are considered.

The numerical methods used for the solution of dynamic optimisation problems can
then be grouped into two categories: indirect and direct methods. In this work only direct
methods are considered. In this category, there are two strategies: sequential method and
simultaneous method. The sequential strategy, often called control vector parameterisation
(CVP), consists in an approximation of the control trajectory by a function of only few
parameters and leaving the state equations in the form of the original ODE/DAE system [10].
In the simultaneous strategy often called total discretisation method, both the control and
state variables are discretised using polynomials (e.g., Lagrange polynomials) of which the

4



2.3. NLP FORMULATION PROBLEM

coefficients become the decision variables in a much larger NLP problem [4]. Implementation
of this method is subject of this work.

Next section reviews the general NLP formulation for optimal control problems using
orthogonal collocation on finite elements method.

2.3 NLP Formulation Problem

As mentioned before, the optimal control problem will be solved by complete parametrisation
of both the control and the state profile vector [13, 14]. That means, that the control and state
profiles are approximated by a linear combination of some basis functions. It is expected
here, that the basis functions are known so only the coefficients of linear combination of
these fundamentals have to be optimised. In addition, each control sequence segment is
defined on time interval, which length itself can be the optimised variable. Finally, a set of
time independent parameters may influence the process model and can also be optimised.
As mentioned in section sec:pme, it is supposed that the optimised dynamic model can be
described either by an ODE system or by an DAE system.

Consider the following general control problem for t ∈ [t0, tf ]:

min
u(t),p

{G(x(tf),p, tf)} (2.6)

such that

Mẋ(t) = f(x(t),u(t),p, t), x(t0) = x0(p)

h(x(t),u(t),p, t) = 0

g(x(t),u(t),p, t) ≤ 0

x(t)L ≤ x(t) ≤ x(t)U

u(t)L ≤ u(t) ≤ u(t)U

pL ≤ p ≤ pU

with following nomenclature:

h(·) – equality design constraint vector,

g(·) – inequality design constraint vector,

x(t)L,x(t)U – state profile bounds,

u(t)L,u(t)U – control profile bounds,

pL,pU – parameter bounds.

In order to derive the NLP problem the differential equations are converted into algebraic
equations using collocation on finite elements. Residual equations are then formed and solved
as a set of algebraic equations. These residuals are evaluated at the shifted roots of Legendre
polynomials. The procedure is then following: Consider the initial-value problem over a finite
element i with time t ∈ [ζi, ζi+1]:

Mẋ = f(x(t),u(t),p, t) t ∈ [t0, tf ] (2.7)

5



2.3. NLP FORMULATION PROBLEM

ζi−1 ζi ζi+1 ζi+2

∆ζi

xi−1,0 xi−1,1 xi−1,2 xi,0 xi,1 xi,2 xi+1,0 xi+1,1 xi+1,2 xi+2,0

ui−1,1 ui−1,2 ui,1 ui,2 ui+1,1 ui+1,2

Figure 2.1: Collocation method on finite elements for state profiles, control profiles and element lengths
(Kx = Ku = 2)

The solution is approximated by Lagrange polynomials over element i, ζi ≤ t ≤ ζi+1 as
follows:

xKx
(t) =

Kx
∑

j=0

xijφj(t); φj(t) =

Kx
∏

k=0,j

(t− tik)

(tij − tik)
(2.8)

in element i i = 1, . . . ,NE

uKu
(t) =

Ku
∑

j=1

uijθj(t); θj(t) =
Ku
∏

k=1,j

(t− tik)

(tij − tik)
(2.9)

in element i i = 1, . . . ,NE

Here k = 0, j means k starting form 0 and k 6= j, NE is the number of elements. Also xKx
(t)

is a (Kx + 1)th degree piecewise polynomial and uKu
(t) is piecewise polynomial of order

Ku. The polynomial approximating the state x takes into account the initial conditions of
x(t) for each element i. Also, the Lagrange polynomial has the desirable property that (for
xKx

(t), for example):
xKx

(tij) = xij (2.10)

which is due to the Lagrange condition φk(tj) = δkj, where δkj is the Kronecker delta. This
polynomial form allows the direct bounding of the states and controls, e.g., path constraints
can be imposed on the problem formulation.

Using K = Kx = Ku point orthogonal collocation on finite elements as shown in Fig. 2.1,
and by defining the basis functions, so that they are normalised over the each element
∆ζi(τ ∈ [0, 1]), one can write the residual equation as follows:

∆ζir(tik) = M

Kx
∑

j=0

xijφ̇j(τk)−∆ζif (tik,xik,uik,p) (2.11)

i = 1, . . . ,NE, j = 0, . . . , Kx, k = 1, . . . , Kx

where φ̇j(τk) = dtφj/dtτ , and together with φj(τ), θj(τ) terms (basis functions), they are
calculated beforehand, since they depend only on the Legendre root locations. Note that
tik = ζi+∆ζiτk. This form is convenient to work with when the element lengths are included
as decision variables. The element lengths are also used to find possible points of discontinuity
for the control profiles and to insure that the integration accuracy is within a numerical
tolerance. Additionally, the continuity of the states is enforced at element endpoints (interior
knots ζi, i = 2, ...,NE), but it is allowed that the control profiles to have discontinuities at
these endpoints. Here

xi
Kx

(ζi) = xi−1
Kx

(ζi) (2.12)

i = 2, . . . ,NE

6



2.3. NLP FORMULATION PROBLEM

or

xi0 =
Kx
∑

j=0

xi−1,jφj(τ = 1) (2.13)

i = 2, . . . ,NE, j = 0, . . . , Kx

These equations extrapolate the polynomial xi−1
Kx

(t) to the endpoints of its element and
provide an accurate initial conditions for the next element and polynomial xi

Kx
(t).

At this point a few additional comments concerning construction of the control profile
polynomials must be made. Note that these polynomials use only Ku coefficients per element
and are of lower order than the state polynomials. As a result these profiles are constrained
or bounded only at collocation points. The constraints of the control profile are carried out
by bounding the values of each control polynomial at both ends of the element. This can be
done by writing the equations:

uL
i ≤ ui

Ku
(ζi) ≤ uU

i i = 1, . . . ,NE (2.14)

uL
i ≤ ui

Ku
(ζi+1) ≤ uU

i i = 1, . . . ,NE (2.15)

Note that since the polynomial coefficients of the control exist only at collocation points,
enforcement of these bounds can be done by extrapolating the polynomial to the endpoints
of the element. This is easily done by using:

ui
Ku

(ζi) =

Ku
∑

j=1

uijθj(τ = 0), i = 1, . . . ,NE (2.16)

and

ui
Ku

(ζi+1) =
Ku
∑

j=1

uijθj(τ = 1), i = 1, . . . ,NE (2.17)

Adding these constraints affects the shape of the final control profile and the net effect of
these constraints is to keep the endpoint values of the control profile from varying widely
outside their ranges [uL

i ,u
U
i ].

The NLP formulation consists of the ODE model (2.4) discretised on finite elements,
continuity equation for state variables, and any other equality and inequality constraints
that may be required. It is given by

min
xij ,uij ,∆ζi,p

[

G(xf ,p, tf)
]

(2.18)

7



2.3. NLP FORMULATION PROBLEM

such that

x10 − x0(p) = 0

r(tik) = 0 i = 1, . . . ,NE k = 1, . . . , Kx

xi0 − xi−1
Kx

(ζi) = 0 i = 2, . . . ,NE

xf − xNE
Kx

(ζNE+1) = 0

uL
i ≤ ui

Ku
(ζi) ≤ uU

i i = 1, . . . ,NE

uL
i ≤ ui

Ku
(ζi+1) ≤ uU

i i = 1, . . . ,NE

uL
ij ≤ uKu

(τj) ≤ uU
ij i = 1, . . . ,NE j = 1, . . . , Ku

xL
ij ≤ xKx

(τj) ≤ xU
ij i = 1, . . . ,NE j = 0, . . . , Kx

∆ζLi ≤ ∆ζi ≤ ∆ζUi i = 1, . . . ,NE

pL ≤ p ≤ pU

NE
∑

i=1

∆ζi = ζtotal

h(tij ,xij ,uij,p) = 0

g(tijxij,uij,p) ≤ 0

where i refers to the time-interval, j, k refers to the collocation point, ∆ζi represents finite-
element length of each time-interval i = 1, . . . ,NE, xf = x(tf ), and xij ,uij are the colloca-
tion coefficients for the state and control profiles. Problem (2.6) can be now solved by any
large-scale nonlinear programming solver.

