
Tutorial on MPI programming, Full Course
Victor Eijkhout eijkhout@tacc.utexas.edu
Online version, 2017

Eijkhout: MPI intro 1

Justification

The MPI library is the main tool for parallel programming on a large scale. This
course introduces the main concepts through lecturing and exercises.

Eijkhout: MPI intro 2

The SPMD model

Eijkhout: MPI intro 3

Overview

In this section you will learn how to think about parallelism in MPI.

Commands learned:

MPI_Init, MPI_Finalize,

MPI_Get_processor_name, MPI_Comm_size, MPI_Comm_rank

Eijkhout: MPI intro 4

Computers when MPI was designed

One processor and one process per node;
all communication goes through the network.

Eijkhout: MPI intro 5

Pure MPI

A node has multiple sockets, each with multiple cores.
Pure MPI puts a process on each core: pretend shared memory doesn’t exist.

Eijkhout: MPI intro 6

Hybrid programming

Hybrid programming puts a process per node or per socket;
further parallelism comes from threading.
Not in this course. . .

Eijkhout: MPI intro 7

Terminology

‘Processor’ is ambiguous: is that a chip or one independent instruction
processing unit?

Socket: the processor chip

Processor: we don’t use that word

Core: one instruction-stream processing unit

Process: preferred terminology in talking about MPI.

Eijkhout: MPI intro 8

SPDM

The basic model of MPI is
‘Single Program Multiple Data’:
each process is an instance of the same program.

Symmetry: There is no ‘master process’, all processes are equal, start and
end at the same time.

Communication calls do not see the cluster structure:
data sending/receiving is the same for all neighbours.

Eijkhout: MPI intro 9

Compiling and running

MPI compilers are usually called mpicc, mpif90, mpicxx.

These are not separate compilers, but scripts around the regular C/Fortran
compiler. You can use all the usual flags.

Run your program with something like

mpiexec -n 4 hostfile ... yourprogram arguments
mpirun -np 4 hostfile ... yourprogram arguments

Check your local installation!

Eijkhout: MPI intro 10

Do I need a supercomputer?

With mpiexec and such, you start a bunch of processes that execute your
MPI program.

Does that mean that you need a cluster or a big multicore?

No! You can start a large number of MPI processes, even on your laptop.
The OS will use ‘time slicing’.

Of course it will not be very efficient. . .

Eijkhout: MPI intro 11

Cluster setup

Typical cluster:

Login nodes, where you ssh into; usually shared with 100 (or so) other people.
You don’t run your parallel program there!

Compute nodes: where your job is run. They are often exclusive to you: no other
users getting in the way of your program.

Hostfile: the description of where your job runs. Usually generated by a job scheduler.

Eijkhout: MPI intro 12

How to make exercises

Directory: exercises-mpi-c or f or p

If a slide has a (exercisename) over it, there will be a template program
exercisename.c (or F90 or py).

Type make exercisename to compile it

Python: no compilation needed. Run:
ibrun python yourprogram

Add an exercise of your own to the makefile: add the name to the
EXERCISES

Eijkhout: MPI intro 13

Exercise 1 (hello)

Write a ‘hello world’ program, without any MPI in it, and run it in parallel with
mpiexec or your local equivalent.

Explain the output.

Eijkhout: MPI intro 14

MPI definitions

You need an include file:

#include "mpi.h" // for C
#include "mpif.h" ! for Fortran

There are no real C++ bindings.

There are true Fortran bindings, but only 2008 standard, and not widely
supported yet.

Eijkhout: MPI intro 15

MPI Init / Finalize

Then put these calls around your code:

ierr = MPI_Init(&argc,&argv); // zeros allowed
// your code
ierr = MPI_Finalize();

and for Fortran:

call MPI_Init(ierr)
! your code
call MPI_Finalize(ierr)

Eijkhout: MPI intro 16

About error codes

MPI routines return an integer error code

In C: function result. Can be ignored.

In Fortran: as parameter.

In Python: throwing exception.

There’s actually not a lot you can do with an error code:
very hard to recover from errors in parallel.

Eijkhout: MPI intro 17

Exercise 2

Add the commands MPI_Init and MPI_Finalize to your code. Put three
different print statements in your code: one before the init, one between init
and finalize, and one after the finalize. Again explain the output.

Eijkhout: MPI intro 18

Exercise 3

Now use the command MPI_Get_processor_name in between the init and
finalize statement, and print out on what processor your process runs. Confirm
that you are able to run a program that uses two different nodes.

(The character buffer needs to be allocated by you, it is not created by MPI,
with size at least MPI_MAX_PROCESSOR_NAME.)

Eijkhout: MPI intro 19

C:
int MPI_Get_processor_name(char *name, int *resultlen)
name : buffer char[MPI_MAX_PROCESSOR_NAME]

Fortran:
MPI_Get_processor_name(name, resultlen, ierror)
CHARACTER(LEN=MPI_MAX_PROCESSOR_NAME), INTENT(OUT) :: name
INTEGER, INTENT(OUT) :: resultlen
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Get_processor_name()

How to read routine prototypes: 21.

Eijkhout: MPI intro 20

About routine prototypes: C

Prototype:

int MPI_Comm_size(MPI_Comm comm,int *nprocs)

Use:

MPI_Comm comm = MPI_COMM_WORLD;
int nprocs;
int errorcode;
errorcode = MPI_Comm_size(comm,&nprocs);

(but forget about that error code most of the time)

Eijkhout: MPI intro 21

About routine prototypes: Fortran

Prototype

MPI_Comm_size(comm, size, ierror)
INTEGER, INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Use:

integer :: comm = MPI_COMM_WORLD
integer :: size
CALL MPI_Comm_size(comm, size, ierr)

Final parameter always error parameter. Do not forget!
Most MPI_... types are INTEGER.

Eijkhout: MPI intro 22

About routine prototypes: Python

Prototype:

object method
MPI.Comm.Send(self, buf, int dest, int tag=0)
class method
MPI.Request.Waitall(type cls, requests, statuses=None)

Use:

from mpi4py import MPI
comm = MPI.COMM_WORLD
comm.Send(sendbuf,dest=other)
MPI.Request.Waitall(requests)

Eijkhout: MPI intro 23

Process identification

Every process has a number (with respect to a communicator)

int MPI_Comm_rank(MPI_Comm comm, int *procno)
int MPI_Comm_size(MPI_Comm comm, int *nprocs)

For now, the communicator will be MPI_COMM_WORLD.

Note: mapping of ranks to actual processes and cores is not predictable!

Eijkhout: MPI intro 24

Semantics:
MPI_COMM_SIZE(comm, size)
IN comm: communicator (handle)
OUT size: number of processes in the group of comm (integer)

C:
int MPI_Comm_size(MPI_Comm comm, int *size)

Fortran:
MPI_Comm_size(comm, size, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Comm.Get_size(self)

How to read routine prototypes: 21.

