
TACC Technical Report TR-15-02

Teaching MPI by Concept

Victor Eijkhout

October 15, 2015

Permission to copy this report is granted for electronic viewing and single-copy printing. Per-
missible uses are research and browsing. Specifically prohibited are sales of any copy, whether
electronic or hardcopy, for any purpose. Also prohibited is copying, excerpting or extensive
quoting of any report in another work without the written permission of one of the report’s
authors.

The University of Texas at Austin and the Texas Advanced Computing Center make no war-
ranty, express or implied, nor assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed.

Abstract

The Message Passing Interface (MPI) is a de facto standard for programming large
scale parallelism, with up to millions of individual processes. Its dominant paradigm
of Single Program Multiple Data (SPMD) programming is different from threaded and
multicore parallelism, to an extent that students have a hard time making the mental
transition to this model.

We identify problems with the current way of teaching MPI, and propose a better way.
Instead of presenting routines in a commonly accepted order, we largely reverse this
order and motivate this by giving successive practical scenarios that call for the basic
blocks.

Victor Eijkhout Teaching MPI by Concept

1 Introduction
The Message Passing Interface (MPI) library [5, 4] is the de facto tool for large scale
parallelism as it is used in engineering sciences. Its main model for parallelism is
described as Single Program Multiple Data (SPMD): multiple instances of a single
program run on the processing elements, each operating on its own data. The synchro-
nization between the MPI processes is done through explicit send and receive calls.

While MPI programs can solve many or all of the same problems that can be solved
in a multicore context, the programming approach is different, and requires an adjust-
ment in the programmer’s ‘mental model’ [2, 6] of the parallel execution. This paper
addresses the question of how to teach MPI to best effect this shift in mindset.

1.1 The traditional view of parallelism

The problem with mastering the MPI library is that beginning programmers take a
while to overcome a certain mental model for parallelism. In this model, which we can
call ‘sequential semantics’, there is only a single strand of execution1, where simple
operations (such as between scalars) are done traditionally in a sequential manner, but
certain operations (typically on arrays) are magically done in parallel. Interestingly,
research by Ben-David Kolikant [1] shows that students with no prior knowledge of
concurrency, when invited consider about parallel activities, will still think in terms of
centralized solutions.

This mental model corresponds closely to the way algorithms are described, and it is
actually correct to an extent in the context of threaded libraries such as OpenMP, where
there is indeed initialy a single thread of execution, which in some places spawns a
team of threads to execute certain sections of code in parallel.

However, in MPI this model is factually incorrect, since there are always multiple
processes active. The centralized model can still be maintained to an extent, since
the scalar operations that would be executed by a single thread become replicated
operations in the MPI processes. The distinction between sequential execution and
replicated execution escapes many students at first.

1.2 Misconceptions in programming MPI

However, this sequential semantics mental model invites the student to adopt certain
programming techniques, such as the master-worker approach to parallel program-
ming. While this is often the right approach with thread-based coding, where we in-
deed have a master thread and spawned threads, it is usually incorrect for MPI.

1. We carefully avoid the word ‘thread’ which carries many connotations in the context of parallel
programming.

TR-15-02 1

Victor Eijkhout Teaching MPI by Concept

The strands of execution in an MPI run are all long-living processes (as opposed to
dynamically spawned threads), and are symmetric in their capabilities and execution.
Lack of recognition of this symmetry also induces students to solve problems by hav-
ing a form of ‘central data store’ on one process, rather than adopting a symmetric,
distributed, storage model.

For instance, we have seen a student solve a data transposition problem by collecting
all data on process 0, and subsequently distributing it again in transposed form. While
this may be reasonable in shared memory with OpenMP, with MPI it is unrealistic
in that no process is likely to have enough storage for the full problem. Also, this
introduces a sequential bottleneck in the execution.

In conclusion, we posit that beginning MPI programmers may suffer from a men-
tal model that makes them insufficiently realize the symmetry of MPI processes, and
thereby arrive at inefficient and nonscalable solutions.

We now consider the way MPI is usually taught, and offer an alternative that is less
likely to lead to an incorrect mental model.