To solve this problem within MATLAB, the Optimization Toolbox was used. This in-
cludes several programs for treating optimisation problems. In this case function fmincon

was chosen. This can minimise/maximise given objective function with respect to nonlinear
equality and inequality constraints. In order to use this function it was necessary to create
and program series of additional functions. These additional functions together with fmincon

are formed within dynopt which is simple for user to employ. This function is presented in
next chapter.
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CHAPTER 3

Tutorial

This chapter discusses the dynopt application. It shows, that dynopt is suitable for a quite
large variety of problems ranging from simple unconstrained problem to inequality state path
constraint problem described either by ODE’s or DAE’s. As mentioned in the title of this
chapter, it is an step by step tutorial. It shows the user how to define his problem into
dynopt by filling the input argument functions process, objfun, confun.

3.1 ODE systems

3.1.1 Example 1: Unconstrained Problem

Consider a simple integrator with LQ cost function to be optimised [17, 18]:

ẋ1 = u, x1(0) = 1 (3.1)

ẋ2 = x2
1 + u2, x2(0) = 0 (3.2)

The cost function is given in the Mayer form:

min
u(t)

J = x2(tf ) (3.3)

with x1(t), x2(t) as states and u(t) as control, such that tf = 1.

Function process, objfun definitions

Problem (3.3) is described by two differential equations which together with initial values of
state variables should be defined in process.

Step1: Write an M-file process.m

function sys = process(t,x,flag,u,p)

switch flag,

9



3.1. ODE SYSTEMS

case 0 % f(x,u,p,t)

sys = [u;x(1)^2+u^2];

case 1 % df/dx

sys = [];

case 2 % df/du

sys = [];

case 3 % df/dp

sys = [];

case 4 % df/dt

sys = [];

case 5 % x0

sys = [1;0];

case 6 % dx0/dp

sys = [];

case 7 % M

sys = [];

case 8 % unused flag

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

It is important to notice that in dynopt the mass matrixM (2.4) is by default a nx-by-nx
identity matrix. Here nx represents the number of state variables x.

As the performance index is given in Mayer form, dynopt optimises it at final conditions,
thus the input arguments of objfun are as follows: t - scalar value tf , x - scalar/vector of
state variable(s), u - scalar/vector of control variable(s), both evaluated at corresponding
final time tf , p - scalar/vector of time independent parameters. objfun should be defined as
follows:

Step2: Write an M-file objfun.m

function f = objfun(t,x,u,p)

f = [x(2)];

After the problem has been defined in the functions, user has to invoke the dynopt

function by writing an M-file problem1a.m as follows:

Step3: Invoke dynopt

options = optimset(’LargeScale’,’off’,’Display’,’iter’);

options = optimset(options,’MaxFunEvals’,1e6);

options = optimset(options,’TolFun’,1e-7);

options = optimset(options,’TolCon’,1e-7);

options = optimset(options,’TolX’,1e-7);

options = optimset(options,’MaxIter’,4000);

options = optimset(options,’Algorithm’,’sqp’); %2010a

%options = optimset(options,’Algorithm’,’active-set’); %2008b

10
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optimparam.optvar = 3;

optimparam.objtype = [];

optimparam.ncolx = 3;

optimparam.ncolu = 2;

optimparam.li = ones(3,1)*(1/3);

optimparam.tf = 1;

optimparam.ui = zeros(1,3);

optimparam.par = [];

optimparam.bdu = [];

optimparam.bdx = [];

optimparam.bdp =[];

optimparam.objfun = @objfun;

optimparam.confun = [];

optimparam.process = @process;

optimparam.options = options;

[optimout,optimparam]=dynopt(optimparam)

save optimresults optimout optimparam

[tplot,uplot,xplot] = profiles(optimout,optimparam,50);

save optimprofiles tplot uplot xplot

graph

In this case the variables: t, u were chosen as decision variables, so the parameter
optimparam.optvar was set to 3. As the objective is to minimise the functional in Mayer
form the parameter optimparam.objtype was left an empty matrix. Moreover 3 colloca-
tion points for state variables (optimparam.ncolx), 2 collocation points for control variables
(optimparam.ncolu), 3 time intervals with the same initial lengths (optimparam.li) equal
to 1/3 were chosen. Final time tf = 1 was given by the problem definition (optimparam.tf),
the control variable initial values (optimparam.ui) were set to 0 for each time interval.
As can be seen from the problem definition (3.3) no parameters (optimparam.par), no
bounds for the control variables (optimparam.bdu), the state variables (optimparam.bdx),
and the parameters (optimparam.bdp) are needed, so the values of this parameters have
been left an empty matrix. As mentioned before, this problem is unconstrained, so parame-
ter optimparam.confun was set to [ ].

The results returned by dynopt in optimout structure contain the vector of times t, the
vector of optimal control profile u. They are ready to be plotted.
The objective function at the optimal solution [t,u] is returned after 611 iterations in before
mentioned output structure optimout as parameter fval:

optimout.fval = 0.7615959

The parameter exitflag tells if the algorithm converged. An exitflag > 0 means a local
minimum was found:

optimout.exitflag = 1

More details about the optimisation are given by the optimout.output structure. In this
example, the default selection of the large-scale algorithm has been turned off, so the medium-
scale algorithm is used. Also all termination tolerances have been changed. For more infor-
mation about options and dynopt input and output arguments, see chapter 4.
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The user may want to plot also the state profiles but without integrating the process

with respect to the optimal control profile in optimout.u. It is possible to use an additional
function profiles for this reason as follows:

[tplot,uplot,xplot] = profiles(optimout,optimparam,ntimes);

where ntimes represents the density of the points plotted per interval.
Graphical representation of the problem (3.3) solution is shown in Figs. 3.1 and 3.2.
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Figure 3.1: Control profile for unconstrained problem
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Figure 3.2: State profiles for unconstrained problem

3.1.2 Example 2: Constrained Problem with Gradients

A process described by the following system of 2 ODE’s [17, 18]:

ẋ1 = u, x1(0) = 1 (3.4)

ẋ2 = x2
1 + u2, x2(0) = 0 (3.5)

is to be optimised for u(t) with the cost function:

min
u(t)

J = x2(tf ) (3.6)

subject to the constraint:
x1(1) = 0 (3.7)

with x1(t), x2(t) as states, u(t) as control, such that tf = 1.
Problem (3.3) is similar to problem (3.6), it differs in constraint of state variable x1 at final

time tf = 1. This example will be solved by supplying analytical gradients. Ordinarily the
medium-scale minimisation routines use numerical gradients calculated by finite-difference
approximation. This procedure systematically perturbs each of the variables in order to cal-
culate function and constraint partial derivatives. Alternatively, you can provide a function
to compute partial derivatives analytically. Typically, the problem is solved more accurately
and efficiently if such a function is provided.
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Function process, objfun, confun definitions

As mentioned before the problem (3.6) is described by the same differential equations as
problem (3.3). As we decided to supply analytical gradients, they should be defined for
all the user supplied functions: process, objfun, confun. The form of the gradients will be
explained on the function process and is valid for all above mentioned user functions.