Eijkhout: MPI intro 25

Semantics:
MPI_COMM_RANK(comm, rank)
IN comm: communicator (handle)
OUT rank: rank of the calling process in group of comm (integer)

C:
int MPI_Comm_rank(MPI_Comm comm, int *rank)

Fortran:
MPI_Comm_rank(comm, rank, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: rank
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Comm.Get_rank(self)

How to read routine prototypes: 21.

Eijkhout: MPI intro 26

Exercise 4 (commrank)

Write a program where each process prints out message reporting its number,
and how many processes there are.

Write a second version of this program, where each process opens a unique
file and writes to it. On some clusters this may not be advisable if you have
large numbers of processors, since it can overload the file system.

Eijkhout: MPI intro 27

Exercise 5 (commrank)

Write a program where only the process with number zero reports on how
many processes there are in total.

Eijkhout: MPI intro 28

Functional Parallelism

Parallelism by letting each process do a different thing.

Example: divide up a search space.

Each process knows its rank, so it can find its part of the search space.

Eijkhout: MPI intro 29

Exercise 6 (prime)

Is the number N = 2,000,000,111 prime? Let each process test a range of
integers, and print out any factor they find. You don’t have to test all
integers < N: any factor is at most

√
N ≈ 45,200.

(Hint: i%0 probably gives a runtime error.)

Eijkhout: MPI intro 30

Collectives

Eijkhout: MPI intro 31

Overview

In this section you will learn ‘collective’ operations, that combine information
from all processes.

Commands learned:

MPI_Bcast, MPI_Reduce, MPI_Gather, MPI_Scatter

MPI_All... variants, MPI_....v variants

MPI_Barrier, MPI_Alltoall, MPI_Scan

Eijkhout: MPI intro 32

Table of Contents

1 Working with all processes

2 Simple collectives

3 Advanced collectives

Eijkhout: MPI intro 33

Collectives

Gathering and spreading information:

Every process has data, you want to bring it together;

One process has data, you want to spread it around.

Root process: the one doing the collecting or disseminating.

Basic cases:

Collect data: gather.

Collect data and compute some overall value (sum, max): reduction.

Send the same data to everyone: broadcast.

Send individual data to each process: scatter.

Eijkhout: MPI intro 34

Eijkhout: MPI intro 35

Exercise 7

How would you realize the following scenarios with MPI collectives?

Let each process compute a random number. You want to print the
maximum of these numbers to your screen.

Each process computes a random number again. Now you want to scale
these numbers by their maximum.

Let each process compute a random number. You want to print on what
processor the maximum value is computed.

Eijkhout: MPI intro 36

More collectives

Instead of a root, collect to all: MPI_All...

Scatter individual data, but also individual size: MPI_Scatterv

Everyone broadcasts: all-to-all

Scan: like a reduction, but with partial results

. . . and more

Eijkhout: MPI intro 37

Table of Contents

1 Working with all processes

2 Simple collectives

3 Advanced collectives

Eijkhout: MPI intro 38

Reduction

int MPI_Reduce
(void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

Buffers: sendbuf, recvbuf are ordinary variables/arrays.

Every process has data in its sendbuf,
Root combines it in recvbuf (ignored on non-root processes).

count is number of items in the buffer: 1 for scalar.

MPI_Op is MPI_SUM, MPI_MAX et cetera.

Eijkhout: MPI intro 39

Buffers in C

General principle: buffer argument is address in memory of the data.

Buffer is void pointer:

write &x or (void*)&x for scalar

write x or (void*)x for array

Eijkhout: MPI intro 40

Buffers in Fortran

General principle: buffer argument is address in memory of the data.

Fortran always passes by reference:

write x for scalar

write x for array

Eijkhout: MPI intro 41

Buffers in Python

For many routines there are two variants:

lowercase: can send Python objects;
output is return result

result = comm.recv(...)

this uses pickle: slow.

uppercase: communicates numpy objects;
input and output are function argument.

result = np.empty(.....)
comm.Recv(result, ...)

basicaly wrapper around C code: fast

Eijkhout: MPI intro 42

Exercise 8 (randommax)

Write a program where each process computes a random number, and
process 0 finds and prints the maximum generated value. Let each process
print its value, just to check the correctness of your program.

Eijkhout: MPI intro 43

Random numbers

C:

// Initialize the random number generator
srand(procno*(double)RAND_MAX/nprocs);
// compute a random number
randomfraction = (rand() / (double)RAND_MAX);

Fortran:

integer :: randsize
integer,allocatable,dimension(:) :: randseed
real :: random_value

call random_seed(size=randsize)
allocate(randseed(randsize))
do i=1,randsize

randseed(i) = 1023*procno
end do
call random_seed(put=randseed)

Eijkhout: MPI intro 44

Allreduce

Regular reduce: great for printing out summary information at the end of your
job.

Often: everyone needs the result of a reduction

y ← x/‖x‖

Vectors x,y are distributed: every process has certain elements

The norm calculation is an all-reduce: every process gets same value

Every process scales its part of the vector.

Eijkhout: MPI intro 45

Allreduce syntax

int MPI_Allreduce(
const void* sendbuf,
void* recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

All processes have send and recv buffer

No longer root argument

Eijkhout: MPI intro 46

Why use allreduce?

Instead of reduce and broadcast.

One line less code.

Gives the implementation more possibilities for optimization.

Is actually twice as fast: allreduce same time as reduce.

Eijkhout: MPI intro 47

Exercise 9 (randommax)

Extend exercise 8. Let each process compute a random number, and compute
the sum of these numbers using the MPI_Allreduce routine.

(The operator is MPI_SUM for C/Fortran, or MPI.SUM for Python.)

Each process then scales its value by this sum. Compute the sum of the
scaled numbers and check that it is 1.

Eijkhout: MPI intro 48

Exercise 10

Create on each process an array of length 2 integers, and put the values 1,2 in
it on each process. Do a sum reduction on that array. Can you predict what the
result should be? Code it. Was your prediction right?

Eijkhout: MPI intro 49

Broadcast

int MPI_Bcast(
void *buffer, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

All processes call with the same argument list

root is the rank of the process doing the broadcast

Each process allocates buffer space;
root explicitly fills in values,
all others receive values through broadcast call.

Datatype is MPI_FLOAT, MPI_INT et cetera, different between C/Fortran.

comm is usually MPI_COMM_WORLD

Eijkhout: MPI intro 50

Gauss-Jordan elimination

https://youtu.be/aQYuwatlWME

Eijkhout: MPI intro 51

https://youtu.be/aQYuwatlWME

Exercise 11 (jordan)

The Gauss-Jordan algorithm for solving a linear system with a matrix A (or computing
its inverse) runs as follows:

for pivot k = 1, . . . ,n

let the vector of scalings `
(k)
i = Aik/Akk

for row r 6= k
for column c = 1, . . . ,n

Arc ← Arc− `
(k)
r Arc

where we ignore the update of the righthand side, or the formation of the inverse.

