PLASMA Contributors’ Guide

Parallel Linear Algebra Software for Multi-core Architectures
Version 2.0

Electrical Engineering and Computer Science
University of Tennessee

Electrical Engineering and Computer Science
University California, Berkeley

Mathematical & Statistical Sciences
University of Colorado, Denver

Wesley Alvaro
Jakub Kurzak
Piotr Luszczek
Jack Dongarra

Contents

1 Introduction 1
2 Coding Style 2
2.1 FORTRAN Style s 2
22 CStyle e 2
2.3 Coding Practices 4
24 Naming Convention ottt 5

2.5 Boiler Plate text/code for Each File 5
2.6 EXCeptionS. 5

3 Code Generation 6
3.1 Introduction 6

32 BasicUsage o . e 6
33 Advanced Usage e 7
3.3.1 Complex Value Passing with CBLAS_.SADDR 7

3.3.2 Conditional Code Generation 8

3.3.3 Code Dependenton Data Type 9

3.4 Specifying Code Generationin Files 10
34.1 ForwardExample, 11

3.4.2 Header Description 11

3.5 Code Generator Substitution Module 11
35.1 ForwardExample oL oo 11

3.5.2 Descriptionof Members 12

4 Comments 13

4.1 APIRoutines e 13
4.1.1 Grouping Computational Routines 13

4.1.2 Grouping Other Routines 14

4.1.3 Routine Documentation with IX[gXMath 15

4.1.4 Routine Parameters oL 15

415 ReturnValues 15

4.1.6 SeeAlsoSection 15

4177 FileComments 16

4.1.8 Comment Section Structure Summary 17

4.1.9 An Actual Example : PLASMA Version 18

S Miscellaneous 19
5.1 Constants e e 19

CHAPTER 1

Introduction

This document contains all software development guidelines for the PLASMA project not
documented elsewhere, in order to assure that PLASMA is a high quality software pack-
age. It is a recommended reading for new people joining the project at the participating
institutions, as well as community developers.

CHAPTER 2

Coding Style

2.1 FORTRAN Style

FORTRAN means FORTRAN 77. Extensions from Fortran 90, Fortran 95, or Fortran 2003
are not allowed.

Currently PLASMA doesn’t contain any FORTRAN code in the library. The only FOR-
TRAN code in PLASMA is located in the testing/lin/ directory. This code is coming from
the Netlib LAPACK testings and differ only by the call to the equivalent PLASMA routines
in place of LAPACK ones. The advantage of keeping this code in FORTRAN is its close re-
semblance of LAPACK code, from which the code is derived. By the same token, the main
coding rule, applying to the development and maintenance of this code, is that it should
follow LAPACK as closely as possible. This applies to the use of whitespaces, punctuation,
indentation, line breaking, the use of lower and uppercase characters, comments, variable
naming, etc.

2.2 C Style

Only code that conforms to the ANSI C standard is allowed. The standard is commonly
referred to as C89 and was ratified by ISO. One way to check for compliance is to use the

2.2. CSTYLE

following command:
gcc -std=c89 -W -Wall -pedantic -c plasma.c

Since the C89 standard does not support complex data types the following command needs
to be used to remove warnings about it:

gcce -std=c99 -W -Wall -pedantic -c plasma.c

PLASMA code needs to be portable and work on Windows where the most commonly used
compiler is a C++ compiler. PLASMA code must then compile with a C++ compiler. The
following command will compile a C source code using the GNU C++ compiler:

gcc -x c++ -W -Wall -pedantic -c plasma.c

No Trailing Whitespaces: There should be no trailing whitespace characters at the end of
lines, no whitespace characters in empty lines and no whitespace characters at the
end of files (The last closing curly bracket should be followed by a single newline).
This is easy to accomplish by using an editor that shows whitespace characters, such
as Kwrite, Kate, Emacs (just use M-x delete-trailing-whitespace command). Other-
wise a sed, awk, or perl “one-liner” script can be used to clean up the file before
committing to the repository (e.g., tools/code_cleanup).

Whitespace Separators: There should be a whitespace between a C language keyword
and the left round bracket and a whitespace between the right round bracket and
the left curly bracket. There should be no whitespace immediately after left round
bracket and immediately before right round bracket. Comas separating arguments
are followed by a single space and not preceded by a space.