Step1: Write an M-file process.m

function sys = process(t,x,flag,u,p)

switch flag,

case 0 % f(x,u,p,t)

sys = [u;x(1)^2+u^2];

case 1 % df/dx

sys = [0 2*x(1);0 0];

case 2 % df/du

sys = [1 2*u];

case 3 % df/dp

sys = [];

case 4 % df/dt

sys = [];

case 5 % x0

sys = [1;0];

case 6 % dx0/dp

sys = [];

case 7 % M

sys = [];

case 8 % unused flag

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Definition of gradients results from problem definition (3.6). As the problem consists of
one control variable u and two states variables x1, x2 just the gradients with respect to this
variables have to be supplied by filling the appropriate flag.
sys in case 1 contains the partial derivatives of the process function, defined as sys in case
0, with respect to each of the elements in x:

sys =





∂f1
∂x1

∂f2
∂x1

∂f1
∂x2

∂f2
∂x2



 =

[

0 2x1

0 0

]

sys in case 2 contains the partial derivatives of the process function, defined as sys in case
0, with respect to each of the elements in u:

sys =
[

∂f1
∂u

∂f2
∂u

]

=
[

1 2u
]

If needed, the gradients with respect to other defined variables (t, p) are filled similarly. For
more information about process definition, and its input and output arguments see chapter
4.

13



3.1. ODE SYSTEMS

As mentioned before user has also to supply the gradients to the objective function objfun

as follows:

Step2: Write an M-file objfun.m

function [f,Df] = objfun(t,x,u,p)

% objective function

f = [x(2)]; % J

% gradients of the objective function

Df.t = []; % dJ/dt

Df.x = [0;1]; % dJ/dx

Df.u = []; % dJ/du

Df.p = []; % dJ/dp

Here they are written in the structure Df containing variables t, u, x, and p and rep-
resenting the gradients with respect to the appropriate variable. Just the variables used
in problem are filled by user. Unused variables are set to be an empty matrix. For more
information about objfun definition, and its input and output arguments see chapter 4.

dynopt optimises a given performance index, subject to the constraints defined at the
beginning t = t0 (flag = 0), over the full time interval t ∈ [t0, tf ] (flag = 1), and at the end
t = tf (flag = 2). Thus the input arguments of confun are the same as of process but it is
necessary to tell dynopt by defining the constraints and their gradients with respect to the
appropriate variables in the corresponding flag in which time should they be evaluated. How
the gradients have to seem like, was explained before. confun should be defined as follows:

Step3: Write an M-file confun.m

function [c,ceq,Dc,Dceq] = confun(t,x,flag,u,p)

switch flag

case 0 % constraints in t0

c = [];

ceq = [];

% gradient calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

case 1 % constraints over interval [t0,tf]

c = [];

ceq = [];

14



3.1. ODE SYSTEMS

% gradient calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

case 2 % constraints in tf

c = [];

ceq = [x(1)-1];

% gradient calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [1;0];

Dceq.u = [];

Dceq.p = [];

end

end

Here the gradients are written into the structures Dc, Dceq similar to those, described in
objfun. For more information about confun definition, and its input and output arguments
see chapter 4.

Since you are providing the gradients of the objective function in objfun.m and the
gradients of the constraints in confun.m, you must tell dynopt that these M-files contain this
additional information. Use optimset to turn the parameters GradObj and GradConstr to
’on’ in our already existing options structure

options = optimset(options,’GradObj’,’on’,’GradConstr’,’on’);

If you do not set these parameters to ’on’ in the options structure, dynopt will not use the
analytic gradients.

After the problem has been defined in the functions, user has to invoke the dynopt

function by writing an M-file problem1b.m as follows :

Step4: Invoke dynopt

options = optimset(’LargeScale’,’off’,’Display’,’iter’);

options = optimset(options,’GradObj’,’on’,’GradConstr’,’on’);

options = optimset(options,’MaxFunEvals’,1e4);

options = optimset(options,’MaxIter’,1e3);
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options = optimset(options,’TolFun’,1e-7);

options = optimset(options,’TolCon’,1e-7);

options = optimset(options,’TolX’,1e-7);

options = optimset(options,’Algorithm’,’sqp’); %2010a

%options = optimset(options,’Algorithm’,’active-set’); %2008b

optimparam.optvar = 3;

optimparam.objtype = [];

optimparam.ncolx = 6;

optimparam.ncolu = 2;

optimparam.li = ones(4,1)*(1/4);

optimparam.tf = 1;

optimparam.ui = zeros(1,4);

optimparam.par = [];

optimparam.bdu = [];

optimparam.bdx = [0 1;0 1];

optimparam.bdp =[];

optimparam.objfun = @objfun;

optimparam.confun = @confun;

optimparam.process = @process;

optimparam.options = options;

[optimout,optimparam]=dynopt(optimparam)

save optimresults optimout optimparam

[tplot,uplot,xplot] = profiles(optimout,optimparam,50);

save optimprofiles tplot uplot xplot

graph

As this problem differs from the problem (3.3) in the constraint applied in final time
tf = 1, the input parameter optimparam.confun is set to the constraint function name
@confun. Next, 6 collocation points for state variables, 4 intervals with the same initial
lengths of intervals equal to 1/4 have been chosen. Other parameter are as same as in
problem (3.3).

The optimal solution is shown in Figs. 3.3 and 3.4. The value of the objective function at
this solution is 0.9242346 after 368 iterations (10000 function evaluations) and with exitflag
equal to 0 (limit of function evaluations).

3.1.3 Example 3: Unconstrained Problem with Gradients and

Bounds

Following mathematical problem [16, 18] with system of four ODE’s:

ẋ1 = x2, x1(0) = 0 (3.8)

ẋ2 = −x3u+ 16t− 8, x2(0) = −1 (3.9)

ẋ3 = u, x3(0) = −
√
5 (3.10)

ẋ4 = x2
1 + x2

2 + 0.0005(x2 + 16t− 8− 0.1x3u
2)2, x4(0) = 0 (3.11)

16



3.1. ODE SYSTEMS

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

time

u

Figure 3.3: Control profile for constrained problem
with gradients
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Figure 3.4: State profiles for constrained problem with
gradients

is to be optimised for −4 ≤ u(t) ≤ 10 with the cost function:

min
u(t)

J = x4(tf ) (3.12)

with x1(t)− x4(t) as states, u(t) as control, such that tf = 1.

Function process, objfun, confun definitions

Step1: Write an M-file process.m

function sys = process(t,x,flag,u,p)

switch flag,

case 0 % f(x,u,p,t)

sys = [x(2);

-x(3)*u+16*t-8;

u;

x(1)^2+x(2)^2+0.0005*(x(2)+16*t-8-0.1*x(3)*u^2)^2];

case 1 % df/dx

sys = [0 0 0 2*x(1);

1 0 0 (2*x(2)+2*0.0005*(x(2)+16*t-8-0.1*x(3)*u^2));

0 -u 0 2*0.0005*(x(2)+16*t-8-0.1*x(3)*u^2)*(-0.1*u^2);

0 0 0 0];

case 2 % df/du

sys = [0 -x(3) 1 (2*0.0005*(x(2)+16*t-8-0.1*x(3)*u^2)*(-2*0.1*x(3)*u))];

case 3 % df/dp

sys = [];

case 4 % df/dt

sys = [0 16 0 2*0.0005*(x(2)+16*t-8-0.1*x(3)*u^2)*16];

case 5 % x0

sys = [0;-1;-sqrt(5);0];

case 6 % dx0/dp

sys = [];
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case 7 % M

sys = [];

case 8 % unused flag

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Step2: Write an M-file objfun

function [f,Df] = objfun(t,x,u,p)