2 Teaching MPI, the traditional way

The MPI library is typically taught as follows. After an introduction about parallelism
(covering speedup and such), and shared versus distributed memory parallelism, stu-
dents learn about the initialization and finalization routines, and the MPI_Comm_size
and MPI_Comm_rank calls for querying the number of processes and the rank of the
current process.

After that, the typical sequence is

1. two-sided communication, with first blocking and later non-blocking variants;
2. collectives; and
3. any number of advanced topics such as derived data types, one-sided communi-

cation, subcommunicators, MPI I/O et cetera, in no particular order.

This sequence is defensible from a point of the underlying implementation: the two-
sided communication calls are a close map to hardware behaviour, and communica-
tions are both conceptually equivalent to, and can be implemented as, a sequence of
point-to-point communication calls. However, this is not a sufficient justification for
teaching this sequence of topics.

2.1 Criticism

We offer three points of criticism againt this traditional approach to teaching MPI.

TR-15-02 2

Victor Eijkhout Teaching MPI by Concept

First of all, there is no real reason for teaching collectives after two-sided routines.
They are not harder, nor require the latter as prerequisite. In fact, their interface is
simpler for a beginner, requiring one line for a collective, as opposed to at least two
for a send/receive pair, probably surrounded by conditionals testing the process rank.
More importantly, they reinforce the symmetric process view, certainly in the case of
the MPI_All... routines.

Our second point of criticism is regarding the blocking and non-blocking two-sided
communication routines. Teaching the latter as a somehow more desirable form of the
former insufficiently teaches the students the essential point that each non-blocking
call needs its own buffer. We regularly see students treat the send or receive buffers in
non-blocking calls identically to those in blocking routines. Typically, they will also
fail to save all the request objects, only issuing a single MPI_Wait call on the last
request. This is a correctness bug that is very hard to find, and at large scale it induces
a memory leak since many requests objects just are lost.

Thirdly, starting with point-to-point routines stems from a ‘Communicating Sequential
Processes’ [3] (CSP) view of a program: each process stands on its own, and any
global behaviour is an emergent property of the run. This may make sense for the
teacher who know how concepts are realized ‘under the hood’, but it does not lead to
additional insight with the students. We believe that a more fruitful approach to MPI
programming starts from the global behaviour, and then derives the MPI process in a
top-down manner.

We will now outline our proposed order for teaching the MPI concepts.

3 Teaching MPI, our proposal

As alternative to the above sequence of introducing MPI concepts, we propose a se-
quence that focuses on practical scenarios, and that actively reinforces the mental
model of SPMD execution.

3.1 Process symmetry

Paradoxically, the first way to get students to appreciate the notion of process sym-
metry in MPI is to run a non-MPI program. Thus, students are asked to write a ‘hello
world’ program, and execute this with mpiexec, as if it were an MPI program. Ev-
ery process executes the print statement identically, bearing out the total symmetry
between the processes.

TR-15-02 3

Victor Eijkhout Teaching MPI by Concept

Next, students are asked to insert the initialize and finalize statements, with three differ-
ent ‘hello world’ statements before, between, and after them. This will prevent any no-
tion of the code between initialization and finalization being considered as an OpenMP
style ‘parallel region’.

A simple test to show that while processes are symmetric they are not identical is
offered by the exercise of using the MPI_Get_host_name function, which will have
different output for some or all of the processes, depending on how the hostfile was
arranged.

3.2 Functional parallelism

The MPI_Comm_rank function is introduced as a way of distinguishing between the
MPI processes. Students are asked to write a program where only one rank prints the
output of MPI_Comm_size.

Having different execution without necessarily different data is a case of ‘functional
parallelism’. At this point there are few examples that we can assign. For instance, in
order to code the evaluation of an integral by Riemann sums (π/4 =

∫ 1
0

√
1− x2dx is a

popular one) would need a final sum collective, which has not been taught at this point.

A possible example would be primality testing, where each process tries to find a factor
of some large integer N by traversing a subrange of [2,

√
N], and printing a message if

a factor is found. Boolean satisfyability problems form another example, where again
a search space is partitioned without involving any data space; a process finding a
satisfying input can simply print this fact.