Let a matrix be distributed with each process storing one column. Implement the
Gauss-Jordan algorithm as a series of broadcasts: in iteration k process k computes
and broadcasts the scaling vector {`(k)i }i . Replicate the right-hand side on all
processors.

Eijkhout: MPI intro 52

Exercise 12

Bonus exercise: can you extend your program to have multiple columns per
processor?

Eijkhout: MPI intro 53

Gather/Scatter

int MPI_Gather(
void *sendbuf, int sendcnt, MPI_Datatype sendtype,
void *recvbuf, int recvcnt, MPI_Datatype recvtype,
int root, MPI_Comm comm

);
int MPI_Scatter
(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

Compare buffers to reduce

Scatter: the sendcount / Gather: the recvcount:
this is not, as you might expect, the total length of the buffer; instead, it is
the amount of data to/from each process.

Also: MPI_Allgather

Eijkhout: MPI intro 54

Exercise 13

Let each process compute a random number. You want to print the maximum
value and on what processor it is computed. What collective(s) do you use?
Write a short program.

Eijkhout: MPI intro 55

Table of Contents

1 Working with all processes

2 Simple collectives

3 Advanced collectives

Eijkhout: MPI intro 56

Scan

Scan or ‘parallel prefix’: reduction with partial results

Useful for indexing operations:

Each process has an array of np elements;

My first element has global number ∑q<p nq .

Eijkhout: MPI intro 57

C:
int MPI_Scan(const void* sendbuf, void* recvbuf,

int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
IN sendbuf: starting address of send buffer (choice)
OUT recvbuf: starting address of receive buffer (choice)
IN count: number of elements in input buffer (non-negative integer)
IN datatype: data type of elements of input buffer (handle)
IN op: operation (handle)
IN comm: communicator (handle)

Fortran:
MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
res = Intracomm.scan(sendobj=None,recvobj=None,op=MPI.SUM)
res = Intracomm.exscan(sendobj=None,recvobj=None,op=MPI.SUM)

How to read routine prototypes: 21.
Eijkhout: MPI intro 58

V-type collectives

Gather/scatter but with individual sizes

Requires displacement in the gather/scatter buffer

Eijkhout: MPI intro 59

C:
int MPI_Gatherv(
const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, const int recvcounts[], const int displs[],
MPI_Datatype recvtype, int root, MPI_Comm comm)

Semantics:
IN sendbuf: starting address of send buffer (choice)
IN sendcount: number of elements in send buffer (non-negative integer)
IN sendtype: data type of send buffer elements (handle)
OUT recvbuf: address of receive buffer (choice, significant only at root)
IN recvcounts: non-negative integer array (of length group size) containing the number of elements that are received from each process (significant only at root)
IN displs: integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from process i (significant only at root)
IN recvtype: data type of recv buffer elements (significant only at root) (handle)
IN root: rank of receiving process (integer)
IN comm: communicator (handle)

Fortran:
MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
Gatherv(self, sendbuf, [recvbuf,counts], int root=0)

How to read routine prototypes: 21.

Eijkhout: MPI intro 60

All-to-all

Every process does a scatter;

each individual data

Very rarely needed.

Eijkhout: MPI intro 61

Barrier

Synchronize processes:

each process waits at the barrier until all processes have reached the
barrier

This routine is almost never needed

One conceivable use: timing

Eijkhout: MPI intro 62

Naive realization of collectives

Broadcast:

Message time is modeled as
α + βn

Time for collective? Can you improve on that?

Eijkhout: MPI intro 63

Better implementation of collective

What is the running time now?

Eijkhout: MPI intro 64

Point-to-point communication

Eijkhout: MPI intro 65

Overview

This section concerns direct communication between two processes.
Discussion of distributed work, deadlock and other parallel phenomena.

Commands learned:

MPI_Send, MPI_Recv, MPI_Sendrecv, MPI_Isend, MPI_Irecv

MPI_Wait...

Mention of MPI_Test, MPI_B/S/Rsend.

Eijkhout: MPI intro 66

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 67

Distributed data

Distributed array: each process stores disjoint local part

Local numbering 0, . . . ,nlocal;
global numbering is ‘in your mind’.

Eijkhout: MPI intro 68

Local and global indexing

Every local array starts at 0 (Fortran: 1);
you have to translate that yourself to global numbering:

int myfirst =;
for (int ilocal=0; ilocal<nlocal; ilocal++) {

int iglobal = myfirst+ilocal;
array[ilocal] = f(iglobal);

}

Eijkhout: MPI intro 69

Exercise 14 (sumsquares)

We want to compute ∑
N
n=1 n2, and we do that as follows by filling in an array

and summing the elements. (Yes, you can do it without an array, but for
purposes of the exercise do it with.)

Set a variable N for the total length of the array, and compute the local number
of elements. Make sure you handle the case where N does not divide perfectly
by the number of processes.

Now allocate the local parts: each processor should allocate only local
elements, not the whole vector.
(Allocate your array as real numbers. Why are integers not a good idea?)
On each processor, initialize the local array so that the i-th location of the
distributed array (for i = 0, . . . ,N−1) contains (i + 1)2.
Now use a collective operation to compute the sum of the array values.
The right value is (2N3 + 3N2 + N)/6. Is that what you get?

(Note that computer arithmetic is not exact: the computed sum will only be
accurate up to some relative accuracy.)

Eijkhout: MPI intro 70

Load balancing

If the distributed array is not perfectly divisible:

int Nglobal, // is something large
Nlocal = Nglobal/nprocs,
excess = Nglobal%nprocs;

if (procno==nprocs-1)
Nlocal += excess;

This gives a load balancing problem. Better solution?

Eijkhout: MPI intro 71

(for future reference)

Let
f (i) = biN/pc

and give process i the points f (i) up to f (i + 1).
Result:

bN/pc ≤ f (i + 1)− f (i)≤ dN/pe

Eijkhout: MPI intro 72

Inner product calculation

Given vectors x ,y :

x ty =
N−1

∑
i=0

xiyi

Start out with a distributed vector.

Wrong way: collect the vector on one process and evaluate.

Right way: compute local part, then collect local sums.

local_inprod = 0;
for (i=0; i<localsize; i++)
local_inprod += x[i]*y[i];

MPI_Allreduce(&local_inprod, &global_inprod, 1,MPI_DOUBLE ...)