% objective function

f = [x(4)]; % J

% gradients of the objective function

Df.t = []; % dJ/dt

Df.x = [0;0;0;1]; % dJ/dx

Df.u = []; % dJ/du

Df.p = []; % dJ/dp

Step3: Invoke dynopt writing an M-file problem2.m as follows:

options = optimset(’LargeScale’,’off’,’Display’,’iter’);

options = optimset(options,’GradObj’,’on’,’GradConstr’,’on’);

options = optimset(options,’MaxFunEvals’,1e5);

options = optimset(options,’MaxIter’,1e5);

options = optimset (options,’TolFun’,1e-7);

options = optimset (options,’TolCon’,1e-7);

options = optimset (options,’TolX’,1e-7);

options = optimset(options,’Algorithm’,’sqp’); %2010a

%options = optimset(options,’Algorithm’,’active-set’); %2008b

optimparam.optvar = 3;

optimparam.objtype = [];

optimparam.ncolx = 6;

optimparam.ncolu = 2;

optimparam.li = ones(4,1)*(1/4);

optimparam.tf = 1;

optimparam.ui = ones(1,4)*7;

optimparam.par = [];

optimparam.bdu = [-4 10];

optimparam.bdx = [];

optimparam.bdp =[];

optimparam.objfun = @objfun;

optimparam.confun = [];

optimparam.process = @process;

optimparam.options = options;

[optimout,optimparam]=dynopt(optimparam)
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save optimresults optimout optimparam

[tplot,uplot,xplot] = profiles(optimout,optimparam,50);

save optimprofiles tplot uplot xplot

graph

The value of the objective function evaluated for optimal control profile is of value of
0.1202688 after 175 iterations with exitflag equal to 1. Graphical representation of the
solution of the problem (3.12) is shown in Figs. 3.5 and 3.6.
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Figure 3.5: Control profile for unconstrained problem
with gradients and bounds
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Figure 3.6: State profiles for unconstrained problem
with gradients and bounds

3.1.4 Example 4: Inequality State Path Constraint Problem

A process described by the following system of 2 ODE’s [6, 12]:

ẋ1 = x2, x1(0) = 0 (3.13)

ẋ2 = −x2 + u, x2(0) = −1 (3.14)

is to be optimised for u(t) with the cost function:

min
u(t)

J =

∫ 1

0

(x2
1 + x2

2 + 0.005u2)dt (3.15)

subject to state path constraint:

x2 − 8(t− 0.5)2 + 0.5 ≤ 0, t ∈ [0, 1] (3.16)

with x1(t), x2(t) as states, u(t) as control, such that tf = 1.
As the objective function is not in the Mayer form as required by dynopt, we define an

additional differential equation

ẋ3 = x2
1 + x2

2 + 0.005u2, x3(0) = 0 (3.17)

and rewrite the cost as
min
u(t)

J = x3(tf ) (3.18)
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Function process, objfun, confun definitions

Step1: Write an M-file process.m

function sys = process(t,x,flag,u,p)

switch flag,

case 0 % f(x,u,p,t)

sys = [x(2);

-x(2)+u;

x(1)^2+x(2)^2+0.005*u^2];

case 1 % df/dx

sys = [0 0 2*x(1);

1 -1 2*x(2);

0 0 0];

case 2 % df/du

sys = [0 1 0.01*u];

case 3 % df/dp

sys = [];

case 4 % df/dt

sys = [];

case 5 % x0

sys = [0;-1;0];

case 6 % dx0/dp

sys = [];

case 7 % M

sys = [];

case 8 % unused flag

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Step2: Write an M-file objfun

function [f,Df] = objfun(t,x,u,p)

% objective function

f = [x(3)]; % J

% gradients of the objective function

Df.t = []; % dJ/dt

Df.x = [0;0;1]; % dJ/dx

Df.u = []; % dJ/du

Df.p = []; % dJ/dp

Step3: Write an M-file confun

function [c,ceq,Dc,Dceq] = confun(t,x,flag,u,p)

switch flag
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case 0 % constraints in t0

c = [];

ceq = [];

% gradient calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

case 1 % constraints over interval [t0,tf]

c = [x(2)-8*(t-0.5)^2+0.5];

ceq = [];

% gradient calculus

if nargout == 4

Dc.t = [-16*t+8];

Dc.x = [0;1;0];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

case 2 % constraints in tf

c = [];

ceq = [];

% gradient calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

end

Step4: Invoke dynopt writing an M-file problem3.m as follows:

options = optimset(’LargeScale’,’off’,’Display’,’iter’);
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options = optimset(options,’GradObj’,’on’,’GradConstr’,’on’);

options = optimset(options,’MaxFunEvals’,1e5);

options = optimset(options,’MaxIter’,1e5);

options = optimset(options,’TolFun’,1e-7);

options = optimset(options,’TolCon’,1e-7);

options = optimset(options,’TolX’,1e-7);

options = optimset(options,’Algorithm’,’sqp’); %2010a

%options = optimset(options,’Algorithm’,’active-set’); %2008b

optimparam.optvar = 3;

optimparam.objtype = [];

optimparam.ncolx = 6;

optimparam.ncolu = 2;

optimparam.li = [ones(7,1)*(1/7)];

optimparam.tf = 1;

optimparam.ui = zeros(1,7);

optimparam.par = [];

optimparam.bdu = [];

optimparam.bdx = [];

optimparam.bdp =[];

optimparam.objfun = @objfun;

optimparam.confun = @confun;

optimparam.process = @process;

optimparam.options = options;

[optimout,optimparam]=dynopt(optimparam)

save optimresults optimout optimparam

[tplot,uplot,xplot] = profiles(optimout,optimparam,50);

[tp,cp,ceqp] = constraints(optimout,optimparam,50);

save optimprofiles tplot uplot xplot tp cp ceqp

graph

An optimal value of x3(tf) = 0.1701564 was computed after 3014 iterations with exitflag
equal to 1. Graphical representation of the solution of the problem (3.18) is shown in Figs.
3.7, 3.8, and 3.9.

3.1.5 Example 5: Parameter Estimation Problem

Consider a state estimation problem [8] where the cost functional is defined as the sum of
squares of deviations between the model and measured outputs as follows:

min
p

J =
∑

i=1,2,3,5

(x1(ti)− xm
1 (ti))

2 (3.19)

subject to the following ODE’s:

ẋ1 = x2, x1(0) = p1 (3.20)

ẋ2 = 1− 2x2 − x1, x2(0) = p2 (3.21)
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Figure 3.7: Control profile for inequality state path
constraint problem
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Figure 3.8: State profiles for inequality state path con-
straint problem
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constraint problem
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Figure 3.10: Comparison of estimated and measured
state trajectory for state x1 in parameter
estimation problem

with x1, x2 as states and tf = 6. The task is to find initial conditions denoted by the
parameters p1, p2 ∈ [−1.5, 1.5], if the input to the system is equal to 1. Measured outputs
xm
1 and times of measurements are specified in Tab. 3.1.

t 1 2 3 5
xm
1 0.264 0.594 0.801 0.959

Table 3.1: Measured data for parameter estimation problem

Function process, objfun, confun definitions

Step1: Write an M-file process.m

function sys = process(t,x,flag,u,p)
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switch flag

case 0 % f(x,u,p,t)

sys = [x(2);

1-2*x(2)-x(1)];

case 1 % df/dx

sys = [0 -1;

1 -2];

case 2 % df/du

sys = [];

case 3 % df/dp

sys = [0 0;

0 0];

case 4 % df/dt

sys = [];

case 5 % x0

sys = [p(1);p(2)];

case 6 % dx0dp

sys = [1 0;

0 1];

case 7 % M

sys = [];

case 8 % unused flag

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Step2: Write an M-file objfun

function [f,Df] = objfun(t,x,u,p,xm)

% objective function

f = [(x(1)-xm(1))^2]; % J

% gradients of the objective function

Df.t = []; % dJ/dt

Df.x = [2*(x(1)-xm(1));0]; % dJ/dx

Df.u = []; % dJ/du

Df.p = []; % dJ/dp

Step3: Write an M-file confun

Step4: Invoke dynopt writing an M-file problem8.m as follows:

options = optimset(’LargeScale’,’off’,’Display’,’iter’);

options = optimset(options,’GradObj’,’on’,’GradConstr’,’on’);

options = optimset(options,’TolFun’,1e-7);

options = optimset(options,’TolCon’,1e-7);

options = optimset(options,’TolX’,1e-7);
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options = optimset(options,’Algorithm’,’sqp’); %2010a

