
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Information Systems

Information Systems] (]]]])]]]–]]]
0306-43

doi:10.1

� Cor

E-m

Pleas
(201
journal homepage: www.elsevier.com/locate/infosys
Tuning the ensemble selection process of schema matchers
Avigdor Gal �, Tomer Sagi

Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
a r t i c l e i n f o

Article history:

Received 4 May 2009

Received in revised form

7 January 2010

Accepted 22 April 2010
Recommended by: J. Van den Bussche
integration. Schema matching research has been going on for more than 25 years now.
Keywords:

Database integration

Schema matching
79/$ - see front matter & 2010 Elsevier B.V. A

016/j.is.2010.04.003

responding author. Tel.: +972 4 8294425; fax

ail address: avigal@ie.technion.ac.il (A. Gal).

e cite this article as: A. Gal, T. Sagi, T
0), doi:10.1016/j.is.2010.04.003
a b s t r a c t

Schema matching is the task of providing correspondences between concepts describing

the meaning of data in various heterogeneous, distributed data sources. It is recognized

to be one of the basic operations required by the process of data and schema integration

and its outcome serves in many tasks such as targeted content delivery and view

An interesting research topic, that was largely left untouched involves the automatic

selection of schema matchers to an ensemble, a set of schema matchers. To the best of

our knowledge, none of the existing algorithmic solutions offer such a selection feature.

In this paper we provide a thorough investigation of this research topic. We introduce a

new heuristic, Schema Matcher Boosting (SMB). We show that SMB has the ability to

choose among schema matchers and to tune their importance. As such, SMB introduces

a new promise for schema matcher designers. Instead of trying to design a perfect

schema matcher, a designer can instead focus on finding better than random schema

matchers. For the effective utilization of SMB, we propose a complementary approach

to the design of new schema matchers. We separate schema matchers into first-line and

second-line matchers. First-line schema matchers were designed by-and-large as

applications of existing works in other areas (e.g., machine learning and information

retrieval) to schemata. Second-line schema matchers operate on the outcome of other

schema matchers to improve their original outcome. SMB selects matcher pairs, where

each pair contains a first-line matcher and a second-line matcher. We run a thorough

set of experiments to analyze SMB ability to effectively choose schema matchers and

show that SMB performs better than other, state-of-the-art ensemble matchers.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Schema matching is the task of providing correspon-
dences between concepts describing the meaning of data
in various heterogeneous, distributed data sources
(e.g., attributes in database schemata, tags in XML DTDs,
fields in HTML forms, etc.) Schema matching is recognized
to be one of the basic operations required by the process
of data and schema integration [1–3], and thus has a great
impact on its outcome. The outcome of the matching
process can serve in tasks of targeted content delivery,
ll rights reserved.

: +972 4 8253965.

uning the ensemble
view integration, database integration, query rewriting
over heterogeneous sources, duplicate data elimination,
and automatic streamlining of workflow activities that
involve heterogeneous data sources. As such, schema
matching has impact on numerous modern applications
from various application areas. It impacts business, where
company data sources continuously realign due to chan-
ging markets. It also impacts the way business and other
information consumers seek information over the Web. It
impacts life sciences, where scientific workflows cross
system boundaries more often than not. Finally, it impacts
the way communities of knowledge are created and
evolve.

Schema matching research has been going on for more
than 25 years now (see surveys [1,4–6] and online lists,
selection process of schema matchers, Informat. Systems

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2010.04.003
mailto:avigal@ie.technion.ac.il
dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]]2
e.g., OntologyMatching,1 Ziegler,2 DigiCULT,3 and SWgr4)
first as part of schema integration and then as a
standalone research. Over the years, a significant body
of work was devoted to the identification of schema

matchers, heuristics for schema matching. Examples
include COMA [7], Cupid [8], OntoBuilder [9], Autoplex
[10], Similarity Flooding [11], Clio [12], Glue [13], and
others [14–16]. Roughly speaking, schema matchers
receive as input two or more schemata, compute a
measure of similarity between attributes, and suggest as
output a possible set of correspondences between attri-
butes. We provide a full specification of the matching
process in Section 3. The main objective of schema
matchers is to provide schema matchings that will be
effective from the user point of view yet computationally
efficient (or at least not disastrously expensive). Such
research has evolved in different research communities,
including databases, information retrieval, information
sciences, data semantics and the semantic Web, and
others.

Choosing among schema matchers is far from being
trivial. First, the number of schema matchers is continu-
ously growing, and this diversity by itself complicates the
choice of the most appropriate tool for a given application
domain. Second, as one would expect, empirical analysis
shows that there is no (and may never be) single
dominant schema matcher that performs best, regardless
of the data model and application domain [17]. Therefore,
several tools, e.g., [7–9,18,19] have combined different
schema matchers to determine the outcome of the
matching process. An interesting research topic, that
was largely left uncovered, involves the selection of
schema matchers to an ensemble. Lee et al. suggested in
[20] that the tuning of an ensemble involves the selection
of ‘‘the right component to be executed.’’ However, to the
best of our knowledge, none of the existing algorithmic
solutions offer an automatic selection feature. In this
paper we provide a thorough investigation of this research
topic.

Research has shown that many schema matchers
perform better than random choice. In [17] we have
introduced the monotonicity principle. We connect, in
this work, this monotonicity property to the notion of
weak classifiers in the AI literature [21]. The theory of
weak classifiers has led to the introduction of a class of
Boosting algorithms (e.g., [21]). This class of algorithms
can strengthen weak classifiers to achieve arbitrarily high
accuracy and has been shown to be effective in the
construction of successful classifiers. Given a set of weak
classifiers, the algorithm iterates over them while re-
weighting the importance of elements in the training set.
There exist many versions of boosting to-date. In this
paper we build upon the AdaBoost algorithm [22] to
introduce a new heuristic, Schema Matcher Boosting
(SMB). We show that SMB has the ability to choose
1 http://www.ontologymatching.org/
2 http://www.ifi.unizh.ch/�pziegler/IntegrationProjects.html
3 http://www.digicult.info/pages/resources.php?t=10
4 http://www.semanticweb.gr/modules.php?name=News&file=

categories&op=newindex&catid=17

Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
among schema matchers and to tune their importance. As
such, SMB introduces a new promise for schema matcher
designers. Instead of trying to design a perfect schema
matcher, a designer can instead focus on finding better
than random schema matchers.

For the effective utilization of SMB, we propose a
complementary approach to the design of new schema
matchers. We separate schema matchers into first-line
and second-line matchers. First-line schema matchers
were designed by-and-large as application of existing
works in other areas (e.g., machine learning and informa-
tion retrieval) to schemata. Second-line schema matchers
operate on the outcome of other schema matchers to
improve their original outcome. Existing examples of
second-line matchers include similarity flooding [23],
matching ensembles [7], and schema matching verifica-
tion [24]. Although second-line schema matchers exist,
we aim to show the benefit in this classification to the
design of new schema matchers. Therefore, we generalize
the notion of second-line matchers and discuss their
properties.

We run a thorough set of experiments to analyze SMB
ability to effectively choose schema matchers and show
that SMB performs better than other, state-of-the-art
ensemble matchers. The rest of the paper is organized as
follows. Section 2 provides an overview of schema
matching research efforts, focusing on selection and
tuning of matchers. A model of the schema matching
process, based on similarity matrices, is introduced in
Section 3, followed by the introduction of second-line
schema matchers (Section 4). Section 5 introduces SMB
and our empirical analysis is given in Section 6. We
conclude in Section 7.
2. Background and related work

For completeness sake, we provide first a brief over-
view of major achievements in schema matching model-
ing. We highlight the limitations of current works and
identify the gaps to be filled by this work. The body of
research on the topic of schema matching (and mapping)
is vast and we do not attempt to cover all of it here.

Several attempts were made to classify schema
matchers into broad classes [5,25,17,26]. In this work
we propose another classification, separating first-line
from second-line matchers, which adds another dimen-
sion on top of existing ones. We defer a comparison of our
classification to existing ones to Section 4.

In 2004, Melnik and Bernstein offered a unique
contribution to the understanding of the foundations of
schema matching [3,27]. Their work proposes a concep-
tual framework of three layers, namely applications, design

patterns, and basic operators. Of particular interest to our
work is the Match basic operator, the operator that
performs the schema matching. This operator precedes
mapping operators, which represent the functional rela-
tionships between attributes. Schema mapping typically
incorporates the data transformation semantics that is
required to migrate data from a source schema to a target
schema. Schema mapping is also researched heavily
selection process of schema matchers, Informat. Systems

http://www.ontologymatching.org/
http://www.ifi.unizh.ch/∼pziegler/IntegrationProjects.html
http://www.ifi.unizh.ch/∼pziegler/IntegrationProjects.html
http://www.digicult.info/pages/resources.php?t=10
http://www.semanticweb.gr/modules.php?name=News&file=categories&op=newindex&catid=17
http://www.semanticweb.gr/modules.php?name=News&file=categories&op=newindex&catid=17
http://www.semanticweb.gr/modules.php?name=News&file=categories&op=newindex&catid=17
http://www.semanticweb.gr/modules.php?name=News&file=categories&op=newindex&catid=17
http://www.semanticweb.gr/modules.php?name=News&file=categories&op=newindex&catid=17
dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]] 3
[28–31]. Following [3,27], we shall separate the two
research areas and focus on schema matching alone in
this work.