End-of-line Management: Every file should have an end-of-line character at the end un-
less it’s a zero-length file. End-of-file character is \n (as it is on Unix including
Linux; ASCII code 10). Other end-of-line schemes should not be used: Windows
and DOS (\n\r — ASCII codes 10 and 13) and Mac (\r — ASCII code 13).

Indentation: The unit of indentation is four spaces. The left curly bracket follows the
control flow statement in the same line. There is no newline between the control flow
statement and the block enclosed by curly braces. The closing curly bracket is in a
new line right after the end of the enclosed block.

There is no specific limit on the length of lines. Up to a 100 columns is fine. Clarity
is paramount. For multi-line function calls it is recommended that new lines start in
the column immediately following the left bracket.

2.3. CODING PRACTICES

Tabs: Tab characters should not be used. Tabs should always be emulated by four spaces,
a feature available in almost any text editor. If that proves difficult, again, a sed, awk,
or perl “one-liner” can be used to do the replacement before the commit.

Variable Declarations: For the most part all variables should be declared at the begin-
ning of each function, unless doing otherwise significantly improves code clarity in a
specific case.

Constants: Constants should have appropriate types. If a constant serves as a floating point
constant, it should be written with the decimal point. If a constant is a bit mask, it is
recommended that it is given in hexadecimal notation.

printf Strings: ANSI C concatenates strings separated by whitespace. There is no need
for multiple printf calls to print a multi-line message. One printf can be used with
multiple strings.

F77 Trailing Underscore: When calling a FORTRAN function the trailing underscore
should never be used. If the underscore is needed it should be added by an appropri-
ate conditional preprocessor definition in an appropriate header file (e.g.: core_blas.h,
lapack.h).

Special Characters: No special characters should be used used in the code. The ASCII
codes allowed in the file are between 32 and 127 and code 10 for new line.

2.3 Coding Practices

Preprocessor Macros: Conditional compilation, through the #define directive, should
only be used for portability reasons and never for making choices that can be decided
at runtime. Excessive use of the #define macros leads to frequent recompilations and
obscure code.

Dead Code: There should be no dead code: no code that is never executed, no including
of header files that are not necessary, no unused variables. Dead code can be justified
if it serves as a comment, e.g., canonical form of optimized code. In such case the
code should be in comments.

OS Interactions: Error checks have to follow each interaction with the OS. The code
should never be terminated by the OS. In particular each memory allocation should
be checked. The code cannot produce a segmentation fault.

User Interactions: User input needs to be checked for correctness. The user should not be
able to cause undefined behavior. In particular the user should not be able to cause
termination of the code by the OS.

2.4. NAMING CONVENTION

2.4 Naming Convention

Any externally visible C symbols should be prefixed with PLASMA _. Following the prefix,
the name should be in lower case (this will create a mixed-case name and thus will guarantee
the lack of name clashes with FORTRAN interfaces that are always either all lower-case
or all upper-case). For example: PLASMA _dgetrf. This is in line with C interfaces for
MPI (MPI_Send), PETSc, and BLAS (BLAS_dgemm).

2.5 Boiler Plate text/code for Each File

Copyright, License, year, . ..

2.6 Exceptions

As often is the case all rules have exceptions. Exceptions should only be used after consult-
ing with the PLASMA team members.

CHAPTER 3

Code Generation

3.1 Introduction

PLASMA uses code generation to streamline the writing of similar code for multiple data
types. This has been done in the past: NAG Fortran tools were used for LAPACK devel-
opment and Clint Whaley’s Extract for ATLAS and BLACS. Other solutions include use of
C preprocessor in Goto BLAS and m4 macros in the p4 messaging system that eventually
became the basis of the MPICH 1.

After looking at these tools, the PLASMA team decided to use a simpler solution: a custom
Python script that resides in tools/codegen.py

3.2 Basic Usage

The usual workflow for PLASMA team when developing a new computational routine is as
follows:

1. Write and debug the routine using double precision real data type using arbitrary tools
(editors, compilers, etc.) without worrying about PLASMA'’s development tools.

2. Convert the double precision real routine so it works with double precision complex

3.3. ADVANCED USAGE

data type.

3. Use the PLASMA’s code generation script to generate single and double precision
real versions and single precision complex version.

4. Compare the result of conversion with the initial version done in step 1.

Of course, this is a typical workflow so there may be others that are equally good. However,
as arule PLASMA team only maintains double precision complex version of all the compu-
tational routines: the remaining three are automatically generated with the code generation
script.