%options = optimset(options,’Algorithm’,’active-set’); %2008b

objtype.tm = [1;2;3;5];

objtype.xm = [0.264 0.594 0.801 0.958;

NaN NaN NaN NaN];

optimparam.optvar = 4;

optimparam.objtype = objtype;

optimparam.ncolx = 4;

optimparam.ncolu = [];

optimparam.li = ones(6,1);

optimparam.tf = [];

optimparam.ui = [];

optimparam.par = [0;0];

optimparam.bdu = [];

optimparam.bdx = [];

optimparam.bdp = [-1.5 1.5;-1.5 1.5];

optimparam.objfun = @objfun;

optimparam.confun = [];

optimparam.process = @process;

optimparam.options = options;

[optimout,optimparam]=dynopt(optimparam)

save optimresults optimout optimparam

[tplot,uplot,xplot] = profiles(optimout,optimparam,50);

save optimprofiles tplot uplot xplot

graph

The results obtained by dynopt are the same as those published in [8]. Fig. 3.10 shows
the comparison of estimated and measured state trajectory.

3.2 DAE systems

3.2.1 Example 6: Batch Reactor Problem

Consider a batch reactor [5, 18] with the consecutive reactions A → B → C:

max
u(t)

J = x2(tf) (3.22)

such that

ẋ1 = −k1x
2
1, x1(0) = 1 (3.23)

ẋ2 = k1x
2
1 − k2x2, x2(0) = 0 (3.24)

0 = k1 − 4000e(−
2500

T
) (3.25)

0 = k2 − 620000e(−
5000

T
) (3.26)

with x1, x2 as states representing concentrations of A, and B, temperature T ∈ [298, 398] as
control variable, such that tf = 1.
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Function process, objfun, confun definitions

Step1: Write an M-file process.m

function sys = process(t,x,flag,u,p)

switch flag

case 0 % f(x,u,p,t)

sys = [-x(3)*(x(1)^2);

x(3)*(x(1)^2)-x(4)*x(2);

x(3)-4000*exp(-u);

x(4)-620000*exp(-2*u)];

case 1 % df/dx

sys = [-2*x(3)*x(1),2*x(3)*x(1),0,0;

0,-x(4),0,0;

-(x(1)^2),x(1)^2,1,0;

0,-x(2),0,1];

case 2 % df/du

sys = [0,0,4000*exp(-u),2*620000*exp(-2*u)];

case 3 % df/dp

sys = [];

case 4 % df/dt

sys = [];

case 5 % x0

sys = [1;0;5.0736;0.9975];

case 6 % dx0/dp

sys = [];

case 7 % M

sys = [1,0,0,0;

0,1,0,0;

0,0,0,0;

0,0,0,0];

case 8 % unused flag

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Step2: Write an M-file objfun

function [f,Df] = objfun(t,x,u,p)

% objective function

f = [-x(2)]; % J

% gradients of the objective function

Df.t = []; % dJ/dt

Df.x = [0;-1;0;0]; % dJ/dx

Df.u = []; % dJ/du

Df.p = []; % dJ/dp
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Step3: Invoke dynopt by writing an M-file problem5dae.m as follows:

options = optimset(’LargeScale’,’off’,’Display’,’iter’);

options = optimset(options,’GradObj’,’on’,’GradConstr’,’on’);

options = optimset(options,’MaxFunEvals’,1e5);

options = optimset(options,’MaxIter’,1e5);

options = optimset(options,’TolFun’,1e-7);

options = optimset(options,’TolCon’,1e-7);

options = optimset(options,’TolX’,1e-7);

options = optimset(options,’Algorithm’,’sqp’); %2010a

%options = optimset(options,’Algorithm’,’active-set’); %2008b

optimparam.optvar = 3;

optimparam.objtype = [];

optimparam.ncolx = 5;

optimparam.ncolu = 2;

optimparam.li = ones(3,1)*(1/3);

optimparam.tf = 1;

optimparam.ui = ones(1,3)*7.35;

optimparam.par = [];

optimparam.bdu = [6.2813 8.3894];

optimparam.bdx = [0 1;0 1;0.9085 7.4936;0.0320 2.1760];

optimparam.bdp =[];

optimparam.objfun = @objfun;

optimparam.confun = [];

optimparam.process = @process;

optimparam.options = options;

[optimout,optimparam]=dynopt(optimparam)

save optimresults optimout optimparam

[tplot,uplot,xplot] = profiles(optimout,optimparam,50);

save optimprofiles tplot uplot xplot

graph

After 134 iteration and 347 function evaluations, optimal value of x2(tf ) = 0.6106136 was
found. The higher number of iteration and function evaluations is resulting from an higher
accuracy set to 10−7. Graphical representation of the problem (3.22) solution is shown in
Figs. 3.11 and 3.12.

3.3 Maximisation

dynopt performs minimisation of the objective function f(t, x, u). Maximisation is achieved
by supplying the routine with −f(t, x, u) .

3.4 Greater than Zero Constraints

The Optimisation Toolbox assumes nonlinear inequality constraints are of the form Ci(x) ≤
0. Greater than zero constraints are expressed as less than zero constraints by multiplying
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Figure 3.11: Control profile for batch reactor problem
as DAE problem
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Figure 3.12: State profiles for batch reactor problem
as DAE problem

them by −1. For example, a constraint of the form Ci(x) ≥ 0 is equivalent to the constraint
−Ci(x) ≤ 0.

28



CHAPTER 4

Reference

This chapter contains description of the function dynopt, the main function of the collection
of functions which extend the capability of MATLAB Optimisation Toolbox, specifically of
the constrained nonlinear minimisation routine fmincon. The chapter starts with section
listing general descriptions of all the input and output arguments and the parameters in the
optimisation options structure, continues with the function description, and ends with some
tutorial.

4.1 Function Arguments

All input and output arguments to the dynopt function are described in this section. Sec-
tion 4.1.1 describes all input arguments built in input structure optimparam. Then output
arguments built in output structure optimout are treated in section 4.1.2 and as last the
optimisation options parameters structure options which is given by MATLAB is described
in Tab. 4.2. It is important to mention here, that the names of input and output structures
can be changed by user, but their fields described later have to be used as described.

ni – number of intervals
nx – number of state variables
nu – number of control variables
np – number of parameters
nm – number of measurements

Table 4.1: Some predefined variables which are used for function description

Table 4.1 describes some predefined variables which are used to simplify dynopt’s de-
scription in sections 4.1.1 and 4.1.2.

29



4.1. FUNCTION ARGUMENTS

4.1.1 Input Arguments

As mentioned before, input arguments described bellow do entry dynopt in a structure
called optimparam. This contains them as fields, e.g., optimparam.optvar. optimparam has
following fields to be set:

optvar – The choice of optimisation variables: 1 - times, 2 - control, 2 - parameters. Their
combination is given by their summations, e.g., 3 - optimise times and control. All the
possibilities are listed below

1 - optimise times,

2 - optimise control,

3 - optimise times and control,

4 - optimise parameters,

5 - optimise times and parameters,

6 - optimise control and parameters,

7 - optimise all: times, control, and parameters.

objtype – Parameter which defines the type of objective function to be minimised/maximised
in optimisation. Two possible types of objective function may have been used:

Mayer type - if Mayer type objective function is used set the parameter objtype to
an empty matrix.