Somewhat surprisingly, up until recently there was a
little fundamental research that can lead to a theoretically
rigorous generic infrastructure for further development of
algorithmic solutions to the problem of schema matching.
After more than 25 years of research, the research area of
schema matching is still borrowing isolated bits and
pieces of research from other areas, including information
retrieval, machine learning, graph theory, and logic. Some
of these efforts have been successful while others have
proven to be useful in limited domains only. Inquiring
about the roots of success and failure in schema matching
will, in many cases, sum up to guesswork, simply because
there is no single theoretical foundation in place [5,26].
Having a theoretical basis in place, one could start and
design a set of algorithms to support the design of schema
matching, enhancing user effectiveness. In this work we
provide a small step towards such foundation, promoting
the design of less-than-perfect matchers to which our
boosting heuristic can be applied.

Model theory for attribute correspondences was
investigated in [32,33,25]. In [32] correspondences were
represented using morphisms in categories [34]. The work
in [33] provides explicit semantics to matchings using
logical models and model satisfaction. Ref. [25] provides a
formal model of schema matching for topic hierarchies,
rooted directed trees, where a node has a ‘‘meaning,’’
generated using an ontology. A matching connects topic
hierarchies by some relation (e.g., subsumption).

The limitations in this line of models, as well as some
work in the semantic Web area (e.g., semantic schema
matching [35]), were presented both in [33,25]. The
former argues for the need ‘‘to incorporate inaccurate

mappings and handle uncertainty about mappings. In-
accuracy arises because in many contexts there is no
precise mappingymappings may be inaccurate [since]
the mappings language is too restricted to express more
accurate mappings.’’ Benerecetti et al. [25] went even
further, arguing philosophically that even if two schemata
fully agree on the semantics and the language is rich
enough, schemata may still not convey the same meaning,
due to some hidden semantics, beyond the scope of the
schemata. Therefore, [33] argues that ‘‘[w]hen no accurate
mapping exists, the issue becomes choosing the best

mapping from the viable ones.’’ The latter approach was
later extended to handle top-K schema matchings
[17,24,36,37].

Given the discussion above, two main approaches were
proposed to handle uncertainty. The first involves the use
of semantically oriented methods for schema matching,
e.g., S-Match [35], with logical reasoning and the use of
external resources (mainly ontologies) to reduce uncer-
tainty. The alternative is to quantify the amount of
uncertainty (e.g., [38]) and use various techniques to
improve the results, given uncertainty. In our earlier work
[17] we used fuzzy logic to model uncertainty. In [39],
probability theory was used for the same purpose.
Examples for using uncertainty quantification include
[24,37]. In the former we proposed the use of the top-K
Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
best matchings to improve the accuracy of a matching.
The latter proposes to use several matchings and their
associated probabilities to provide an estimated response
to queries.

The uncertainty involved in the outcome of this or that
matcher made the selection process among schema
matchers a complex task. First, the number of schema
matchers is continuously growing, and this diversity by
itself complicates the choice of the most appropriate tool
for a given application domain. Second, as one would
expect and based on the discussion above, empirical
analysis shows that there is no (and may never be) a
single dominant schema matcher that performs best,
regardless of the data model and application domain [17].
Therefore, several tools, e.g., [7–9,18,19] have combined
different schema matchers into ensembles to determine
the similarity between concepts. The main novelty of this
work lies in the ability to automatically determine an
effective set of matchers for an ensemble. Works such as
[7,40], perform the selection task manually. APFEL [41]
learns a threshold that chooses whether to use certain
scores, yet does not provide a matcher selection mechan-
ism.

Attribute similarity, as determined by schema match-
ers in an ensemble can be combined either linearly [42,7]
or non-linearly [43], sequentially [40], or in-parallel
[42,7]. Up until now, Meta-Learner of LSD (also used in
eTuner [20]) is the only matcher that determines matcher
weights automatically. In this work, we propose a
mechanism (called SMB) for automatically determining
linear, in-parallel, weights of ensemble matchers. Our
method is therefore similar to that of Meta-Learner. In
both approaches a set of matchers is selected and a
weighted average of the decisions taken by these
matchers determine the matching outcome. However,
our technique is different from that of Meta-Learner in
two main ways. First, we combine decision-making
matchers (see Section 4 for exact definition of decision-
making matchers) while Meta-Learner combines attribute
similarity measures. Secondly, the weights of Meta-
Learner were set using a least-square linear regression
analysis while we use the boosting mechanism. The
literature shows the connection between boosting and
logistic regression [44], yet there is no evident connection
to linear regression. Our empirical analysis shows that
SMB is superior to eTuner over a wide range of schemata.

Our proposed algorithm is based on a machine
learning technique called boosting. Machine learning has
been used for schema matching in several works.
Autoplex [10] and LSD [42] use a Naı̈ve Bayes classifier
to learn attribute mapping probabilities using instance
training set. SEMINT [45] use neural networks to identify
attribute mappings. APFEL [41] determines heuristic
weights in an ensemble and threshold levels using various
machine learning techniques, namely decision trees (e.g.,
C4.5), neural networks, and support vector machines. C4.5
was also used in [46], using WordNet relationships as
features. sPLMap [39] use Naı̈ve Bayes, kNN, and KL-
distance as content-based classifiers. All these works
applied machine learning directly to the schemata, while
our approach uses the outcome of other matchers for
selection process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

5 OntoBuilder algorithm description is also available online at

http://iew3.technion.ac.il/OntoBuilder/Data/10.OntoBuilder_Papers/

dis.pdf.

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]]4
learning and improvement. In particular, the use of
boosting was never applied to schema matching, to the
best of our knowledge. Ref. [40] uses a decision tree to
determine a sequential activation of matchers. There,
decisions are taken manually while our algorithm applied
a fully automatic method for determining on the partici-
pation of a matcher in an ensemble.

A preliminary version of this work has appeared in
[47]. In this work we analyze in greater details the unique
ability of SMB to select matchers. Also, the empirical
analysis now covers many more aspects that relate to the
matcher selection process.

3. Model

We now provide a model for schema matching that
will serve us in this work. We shall accompany the
description with an example, taken from two hotel
reservation Web sites.

3.1. Schema and attributes

Let schema S={A1,A2,y,An} be a finite set of attributes.
Attributes can be both simple and compound, compound
attributes should not necessarily be disjoint, etc. For
example, an attribute in a schema of a hotel reservation
Web site may be Last Name, First Name, etc. A compound
attribute may be Credit Card Info combining three other
attributes, Type, Card Number, and Expiry (which could
also be a compound attribute, representing month and
year of expiration). We note that our model captures the
essence of schema matching, namely matching of schema
elements, and therefore a richer representation of data
models is not needed. Therefore, if we aim at matching
simple elements (such as Last Name and First Name) we
need not represent their composition into a compound
attribute called Name. If the goal of our schema matching
process is to match XML paths (see, e.g., [48]), then XML
paths are the elements we define as attributes (and hence
our matrix elements, see next) in our schemata.

3.2. Attribute matchings and the similarity matrix

For any schemata pair S and S
0

, let S ¼ S� S0 be the set
of all possible attribute matchings between S and S

0

. S is a
set of attribute pairs (e.g., (Please specify your arrival
date, check in day)). Let MðS,S0Þ be an n�n

0

similarity

matrix over S, where Mi,j represents a degree of similarity
between the i-th attribute of S and the j-th attribute of S

0

.
The majority of works in the schema matching literature
define Mi,j to be a real number in [0,1]. MðS,S0Þ is a binary

similarity matrix if for all 1r irn and 1r jrn0,
Mi,j 2 f0,1g. That is, a binary similarity matrix accepts
only 0 and 1 as possible values.

Similarity matrices are generated by schema matchers.
Schema matchers are instantiations of the schema match-
ing process [26,49]. They differ mainly in the measures of
similarity they employ, yielding different similarity
matrices. These measures can be arbitrarily complex,
and may use various techniques for name matching,
Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
structure matching (such as XML hierarchical representa-
tion), etc. Schema matchers use the application semantics
in many different ways. Some matchers (e.g., [50,51])
assume similar attributes are more likely to have similar
names. Other matchers (e.g., [8,9]) assume similar attri-
butes share similar domains. Others yet (e.g., [10,42]) take
instance similarity as an indication to attribute similarity.

Example 1. To illustrate our model and for completeness
sake we now present a few examples off schema
matchers, representative of many other, similar matchers.
Detailed description of these matchers can be found in
[9,52]5:

Term: Term matching compares labels and names to

identify syntactically similar terms. To achieve better

performance, terms are preprocessed using several tech-

niques originating in IR research. Term matching is based

on either complete word or string comparison. As an

example, consider the terms airline information and

flight airline info, which after concatenating and

removing white spaces become airlineinformation

and flightairlineinfo, respectively. The maximum

common substring is airlineinfo, and the similarity

of the two terms is lengthðairlineinfoÞ=length

ðairlineinfomationÞ ¼ 11
18 ¼ 61%.