The code generation step is done through the various Makefiles using the generate rule.
A typical invocation of the script is:

./codegen.py -f core_zblas.c

As a result of the above command three files will be generated: core_sblas.c,
core_dblas.c, and core_cblas.c.

3.3 Advanced Usage

The base code (in double precision complex) must contain annotations that direct generating
code for the remaining data type(s).

3.3.1 Complex Value Passing with CBLAS_SADDR
The CBLAS_SADDR () macro helps in dealing with old C code such as CBLAS that passes

real scalars by value and complex scalars by address. Consider the matrix-matrix multiply
routines:

double real_alpha = 1.0;
double _Complex complex_alpha = 1.0:

/* pass by value */
cblas_dgemm(col_major, trans, trans, M, N, K, real_alpha, ...);

/* pass by address */
cblas_zgemm(col_major, trans, trans, M, N, K, &complex_alpha, ...);

The double precision complex code in PLASMA looks like this:

3.3. ADVANCED USAGE

PLASMA_Complex64_t alpha = 1.0:
cblas_zgemm(..., CBLAS_SADDR(alpha), ...);
The code generation script will:

1. change PLASMA Complex64_t to PLASMA Complex32_t for single precision com-
plex version of the code.

2. change PLASMA Complex64_t to double for double precision real version of the
code and will remove CBLAS_SADDR.

3. change PLASMA Complex64_t to float for single precision real version of the code
and will remove CBLAS_SADDR.

CBLAS_SADDR is defined as a single argument macro that returns an address of its argument
so it will do the right thing for both complex versions of the code.

3.3.2 Conditional Code Generation

It is possible to generate code conditionally. For example Hermitian routines only make
sense for complex data type:

#ifdef COMPLEX
void CORE_zherk(int uplo, int trans,
int N, int K,
double alpha, PLASMA_Complex64_t *A, int LDA,
double beta, PLASMA_Complex64_t *C, int LDC)
{
/* ... x/
}
#endif

On the other hand, routines specific to floating-point arithmetic make sense only for real
data types. When code generation occurs, #ifdef COMPLEX becomes #ifdef REAL. More
importantly, this feature requires the following lines in the original double precision com-
plex version:

#undef REAL
#define COMPLEX

After generation, these two lines become:

3.3. ADVANCED USAGE

#undef COMPLEX
#define REAL

So that this code works to conditionally inserting logic for real data types:

#ifdef REAL

double

BLAS_dfpinfo(enum blas_cmach_type cmach)
{

VAT ¥

}

#endif

3.3.3 Code Dependent on Data Type

Sometimes, the code for different data types needs to be different. This can be coded in
plain C without any preprocessor intervention. Here is a sample:

if (sizeof (PLASMA_Complex64_t) == sizeof (double))
tmult = 1; /* testing with real data types */
else
tmult = 2; /* testing with complex data types */

For complex versions the else branch of the if statement is used but the compiler and
tmult is set to 2. For single precision real version the code generating script will produce:

if (sizeof(float) == sizeof(double))

tmult = 1; /* testing with real data types */
else

tmult = 2; /* testing with complex data types */

and tmult will be set to 2. For double precision real version the code generating script will
produce:

if (sizeof (double) == sizeof (double))

tmult = 1; /* testing with real data types */
else

tmult = 2; /* testing with complex data types */

and tmult will be set to 1. In the following example, a different code path will be taken for
each of the four data types:

3.4. SPECIFYING CODE GENERATION IN FILES

/*

The order of the if statements is significant!

*/

if (sizeof (PLASMA_Complex64_t) == sizeof(float)) {
printf("single precision real\n");

} else if (sizeof (PLASMA_Complex64_t) == sizeof (double)) {
printf("double precision real\n");

} else if (sizeof (PLASMA_Complex64_t) == sizeof (PLASMA_Complex32_t)) {
printf("single precision complex\n");

} else if (sizeof (PLASMA_Complex64_t) == sizeof (PLASMA_Complex64_t)) {
printf("double precision complex\n");

Introduction of if statements might have adverse effects on performance. But modern
compilers will likely remove the above if statements because their conditional expression
is known compiled time. If preferred, the same can be accomplished with the preprocessor
using a technique similar to the previously mentioned method. In example:

#define DCOMPLEX
#ifdef DCOMPLEX

#endif
or, similarly:

#define DCOMPLEX 1
if (DCOMPLEX){

Both of the above examples require only a single simple rule be added to the code generator
substitution module 3.5:

(’SINGLE’, ’DOUBLE’, ’COMPLEX’, >’DCOMPLEX’)

3.4 Specifying Code Generation in Files

A special keyword is used to enable code generation in your files. A single line will indicate
not only that generation is required, but what kind(s) of generation, and which types should
be done.