Sum type - if Sum type objective function is used, parameter objtype is a structure
containing two variables tm, and xm. tm is a nm-by-1 vector of times, in which
the measurements are taken. xm is a nx-by-nm matrix of taken measurements in
times tm. For more information about the types of objective functions see objfun

description in section 4.2.3.

ncolx – Parameter which represents the number of collocation points for state variables.
This has always to be a number greater than zero.

ncolu – Parameter which represents the number of collocation points for control variables. It
may have been defined as [ ] if control variable doesn’t belong to optimisation variables
and also doesn’t occur in process, objfun, confun. Otherwise it has to be a number
greater than zero.

li – Parameter representing lengths of intervals. It has always to be filled with ni–by–1
vector of initial lengths of intervals.

tf – Parameter representing the final time, if the value of tf is not specified use empty
brackets [ ].

ui – Parameter representing control variables applied on each time interval in li. As men-
tioned for ncolu parameter, if control variable is needed it has to be defined as nu–by–ni
matrix of control variables for each interval. Otherwise it has to be an empty matrix
[ ].
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par – Parameter representing time independent parameters. As in ui also here it may have
been defined either np–by–1 vector of time independent parameters or an empty matrix
[ ].

bdu – Parameter representing bounds to the control variables. If defined it has to be an
nu–by–2 matrix: [lbu ubu], otherwise an empty matrix [ ].

bdx – Parameter representing bounds to the states. If defined it has to be an nx–by–2
matrix: [lbx ubx], otherwise an empty matrix [ ].

bdp – Parameter representing bounds to the parameters. If defined it has to be an np–by–2
matrix: [lbp ubp], otherwise an empty matrix [ ].

objfun – The function to be optimised. objfun is the name of an M-file. For more information
about this input argument, see section 4.2.3.

confun – The function that computes the nonlinear equality and inequality constraints.
confun is the name of an M-file. For more information about this input argument, see
section 4.2.3.

process – The function that describes given process. process is the name of an M-file. For
more information about this input argument, see section 4.2.3.

options – An optimisation options parameter structure that defines parameters used by the
optimisation functions. This parameter is defined by MATLAB for all optimisation
routines of MATLAB Optimization Toolbox. For information about the parameters
which are important for dynopt, see Tab. 4.2 or the individual function reference pages.

Table 4.2: Optimisation options parameters

Parameter Name Description

DerivativeCheck Compare user-supplied analytic derivatives (gradients) to finite dif-
ferencing derivatives (medium-scale algorithm only), default value:
’off’.

Diagnostics Print diagnostic information about the function to be minimised or
solved, default value: ’off’.

DiffMaxChange Maximum change in variables for finite difference derivatives
(medium-scale algorithm only), default value: 0.1000.

DiffMinChange Minimum change in variables for finite difference derivatives
(medium-scale algorithm only), default value: 1.0000e-008.

Display Level of display. ’off’ displays no output, ’iter’ displays output at each
iteration, ’final’ displays just the final output, default value: ’final’.

GradConstr Gradients for the nonlinear constraints defined by user, default value:
’off’.

GradObj Gradient for the objective function defined by user, default value:
’off’.

LargeScale User large-scale algorithm if possible, default value: ’on’.
Continued on next page

31



4.1. FUNCTION ARGUMENTS

concluded from previous page

Parameter Name Description

MaxFunEvals Maximum number of function evaluations allowed, default value:
’100*numberofvariables’.

MaxIter Maximum number of iterations allowed, default value: 400.
TolCon Termination Tolerance on the constraint violation, default value:

1.0000e-006.
TolFun Termination Tolerance on the function value, default value: 1.0000e-

006.
TolX Termination Tolerance on x, default value: 1.0000e-006.

TypicalX Typical x values (large-scale algorithm only), default value:
’ones(numberofvariables,1)’.

4.1.2 Output Arguments

As for input arguments, the same holds for output arguments. That means that the output
arguments described bellow do leave dynopt in a structure called optimout. This contains
them as fields, e.g., optimout.nlpx. optimout has following fields:

nlpx – holds the solution found by the dynopt. If exitflag > 0, then nlpx is a solution
otherwise, nlpx is the value the optimisation routine was at when it terminated pre-
maturely. Vector nlpx contains all the parameters ∆ζi,uij,xij,p defined in the NLP
formulation in section 2.3.

fval – holds the value of the objective function in objfun at the solution nlpx.

exitflag – represents the exit condition of optimisation. exitflag may be:

> 0 indicates that the function converged to a solution nlpx,

0 indicates that the maximum number of function evaluations or iterations was reached,

< 0 indicates that the function did not converge to a solution.

output – represents an output structure that contains information about the results of the
optimisation. output.iterations gives the information about the number of itera-
tion, output.funcCount gives the information about the number of function evalua-
tions, output.algorithm returns the used algorithm, output.stepsize returns the
taken final stepsize (medium-scale algorithm only), output.firstorderopt gives the
information about a measure of first-order optimality (large-scale algorithm only).

lambda – The Lagrange multipliers at the solution nlpx. lambda is a structure where
each field is for a different constraint type. lamdba.lower for the lower bounds lb,
lambda.upper for the upper bounds ub, lambda.ineqlin for the linear inequalities,
lambda.eqlin for the linear equalities, lambda.ineqnonlin for the nonlinear inequal-
ities, lambda.eqnonlin for the nonlinear equalities.

grad – holds the value of the gradient of objfun at the solution nlpx.

t – is a vector of times for optimal control profile returned by dynopt.

32



4.2. FUNCTION DESCRIPTION

u – is a vector/matrix of optimal control profiles returned by dynopt.

p – is a vector/empty matrix of the optimal values of the parameters.

Function parameters described in section 4.1.2, and Tab. 4.2 are implicitly given by
MATLAB Optimization Toolbox for all it’s subroutines. They also present parameters useful
for dynopt through function fmincon.

4.2 Function Description

4.2.1 Purpose

The actual version of dynopt is able to solve dynamic optimisation problems which cost
functions can be expressed either in the Mayer form or in the Sum form. The problem
formulation can be described by following set of DAEs:

min
u(t),p

G(x(tf), tf ,p) (4.1)

or

min
u(t),p

nm
∑

i=1

S(ti,x(ti),u(ti),p,xmes(ti)) (4.2)

such that

Mẋ(t) = f (t,x(t),u(t),p)

x(t0) = x0(p)

h(t,x,u,p) = 0

g(t,x,u,p) ≤ 0

x(t)L ≤ x(t) ≤ x(t)U

u(t)L ≤ u(t) ≤ u(t)U

pL ≤ p ≤ pU

with the following nomenclature:

G(·) – objective function in Mayer form evaluated at final conditions,

∑nm

i=1 S(·) – objective function of Sum form evaluated in times of taking the measurements
ti,

M – a constant mass matrix,

h – equality design constraint vector,

g – inequality design constraint vector,

x(t) – state profile vector,

u(t) – control profile vector,

p – vector of time independent parameters,
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x0 – initial conditions for state vector,

x(t)L,x(t)U – state profile bounds,

u(t)L,u(t)U – control profile bounds,

pL,pU – bounds to the parameters.

4.2.2 Syntax and Description

[optimout,optimparam]=dynopt(optimparam)

starts with the initial lengths of intervals li, initial control values for each interval ui for
defined number of collocation points for state variables ncolx, and for control variables ncolu
to the final time tf, and minimises either a Mayer type objfun evaluated in the final time
or Sum type objfun subject to the nonlinear inequalities or equalities defined in confun for
time t0, tf or over full time interval characterised by flag in confun subject to a given system
in process with the optimisation parameters specified in the structure options, with the
defined set of lower and upper bounds on the control variables bdu, state variables bdx, and
time independent parameters bdp so that solution is always in the range of this bounds.
All before mentioned variables do entry dynopt in optimparam structure. The solution is
returned in the otpimout structure described in section 4.1.2.