Value: Value matching utilizes domain constraints (e.g.,

drop lists, check boxes, and radio buttons). It becomes

valuable when comparing two terms that do not exactly

match through their labels. For example, consider attri-

butes Dropoff Date and Return Date. These two terms

have associated value sets {(Select),1,2,y,31} and

{(Day),1,2,y,31}, respectively, and thus their content-

based similarity is 31
33¼ 94%, which improves significantly

over their term similarity (4(Date)/11(Dropoff-

Date)=36%).

Composition: A composite term is composed of other

terms (either atomic or composite). Composition can be

translated into a hierarchy. This schema matcher assigns

similarity to terms, based on the similarity of their

neighbors. The Cupid matcher [8], for example, is based

on term composition.

Precedence: The order in which data are provided in an

interactive process is important. In particular, data given

at an earlier stage may restrict the options for a later

entry. For example, a hotel chain site may determine

which room types are available using the information

given regarding the check-in location and time. Therefore,

once those entries are filled in, the information is sent

back to the server and the next form is brought up. Such

precedence relationships can usually be identified by the

activation of a script, such as the one associated with a

SUBMIT button. Precedence relationships can be trans-

lated into a precedence graph. The matching algorithm is
selection process of schema matchers, Informat. Systems

http://iew3.technion.ac.il/OntoBuilder/Data/10.OntoBuilder_Papers/dis.pdf
http://iew3.technion.ac.il/OntoBuilder/Data/10.OntoBuilder_Papers/dis.pdf
dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

6 For ease of exposition, we constrain our presentation to a matching

process of two schemata.

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]] 5
based on a technique we dub graph pivoting, as follows.

When matching two terms, we consider each of them to

be a pivot within its own ontology, thus partitioning the

graph into a subgraph of all preceding terms and all

succeeding terms. By comparing preceding subgraphs and

succeeding subgraphs, we determine the confidence

strength of the pivot terms. Precedence was used in [53]

to determine attribute correspondences with a holistic

matcher.

When encoding the application semantic in a similarity
matrix, a matcher would be inclined to put a value of 0 for
each pair it conceives not to match, and a similarity
measure higher than 0 (and probably closer to 1) for those
attribute pairs that are conceived to be correct. This
tendency, however, is masked by ‘‘noise,’’ whose sources
are rooted in missing and uncertain information. This
argument was also raised in [54]: ‘‘the syntactic repre-
sentation of schemas and data do not completely convey
the semantics of different databases,’’ i.e., the description
of a concept in a schema can be semantically misleading.
Therefore, instead of expecting a binary similarity matrix,
with a 0 score for all incorrect attribute mappings and a
unit score for all correct attribute mappings, we would
expect the values in a similarity matrix to form two
probability distributions over [0,1], one for incorrect
attribute mappings (with higher density around 0), and
another for correct mappings [55].

Schema matchers use data model semantics when
determining the similarity between attributes. For exam-
ple, XML structure has been used in Cupid [8] to support
or dispute linguistic similarities. Also, the similarity
flooding algorithm [23] uses structural links among
attributes to update linguistic similarities. However, once
this similarity has been determined and recorded in the
similarity matrix, it is no longer needed. Therefore, the
matrix representation as given above is sufficient as a data
model, representing the uncertainty involved in the
matching process.

3.3. Schema matching

Let the power-set S¼ 2S be the set of all possible
schema matchings between the schema pair and let G :
S-f0,1g be a Boolean function that captures the applica-
tion-specific constraints on schema matchings, e.g.,
cardinality constraints and inter-attribute mapping con-
straints. Given a constraint specification G, the set of all
valid schema mappings in S is given by
SG ¼ fs 2 SjGðsÞ ¼ 1g. We define G here as a general
constraint model, where GðsÞ ¼ 1 means that the mapping
s can be accepted by a designer. G was modeled in the
literature using a special type of matchers, called
constraint enforcers [20] and their output is recorded in a
similarity matrix, as detailed in Section 4. We say G is a
null constraint function (basically accepting all possible
matchings as valid with no use of a constraint enforcer) if
for all s 2 S, GðsÞ ¼ 1.

Formally, the input to the process of schema matching
is given by two schemata S and S

0

and a constraint Boolean
Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
function G.6 The output of the schema matching process is
a schema matching s 2 SG, represented as a similarity
matrix MðS,S0Þ. An attribute pair can be in the output
schema matching only if it has a value larger than 0 in M.

4. Second-line schema matchers

As a preamble to presenting our matcher selector
heuristic, we now define second-line matchers (2LM). The
input to this type of matchers is no longer the schemata S

and S
0

, but rather a similarity matrix MðS,S0Þ (together with
G). Given schemata S and S

0

, we denote by MðS,S0Þ the
(possibly infinite) set of similarity matrices MðS,S0Þ. A
second-line schema matcher SM :MðS,S0Þ� � G-MðS,S0Þ
is a mapping, transforming one (or more) similarity
matrices into another similarity matrix.

Second-line schema matchers are different from first-
line schema matchers in that they operate solely on
similarity matrices. First-line schema matchers operate on
the schemata themselves, using the semantics of the
application. For example, a linguistic matcher is a first-
line schema matcher, using attribute names or description
in matching attributes. One can envision a second-line
matcher that receives as an input the similarity matrix
that was generated by the linguistic matcher and
improves it, e.g., by thresholding or by combining it with
a matrix of another matcher.

Example 2. In Example 1, we have introduced several
matchers, all of which fall into the category of first-line
matchers. Two simple examples of second-line matchers
are:

Term and Value: A weighted combination of the Term

and Value matchers. Here, the input to the matcher

involves similarity matrices.

Combined: A weighted combination of the Term, Value,

Composition, and Precedence matchers.

A few more second-line matchers that are based on

constraint satisfaction are:
�

sele
The Maximum Weighted Bipartite Graph (MWBG)
algorithm and the Stable Marriage (SM) algorithm,
both enforce a cardinality constraint of 1–1. In [52] we
have introduced a heuristic we dub Intersection that
simply computes and outputs the intersection set of
both algorithm outputs. For comparison sake, we also
suggest Union, which includes in the output mapping
any attribute mapping that is in the output of either
MWBG or SM. All four matchers (MWBG, SM, Inter-
section and Union) are second-line matchers. It is
worth noting that neither Intersection nor Union
enforce 1–1 matching.

�
 A variation of the SM matcher is the Dominants

matcher. The matcher chooses dominant pairs, those
pairs in the similarity matrix with maximum value
both in their row and in their column. The main
assumption guiding this heuristic is that the dominant
ction process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

P
(2

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]]6
pairs are the most probable to be in the exact matching
since the two attributes involved in a dominant pair
prefer each other most. Note that with this heuristic
not all the target attributes are mapped and that an
attribute in one schema may be mapped to more than
one attribute in another schema, whenever attribute
pairs share the same similarity level.

�

Table 1
Two dimension matcher classification.

Matcher First-line matcher Second-line matcher

Non-decisive Term Combined

Decision maker MWBG
Finally, in [55] we have introduced 2LNB, a second-line
matcher that uses a Naı̈ve Bayes classifier over
matrices to determine attribute matchings. Autoplex
[10], LSD [42], iMAP [56], and sPLMap [39] also use a
Naı̈ve Bayes classifier to learn attribute matching
probabilities using instance training set. 2LNB is the
only second-line matcher in this group.

We now provide two more examples of second-line
matchers, highlighting the differences in their modus
operandi from first-line matchers.

Example 3 (eTuner). A model of a 1–1 matching system
was defined in [20] to be a triple, one element being a
library of matching components. This library has four
types of components, namely Matcher, Combiner, Con-
straint Enforcer, and Match Selector. The first type is a
first-line schema matcher, in its classical definition. The
remaining three types are second-line schema matchers
according to our definition.

A combiner [7] follows the definition of a schema

matcher with a null constraint function. A combination

can be done by aggregating elements of the input matrices

or by using machine learning techniques such as stacking

and decision trees.

A constraint enforcer is simply a second-line matcher

(note that our definition in Section 3.3 allows adding

constraints at the first-line as well).

A match selector returns a matrix, in which all elements

that are not selected are reduced to 0. Two examples are

given in [20], thresholding and the use of the MWBG

algorithm for selecting a maximum weighted bipartite graph.

Example 4 (Top-K). A heuristic that utilizes the top-K

best schema matchings to produce an improved schema
matching was proposed in [24]. It is a special type of a
combiner and a match selector, in which the input does
not come from different matchers (as is generally done
with ensembles [18,9,57,19]). Rather, the same schema
matcher generates multiple matrices that are then
evaluated to generate a single similarity matrix by a
special form of thresholding.

Comparing Examples 3 and 4 provides interesting
observations. First, the modeling of second-line matchers
can serve as a reference framework for comparing various
research efforts in schema matching. Therefore, while
combiners and match selectors are defined to be separate
types in [20], they were combined and redefined in [24]. A
second observation involves the goal of second-line
matchers. Second-line matchers aim at improving on the
outcome of first-line schema matchers, striving to
increase robustness of first-line matchers. The idea was
lease cite this article as: A. Gal, T. Sagi, Tuning the ensemble
010), doi:10.1016/j.is.2010.04.003
deemed appealing since complementary matchers can
potentially compensate for the weaknesses of each other
[57]. In [24] it was shown that the use of a heuristic, based
on top-K best schema mappings, has increased the
precision of mappings by 25% on average, at the cost of
a minor 8% reduction in recall.