10

3.5. CODE GENERATOR SUBSTITUTION MODULE

3.4.1 Forward Example

The indicator line has a very specific structure (explained in section 3.4.2). The indicator
line should be included in a front-closed comment line.

KEYWORD CONV_TYPE[,CONV_TYPE]* ORIGIN_TYPE -> OUTPUT_TYPE[OUTPUT_TYPE]=*
O@precisions normal z -> c d s
Oprecisions normal,specialz z -> ¢

The first line is the normal conversion line. The second line uses a special conversion
specialz and only goes from double complex to single complex.

3.4.2 Header Description

KEYWORD The keyword is @precisions to work within Doxygen comments.
CONV_TYPE You can specify one or more conversion sets to be used.

ORIGIN_TYPE This is the origin type to use as the search needle for replacements. There
can only be one.

OUTPUT_TYPE There can be one or more of these specified. These are the precisions
used as the output. For each entry, either zero or one file will be generated. This is
dependent on some replacement causing a change in the original filename.

3.5 Code Generator Substitution Module

The substitution module specifies the rule types and substitutions for each of the preci-
sion types during generation. This module is called subs.py and is located in the tools
directory.

3.5.1 Forward Example

Modules have a very specific structure (explained in section 3.5.2):

subs = {
’all’ : [## Special key
Changes are applied to all applicable conversions automatically
[None,None]

1,

11

3.5. CODE GENERATOR SUBSTITUTION MODULE

‘mixed’ : [
[’zc?,’ds’],
(’PLASMA_Complex64_t’,’double’),
(’PLASMA_Complex32_t’,’float’),
This is a deletion on conversion from zc -> ds
(’COMPLEXONLY’,??),

1,

’normal’ : [
[’s?,’d’,’¢c’,’2’],
(’float’,’double’,’PLASMA_Complex32_t’,’PLASMA_Complex64_t’),
There is no replacement here from z -> d
(’NOTDOUBLE’ ,None, >NOTDOUBLE’ , >’DOUBLE’) ,

3.5.2 Description of Members

subs A dictionary listing all of the replacement types.

subs[’all’] This is a special set of replacements executed on all files matching types in
subs[’all’] [0].

subs[x or CONVERSION_TYPE] These are special sets of replacemnts for designation in
the file generation header.

subs[x [0]] This is a special list specifying the conversion types. These types are those
used in the header specification.

subs[x [1-n]] These are tuples that are replacements made during generation. They can
be ’’, None, or any regular expression string. These replacements are done using
Python’s regular expression engine. If the replacement value is ’’, then the search
needle is deleted from the haystack. If the replacement value is None, then no re-
placement is made.

12

CHAPTER 4

Comments

4.1 API Routines

Doxygen comments are used to comment these routines to automatically generate docu-
mentation (Reference Guide). These comments must be constructed in such a way that they
are consistent with the other comments in the source.

4.1.1 Grouping Computational Routines

A routine should belong to a certain group that will cause those routines of the same group
to be collected into a single Doxygen Module. This is done with the Doxygen command
@ingroup

Precision

For the most part, routines are grouped by precision. This allows code generated from
another source to not require any special rules.

13

4.1. API ROUTINES

Routine Precision Doxygen Group Command
PLASMA Complex64_t | @ingroup PLASMA_Complex64_t
PLASMA _Complex32_t | @ingroup PLASMA_Complex32_t
double @ingroup double

float Q@ingroup float

Expert Interface - Asynchronous / Synchronous

Special groups must be used for the expert API (the individual tile routines) interface con-
sisting of Asynchronous and Synchronous functions. These groups should also abide by
the precision grouping from the previous section.

Interface ‘ Doxygen Group Command
....Tile Q@ingroup PLASMA Complex64_t _Tile
....Tile_Async | @ingroup PLASMA Complex64_t_Tile_Async

4.1.2 Grouping Other Routines

These routines include all of the other routines, specifically those internal to the working of
PLASMA.