4.2.3 Arguments

The arguments passed into the function are described in section 4.1.1. The arguments
returned by the function are described in section 4.1.2. Details relevant to dynopt are
included below for objfun, confun, process.

objfun The function to be minimised. objfun is a string containing the name of an M-file
function, e.g., objfun.m. Whereas dynopt optimises a given performance index

Mayer form (4.1) objective function is evaluated at the final time tf , thus objfun
takes a scalar t - final time tf , scalar/vector x - the state variable(s), scalar/vector
u - the control variable(s), both evaluated at corresponding final time tf , scalar/vector
p - time independent parameters, and returns a scalar value f of the objective
function evaluated at these value. The M-file function has to have the following
form:

function [f] = objfun(t,x,u,p)

f = []; % J

Sum form (4.2) objective function is evaluated in the times of taking measurements
ti, thus objfun takes a scalar t - time of taking measurements ti, scalar/vector x -
state variable(s), u - the control variable(s), both evaluated at corresponding time
ti, scalar/vector p - time independent parameters, scalar/vector xm - measured
variable(s) in the above mentioned time ti, and returns a scalar value f of the
objective function evaluated at these values. The M-file function has to have the
following form:
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function [f] = objfun(t,x,u,p,xm)

f = []; % J

If the gradients of the objective function can also be computed and options.GradObj
is ’on’, as set by options = optimset(’GradObj’,’on’) then the function objfun must
return, in the second output argument, the structure Df holding the gradient values
with respect to time t, states x, controls u and parameters p as follows:

function [f,Df] = objfun(t,x,u,p,xm)

% objective function

f = []; % J

% gradient of the objective function

Df.t = []; % dJ/dt

Df.x = []; % dJ/dx

Df.u = []; % dJ/du

Df.p = []; % dJ/dp

The gradients Df.t, Df.x, Df.u, Df.p are the partial derivatives of f at the points t,
x, u, p. That means, Df.t is the partial derivative of f with respect to the t, the ith
component of Df.x is the partial derivative of f with respect to the ith component
of x, the ith component of Df.u is the partial derivative of f with respect to the ith
component of u, the ith component of Df.p is the partial derivative of f with respect
to the ith component of p.

confun The function that computes the nonlinear inequality constraints g(t, x, u, p) <= 0

marked as output argument c and nonlinear equality constraints h(t, x, u, p) = 0,
marked as output argument ceq. As mentioned before, dynopt optimises a given
performance index subject to the constraints defined in corresponding flag:

flag = 0 the constraints are implied at the beginning t = t0,

flag = 1 the constraints are implied over the whole time interval t ∈ [t0, tf ],

flag = 2 the constraints are implied at the end t = tf .

confun is a string containing the name of an M-file function, e.g., confun.m. confun
takes a scalar t - time value corresponding to the time t, scalar/vector x - state variable
value(s), and scalar/vector u - control variable value(s) both corresponding to the value
of t, scalar/vector p - time independent parameters, and returns two arguments, a
vector c of the nonlinear inequalities and a vector ceq of the nonlinear equalities, both
evaluated at t, x, u, p for given flag. For example, if confun=@confun, then the M-file
confun.m would have the form:

function [c,ceq] = confun(t,x,flag,u,p)

switch flag

case 0 % constraints in t0

% constraints
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c = [];

ceq = [];

case 1 % constraints over interval [t0,tf]

% constraints

c = [];

ceq = [];

case 2 % constraints in tf

% constraints

c = [];

ceq = [];

end

If the gradients of the constraints can also be computed and the options.GradConstr
is ’on’, as set by options = optimset(’GradConstr’,’on’) then confun is a string con-
taining the name of an M-file function, e.g., confun.m. The function confun must
return, in the third and fourth output argument, structures Dc, and Dceq holding the
gradient values t, x, u, p with respect to themselves.

function [c,ceq,Dc,Dceq] = confun(t,x,flag,u,p)

switch flag

case 0 % constraints in t0

% constraints

c = [];

ceq = [];

% gradient the calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

case 1 % constraints over interval [t0,tf]

% constraints

c = [];

ceq = [];

% gradient calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];
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Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

case 2 % constraints in tf

% constraints

c = [];

ceq = [];

% gradient calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

end

The gradients Dc.t, Dc.x, Dc.u, Dc.p are the partial derivatives of c at the points
t, x, u, p. That means, Dc.t is the partial derivative of c with respect to t, the ith
component of Dc.x is the partial derivative of c with respect to the ith component
of x, the ith component of Dc.u is the partial derivative of c with respect to the ith
component of u, the ith component of Dc.p is the partial derivative of c with respect
to the ith component of p, and the gradients Dceq.t, Dceq.x, Dceq.u, Dceq.p are the
partial derivatives of ceq at the points t, x, u, p.

process The function which describes process model, that means the right hand sizes of
ODE or DAE equations. If the process model is described by system of ODE’s the
mass matrix M in flag = 7 shall be left an empty matrix, because of being set by
dynopt by default. If the system is describe by DAE’s the mass matrix M in flag =
7 should be singular. process is a string containing the name of an M-file function,
e.g., process.m. process takes a time t, scalar/vector of state variable x, scalar flag,
scalar/vector of control variable u, both corresponding to time t, and scalar/vector
of time independent parameters p, and returns sys values with respect to flag value
evaluated at time t. The M-file function has to be written in the following form:

function sys = process(t,x,flag,u,p)

switch flag

case 0 % f(x,u,p,t)

sys = [];

case 1 % df/dx

sys = [];

case 2 % df/du

sys = [];
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case 3 % df/dp

sys = [];

case 4 % df/dt

sys = [];

case 5 % x0

sys = [];

case 6 % dx0/dp

sys = [];

case 7 % M

sys = [];

case 8 % unused flag

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

4.2.4 Algorithm

Large-scale optimisation By default dynopt will choose the large-scale algorithm if the
user supplies the gradient in objfun (and GradObj is ’on’ in options) and if only upper
and lower bounds exists or only linear equality constraints exist. This algorithm is a
subspace trust region method and is based on the interior-reflective Newton method
described in [3]. Each iteration involves the approximate solution of a large linear
system using the method of preconditioned conjugate gradients (PCG). See the trust-
region and preconditioned conjugate gradient method descriptions in the Large-Scale
Algorithms chapter in [2].

Medium-scale optimisation dynopt uses through the fmincon Sequential Programming
(SQP) method. In this method, a Quadratic Programming (QP) subproblem is solved
at each iteration. An estimate of the Hessian of the Lagrangian is updated at each
iteration using the BFGS formula [3].

A line search is performed using a merit function similar to that proposed by [11]. The
QP subproblem is solved using an active set strategy similar to that described in [9].
A full description of this algorithm is found in the Constrained optimisation section of
the Introduction to algorithms chapter of the Optimization Toolbox manual. See also
the SQP implementation section in the Introduction to Algorithms chapter for more
details on the algorithm used.

4.3 Additional Functions

In this section, two functions are presented: profiles, which prepares plot-able state and
control profiles and constraints, which prepares a user given equality and inequality plot-
able constraints from the optimisation results returned in optimout.

4.3.1 Function profiles

[tplot,uplot,xplot] = profiles(optimout,optimparam,ntimes)
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takes an optimal output optimout and other input arguments optimparam described in
section 4.1.1, and returns vector tplot, vector/matrix uplot, vector/matrix xplot with
respect to ntimes which defines the number of points plotted per interval.

4.3.2 Function constraints

[tp,cp,ceqp] = constraints(optimout,optimparam,ntimes)

takes an optimal output optimout returned by dynopt, and other input arguments optimparam
described in section 4.1.1, and returns vector tp,nonlinear inequality constraint vector/matrix
cp, nonlinear equality constraint vector/matrix ceqp defined in confun with respect to
ntimes which defines the number of points plotted per interval.

It is simple to make a graphical representation of obtained results by using MATLAB’s
plot function.
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CHAPTER 5

Examples

This chapter contains a few another examples from the literature dealing with chemical re-
actors. The examples were chosen to illustrate the ability of the dynopt package to treat the
problems of varying levels of difficulty. The example files can be found in the directory ex-
amples/problemX, where X means the number of the problem presented in this chapter.