We now propose a classifications of matchers on two
orthogonal dimensions (see Table 1 for classification and
example matchers). The first dimension separates first from
second-line schema matchers. The second dimension
separates those matchers that aim at specifying schema
matchings, dubbed decision makers from those that compute
similarity values yet do not make decisions at the schema
level. The most common type is a non-decisive first-line
matcher. The OntoBuilder’s Term matcher belongs to this
class as well as a WordNet-based decision tree technique
proposed in [18]. Combiners, in COMA’s terminology, are
non-decisive second-line schema matchers. They combine
similarity matrices of other matchers and hence they are
second-line matchers by definition. However, their
similarity matrix is not meant to be used to decide on a
single schema matching.

Well known decisive second-line matchers are algo-
rithms like MWBG and SM. Both algorithms fall into the
category of constraint enforcers in [20] and both enforce a
cardinality constraint of 1–1. Finally, the class of first-line
decision makers contains few if any matchers. The main
reason is that most systems abide by the long conceptual
modeling tradition of database schema integration, as
summarized in [1]: ‘‘The comparison activity focuses on
primitive objects firsty; then it deals with those model-
ing constructs that represent associations among primi-
tive objects.’’ This dichotomy was mainly preserved in
schema matching as well.

As a concluding remark we compare the proposed
classification with the classifications of [5,26]. In [5],
matchers are partitioned into individual matchers and
combining matchers. The latter class contains only second-
line schema matchers (both decisive and non-decisive).
Individual matchers can also serve as second-line matchers.
For example, a matcher that takes the outcome of another
matcher and apply a threshold condition on it is an
individual, second-line matcher. Combining matchers are
further partitioned into composite and hybrid matchers, a
classification that is less relevant in our classification, where
the secondary partitioning is based on the decisiveness of a
matcher. In [26], the alignments as solutions class is the same
as second-line decisive matchers and the class of alignments

as likeness clues contains the class of non-decisive matchers

(may they be first-line or second-line). No special treatment
is given to the separation of matchers that make use of
application semantics to those that rely solely on the
outcome of previous matchers.
selection process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]] 7
5. Boosting schema matching using second-line matchers

In this section we use the notion of second-line matchers
to provide a new heuristic to constructing ensembles. In
Section 3 we have described how the decision making of
schema matchers is masked by ‘‘noise.’’ Nevertheless,
research has shown that many schema matchers perform
better than random choice. In the Appendix we present the
monotonicity principle, as introduced in [17] and we argue
that any (statistically) monotonic matcher is a weak classifier
[21]. A weak classifier is a classifier which is only slightly
correlated with the true classification and its hypotheses are
at least slightly better than random choice. The theory of
weak classifiers has led to the introduction of a class of
Boosting algorithms (e.g., [21]). This class of algorithms can
strengthen weak classifiers to achieve arbitrarily high
accuracy and has been shown to be effective in the
construction of successful classifiers. Given a set of weak
classifiers, the algorithm iterates over them while re-
weighting the importance of elements in the training set.
There exist many versions of boosting to-date. In this paper
we build upon the AdaBoost algorithm [22], described in
Section 5.1 for completeness sake. AdaBoost is the most
popular and historically most significant boosting algorithm.
Section 5.2 then introduces our new heuristic, Schema
Matcher Boosting (SMB), followed by a discussion on how
to improve the training process (Section 5.3).

5.1. AdaBoost

The input to a boosting algorithm is a set of m examples
where each example (xi,yi) is a pair of an instance xi and the
classification of the instance mapping, yi. While not necessa-
rily so, yi typically accepts a binary value in {�1,+1}, where
�1 stands for an incorrect classification and +1 stands for a
correct classification. Therefore, the algorithm is aimed at
binary classifications. The last input element is a hypothesis
space H, a set of weak classifiers.

Algorithm 1. Boosting.
Plea
(20
1:
 Input: S={(x1, y1), y, (xm, ym)}, and a space hypotheses H.
2:
 /* 81r irm,xi 2 X , and 81r irm,yi 2 f�1,þ1g */
3:
 /* initialization: */
4:
 for all 1r irm do

5:
 D1(i) = 1/m
6:
 end for

7:
 t=1
8:
 repeat

9:
 /* training phase: */
10:
 Find the classifier ht : X-f�1,þ1g, ht 2 H that minimizes the

error with respect to the distribution Dt: ht ¼ arghj
minej.
11:
 if et r0:5 then

12:
 Choose at 2 R. at ¼

1
2ln 1�et

et
13:
 Update Dtþ1ðiÞ ¼
Dt ðiÞexpð�at yiht ðxi ÞÞ

Zt
where Zt is a normalization

factor
14:
 t=t+1
15:
 end if

16:
 until t=T or et 40:5
17:
 /* upon arrival of a new instance: */
18:
 Output the final classifier: HðxÞ ¼ signð
Pminðt,TÞ

k ¼ 1 akhkðxÞÞ
The algorithm works iteratively. In each iteration the
input set is examined by all weak classifiers. However,
se cite this article as: A. Gal, T. Sagi, Tuning the ensemble
10), doi:10.1016/j.is.2010.04.003
from iteration to iteration the relative weight of examples
changes. The common technique in the boosting litera-
ture, which we follow here as well, is to place the most
weight on the examples most often misclassified in
preceding iterations; this has the effect of forcing the
weak classifiers to focus their attention on the ‘‘hardest’’
examples. Lines 4–6 of the algorithm assign an initial
equal weight to all examples (see Section 5.3 for a revision
of this initialization). Weights are updated later in line 13
(see below). An iteration counter t is set to 1 in Line 7 and
incremented in Line 14.

Line 10 applies weak classifiers in parallel, looking for
the most accurate ht over the weighted examples. The
amount of error of each weak classifier is computed. The
error measure may take many forms (see discussion
below) and in general should be proportional to the
probability of classifying incorrectly an example, under
the current weight distribution ðPri � Dt

½htðxiÞayi�Þ. At
round t, the weak classifier that minimizes the error
measure of the current round is chosen.

Lines 11 and 16 provide a stop condition, limiting the
amount of error to be no more than 50%. In addition, a
restriction on the maximum number of iterations is also
part of a stop condition. In Line 12, the amount of change
to example weights at is determined. In [58], it was
shown that for binary classifiers, training error can be
reduced most rapidly (in a greedy way) by choosing at as
a smoothing function over the error. Such a choice
minimizes Zt ¼

Pm
i ¼ 1 DtðiÞexpð�atyihtðxiÞÞ. In Line 13, the

new example weights are computed for the next round
(t+1), using Zt as a normalization factor.

Lines 1–16 of Algorithm 1 serve for training the
algorithm weights. These weights are then used in Line
18 to classify a new instance x, by producing H(x) as a
weighted majority vote, where ak is the weight of the
classifier chosen in step k and hk(x) is the decision of the
classifier of step k.

5.2. SMB: Schema Matcher Boosting

The Boosting algorithm is trivially simple. However,
Algorithm 1 is merely a shell, serving as a framework to
many possible instantiations. What separates a successful
instantiation from a poor one is the selection of three
elements, namely the instances (xi), the hypothesis space
H, and the error measure et . The design of SMB is affected
by the need to select prominent matchers from a pool of
many possible matchers. SMB performs the selection
process sequentially. It starts by greedily choosing those
matchers that provide a correct solution to a major part of
the schema matching problem. Then, it adds matchers
that can provide insights to solving the harder problems.
Those matchers that are left out will not be part of the
ensemble. We next show the SMB heuristic as a concrete
instantiation of Algorithm 1, tailor-made to our specific
problem domain of schema matching.

The example set {(xi,yi)} consist of a set of attribute
pairs (xi is a pair!), one attribute from each schema, and of
the classification of the instance mapping yi. Such a pair
represents an attribute matching. This approach can be
selection process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

Table 2
An example run of SMB.

Iteration number Selected matcher e a

1 (Composition,Dominants) 0.328 0.359

2 (Precedence, Intersection) 0.411 0.180

3 (Precedence, MWBG) 0.42 0.161

4 (Term and Value, Intersection) 0.46 0.080

5 (Term and Value, MWBG) 0.49 0.020

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]]8
easily extended to select multiple attributes from each
schema, as long as the matcher itself can assess the
similarity measure of multiple attributes. Also, examples
can be designed to be sets of attributes from multiple
schemata rather than a pair. Each instance xi can be
correct (i.e., belongs to the exact matching) or incorrect.
Therefore, yi can have two possible values (+1) (for a
correct matching) and (�1) (for an incorrect matching).

Choosing the hypothesis space is more tricky. We note
that the boosting algorithm we chose deals with binary
classifications. Hence, a given attribute pair is either
matched or not. A natural choice of hypotheses will
therefore contain a set of decision makers (see discussion
in Section 4), whose decision is based on the outcome of
some first-line schema matcher. Therefore, we define
SMB to be a second-line matcher, SMB :MðS,S0Þ��
G-MðS,S0Þ, and the elements of the hypothesis space
are binary matrices. For example, a hypothesis h in H is
(Term, Dominants), where the Dominants second-line
matcher is applied to the outcome of the Term first-line
matcher. Among other things, Dominants serves in
enforcing the domain constraints, as expressed by G. It
is worth noting that SMB is also a decision maker and the
outcome of SMB is a binary matrix.