3.3 Introducing collectives

At this point we can introduce collectives, for instance to find the maximum of a ran-
dom value that is computed locally on each process. This requires teaching the code
for random number generation and, importantly, setting a process-dependent random
number seed. Generating random 2D or 3D coordinates and finding the center of mass
is an examples that requires a send and receive buffer of length greater than 1, and
illustrates that reductions are then done pointwise.

These examples evince both process symmetry and a first form of local data. However,
a thorough treatment of distributed parallel data will come in the discussion of point-
to-point routines.

TR-15-02 4

Victor Eijkhout Teaching MPI by Concept

3.4 Distributed data

As motivation for the following discussion of point-to-point routines, we now intro-
duce the notion of distributed data. In its simplest form, a parallel program operates on
a linear array the dimensions of which exceed the memory of any single process.

The lecturer stresses that the global structure of the distributed array is only ‘in the
programmer’s mind’: each MPI process sees an array with indexing starting at zero.
The following snippet of code is given for the students to use in subsequent exercises:
int myfirst =;
for (int ilocal=0; ilocal<nlocal; ilocal++) {

int iglobal = myfirst+ilocal;
array[ilocal] = f(iglobal);

}

At this point, the students can code a second variant of the primality testing exercise
above, but with an array allocated to store the integer range. Since collectives are now
known, it becomes possible to have a single summary statement from one rank, rather
than a partial result statement from each.

The inner product of two distributed vectors is a second illustration of working with
distributed data. In this case, the reduction for collecting the global result is slightly
more useful than the collective in the previous examples. For this example no transla-
tion from local to global numbering is needed.

3.5 Point-to-point motivated from operations on distributed data

We now state the importance of local averaging operations such as

yi = (xi−1 + xi + xi+1)/3: i = 1, . . . ,N−1

applied to an array. Students that know about Partial Differential Equations (PDEs)
will recognize the heat equation; for others a graphics ‘blur’ operation can be used as
illustration.

TR-15-02 5

Victor Eijkhout Teaching MPI by Concept

Under the ’owner computes’ regime, where the process that stores location yi performs
the full calculation of that quantity, we see the need for communication in order to
compute the first and last element of the local part of y:

We then state that this data transfer is realized in MPI by two-sided send/receive pairs.

3.5.1 Detour: ping-pong

At this point we briefly abandon the process symmetry, and consider the ping-pong
operation between two processes A and B. We ask students to consider what the ping-
pong code looks like for A and, for B. Since we are working with SPMD code, we
arrive at a program where the A code and B code are two branches of a conditional.

We ask the students to implement this, and do timing with MPI_Wtime. The concepts
of latency and bandwidth can be introduced, as the students test the ping-pong code
on messages of increasing size. The concept of halfbandwidth can be introduced by
letting half of all processors execute a ping-pong with a partner process in the other
half.

3.5.2 Another detour: deadlock and serialization

The concept of ‘blocking’ is now introduced, and we discuss how this can lead to
deadlock. For completeness, the ‘eager limit’ can be discussed, and how code that
semantically should deadlock may still work in practice.

The following exercise is done in the classroom:

Each student holds a piece of paper in the right hand – keep your left hand
behind your back – and executes the following program:
1. If you are not the rightmost student, turn to the right and give the

paper to your right neighbour.
2. If you are not the leftmost student, turn to your left and accept the

paper from your left neighbour.

TR-15-02 6

Victor Eijkhout Teaching MPI by Concept

This introduces students to some subtleties in the concept of parallel correctness: a
program may give the right result, but not with the proper parallel efficiency. Asking
a class to solve this conundrum will usually lead to at least one student suggesting
splitting processes in odd and even subsets.

3.5.3 Back to data exchange

The foregoing detours into the behaviour of two-sided send and receive calls were
necessary, but they introduced asymmetric behaviour in the processes. We return to
the averaging operation given above, and with it to a code that treats all processes
symmetrically. In particular, we argue that, except for the first and last one processor,
each process exchanges information with its left and right neighbour.