Eijkhout: MPI intro 73

Exercise 15

Implement an inner product routine: let x be a distributed vector of size N with
elements x[i] = i , and compute x tx . As before, the right value is
(2N3 + 3N2 + N)/6.

Use the inner product value to scale to vector so that it has norm 1. Check that
your computation is correct.

Eijkhout: MPI intro 74

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 75

Motivation

Partial differential equations:

−∆u =−uxx (x̄)−uyy (x̄) = f (x̄) for x̄ ∈ Ω = [0,1]2 with u(x̄) = u0 on δΩ.

Simple case:
−uxx = f (x).

Finite difference approximation:

2u(x)−u(x + h)−u(x−h)

h2 = f (x ,u(x),u′(x)) + O(h2),

Eijkhout: MPI intro 76

Motivation (continued)

Equations 
−ui−1 + 2ui −ui+1 = h2f (xi) 1 < i < n

2u1−u2 = h2f (x1) + u0

2un−un−1 = h2f (xn) + un+1. 2 −1
−1 2 −1

.


u1

u2
...

=

h2f1 + u0

h2f2
...

 (1)

So we are interested in sparse/banded matrices.

Eijkhout: MPI intro 77

PDE, 2D case

A difference stencil applied to a two-dimensional square domain, distributed
over processors. A cross-processor connection is indicated.

Eijkhout: MPI intro 78

Halo region

The halo region of a process, induced by a stencil

Eijkhout: MPI intro 79

PDE matrix

A =



4 −1 /0 −1 /0

−1 4 −1 −1
. . .

. . .
. . .

. . .
. . .

. . . −1
. . .

/0 −1 4 /0 −1
−1 /0 4 −1 −1

−1 −1 4 −1 −1

↑
. . . ↑ ↑ ↑ ↑

k−n k−1 k k +1 −1 k +n
−1 −1 4

. . .
. . .



Eijkhout: MPI intro 80

Matrices in parallel

y ← Ax

and A,x ,y all distributed:

Eijkhout: MPI intro 81

Operating on distributed data

Array of numbers xi : i = 0, . . . ,N
compute

yi =
(
xi−1 + xi + xi+1

)
/3 : i = 1, . . . ,N−1

’owner computes’
This leads to communication:

so we need a point-to-point mechanism.

Eijkhout: MPI intro 82

MPI point-to-point mechanism

Two-sided communication

Matched send and receive calls

One process sends to a specific other process

Other process does a specific receive.

Eijkhout: MPI intro 83

Ping-pong

A sends to B, B sends back to A

What is the code for A? For B?

Eijkhout: MPI intro 84

Ping-pong

A sends to B, B sends back to A

Process A executes the code

MPI_Send(/* to: */ B);
MPI_Recv(/* from: */ B ...);

Process B executes

MPI_Recv(/* from: */ A ...);
MPI_Send(/* to: */ A);

Eijkhout: MPI intro 85

Ping-pong in MPI

Remember SPMD:

if (/* I am process A */) {
MPI_Send(/* to: */ B);
MPI_Recv(/* from: */ B ...);

} else if (/* I am process B */) {
MPI_Recv(/* from: */ A ...);
MPI_Send(/* to: */ A);

}

Eijkhout: MPI intro 86

C:
int MPI_Send(
const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Semantics:
IN buf: initial address of send buffer (choice)
IN count: number of elements in send buffer (non-negative integer)
IN datatype: datatype of each send buffer element (handle)
IN dest: rank of destination (integer)
IN tag: message tag (integer)
IN comm: communicator (handle)

Fortran:
MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python native:
MPI.Comm.send(self, obj, int dest, int tag=0)
Python numpy:
MPI.Comm.Send(self, buf, int dest, int tag=0)

How to read routine prototypes: 21.

Eijkhout: MPI intro 87

C:
int MPI_Recv(
void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Semantics:
OUT buf: initial address of receive buffer (choice)
IN count: number of elements in receive buffer (non-negative integer)
IN datatype: datatype of each receive buffer element (handle)
IN source: rank of source or MPI_ANY_SOURCE (integer)
IN tag: message tag or MPI_ANY_TAG (integer)
IN comm: communicator (handle)
OUT status: status object (Status)

Fortran:
MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python native:
recvbuf = Comm.recv(self, buf=None, int source=ANY_SOURCE, int tag=ANY_TAG,

Status status=None)
Python numpy:
Comm.Recv(self, buf, int source=ANY_SOURCE, int tag=ANY_TAG,

Status status=None)

How to read routine prototypes: 21.

Eijkhout: MPI intro 88

Status object

Receive call can have various wildcards

MPI_ANY_SOURCE, MPI_ANY_TAG

use status object to retrieve actual description of the message

use MPI_STATUS_IGNORE if the above does not apply

Eijkhout: MPI intro 89

Exercise 16 (pingpong)

Implement the ping-pong program. Add a timer using MPI_Wtime. For the
status argument of the receive call, use MPI_STATUS_IGNORE.

Run multiple ping-pongs (say a thousand) and put the timer around the
loop. The first run may take longer; try to discard it.

Run your code with the two communicating processes first on the same
node, then on different nodes. Do you see a difference?

Then modify the program to use longer messages. How does the timing
increase with message size?

For bonus points, can you do a regression to determine α,β?

Eijkhout: MPI intro 90

C:
double MPI_Wtime(void);

Fortran:
DOUBLE PRECISION MPI_WTIME()

Python:
MPI.Wtime()

How to read routine prototypes: 21.

Eijkhout: MPI intro 91

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 92

Blocking send/recv

MPI_Send and MPI_Recv are blocking operations:

The process waits (‘blocks’) until the operation is concluded.

A send can not complete until the receive executes.

Ideal vs actual send/recv behaviour.

Eijkhout: MPI intro 93

Deadlock

other = 1-procno; /* if I am 0, other is 1; and vice versa */
receive(source=other);
send(target=other);

A subtlety.
This code may actually work:

other = 1-procno; /* if I am 0, other is 1; and vice versa */
send(target=other);
receive(source=other);

Small messages get sent even if there is no corresponding receive.
(Often a system parameter)

Eijkhout: MPI intro 94

Protocol

Communication is a ‘rendez-vous’ or ‘hand-shake’ protocol:

Sender: ‘I have data for you’

Receiver: ‘I have a buffer ready, send it over’

Sender: ‘Ok, here it comes’

Receiver: ‘Got it.’

Small messages bypass this.

Eijkhout: MPI intro 95

Exercise 17

(Classroom exercise) Each student holds a piece of paper in the right hand
– keep your left hand behind your back – and we want to execute:

1 Give the paper to your right neighbour;
2 Accept the paper from your left neighbour.

Including boundary conditions for first and last process, that becomes the
following program:

1 If you are not the rightmost student, turn to the right and give the paper to
your right neighbour.

2 If you are not the leftmost student, turn to your left and accept the paper
from your left neighbour.

Eijkhout: MPI intro 96

TAU trace: serialization

Eijkhout: MPI intro 97

The problem here. . .