Finally, we address the form of the error measure e. A
matcher can either determine a correct attribute matching to
be incorrect (false negative) or it can determine an incorrect
attribute matching to be correct (false positive). Let At denote
the total weight of the false negative examples, Ct denotes the
total weight of the false positive examples, and Bt denotes the
total weight of the true positive examples, all in round t.
Typically, one would measure error in schema matching in
terms of precision and recall, translated into boosting
terminology as follows:

PðtÞ ¼
Bt

CtþBt
, RðtÞ ¼

Bt

AtþBt
ð1Þ

Precision and recall may be combined in many ways, one of
which is the F-Measure, their harmonic mean:

FðtÞ ¼
2Bt

AtþCtþ2Bt
ð2Þ

and therefore, a plausible error measure for the SMB heuristic
is

et ¼ 1�FðtÞ ¼ 1�
2Bt

AtþCtþ2Bt
¼

AtþCt

AtþCtþ2Bt
ð3Þ

This is indeed the measure we present in this paper. It is
worth noting, however, that this is not the only measure
possible. Our empirical evaluation (not shown in this work)
suggests that Eq. (3) performs better than other error
measures.

Example 5. The example is taken from one of our
experiments, described in Section 6. Given the hypotheses
space H as described above, and given a data set of size
70, the SMB heuristic performs five iterations: It started
by creating a data set with equal weight for each mapping.
Table 2 presents the results of each run. The first column
contains the number of the run, followed by the selected
hypotheses. The values of the error ðeÞ and the amount of
change to example weights ðaÞ are given in the last two
Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
columns. In the sixth iteration no hypothesis had error of
less than 50% so the training phase is terminated having
five iterations, each with its strength at . The outcome
classification rule is a linear combination of the five weak
matchers with their strength as coefficients. So, given a
new mapping ða,a0Þ to be classified, each one of the weak
matchers contributes to the final decision with its
decision weighted by its strength and if the final
decision was positive then the given mapping would be
classified as a correct mapping. Otherwise, it would be
classified as an incorrect one.

Let ~hmax be the maximum execution time of a matcher
in H and tmax be the number of iterations performed by
SMB. The training time of SMB is Oð ~hmax � tmaxÞ. Given a
new schema pair, let nmax be the maximum number of
attributes in each schema. The cost of using SMB is
O(nmax

2), the cost of generating the output matrix.
Two comments about at: First, our choice of at limits it

to be non-negative, since et is restricted not to exceed 0.5
(see lines 11 and 12 of Algorithm 1). This is one
characteristic that differentiates SMB from the Meta-
Learner of LSD, which uses a least-square linear regression
on the training data set. We shall elaborate on this
difference more in Section 6.7. Secondly, if a hypothesis is
chosen more than once during the training phase, its total
weight in the decision making process is the sum of all the
weights at with which it has been assigned.

5.3. Preprocessing the training data set

Tracing the evolution of the error computed in each
iteration of SMB, we observe that error increases rapidly.
Recall that the error is the sum of all the weights of the
incorrectly classified examples. Therefore, we hypothesize
that this phenomenon is a result of outliers, i.e., examples
that are inherently ambiguous and hard to categorize.
Therefore, no matcher in the ensemble classifies them
correctly. Even with a small number of outliers, the emphasis
placed on the incorrectly classified examples becomes
detrimental to the performance of SMB. Such examples
receive increasing weights with each new iteration. Conse-
quently, error accumulation accelerates rather than subsides.
Regardless of which classifier is chosen, such examples will
be misclassified and their weights will increase.

To avoid this phenomenon, we introduce a preproces-
sing phase to the training phase of SMB, in which we
identify and filter outliers. These examples are de-
emphasized by eliminating them from the training set
to avoid rapid error accumulation. We remove all
examples that no matcher classifies correctly. Eliminating
selection process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]] 9
examples from the training set is equivalent to presetting
small weights to outliers. Our empirical analysis has
shown that the preprocessing stage yields a significant
improvement in performance.
6. Experiments with SMB

6.1. Experiment setup

In our experiments we have used 30 matcher combi-
nations (recall that our hypothesis space is made of
matching pairs), combining Term, Value, Composition,
Precedence, Term and Value, and Combined with MWBG,
SM, Dominants, Intersection, Union, and 2LNB. All
matchers were described in Sections 3.2 and 4. All
algorithms were implemented using Java 2 JDK version
1.5.0_09 environment, using an API to access Onto-
Builder’s matchers and get the output matrices. The
experiments were run on a laptop with Intel Centrino
Pentium, 1.50 GHz CPU, 760 MB of RAM Windows XP
Home edition OS.

The Term and Combined matchers were shown in [17]
to be monotonic. Our preliminary experiments show that
Value was not monotonic, and is brought here as a
baseline case. To demonstrate the potency of our
matchers, we have experimented with the OAEI 2006
Directory benchmark.7 Our empirical analysis yields that
the pair (Term, MWBG), for example, achieved on average
Precision of 61%, Recall of 96%, and F-Measure of 72%, on a
set of 110 randomly selected tasks. This is better than
other known results on this data set.
6.2. Data set

For our experiments, we have selected 230 Web forms
from different domains, such as job hunting, Web mail,
and hotel reservation. We extracted a schema from each
Web form using OntoBuilder. We have matched the Web
forms in pairs (115 pairs), where pairs were taken from
the same domain, and generated manually the exact
matching for each pair.8 The schemata vary in size, from 8
to 116 attributes with about two-thirds of the schemata
have between 20 and 50 attributes. They also vary in the
proportion of number of attribute pairs in the exact
matching relative to the target schema.9 This proportion
ranges from 12.5% to 100%; the proportion in about half of
the ontologies is more than 70%, which means that about
70% of the schema attributes can be matched. Another
dimension is the size difference between matched
schemata, ranging from equal size schemata to about
2.2 times difference between schemata. In about half of
7 The benchmark is publicly available at http://keg.cs.tsinghua.

edu.cn/project/RiMOM/oaei2006/oaei2006.html. Our results are based

on a private evaluation of the exact matching, since the OAEI organizers

do not provide the exact matching.
8 All ontologies and exact matchings are available for download

from the OntoBuilder Web site, http://ie.technion.ac.il/OntoBuilder.
9 In OntoBuilder, one of the schemata is always chosen to be the

target schema, the schema against which comparison is performed.

Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
the pairs, the difference was less than 50% of the target
schema size.

We ran the six schema matchers (Term, Value,
Composition, Precedence, Term and Value, and Com-
bined) on the 115 pairs, generating 690 matrices. These
matrices used the second-line matchers (MWBG, SM,
Dominants, Intersection, Union, and 2LNB) to generate
new matrices. 2LNB was paired only with the Combined
matcher. All in all, we have analyzed 3565 pairs of real-
world schemata. SMB was tested in two different settings.
In the first, dubbed SMB-All, SMB was trained with all 31
matcher pairs. In the second setting, dubbed SMB-Recall,
we have trained SMB on 12 matcher pairs whose
individual performance is more geared towards higher
Recall, and share the second-line matchers Union and
MWBG. The latter setting was developed to test SMB
abilities in an environment that promotes Recall.

6.3. Evaluation methodology

We have repeated experiments with a varying size of
training data set. Here, we report on experiments with a
training set of 60 randomly selected schema pairs and a
test set of size 30 (schema pairs) that was also selected
randomly from the remaining matrices. We have repeated
each experiment three times. Preprocessing to avoid
outliers was applied.

To evaluate the various heuristics, we use Precision
and Recall. Lower Precision means more false positives,
while lower Recall suggests more false negatives. To
extend Precision and Recall to the case of non-1–1
mappings, we have adopted a correctness criteria accord-
ing to which any attribute pair that belongs to the exact
mapping is considered to be correct, even if the complex
mapping is not fully captured.

6.4. Comparative performance analysis

We first analyze comparatively the performance of
SMB with the 31 matcher pairs. Fig. 1 (top) positions all
32 matchers on a Precision (x-axis) vs. Recall (y-axis)
scatter plot. The expected Precision/Recall trade-off is
evident here, with no single dominating matcher.
Matchers are partitioned into two groups. To the right
there are all those matchers that qualify as weak
classifiers, which we define to be those whose F-
Measure is higher than 50%. To the left, there are five
matchers that cannot be considered weak matchers. In
common to all five matcher pairs is the use of the Value
matcher. This matcher is not statistically monotonic, since
it cannot differentiate between pairs that share the same
attribute domain. However, when combined with the
Term matcher, Value generally adds 1–2% to the Term
matcher performance.