User Routines (Auxiliary)

Any routine that the user should have access to falls into this category. These routines
are usually prefixed with a PLASMA_. These routines’ documentation is generated for the
reference manual. All of these routines are placed in the group Auxiliary. See section
4.1.9 for an example.

Developer Routines (Control)

Any routine that the user should not have access to falls into this category. These routines’
documentation is not generated for the reference manual. All of these routines are currently
placed in the unused group Control.

Note: While these routines are not documented for the end user, they should still be well
done for your fellow developers.

14

4.1. API ROUTINES

4.1.3 Routine Documentation with IXIgXMath

The next section of comments for the routine may include the normal comments in addition
to being able to take advantage of Doxygen’s ability to parse I&I[EXmath. You can insert
IATEXby using the Doxygen commands \$, \[, and \].

IATEXMath Syntax Doxygen IZTgXMath Command
$A\times x = b$ \$A\times x = b\$
\[A\times x = b\] | \[A\times x = b\]

4.1.4 Routine Parameters

Parameters should be specified with the following simple syntax:

Parameter Name | Properties | Doxygen Parameter Syntax
A doublex @param[in,out] A
input/output
« int @param[in] x
input

The next line should be an indented description of the parameters role. This description can
span multiple lines and can contain I&lEXformulas according to 4.1.3.

4.1.5 Return Values

The next section of the comments is/are the return value(s) of the routine. See the structure
section (4.1.8) for reference on how to construct the return value comments.
Note: The return value in the documentation must not contain spaces.

4.1.6 See Also Section

For a given routine the “See also” section includes the following routines:
1. The same precision, different interfaces
(...Tile, ..._Tile_Async),

2. The same interface, different precisions
(PLASMA z..., PLASMA c..., PLASMA d..., PLASMA s...),

3. the same precision, the same interface, related routines
(e.g., the solve routine for a corresponding factorization routine).

15

4.1. API ROUTINES

The “See also” section for the PLASMA _zgetrf() routine can serve as an example:

3k 3k >k 5k >k 3k 3k 5k 5k >k 5k 3k 3k 3k 5k 5k >k 3k 3k 5k 5k 5k 3k >k 3k 3k 3k 5k >k 3k >k 5k 5k >k 5k >k 3k 3k 5k 5k >k 5k >k 3k 3k 5k 5k >k >k >k 3k 5k >k 5k >k 5k >k %k 5k >k 5k >k 5k 3k %k 5k >k 5k %k %k 3k %k 5k %k >k %k %k k k

@sa
@sa
@sa
@sa
Osa
@sa

* X ¥ X X X X *

PLASMA_zgetrf_Tile
PLASMA_zgetrf_Tile_Async
PLASMA_cgetrf
PLASMA_dgetrf
PLASMA_sgetrf
PLASMA_zgetrs

**/

4.1.7 File Comments

Each file should have a block of comments at the top of it indicating its purpose, author(s),
version, and date. The segment below is an example of how this should be done:

/%%

¥ X X K X X X X X X * X ¥

*
*
~

@file auxiliary.c

PLASMA auxiliary routines
PLASMA is a software package provided by Univ. of Tennessee,
Univ. of California Berkeley and Univ.

Q@version 2.3.1

@author Jakub Kurzak
@author Piotr Luszczek
Q@author Emmanuel Agullo
@date 2010-11-15

of Colorado Denver

16

4.1. API ROUTINES

4.1.8 Comment Section Structure Summary
Comment sections should have a very specific structure. In general, the structure is such:
/%% skokskskokkokok sk ok ok ok sk sk ok sk kok ok kokkkokkkokkkokkkkk . (80 Columns wide)
* Q@ingroup <GROUP-NAME>
*
* <ROUTINE-NAME> - <DESCRIPTION>
*
koK >k ok ok 3k ok %k ok %k ok k sk ok ko ok ko ck k sk ok kck kk ok kkkkkkkkkkkk |,

@param[in] <PARAMETER-NAME>
<DESCRIPTION>

@param[out] <PARAMETER-NAME>
<DESCRIPTION>

@param[in,out] <PARAMETER-NAME>
<DESCRIPTION>

* X ¥ X ¥ X * *

k3K ok ok ok 5k ok ko ok %k ok k sk ok kok k sk k sk ok kck kk ok kkkkkkkkkkkk ||,

@return <DESCRIPTION>
\retval <VALUE> <DESCRIPTION>
\retval <VALUE> <DESCRIPTION>

* X ¥ X ¥

kook ok okook kook kook ok skok kok ko ko skok kok ksk ok skokkskkskokskokkkkskk |
*

* @sa <SEE-ALSO>

*

**************************************/

Note: Descriptions can span multiple lines.