Here you have a case of a program that computes the right output,
just way too slow.

Beware! Blocking sends/receives can be trouble.
(How would you solve this particular case?)

Eijkhout: MPI intro 98

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 99

Operating on distributed data

Take another look:

yi = xi−1 + xi + xi+1 : i = 1, . . . ,N−1

One-dimensional data and linear process numbering;

Operation between neighbouring indices: communication between
neighbouring processes.

Eijkhout: MPI intro 100

Not a good solution

First do all the data movement to the right.

Each process does a send and receive

So everyone does the send, then the receive?

We just saw the problem with that.

Eijkhout: MPI intro 101

Sendrecv

Instead of separate send and receive: use

Semantics:

MPI_SENDRECV(
sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag,
comm, status)

IN sendbuf: initial address of send buffer (choice)
IN sendcount: number of elements in send buffer (non-negative integer)
IN sendtype: type of elements in send buffer (handle)
IN dest: rank of destination (integer)
IN sendtag: send tag (integer)
OUT recvbuf: initial address of receive buffer (choice)
IN recvcount: number of elements in receive buffer (non-negative integer)
IN recvtype: type of elements in receive buffer (handle)
IN source: rank of source or MPI_ANY_SOURCE (integer)
IN recvtag: receive tag or MPI_ANY_TAG (integer)
IN comm: communicator (handle)
OUT status: status object (Status)

C:
int MPI_Sendrecv(

const void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

Fortran:
MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source,
recvtag
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
Sendrecv(self, sendbuf, int dest, int sendtag=0,

recvbuf=None, int source=ANY_SOURCE, int recvtag=ANY_TAG,
Status status=None)

How to read routine prototypes: 21.

Eijkhout: MPI intro 102

Pairwise exchange

Each p sends to right, receives from right;
then same to the left. (Other possibilities possible.)

Eijkhout: MPI intro 103

Sendrecv with incomplete pairs

MPI_Comm_rank(.... &procno);
if (/* I am not the first process */)
predecessor = procno-1;

else
predecessor = MPI_PROC_NULL;

if (/* I am not the last process */)
successor = procno+1;

else
successor = MPI_PROC_NULL;

sendrecv(from=predecessor,to=successor);

Eijkhout: MPI intro 104

Exercise 18 (sendrecv)

Implement the above three-point combination scheme using MPI_Sendrecv;
every processor only has a single number to send to its neighbour.

If you have TAU installed, make a trace. Does it look different from the
serialized send/recv code? If you don’t have TAU, run your code with different
numbers of processes and show that the runtime is essentially constant.

Eijkhout: MPI intro 105

Exercise 19

A very simple
sorting algorithm
is exchange sort:
pairs of processors
compare data, and if
necessary exchange.
The elementary
step is called
a compare-and-swap:
in a pair of processors each sends their data to the other; one keeps the minimum values, and
the other the maximum. For simplicity, in this exercise we give each processor just a single
number.

The exchange sort algorithm is split in even and odd stages, where in the even stage,
processors 2i and 2i +1 compare and swap data, and in the odd stage, processors 2i +1 and
2i +2 compare and swap. You need to repeat this P/2 times, where P is the number of
processors.

Implement this algorithm using MPI_Sendrecv. (You can use MPI_PROC_NULL for the edge

cases, but that is not strictly necessary.) Use a gather call to print the global state of the

distributed array at the beginning and end of the sorting process.
Eijkhout: MPI intro 106

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 107

Sending with irregular connections

Graph operations:

Eijkhout: MPI intro 108

How do you approach this?

It is very hard to figure out a send/receive sequence that does not
deadlock or serialize

Even if you manage that, you may have process idle time.

Instead:

Declare ‘this data needs to be sent’ or ‘these messages are expected’,
and

then wait for them collectively.

Eijkhout: MPI intro 109

Non-blocking send/recv

// start non-blocking communication
MPI_Isend(...); MPI_Irecv(...);
// wait for the Isend/Irecv calls to finish in any order
MPI_Wait(...);

Eijkhout: MPI intro 110

Syntax

Very much like blocking send and recv :

int MPI_Isend(void *buf,
int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf,
int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Request *request)

The MPI_Request can be tested:

int MPI_Waitall(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

ignore status: MPI_STATUSES_IGNORE

also MPI_Wait, MPI_Waitany, MPI_Waitsome

Eijkhout: MPI intro 111

Exercise 20 (isendirecv)

Now use nonblocking send/receive routines to implement the three-point
averaging operation

yi =
(
xi−1 + xi + xi+1

)
/3 : i = 1, . . . ,N−1

on a distributed array. (Hint: use MPI_PROC_NULL at the ends.)

(Can you think of a different way of handling the end points?)

Eijkhout: MPI intro 112

Comparison

Obvious: blocking vs non-blocking behaviour.

Buffer reuse: when a blocking call returns, the buffer is safe for reuse;

A buffer in a non-blocking call can only be reused after the wait call.

Eijkhout: MPI intro 113

Buffer use in blocking/non-blocking case

Blocking:

double *buffer;
for (... p ...) {

buffer = // fill in the data
MPI_Send(buffer, ... /* to: */ p);

Non-blocking:

double **buffers;
for (... p ...) {

buffers[p] = // fill in the data
MPI_Isend(buffers[p], ... /* to: */ p);

Eijkhout: MPI intro 114

Latency hiding

Other motivation for non-blocking calls:
overlap of computation and communication, provided hardware support.

Also known as ‘latency hiding’.

Example: three-point combination operation (see above):

1 Start communication for edge points,
2 Do local operations while communication goes on,
3 Wait for edge points from neighbour processes
4 Incorporate incoming data.

Eijkhout: MPI intro 115

Exercise 21 (isendirecvarray)

Now use nonblocking send/receive routines to implement the three-point
averaging operation

yi =
(
xi−1 + xi + xi+1

)
/3 : i = 1, . . . ,N−1

on a distributed array. (Hint: use MPI_PROC_NULL at the ends.)

Write your code so that it can achieve latency hiding.

Eijkhout: MPI intro 116

Test: non-blocking wait

Post non-blocking receives

test for incoming messages

if nothing comes in, do local work

while (1) {
MPI_Test(/* from: */ ANY_SOURCE, &flag);
if (flag)

// do something with incoming message
else

// do local work
}

Eijkhout: MPI intro 117

More sends and receive

MPI_Bsend, MPI_Ibsend: buffered send

MPI_Ssend, MPI_Issend: synchronous send

MPI_Rsend, MPI_Irsend: ready send

Persistent communication: repeated instance of same proc/data
description.

too obscure to go into.