SMB is clearly the winner in terms of Precision,
balancing Precision with Recall. Fig. 1(bottom) illustrates
the percentage of improvement SMB provides in terms of
Precision. The x-axis represents the different matcher
pairs while the y-axis shows the percentage of improve-
ment. It ranges from 5.4% to 66% for weak matchers. For
selection process of schema matchers, Informat. Systems

http://keg.cs.tsinghua.edu.cn/project/RiMOM/oaei2006/oaei2006.html
http://keg.cs.tsinghua.edu.cn/project/RiMOM/oaei2006/oaei2006.html
http://ie.technion.ac.il/OntoBuilder
dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

Fig. 1. Performance analysis.

10 Note that the sum of non-dominance percentage exceeds 100%

since matchers may reach the same level of precision for some instances,

counting both to be non-dominated for this instance.

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]]10
example, SMB improved by 39% over the pair (Term,
MWBG), illustrated earlier to have good outcomes on
tough data sets (such as the directory data set of
OAEI’2006). In terms of F-Measure, we observe an
improvement of 4.3–34.3% for weak matchers.

For comparison, Fig. 1(top) also contains another
matcher weighing technique, Average, which is discussed
in detail later in this section. While Average blends in
with other matchers (mainly from the (�, Dominants) set),
SMB stands out in its Precision performance, while not
compromising much its Recall. The group of (weak
classifiers) matchers that dominate the Recall measure
all use Union as a second line matcher. The performance
of SMB with respect to Recall is analyzed in Section 6.6.

Such an improvement is nice, yet not unheard of. For
example, LSD has shown an improvement of 5–22% in
Precision [42]. We defer a comparison with LSD to later in
the section, arguing here that these results are compar-
able. While SMB may be better than the other individual
Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
matchers on average, how often does it manage to
outperform all other matchers? we have analyzed the
data and the results are illustrated in Fig. 2. For each
matcher, we record the percentage of schema pairs, where
it was not outperformed by any of the other matchers in
terms of Precision, Recall, and F-Measure. The figure
provides a comparison of all weak classifiers and SMB.
SMB clearly performs the best in terms of Precision and
F-Measure. In 43% of the schema pairs, its Precision
performance was not dominated by any other matcher.
The next best matcher in this category was (Precedence,
Dominants), non-dominated in only 28% of the cases.10

Similar results are observed for the F-Measure, where
SMB leads with 38%, followed by (Term&Value,
selection process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

Fig. 2. Dominance analysis.

Fig. 3. Relative matcher weights in SMB and individual performance.

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]] 11
Dominants) with 25%. For Recall, SMB is non-dominated
for 20% of the schema matching pairs.
6.5. Matcher selection

We now analyze the decision making process of SMB.
Given the individual performance of each matcher, one
could expect that those matchers with the highest weight
in the decision making of SMB will be those that perform
best individually. In our case, the top four matchers, in
terms of Precision and F-Measure are pairs in which the
second-line matcher is Dominants. Fig. 3 presents the
relative matcher weights in SMB. The higher the weight,
the more important is the vote of a matcher regarding
Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
each attribute matching. Only 24 out of the 31 matchers
participate in the decision making of SMB.

Surprisingly, the top four matchers in Fig. 3(left)
include only one pair with Dominants ((Composition,
Dominants)). The pair (Combined, Dominants) is the
leading pair in terms of Precision when observing
individual performance, yet is not even part of the SMB
decision making! The most important matcher for SMB
is (Term, Intersection), ranked 11-th according to the
F-Measure individual performance and 10-th according to
Precision. (Precedence, SM), ranked second for SMB, has a
mediocre individual performance. Fig. 3(right) is a
zoomed-in version of Fig. 1(left), highlighting the four
top matchers of SMB.

Our first observation is that the decision making of
SMB is not linear in the individual performance of
matchers, and therefore the training process of SMB is
valuable. Secondly, we observe that SMB seeks diversity
in its decision making. It uses Term, Value (combined
with Term due to its individual poor performance),
Composition, and Precedence. Given these four matchers,
SMB has no need for the Combined matcher, which
provides a weighted average of the four. This explains the
absence of (Combined, Dominants).

SMB has the ability to choose matchers for an
ensemble. eTuner suggests a method for tuning ‘‘knobs’’
given an ensemble but does not provide a method for
constructing it. LSD also applies the Meta-Learner to an
existing ensemble. In our experiments, SMB includes only
24 out of the 31 matchers. We consider this feature as a
main contribution of the proposed algorithm.

6.6. Recall performance analysis

In the experiments summary discussed in Section 6.4,
SMB improved much on Precision while sacrificing Recall
to a certain extent. To understand this phenomenon, recall
that the error measure that was defined for SMB balances
Precision with Recall. SMB chose matchers that improve
Precision. For example, Intersection is a conservative
selection process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]]12
matcher that selects an attribute matching only if both
MWBG and SM selects it. Dominants is yet another
example of a conservative matcher that aims at higher
Precision, paying with Recall. By choosing matchers that
emphasize Precision, SMB itself will demonstrate a higher
level of Precision.

To isolate the impact second-line matchers have on
Precision and Recall, we conducted another experiment,
in which SMB is allowed to use only matcher pairs that
put emphasis on Recall. For that purpose, we restricted
our set of hypotheses to 12 matcher pairs, all share the
Union or MWBG second-line schema matchers. Union is
clearly geared towards Recall. MWBG showed empirically
good Recall performance and was added here to give SMB
the freedom of combining different opinion. We con-
ducted the experiment in the same manner as discussed
Section 6.3. Fig. 4 illustrates the outcome of this set of
experiments. SMB-Recall improves on the average
performance of other matcher pairs in Recall while
sacrificing somewhat on Precision. SMB does not
perform as well in this experiment as it does in the
experiment where all matchers were at its disposal, which
indicates that a larger variety leads to better outcomes. In
particular, in this experiment SMB also showed its unique
ability in choosing matchers, choosing four out of the 12
matchers, including a surprising selection of (Value,
MWBG). This matcher, with its poor individual
performance, has a weight of 25% in the decision making.
6.7. Weight selection

The outcome of SMB matcher training is a weighted
average for matcher voting. Our next set of experiments,
summarized in Table 3, compare the outcome of using
SMB weights with other weighing schemes.
Fig. 4. Comparative performance of matcher sets with Union and MWBG

as a second-line matcher and SMBRecall.

Table 3
Comparison of weight schemes.

Weight scheme Avg. precision Avg. recall Avg. F-Measure

Boosting 0.73 0.75 0.74

Meta-Learner 0.57 0.69 0.62

F-Measure 0.61 0.72 0.64

Average 0.65 0.73 0.67

Random 0.57 0.65 0.61

Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
The first row represents the average performance of
SMB, as presented above (Fig. 1). In the second row, the
performance of the LSD’s Meta-Learner is presented.
Given a set of weak learners H, the Meta-Learner uses a
least-square linear regression on the training data set,
minimizing the squared error

Xm

i ¼ 1

yi�
X
h2H

hðxiÞ �wh

 !2

ð4Þ

where yi is set to 0 if the pair xi should not be matched and
1 otherwise. h(xi) is the decision of learner h regarding
pair xi and wh are the variables on which the linear
regression is applied. The Meta-Learner cannot choose
classifiers and therefore, with 31 different learners, a huge
space of possibilities exist. To allow a comparison using
some common baseline, we have selected the top 16
matchers chosen by SMB to participate in the training
of the Meta-Learner. The remaining eight matchers
seem to have little impact on the decision making of
SMB. The most dominant matcher was (Combined,
Intersection), which was ranked 8-th by SMB,
demonstrating that the Meta-Learner and SMB reach
different decisions regarding matcher importance. For
example, the matcher (Term, Dominants) (ranked 9-th by
SMB) has received a negative weight. It is worth noting
that unlike SMB, the weights of the Meta-Learner can be
negative as well. This has the interesting effect of
transposing the decision of a matcher.

Once the weights have been set, a set of 30 schema
pairs was chosen randomly and generated the outcome
using the weights wh from the training phase. The Meta-
Learner reached a Precision of 57%, a Recall of 69%, and an
F-Measure of 62%. Comparing with the results of SMB, we
observe that SMB performs 28% better than the Meta-
Learner in terms of Precision, 9% better in terms of Recall
and 19% better in terms of F-Measure.

In the third line we present the results of matching 30
randomly chosen schema pairs, where matchers are
assigned a weight equivalent to their F-Measure. For
example, (Precedence, Dominants) is assigned a weight of
0.69 while (Value, Dominants) is assigned a weight of
0.11. This weighing scheme reduces Precision by about
20% on average, Recall by about 4% on average, and F-
Measure by about 16% on average. The performance of
weighing using F-Measure is worse (!) than those of
assigning equal weights to the various matchers (fourth
line of Table 3; also presented in Fig. 1(left)). SMB
improves Precision by 12%, Recall by 3%, and F-Measure
by 11%.

The fifth row provides the average result of three
random weight selections, each time testing the random
weight over 30 randomly selected schema pairs. SMB
improves Precision by 28%, Recall by 15%, and F-Measure
by 21%.

To conclude, in this set of experiments, SMB is shown
to dominate all other tested weighing scheme, in terms of
Precision, Recall, and F-Measure. This, together with the
ability of SMB to select matchers for an ensemble, sums
up to show SMB to be the best choice for ensemble
design.
selection process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

Fig. 5. Illustration of the monotonicity principle.