5.1 Problem 4

Consider a tubular reactor with parallel reactions A → B, A → C taking place [5, 13, 18]:

max
u(t)

J = x2(tf) (5.1)

such that

ẋ1 = −(u+ 0.5u2)x1 x1(0) = 1

ẋ2 = ux1 x2(0) = 0

u ∈ [0, 5] tf = 1

where

x1(t) – dimensionless concentration of A,

x2(t) – dimensionless concentration of B,

u(t) – control variable.

This problem was treated by [5, 13, 18] and the value of performance index of value of
0.57353 was reported as global optimum by [5]. Moreover the value of 0.57284 was reported
by [18]. By using 6 collocation points for state variables, 2 collocation points for control
variables on the same number of intervals as in the literature to this problem, we obtained
a slightly closer value of performance index of 0.5734171 to the reported global maximum
(109 iterations, exitflag equal to 1). The optimal control and state profiles are given in Figs.
5.1 and 5.2.
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Figure 5.1: Control profile for problem 4
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Figure 5.2: State profiles for problem 4

5.2 Problem 5

Consider a batch reactor [5, 18] where a series of reactions A → B → C is involved. This
example is similar to that in section 3.2.1. The difference is just in the reactor model
description. Here the process is described as an ODE system.

max
u(t)

J = x2(tf) (5.2)

such that

ẋ1 = −k1x
2
1 x1(0) = 1

ẋ2 = k1x
2
1 − k2x2 x2(0) = 0

k1 = 4000e(−
2500

T
) k2 = 620000e(−

5000

T
)

T ∈ [298, 398] tf = 1

where

x1(t) – concentration of A,

x2(t) – concentration of B,

T – temperature (control variable).

The objective of problem (5.2) is to obtain the optimal temperature profile that maximises
the yield of the intermediate product B at the end of a specified time of operation in a batch
reactor where the reaction A → B → C take place. The problem was solved using a
relaxed reduced space SQP strategy by [13] and the value of 0.610775 was reported as global
maximum. Rajesh et al. reached the value of 0.61045. We obtained optimal value of 0.610774
(5135 iterations, 100000 function evaluations, exitflag equal to 0 (maxfun exceeded), by using
5 collocation points for state variables and keeping control variable profile as piecewise linear
on 4 time intervals. This is quite closer to the global one. The optimal control and state
profiles are given in Figs. 5.3 and 5.4.
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Figure 5.4: State profiles for problem 5

5.3 Problem 6

Consider a catalytic plug flow reactor [5, 18] involving the following reactions:
A ↔ B → C

max
u(t)

J = 1− x1(tf )− x2(tf ) (5.3)

such that

ẋ1 = u(10x2 − x1) x1(0) = 1

ẋ2 = −u(10x2 − x1)− (1− u)x2 x2(0) = 0

u ∈ [0, 1] tf = 12

where

x1(t) – mole fraction of A,

x2(t) – mole fraction of B,

u(t) – fraction of type 1 catalyst.

Optimisation of this problem has also been analysed. This problem was solved by [13, 18]
and the optima 0.476946, 0.47615 were reported. Value of the performance index obtained
for this problem using dynopt was 0.477712 (243 iterations, exitflag equal to 1). In this case
5 collocation points for state variables and 2 collocation points for control variables were
chosen. The number of time-intervals have been set to 12. The optimal control and state
profiles are given in Figs. 5.5 and 5.6.

5.4 Problem 7

Consider the following problem [1, 8, 15]
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Figure 5.6: State profiles for problem 6

max
u(t)

J =

∫ 0.2

0

(

5.8(qx1 − u4)− 3.7u1 − 4.1u2

+ q(23x4 + 11x5 + 28x6 + 35x7)− 5.0u2
3

− 0.099
)

dt (5.4)

such that

ẋ1 = u4 − qx1 − 17.6x1x2 − 23x1x6u3

ẋ2 = u1 − qx2 − 17.6x1x2 − 146x2x3

ẋ3 = u2 − qx3 − 73x2x3

ẋ4 = −qx4 + 35.2x1x2 − 51.3x4x5

ẋ5 = −qx5 + 219x2x3 − 51.3x4x5

ẋ6 = −qx6 + 102.6x4x5 − 23x1x6u3

ẋ7 = −qx7 + 46x1x6u3

x(0) = [0.1883 0.2507 0.0467 0.0899 0.1804 0.1394 0.1046]T

q = u1 + u2 + u4

0 ≤ u1 ≤ 20

0 ≤ u2 ≤ 6

0 ≤ u3 ≤ 4

0 ≤ u4 ≤ 20

tf = 0.2

where

x1(t)− x7(t) – states,

u1(t)− u4(t) – controls.

Analogous to the section 3.1.4, the cost function can be rewritten to the Mayer form by
introducing a new state defined by the integral function with its initial value equal to zero.
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This problem was solved by [8, 12]. Reported optimal value of 21.757 was obtained
using CVP method implemented in DYNO. For this problem, 4 collocation points for state
variables, 2 collocation points for control variables for 10 intervals were defined and an
optimum was found at value of 21.82346 (995 iterations, exitflag equal to 1). The optimal
control profiles are given in Figs. 5.7, 5.8, 5.9, 5.10 and optimal state profiles are represented
in Fig. 5.11.

5.5 Problem 9

Consider the following problem [7] which describes diafiltration optimal design problem:

min
α(t)

J = x2(tf ) (5.5)

subject to differential equations:

ẋ1 =
x1

x3
q(x1, x2) [R1(x1, x2)− α] , x1(0) = 150 (5.6)

ẋ2 =
x2

x3
q(x1, x2) [R2(x1, x2)− α] , x2(0) = 300 (5.7)

ẋ3 = q(x1, x2)(α− 1), x3(0) = 0.03 (5.8)

state path constraints:

x3(t) ≥ 0.01 (5.9)

x3(t) ≤ 0.035 (5.10)

final time constraints:

x3(tf ) = 0.01 (5.11)

and simple bound constraints on optimized variable

α ∈ [0, 1] (5.12)

where R1,R2, q are function of states determined experimentally as

q = S1(x2)e
S2(x2)x1 (5.13)

R1 = (z1x2 + z2)x1 + (z3x2 + z4) (5.14)

R2 = W1(x2)e
W2(x2)x1 (5.15)

where S1, S2,W1,W2 are second order polynomials in x2

S1(x2) = s1x
2
2 + s2x2 + s3 (5.16)

S2(x2) = s4x
2
2 + s5x2 + s6 (5.17)

W1(x2) = w1x
2
2 + w2x2 + w3 (5.18)

W2(x2) = w4x
2
2 + w5x2 + w6 (5.19)

and s1−6, z1−4, w1−6 are coefficients that were determined from laboratory experiments with
the process solution (see Table 5.1).
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Table 5.1: Experimentally obtained coefficient values for Rj and q.

s w z
1 68.1250 10−9 7.8407 10−6 -0.0769 10−6

2 -56.4512 10−6 -4.0507 10−3 -0.0035 10−3

3 32.5553 10−3 1.0585 0.0349 10−3

4 -4.3529 10−9 1.2318 10−9 0.9961
5 3.3216 10−6 -9.7660 10−6

6 -2.7141 10−3 -1.1677 10−3

The optimal control profile α(t) is at zero for the first part of trajectory and one after
the switch. The volume (x3) shows that the first part of the trajectory basically decreases
the volume until it is on the lower constraint and keeps it approximately constant until end
of the batch. Thus, the optimal control strategy for this problem represents a traditional
diafiltration process with two parts: pre-concentration followed by approximately constant-
volume step until end of the batch. The minimum of x2(6) = 23.13 was obtained with 2
piece-wise constant profiles of α. Simulation results are shown in Fig. 5.12.
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Figure 5.11: State profiles for problem 7
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