Eijkhout: MPI intro 118

Advanced topics

One-sided communication: ‘just’ put/get the data somewhere

Derived data types: send strided/irregular/inhomogeneous data

Sub-communicators: work with subsets of MPI_COMM_WORLD

I/O: efficient file operations

Non-blocking collectives

Eijkhout: MPI intro 119

Complicated data

Eijkhout: MPI intro 120

Overview

In this section you will learn about derived data types.

Commands learned:

MPI_Type_contiguous/vector/indexed/struct
MPI_Type_create_subarray

MPI_Pack/Unpack

F90 types

Eijkhout: MPI intro 121

Table of Contents

9 Discussion

10 Datatypes

11 Subarray type

12 Packed data

Eijkhout: MPI intro 122

Motivation: datatypes in MPI

All examples so far:

contiguous buffer

elements of single type

We need data structures with gaps, or heterogeneous types.

Send real or imaginary parts out of complex array.

Gather/scatter cyclicly.

Send struct or Type data.

MPI allows for recursive construction of data types.

Eijkhout: MPI intro 123

Datatype topics

Elementary types: built-in.

Derived types: user-defined.

Packed data: not really a datatype.

Eijkhout: MPI intro 124

Table of Contents

9 Discussion

10 Datatypes

11 Subarray type

12 Packed data

Eijkhout: MPI intro 125

Elementary datatypes

C/C++ Fortran
MPI_CHAR MPI_CHARACTER
MPI_UNSIGNED_CHAR
MPI_SIGNED_CHAR

MPI_LOGICAL
MPI_SHORT
MPI_UNSIGNED_SHORT
MPI_INT MPI_INTEGER
MPI_UNSIGNED
MPI_LONG
MPI_UNSIGNED_LONG
MPI_FLOAT MPI_REAL
MPI_DOUBLE MPI_DOUBLE_PRECISION
MPI_LONG_DOUBLE

MPI_COMPLEX
MPI_DOUBLE_COMPLEX

Eijkhout: MPI intro 126

How to use derived types

Create, commit, use, free:

MPI_datatype newtype;
MPI_Type_xxx(... oldtype ... &newtype);
MPI_Type_commit (&newtype);

// code using the new type

MPI_Type_free (&newtype);

The oldtype can be elementary or derived.
Recursively constructed types.

Eijkhout: MPI intro 127

Contiguous type

int MPI_Type_contiguous(
int count, MPI_Datatype old_type, MPI_Datatype *new_type_p)

This one is indistinguishable from just sending count instances of the
old_type.

Eijkhout: MPI intro 128

Example: non-contiguous data

Matrix in column storage:

Columns are contiguous

Rows are not contiguous

Eijkhout: MPI intro 129

Vector type

int MPI_Type_vector(
int count, int blocklength, int stride,
MPI_Datatype old_type, MPI_Datatype *newtype_p

);

Used to pick a regular subset of elements from an array.

Eijkhout: MPI intro 130

// vector.c
source = (double*) malloc(stride*count*sizeof(double));
target = (double*) malloc(count*sizeof(double));
MPI_Datatype newvectortype;
if (procno==sender) {
MPI_Type_vector(count,1,stride,MPI_DOUBLE,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,the_other,0,comm);
MPI_Type_free(&newvectortype);

} else if (procno==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_DOUBLE,the_other,0,comm,

&recv_status);
MPI_Get_count(&recv_status,MPI_DOUBLE,&recv_count);
ASSERT(recv_count==count);

}

Eijkhout: MPI intro 131

Different send and receive types

Sender type: vector
receiver type: contiguous or elementary

Receiver has no knowledge of the stride of the sender.

Eijkhout: MPI intro 132

Exercise 22 (stridesend)

Let processor 0 have an array x of length 10P, where P is the number of
processors. Elements 0,P,2P, . . . ,9P should go to processor zero,
1,P + 1,2P + 1, . . . to processor 1, et cetera. Code this as a sequence of
send/recv calls, using a vector datatype for the send, and a contiguous buffer
for the receive.

For simplicity, skip the send to/from zero. What is the most elegant solution if
you want to include that case?

For testing, define the array as x[i] = i .

Eijkhout: MPI intro 133

Exercise 23

Allocate a matrix on processor zero, using Fortran column-major storage.
Using P sendrecv calls, distribute the rows of this matrix among the
processors.

Eijkhout: MPI intro 134

Indexed type

int MPI_Type_indexed(
int count, int blocklens[], int displacements[],
MPI_Datatype old_type, MPI_Datatype *newtype);

Also hindexed with byte offsets.

Eijkhout: MPI intro 135

Heterogeneous: Structure type

int MPI_Type_create_struct(
int count, int blocklengths[], MPI_Aint displacements[],
MPI_Datatype types[], MPI_Datatype *newtype);

This gets very tedious. . .

Eijkhout: MPI intro 136

Table of Contents

9 Discussion

10 Datatypes

11 Subarray type

12 Packed data

Eijkhout: MPI intro 137

Submatrix storage

Location of first element

Stride, blocksize

Eijkhout: MPI intro 138

BLAS/Lapack storage

Three parameter description:

Eijkhout: MPI intro 139

Subarray type

Vector type is convenient for 2D subarrays,

it gets tedious in higher dimensions.

Better solution: MPI_Type_create_subarray

MPI_TYPE_CREATE_SUBARRAY(
ndims, array_of_sizes, array_of_subsizes,
array_of_starts, order, oldtype, newtype)

Subtle: data does not start at the buffer start

Eijkhout: MPI intro 140

Exercise 24 (cubegather)

Assume that your number of processors is P = Q3, and that each process has
an array of identical size. Use MPI_Type_create_subarray to gather all data
onto a root process. Use a sequence of send and receive calls; MPI_Gather
does not work here.