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]] 13
7. Conclusions

In this work we have focused on the selection process
of schema matchers into ensembles. We presented the
Schema Matcher Boosting (SMB) heuristic to efficiently
use an ensemble of matchers. SMB uses the separation of
first and second-line matchers in devising an effective
mechanism to improve on existing methods. We have
analyzed, both conceptually and empirically, the proper-
ties of SMB, discussing its benefit and analyzing its
performance. SMB has the unique ability to choose from a
pool of matchers. Its decision making is based on diversity
of matchers, taking their best combination. Our empirical
analysis also shows that SMB provides a major increase in
Precision with no or minimal loss of Recall. SMB
performance improves on any individual matcher pair
with which we have experimented and was shown to
dominate other weighing schemes, including that of LSD
Meta-Learner.

In our future work, we aim at improving SMB even
more. We intend to look at existing works in boosting,
involving multiclass classification (e.g., AdaBoost.M1 and
AdaBoost.M2, [58]) and error-correcting output codes
[59], possibly identifying new ties to the schema match-
ing problem. Another direction will be to incorporate
human knowledge, as was suggested by several schema
matching papers in the past. We shall look into works
such as [60], where human judges construct estimated
probability. This approach was argued to be too hard for
experts to deal with in schema matching, so we shall look
into indirect methods for building such estimated prob-
ability functions.
11 In [17], where the monotonicity principle was originally intro-

duced, it was shown that while such a method works well for fuzzy

aggregators (e.g., weighted average) it does not work for t-norms such as

min.
Appendix A. Monotonicity

The evaluation of schema matchings is performed with
respect to an exact matching, based on expert opinions.
Precision and recall are used for the empirical evaluation of
performance. Assume that out of the n�n

0

attribute
matchings, there are crn� n0 correct attribute match-
ings, with respect to the exact matching. Also, let trc be
the number of matchings, out of the correct matchings,
that were chosen by the matching algorithm and f rn�

n0�c be the number of incorrect such attribute matchings.
Then, precision is computed to be t=ðtþ f Þ and recall is
computed as t=c. Clearly, higher values of both precision
and recall are desired. From now on, we shall focus on the
precision measure, denoting by pðsÞ the precision of a
schema matching s.

We first create equivalence schema matching classes
on 2S . Two matchings s0 and s00 belong to a class p if
pðs0Þ ¼ pðs00Þ ¼ p, where p 2 ½0,1�. For each two matchings
s0 and s00, such that pðs0Þopðs00Þ, we can compute their
schema matching level of certainty, Oðs0Þ and Oðs00Þ. We
say that a matching algorithm is monotonic if for any two
such matchings pðs0Þopðs00Þ-Oðs0ÞoOðs00Þ. Intuitively, a
matching algorithm is monotonic if it ranks all possible
schema matchings according to their precision level.

A monotonic matching algorithm easily identifies the
exact matching. Let s� be the exact matching, then
Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
pðs�Þ ¼ 1. For any other matching s0, pðs0Þopðs�Þ. There-
fore, if pðs0Þopðs�Þ then from monotonicity Oðs0ÞoOðs�Þ.
All one has to do then is to devise a method for finding a
matching s� that maximizes O.11

Fig. 5 provides an illustration of the monotonicity
principle using a matching of a simplified version of the
Web forms in ‘‘Absolute Agency’’ with ‘‘Adult Singles’’
Web sites, both taken from the dating and matchmaking
domain. Both schemata have nine attributes, all of which
are matched under the exact matching. Given a set of
matchings, each value on the x-axis represents a class of
schema matchings with a different precision. The z-axis
represents the similarity measure. Finally, the y-axis
stands for the number of schema matchings from a
given precision class and with a given similarity measure.

Fig. 5 provides two main insights. First, the similarity
measures of matchings within each schema matching
class form a ‘‘bell’’ shape, centered around a specific
similarity measure. Such a behavior indicates a certain
level of robustness of a schema matcher, assigning close
similarity measures to matchings within each class.
Second, the ‘‘tails’’ of the bell shapes overlap. Therefore,
a schema matching from a class of a lower precision may
receive a higher similarity measure than a matching from
a class of a higher precision. This, of course, contradicts
the monotonicity definition. However, the first observa-
tion serves as a motivation for a definition of a statistical
monotonicity, first introduced in [17]:
Definition 1 (Statistical monotonicity). Let S¼ fs1,s2, . . . ,
smg be a set of matchings over schemata S1 and S2 with n1

and n2 attributes, respectively, and define n=max(n1,n2).
Let S1,S2, . . . ,Snþ1 be subsets of S such that for all
1r irnþ1, s 2 Si iff ði�1Þ=nrpðsÞo i=n. We define Mi

to be a random variable, representing the similarity
measure of a randomly chosen matching from Si. S is
statistically monotonic if the following inequality holds for
selection process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]]14
any 1r io jrnþ1:

OðMiÞoOðMjÞ ð5Þ

where OðMÞ stands for the expected value of M.

References

[1] C. Batini, M. Lenzerini, S. Navathe, A comparative analysis of
methodologies for database schema integration, ACM Computing
Surveys 18 (4) (1986) 323–364.

[2] M. Lenzerini, Data integration: a theoretical perspective, in:
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), 2002, pp. 233–246.

[3] P. Bernstein, S. Melnik, Meta data management, in: Proceedings of
the IEEE CS International Conference on Data Engineering, IEEE
Computer Society, Boston, MA, USA, 2004.

[4] A. Sheth, J. Larson, Federated database systems for managing
distributed, heterogeneous, and autonomous databases, ACM
Computing Surveys 22 (3) (1990) 183–236.

[5] E. Rahm, P. Bernstein, A survey of approaches to automatic schema
matching, VLDB Journal 10 (4) (2001) 334–350.

[6] P. Shvaiko, J. Euzenat, A survey of schema-based matching
approaches, Journal of Data Semantics 4 (2005) 146–171.

[7] H. Do, E. Rahm, COMA—a system for flexible combination of
schema matching approaches, in: Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2002, pp. 610–621.

[8] J. Madhavan, P. Bernstein, E. Rahm, Generic schema matching with
Cupid, in: Proceedings of the International Conference on Very
Large Data Bases (VLDB), Rome, Italy, 2001, pp. 49–58.

[9] A. Gal, G. Modica, H. Jamil, A. Eyal, Automatic ontology matching
using application semantics, AI Magazine 26 (1) (2005) 21–32.

[10] J. Berlin, A. Motro, Autoplex: automated discovery of content for
virtual databases, in: C. Batini, F. Giunchiglia, P. Giorgini (Eds.),
Cooperative Information Systems, 9th International Conference,
CoopIS 2001, September 5–7, 2001, Proceedings, Lecture Notes in
Computer Science, vol. 2172, Springer, Trento, Italy, 2001, pp. 108–
122.

[11] S. Melnik, E. Rahm, P. Bernstein, Rondo: a programming platform
for generic model management, in: Proceedings of the ACM-
SIGMOD Conference on Management of Data (SIGMOD), ACM Press,
San Diego, CA, 2003, pp. 193–204.

[12] R. Miller, M. Hern�andez, L. Haas, L.-L. Yan, C. Ho, R. Fagin, L. Popa,
The Clio project: managing heterogeneity, SIGMOD Record 30 (1)
(2001) 78–83.

[13] A. Doan, J. Madhavan, P. Domingos, A. Halevy, Learning to map
between ontologies on the semantic web, in: Proceedings of the
11th International Conference on World Wide Web, ACM Press,
Honolulu, Hawaii, USA, 2002, pp. 662–673.

[14] S. Bergamaschi, S. Castano, M. Vincini, D. Beneventano, Semantic
integration of heterogeneous information sources, Data & Knowl-
edge Engineering 36 (3) (2001).

[15] S. Castano, V.D. Antonellis, S.D.C. di Vimercati, Global viewing of
heterogeneous data sources, IEEE Transactions on Knowledge and
Data Engineering 13 (2) (2001) 277–297.

[16] K. Saleem, Z. Bellahsene, E. Hunt, Performance oriented schema
matching, in: 18th International Conference on Database and
Expert Systems Applications (DEXA 2007), Springer, Regensburg,
Germany, 2007, pp. 844–853.

[17] A. Gal, A. Anaby-Tavor, A. Trombetta, D. Montesi, A framework for
modeling and evaluating automatic semantic reconciliation, VLDB
Journal 14 (1) (2005) 50–67.

[18] D. Embley, D. Jackman, L. Xu, Attribute match discovery in
information integration: exploiting multiple facets of metadata,
Journal of Brazilian Computing Society 8 (2) (2002) 32–43.

[19] P. Mork, A. Rosenthal, L. Seligman, J. Korb, K. Samuel, Integration
workbench: Integrating schema integration tools, in: Proceedings
of the 22nd International Conference on Data Engineering Work-
shops, ICDE 2006, 3–7 April 2006, Atlanta, GA, USA, 2006, p. 3.

[20] Y. Lee, M. Sayyadian, A. Doan, A. Rosenthal, eTuner: tuning schema
matching software using synthetic scenarios, VLDB Journal 16 (1)
(2007) 97–122.

[21] R. Schapire, The strength of weak learnability, Machine Learning 5
(1990) 197–227 URL: citeseer.ist.psu.edu/schapire90strength.html.