This could be implemented with blocking sends and receive calls, but students recog-
nize how this could be somewhere between tedious and error-prone. Instead, to prevent
deadlock and serialization as described above, we now offer the MPI_Sendrecv rou-
tine. Students are asked to implement the classroom exercise above with the sendrecv
routine. Ideally, they use timing or tracing to gather evidence that no serialization is
happening.

As a non-trivial example (in fact, this takes enough programming that one might assign
it as an exam question, rather than an exercise during a workshop) students can now
implement a swap-sort algorithm using MPI_Sendrecv as the main tool. For simplicity
they can use a single array element per process; if each process has a subarray one has
to make sure their solution has the right parallel complexity. It is easy to make errors
here and implement a correct algorithm that, however, performs too slowly.

Note that students have at this point not done any serious exercises with the blocking
communication calls, other than the ping-pong. No such exercises will in fact be done.

3.6 Non-blocking sends

Non-blocking sends are now introduced as the solution to a specific problem: the above
schemes required paired-up processes, or careful orchestration of send and receive
sequences. In the case of irregular communications

TR-15-02 7

Victor Eijkhout Teaching MPI by Concept

this is no longer possible or feasible. Life would be easy if we could declare ‘this data
needs to be sent’ or ‘these messages are expected’, and then wait for these messages
collectively. Given this motivation, it is immediately clear that multiple send or receive
buffers are needed, and that requests need to be collected.

Implementing the three-point averaging with non-blocking calls is at this point an ex-
cellent exercise.

3.7 Taking it from here

At this point various advanced topics can be discussed. For instance, Cartesian topolo-
gies can be introduced, extending the linear averaging operation to a higher dimen-
sional one. Subcommunicators can be introduced to apply collectives to rows and
columns of a matrix. The recursive matrix transposition algorithm is also an excel-
lent application of subcommunicators.

However, didactically these topics do not require the careful attention that the intro-
duction of the basic concepts needs, so we will not go into further detail here.

4 Summary

In this paper we have introduced a non-standard sequence for presenting the basic
mechanisms in MPI. Rather than starting with sends and receives and building up
from there, we start with mechanisms that emphasize the inherent symmetry between
processes in the SPMD programming model. This symmetry requires a substantial
shift in mindset of the programmer, and therefore we target it explicitly.

Comparing our presentation as outlined above to the standard presentation, we rec-
ognize the downplaying of the blocking send and receive calls. While students learn
these, and in fact learn them before other send and receive mechanisms, they will rec-
ognize the dangers and difficulties in using them, and will have the combined sendrecv
call as well as non-blocking routines as standard tools in their arsenal.

TR-15-02 8

Victor Eijkhout Teaching MPI by Concept

References

[1] Y. Ben-David Kolikant. Gardeners and cinate tickets: High schools’ preconcep-
tions of concurrency. Computer Science Education, 11:221–245, 2001.

[2] Saeed Dehnadi, Richard Bornat, and Ray Adams. Meta-analysis of the effect of
consistency on success in early learning of programming. In Psychology of Pro-
gramming Interest Group PPIG 2009, pages 1–13. University of Limerick, Ireland,
2009.

[3] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985. ISBN-
10: 0131532715, ISBN-13: 978-0131532717.

[4] MPI forum: MPI documents. http://www.mpi-forum.org/docs/docs.html.
[5] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.

MPI: The Complete Reference, Volume 1, The MPI-1 Core. MIT Press, second
edition edition, 1998.

[6] P.C. Wason and P.N. Johnson-Laird. Thinking and Reasoning. Harmondsworth:
Penguin, 1968.

TR-15-02 9

http://www.mpi-forum.org/docs/docs.html

	Introduction
	The traditional view of parallelism
	Misconceptions in programming MPI

	Teaching MPI, the traditional way
	Criticism

	Teaching MPI, our proposal
	Process symmetry
	Functional parallelism
	Introducing collectives
	Distributed data
	Point-to-point motivated from operations on distributed data
	Detour: ping-pong
	Another detour: deadlock and serialization
	Back to data exchange

	Non-blocking sends
	Taking it from here

	Summary