Eijkhout: MPI intro 141

Fortran ‘kind’ types

Check out MPI_Type_create_f90_integer MPI_Type_create_f90_real
MPI_Type_create_f90_complex

Example:

REAL (KIND = SELECTED_REAL_KIND(15 ,300)) , &
DIMENSION(100) :: array

CALL MPI_Type_create_f90_real(15 , 300 , realtype , error)

Eijkhout: MPI intro 142

Table of Contents

9 Discussion

10 Datatypes

11 Subarray type

12 Packed data

Eijkhout: MPI intro 143

Packing into buffer

int MPI_Pack(
void *inbuf, int incount, MPI_Datatype datatype,
void *outbuf, int outcount, int *position,
MPI_Comm comm);

int MPI_Unpack(
void *inbuf, int insize, int *position,
void *outbuf, int outcount, MPI_Datatype datatype,
MPI_Comm comm);

Eijkhout: MPI intro 144

Example

// packtimer.c
if (mytid==sender) {
MPI_Pack(&nsends,1,MPI_INT,buffer,buflen,&position,comm);
for (int i=0; i<nsends; i++) {
double value = rand()/(double)RAND_MAX;
MPI_Pack(&value,1,MPI_DOUBLE,buffer,buflen,&position,comm);

}
MPI_Pack(&nsends,1,MPI_INT,buffer,buflen,&position,comm);
MPI_Send(buffer,position,MPI_PACKED,other,0,comm);

} else if (mytid==receiver) {
int irecv_value;
double xrecv_value;
MPI_Recv(buffer,buflen,MPI_PACKED,other,0,comm,MPI_STATUS_IGNORE);
MPI_Unpack(buffer,buflen,&position,&nsends,1,MPI_INT,comm);
for (int i=0; i<nsends; i++) {
MPI_Unpack(buffer,buflen,&position,&xrecv_value,1,MPI_DOUBLE,comm);

}
MPI_Unpack(buffer,buflen,&position,&irecv_value,1,MPI_INT,comm);
ASSERT(irecv_value==nsends);

}Eijkhout: MPI intro 145

Sub-computations

Eijkhout: MPI intro 146

Overview

In this section you will learn about various subcommunicators.

Commands learned:

MPI_Comm_dup, discussion of library design

MPI_Comm_split

discussion of groups

discussion of inter/intra communicators.

Eijkhout: MPI intro 147

Sub-computations

Simultaneous groups of processes, doing different tasks, but loosely
interacting:

Simulation pipeline: produce input data, run simulation, post-process.

Climate model: separate groups for air, ocean, land, ice.

Quicksort: split data in two, run quicksort independently on the halves.

Process grid: do broadcast in each column.

New communicators are formed recursively from MPI_COMM_WORLD.

Eijkhout: MPI intro 148

Communicator duplication

Simplest new communicator: identical to a previous one.

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

This is useful for library writers:

MPI_Isend(...); MPI_Irecv(...);
// library call
MPI_Waitall(...);

Eijkhout: MPI intro 149

Use of a library

library my_library(comm);
MPI_Isend(&sdata,1,MPI_INT,other,1,comm,&(request[0]));
my_library.communication_start();
MPI_Irecv(&rdata,1,MPI_INT,other,MPI_ANY_TAG,

comm,&(request[1]));
MPI_Waitall(2,request,status);
my_library.communication_end();

Eijkhout: MPI intro 150

Use of a library

int library::communication_start() {
int sdata=6,rdata;
MPI_Isend(&sdata,1,MPI_INT,other,2,comm,&(request[0]));
MPI_Irecv(&rdata,1,MPI_INT,other,MPI_ANY_TAG,

comm,&(request[1]));
return 0;
}

int library::communication_end() {
MPI_Status status[2];
MPI_Waitall(2,request,status);
return 0;
}

Eijkhout: MPI intro 151

Wrong way

// commdup_wrong.cxx
class library {
private:
MPI_Comm comm;
int procno,nprocs,other;
MPI_Request *request;

public:
library(MPI_Comm incomm) {

comm = incomm;
MPI_Comm_rank(comm,&procno);
other = 1-procno;
request = new MPI_Request[2];

};
int communication_start();
int communication_end();

};

Eijkhout: MPI intro 152

Right way

// commdup_right.cxx
class library {
private:
MPI_Comm comm;
int procno,nprocs,other;
MPI_Request *request;

public:
library(MPI_Comm incomm) {

MPI_Comm_dup(incomm,&comm);
MPI_Comm_rank(comm,&procno);
other = 1-procno;
request = new MPI_Request[2];

};
˜library() {

MPI_Comm_free(&comm);
}
int communication_start();
int communication_end();

};

Eijkhout: MPI intro 153

Disjoint splitting

Split a communicator in multiple disjoint others.

Give each process a ‘colour’, group processes by colour:

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

(key determines ordering: use rank unless you want special effects)

Eijkhout: MPI intro 154

Row/column example

MPI_Comm_rank(MPI_COMM_WORLD, &procno);
proc_i = procno % proc_column_length;
proc_j = procno / proc_column_length;

MPI_Comm column_comm;
MPI_Comm_split(MPI_COMM_WORLD, proc_j, procno, &column_comm);

MPI_Bcast(data, ... column_comm);

Eijkhout: MPI intro 155

Exercise 25 (procgrid)

Organize your processes in a grid, and make subcommunicators for the rows and columns. For
this compute the row and column number of each process.

In the row and column communicator, compute the rank. For instance, on a 2×3 processor grid
you should find:

Global ranks: Ranks in row: Ranks in colum:
0 1 2 0 1 2 0 0
3 4 5 0 1 2 1 1

Check that the rank in the row communicator is the column number, and the other way around.

Run your code on different number of processes, for instance a number of rows and columns

that is a power of 2, or that is a prime number.

Eijkhout: MPI intro 156

Exercise 26

Implement a recursive algorithm for matrix transposition:

Swap blocks (1,2) and (2,1); then
Divide the processors into four subcommunicators, and apply this
algorithm recursively on each;
If the communicator has only one process, transpose the matrix in place.

Eijkhout: MPI intro 157

More

Non-disjoint subcommunicators through process groups.

Intra-communicators and inter-communicators.

Process topologies: cartesian and graph.

Eijkhout: MPI intro 158

MPI File I/O

Eijkhout: MPI intro 159

Overview

This section discusses parallel I/O. What is the problem with regular I/O in
parallel?

Commands learned:

MPI_File_open/write/close

parallel file pointer routines: MPI_File_set_view/write_at

Eijkhout: MPI intro 160

The trouble with parallel I/O

Multiple process reads from one file: no problem.

Multiple writes to one file: big problem.

Everyone writes to separate file: stress on the file system, and requires
post-processing.

Eijkhout: MPI intro 161

MPI I/O

Part of MPI since MPI-2

Joint creation of one file from bunch of processes.

You could also use hdf5, netcdf, silo . . .

Eijkhout: MPI intro 162

The usual bits

MPI_File mpifile;
MPI_File_open(comm,"blockwrite.dat",

MPI_MODE_CREATE | MPI_MODE_WRONLY,MPI_INFO_NULL,
&mpifile);

if (procno==0) {
MPI_File_write
(mpifile,output_data,nwords,MPI_INT,MPI_STATUS_IGNORE);

}
MPI_File_close(&mpifile);

Eijkhout: MPI intro 163

How do you make it unique for a process?