[22] Y. Freund, R. Schapire, A short introduction to boosting, 1999. URL:
iteseer.ist.psu.edu/freund99short.html.

[23] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: a versatile
graph matching algorithm and its application to schema matching,
Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
in: Proceedings of the IEEE CS International Conference on Data
Engineering, 2002, pp. 117–140.

[24] A. Gal, Managing uncertainty in schema matching with top-k
schema mappings, Journal of Data Semantics 6 (2006) 90–114.

[25] M. Benerecetti, P. Bouquet, S. Zanobini, Soundness of schema
matching methods, in: Proceedings of ESWC 2005, 2005,
pp. 211–225.

[26] J. Euzenat, P. Shvaiko, Ontology Matching, Springer-Verlag, Heidel-
berg (DE), 2007.

[27] S. Melnik, Generic Model Management: Concepts and Algorithms,
Springer-Verlag, Berlin, Heidelberg, New York, 2004.

[28] D. Barbosa, J. Freire, A. Mendelzon, Designing information-preser-
ving mapping schemes for xml, in: Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2005, pp. 109–120.

[29] P. Bohannon, W. Fan, M. Flaster, P. Narayan, Information preserving
xml schema embedding, in: Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2005, pp. 85–96.

[30] R. Fagin, Inverting schema mappings, in: Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), 2006, pp. 50–59.

[31] R. Fagin, P. Kolaitis, L. Popa, W. Tan, Quasi-inverses of schema
mappings, in: Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), 2007, pp.
123–132.

[32] S. Alagic, P. Bernstein, A model theory for generic schema
management, in: Database Programming Languages, 8th Interna-
tional Workshop, DBPL 2001, Frascati, Italy, September 8–10, 2001,
pp. 228–246.

[33] J. Madhavan, P. Bernstein, P. Domingos, A. Halevy, Representing and
reasoning about mappings between domain models, in: Proceed-
ings of the 18th National Conference on Artificial Intelligence and
14th Conference on Innovative Applications of Artificial Intelli-
gence (AAAI/IAAI), 2002, pp. 80–86.

[34] S.M. Lane, Categories for the Working Mathematician, second ed.,
Springer, 1998.

[35] F. Giunchiglia, P. Shvaiko, M. Yatskevich, Semantic schema
matching, in: Proceedings of the 10th International Conference
on Cooperative Information Systems (CoopIS 2005), Agia Napa,
Cyprus, 2005, pp. 347–365.

[36] C. Domshlak, A. Gal, H. Roitman, Rank aggregation for automatic
schema matching, IEEE Transactions on Knowledge and Data
Engineering 19 (4) (2007) 538–553.

[37] X. Dong, A. Halevy, C. Yu, Data integration with uncertainty, in:
Proceedings of the International Conference on Very Large Data
Bases (VLDB), 2007, pp. 687–698.

[38] E. Mena, V. Kashayap, A. Illarramendi, A. Sheth, Imprecise answers
in distributed environments: estimation of information loss for
multi-ontological based query processing, International Journal of
Cooperative Information Systems 9 (4) (2000) 403–425.

[39] H. Nottelmann, U. Straccia, Information retrieval and machine
learning for probabilistic schema matching, Information Processing
and Management 43 (3) (2007) 552–576.

[40] F. Duchateau, Z. Bellahsene, R. Coletta, A flexible approach for
planning schema matching algorithms, in: Proceedings of the 13th
International Conference on Cooperative Information Systems
(CoopIS 2008), 2008, pp. 249–264.

[41] M. Ehrig, S. Staab, Y. Sure, Bootstrapping ontology alignment
methods with apfel, in: The Semantic Web—ISWC 2005, 4th
International Semantic Web Conference, ISWC 2005, Galway,
Ireland, November 6–10, 2005, pp. 186–200.

[42] A. Doan, P. Domingos, A. Halevy, Reconciling schemas of disparate
data sources: a machine-learning approach, in: W.G. Aref (Ed.),
Proceedings of the ACM-SIGMOD Conference on Management of
Data (SIGMOD), ACM Press, Santa Barbara, CA, 2001, pp. 509–520.

[43] A. Algergawy, R. Nayak, G. Saake, Xml schema element similarity
measures: a schema matching context, in: Proceedings of the 8th
International Conference on Ontologies, DataBases, and Applica-
tions of Semantics (ODBASE 2009), 2009, pp. 1246–1253.

[44] R. Schapire, The boosting approach to machine learning: an
overview, in: MSRI Workshop on Nonlinear Estimation and
Classification, Berkeley, CA, 2001.

[45] W.-S. Li, C. Clifton, SEMINT: a tool for identifying attribute
correspondences in heterogeneous databases using neural net-
works, Data & Knowledge Engineering 33 (1) (2000) 49–84.

[46] L. Xu, D. Embley, A composite approach to automating direct and
indirect schema mappings, Information Systems 31 (8) (2006)
697–886.

[47] A. Marie, A. Gal, Boosting Schema Matchers, Springer, Monterey,
Mexico, 2008, pp. 283–300.
selection process of schema matchers, Informat. Systems

dx.doi.org/10.1016/j.is.2010.04.003

ARTICLE IN PRESS

A. Gal, T. Sagi / Information Systems] (]]]])]]]–]]] 15
[48] A. Vinson, C. Heuser, A. da Silva, E. de Moura, An approach to xml
path matching, in: WIDM ’07: Proceedings of the 9th Annual ACM
International Workshop on Web Information and Data Manage-
ment, ACM, New York, NY, USA, 2007, pp. 17–24 doi:http://doi.acm.
org/10.1145/1316902.1316906.

[49] A. Gal, P. Shvaiko, Advances in ontology matching, in: T.S. Dillon, E.
Chang, R. Meersman, K. Sycara (Eds.), Web Services and Applied
Semantic Web, Springer, Berlin/Heidelberg, 2009, pp. 176–198.

[50] B. He, K.C.-C. Chang, Statistical schema matching across Web query
interfaces, in: Proceedings of the ACM-SIGMOD Conference on
Management of Data (SIGMOD), ACM Press, San Diego, CA, USA,
2003, pp. 217–228.

[51] W. Su, J. Wang, F. Lochovsky, A holistic schema matching for Web
query interfaces, in: Advances in Database Technology—EDBT
2006, 10th International Conference on Extending
Database Technology, Munich, Germany, March 26–31, 2006, pp.
77–94.

[52] A. Marie, A. Gal, On the stable marriage of maximumweight royal
couples, in: Proceedings of AAAI Workshop on Information
Integration on the Web (IIWeb’07), Vancouver, BC, Canada, 2007.

[53] W. Su, Domain-based data integration for web databases,
Ph.D. Thesis, Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong,
December 2007.
Please cite this article as: A. Gal, T. Sagi, Tuning the ensemble
(2010), doi:10.1016/j.is.2010.04.003
[54] R. Miller, L. Haas, M. Hernández, Schema mapping as query
discovery, in: A.E. Abbadi, M. Brodie, S. Chakravarthy, U. Dayal, N.
Kamel, G. Schlageter, K.-Y. Whang (Eds.), Proceedings of the
International Conference on Very Large Data Bases (VLDB), Morgan
Kaufmann, Cairo, Egypt, 2000, pp. 77–88.

[55] A. Marie, A. Gal, Managing uncertainty in schema matcher
ensembles, in: H. Prade, V. Subrahmanian (Eds.), 1st International
Conference on Scalable Uncertainty Management, SUM 2007,
Springer, Washington, DC, USA, 2007, pp. 60–73.

[56] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, P. Domingos, imap:
Discovering complex mappings between database schemas, in:
Proceedings of the ACM-SIGMOD Conference on Management of
Data (SIGMOD), 2004, pp. 383–394.

[57] P. Bernstein, S. Melnik, M. Petropoulos, C. Quix, Industrial-strength
schema matching, SIGMOD Record 33 (4) (2004) 38–43.

[58] Y. Freund, R. Schapire, A decision-theoretic generalization of on-
line learning and an application to boosting, Journal of Computer
and System Sciences 55 (1) (1997) 119–139.

[59] R. Schapire, Using output codes to boost multiclass learning
problems, in: Proceedings of the Fourteenth International Con-
ference on Machine Learning, 1997, pp. 313–321.

[60] G. Ridgeway, D. Madigan, T. Richardson, Boosting methodology for
regression problems, in: Proceedings of the International Workshop
on AI and Statistics, 1999, pp. 152–161.
selection process of schema matchers, Informat. Systems

http://doi.acm.org/10.1145/1316902.1316906
http://doi.acm.org/10.1145/1316902.1316906
dx.doi.org/10.1016/j.is.2010.04.003

	Tuning the ensemble selection process of schema matchers
	Introduction
	Background and related work
	Model
	Schema and attributes
	Attribute matchings and the similarity matrix
	Schema matching

	Second-line schema matchers
	Boosting schema matching using second-line matchers
	AdaBoost
	SMB: Schema Matcher Boosting
	Preprocessing the training data set

	Experiments with SMB
	Experiment setup
	Data set
	Evaluation methodology
	Comparative performance analysis
	Matcher selection
	Recall performance analysis
	Weight selection

	Conclusions
	Monotonicity
	References