Note: A line should begin with a <SPACE><ASTERISK>

Note: Sections should be separated with <SPACE><ASTERISK x79 >
Note: The comment sections should begin with:
<SPACE><ASTERISK x2 ><SPACE><ASTERISKx76 >

17

4.1. API ROUTINES

4.1.9 An Actual Example : PLASMA Version

/3K skokokskskoskok sk ok ok sksk ok sk ok sksk sk sk ok ok sk sk sk sk s ok sksk sk sk ok sk sk sk sk sk s sk sk sksk sk o sk sk sk sk ok ok sk sk sk sk sk sk sksk sk sk ke ok sk sk sk sk ok ok sk ok
Q@ingroup Auxiliary
PLASMA_Version - Reports PLASMA version number.

3k 5k >k 3k 3k 3k 3k >k 5k >k 3k 3k 3k 3k 5k 5k >k 3k 3k 3k 5k %k 5k >k 3k 3k 5k 5k >k 3k >k 5k 3k 5k 5k >k 3k >k 5k 3k >k 5k >k 3k 3k 5k 5k >k 5k >k 3k 5k >k 5k >k 5k >k 3k 5k 5k 5k >k 5k >k 3k 5k >k 5k >k >k >k %k 5k %k >k %k %k *k

@param[out] ver_major
PLASMA major version number.

*
*

*

*

*

*

*

*

*

* @param[out] ver_minor
* PLASMA minor version number.
*

*

*

*

*

*

*

*

*

*

@param[out] ver_micro
PLASMA micro version number.

3k 5k >k 3k 3k 3k 3k >k 5k >k 3k 3k 3k 3k 5k 5k >k 3k 3k 3k 3k %k 5k >k 3k 3k 5k 5k >k 3k >k 5k 3k 3k 5k >k 3k >k 5k 5k >k 5k >k 3k 3k 5k 5k >k 5k >k 3k 5k >k 5k >k 5k >k 3k 5k >k 5k >k 5k >k 3k 5k >k 5k >k >k >k %k 5k %k >k %k %k *k

Qreturn
\retval PLASMA_SUCCESS successful exit

***/

18

CHAPTER 5

Miscellaneous

5.1 Constants

PLASMA defines a few constant parameters, such as PlasmaTrans, PlasmaNoTrans, Plas-
maUpper, PlasmaLower, etc., equivalent of CBLAS and LAPACK parameters. The nam-
ing and numbering of these parameters follow the one of the CBLAS from Netlib (http:
//www.netlib.org/blas/blast-forum/cblas.tgz) and the C Interface to LAPACK
from Netlib (http://www.netlib.org/lapack/lapwrapc/).

PLASMA includes a macro, lapack_const(), which takes PLASMA'’s (integer) constants
and returns LAPACK’s (string) constants. From the standpoint of LAPACK, only the first
letter of each string is significant. Nevertheless, the macro returns meaningful strings, such
as “No transpose”, “Transpose”, “Upper”, “Lower”), etc.

19

http://www.netlib.org/blas/blast-forum/cblas.tgz
http://www.netlib.org/blas/blast-forum/cblas.tgz
http://www.netlib.org/lapack/lapwrapc/

	Introduction
	Coding Style
	FORTRAN Style
	C Style
	Coding Practices
	Naming Convention
	Boiler Plate text/code for Each File
	Exceptions

	Code Generation
	Introduction
	Basic Usage
	Advanced Usage
	Complex Value Passing with CBLAS_SADDR
	Conditional Code Generation
	Code Dependent on Data Type

	Specifying Code Generation in Files
	Forward Example
	Header Description

	Code Generator Substitution Module
	Forward Example
	Description of Members

	Comments
	API Routines
	Grouping Computational Routines
	Grouping Other Routines
	Routine Documentation with LaTeXMath
	Routine Parameters
	Return Values
	See Also Section
	File Comments
	Comment Section Structure Summary
	An Actual Example : PLASMA_Version

	Miscellaneous
	Constants