MPI_File_write_at
(mpifile,offset,output_data,nwords,
MPI_INT,MPI_STATUS_IGNORE);

or

MPI_File_set_view
(mpifile,
offset,datatype,
MPI_INT,"native",MPI_INFO_NULL);

MPI_File_write // no offset, we have a view
(mpifile,output_data,nwords,MPI_INT,MPI_STATUS_IGNORE);

Eijkhout: MPI intro 164

Exercise 27 (blockwrite)

The given code works for one writing process. Compute a unique offset for
each process (in bytes!) so that all the local arrays are placed in the output file
in sequence.

Eijkhout: MPI intro 165

Exercise 28 (viewwrite)

Solve the previous exercise by using MPI_File_write (that is, without offset),
but by using MPI_File_set_view to specify the location.

Eijkhout: MPI intro 166

Exercise 29 (scatterwrite)

Now write the local arrays cyclically to the file: with 5 processes and
3 elements per process the file should contain

1 4 7 10 13 | 2 5 8 11 14 | 3 6 9 12 15

Do this by defining a vector derived type and setting that as the file view.

Eijkhout: MPI intro 167

One-sided communication

Eijkhout: MPI intro 168

Overview

This section concernes one-sided operations, which allows ‘shared memory’
type programming.

Commands learned:

MPI_Put, MPI_Get, MPI_Accumulate

Active target synchronization MPI_Win_create, MPI_Win_fence

MPI_Post/Wait/Start/Complete

Passive target synchronization MPI_Win_lock/unlock

Atomic operations: MPI_Fetch_and_op

Eijkhout: MPI intro 169

Motivation

With two-sided messaging, you can not just put data on a different processor:
the other has to expect it and receive it.

Sparse matrix: it is easy to know what you are receiving, not what you
need to send. Usually solved with complicated preprocessing step.

Neuron simulation: spiking neuron propagates information to neighbours.
Uncertain when this happens.

Other irregular data structures: linked lists, hash tables.

Eijkhout: MPI intro 170

One-sided concepts

A process has a window that other processes can access.

Origin: process doing a one-sided call; target: process being accessed.

One-sided calls: MPI_Put, MPI_Get, MPI_Accumulate.

Various synchronization mechanisms.

Eijkhout: MPI intro 171

Active target synchronization

All processes call MPI_Win_fence. Epoch is between fences:

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);
if (procno==producer)
MPI_Put(/* operands */, win);

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

Second fence indicates that one-sided communication is concluded:
target knows that data has been put.

Eijkhout: MPI intro 172

Window creation

MPI_Win_create (void *base, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

size: in bytes
disp_unit: sizeof(type)
Also: MPI_Win_allocate, can use dedicated fast memory.

Also call MPI_Win_free when done. This is important!Eijkhout: MPI intro 173

C:
int MPI_Put(
const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,
MPI_Win win)

Semantics:
IN origin_addr: initial address of origin buffer (choice)
IN origin_count: number of entries in origin buffer (non-negative integer)
IN origin_datatype: datatype of each entry in origin buffer (handle)
IN target_rank: rank of target (non-negative integer)
IN target_disp: displacement from start of window to target buffer (non-negative integer)
IN target_count: number of entries in target buffer (non-negative integer)
IN target_datatype: datatype of each entry in target buffer (handle)
IN win: window object used for communication (handle)

Fortran:
MPI_Put(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count, target_datatype, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
INTEGER, INTENT(IN) :: origin_count, target_rank, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:

win.Put(self, origin, int target_rank, target=None)

How to read routine prototypes: 21.

Eijkhout: MPI intro 174

Exercise 30 (randomput)

Write code where process 0 randomly writes in the window on 1 or 2.

// randomput_skl.c
MPI_Win_create(&window_data,sizeof(int),sizeof(int),

MPI_INFO_NULL,comm,&the_window);

for (int c=0; c<10; c++) {
float randomfraction = (rand() / (double)RAND_MAX);
if (randomfraction>.5)

other = 2;
else other = 1;
window_data = 0;
your_code_goes_here.........
my_sum += window_data;

}

if (mytid>0 && mytid<3)
printf("Sum on %d: %d\n",mytid,my_sum);

if (mytid==0) printf("(sum should be 10)\n");

Eijkhout: MPI intro 175

Exercise 31 (countdown)

Implement a shared counter:

One process maintains a counter;

Iterate: all others at random moments update this counter.

When the counter is zero, everyone stops iterating.

The problem here is data synchronization: does everyone see the counter the
same way?

Eijkhout: MPI intro 176

A second active synchronization

Use Post,Wait,Start,Complete calls

More fine-grained than fences.

Eijkhout: MPI intro 177

Passive target synchronization

Lock a window on the target:

MPI_Win_lock (int locktype, int rank, int assert, MPI_Win win)
MPI_Win_unlock (int rank, MPI_Win win)

Atomic operations:

int MPI_Fetch_and_op(const void *origin_addr, void *result_addr,
MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,
MPI_Op op, MPI_Win win)

Eijkhout: MPI intro 178

// passive.cxx
if (procno==repository) {
// Repository processor creates a table of inputs
// and associates that with the window

}
if (procno!=repository) {
float contribution=(float)procno,table_element;
int loc=0;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE,repository,0,the_window);
// read the table element by getting the result from adding zero
err = MPI_Fetch_and_op

(&contribution,&table_element,MPI_FLOAT,
repository,loc,MPI_SUM,the_window); CHK(err);

MPI_Win_unlock(repository,the_window);
}

Eijkhout: MPI intro 179

Process management

Eijkhout: MPI intro 180

Overview

This section discusses processes management; intra communicators.

Commands learned:

MPI_Comm_spawn, MPI_COMM_UNIVERSE

MPI_Comm_get_parent, MPI_Comm_remote_size

Eijkhout: MPI intro 181

Process management

PVM was a precursor of MPI: could dynamically create new processes.

It took MPI a while to catch up.

MPI_COMM_UNIVERSE: space for creating more processes outside
MPI_COMM_WORLD.

New processes have their own MPI_COMM_WORLD.

Communication between the two communicators: ‘inter communicator’
(the old time is ‘intra communicator’)

Eijkhout: MPI intro 182

Manager program

MPI_Attr_get(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,
(void*)&universe_sizep, &flag);

MPI_Comm everyone; /* intercommunicator */
int nworkers = universe_size-world_size;
MPI_Comm_spawn(worker_program, /* executable */

MPI_ARGV_NULL, nworkers,
MPI_INFO_NULL, 0, MPI_COMM_WORLD, &everyone,
errorcodes);

Eijkhout: MPI intro 183

Worker program

MPI_Comm_size(MPI_COMM_WORLD,&nworkers);
MPI_Comm parent;
MPI_Comm_get_parent(&parent);
MPI_Comm_remote_size(parent, &remotesize);

Eijkhout: MPI intro 184

	The SPMD model
	Collectives
	Point-to-point communication
	Complicated data
	Sub-computations
	MPI File I/O
	One-sided communication
	Process management

