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Abstract

YaCF, Yet another Compiler Framework, is a source to source (StS) translator framework designed
to create source to source translators, code analysis tools or just to teach compiler technology
without the need of learning large pieces of code.

Taking advantage of Python introspection capabilities and its inherent code flexibility, using
YaCF this kind of tools can be built with lower effort.

The YaCF translation system has been designed to ease the writing of these source
transformations or manipulations. Using a set of patterns, based on widely known object oriented
patterns, implementing code transformation is only a matter of writing a few lines of code.

YaCF has been designed to ease the burden on compiler writers. Its components are
independent from each other and can be used in full source to source drivers or in small test
transformations. Several subclasses, modules and packages have been included within YaCF to
solve particular problems within source-to-source (StS) code translations.
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1. Motivation

In the High Performance Computing Group at La Laguna University [1] we have been working
for more than ten years in the field of Directive-based programming for High Performance Computing
[11, 12, 31, 9, 13, 10]. Since the very begining, the guideliness of our research has always been in
the direction of narrowing the distance between HPC users and tools. We want to provide to the
scientific community with high-level programming tools to leverage the development coding
effort [20].

In our opinion, the lack of general purpose high level parallel languages is a major drawback
that limits the spread of High Performance Computing (HPC). There is a division between
the users who have the needs of HPC techniques and the experts that design and develop the
languages as, in general, the users do not have the skills necessary to exploit the tools involved in
the development of the parallel applications. Any effort to narrow the gap between users and
tools by providing higher level programming languages and increasing their simplicity of use is
thus welcome.

Compiler support is required to implement most of the higher-level programming models. The
design and implementation of a compiler is not a trivial task, it requires tremendous amounts of
work and significant amounts of patience to deal with developing quirks and hints in production
codes. Some of the aforementioned programming models rely on the support of a commercial or
an experimental compiler which is described in this section.

The extension of languages through the usage of directives requires a broad knowledge of
compiler technologies and techniques. The previous work used ad-hoc compilers to extend a
language with a set of features. Given the speed at which the HPC field is advancing, and the
amount of new languages that are being developed, a significant amount of development and
effort would be required to design ad-hoc compilers to cover specific languages or to extend
features, and we would be unable to focus our attention on adding new features or investigating
new research guidelines.

For example, with the irruption of GPU in the HPC arena [25], we decided to study different
possible annotation schemes or language extensions to facilitate the automatic or directed
generation of GPU code. Our previous llCoMP compiler was unsuitable for this task as it
was designed ad-hoc to extend the OpenMP language with a particular set of features. With
the experience adquired from working on llCoMP, and having comprehensively reviewed the
bibliography, we detected the four key characteristics that we require in a research compiler in
order for it to meet our needs:

• A flexible parser: We wanted to explore several different annotation schemes, language
extensions and idioms, thus, a flexible front end where this modifications could be done
quickly was our priority. As our work was for experimental purposes, we did not intent to
parse commercial codes; our priority was not stability (i.e. speed and memory usage were
not constraints).

• Portability: It should be possible to use the compiler on several different platforms, from
laptops to clusters. In addition, different users, such as students or collaborators, should be
able to use it without having to invest too much time and energy in learning how to use
it. The compiler should be easily movable from one machine to another and it has to be
written in a common and portable language.

• Debuggability: The user needs to be able to run the StS process step by step or be able
to show what each phase is doing at any given point. One of the potential uses of this
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compilation framework is to teach compiler technology, thus it is desirable to be able to
review or stop any process of the translation, so the user can easily see what is going on.
As such, the inclusion of a graphical visualization of the Abstract Syntax Tree (AST) at any
given moment would be a plus.

• Simplicity: Powerful but simple Object Oriented approach.

2. Background and Related Work

Before embracing ourselves with the titanic task of building our own compiler and runtime
infrastructure, we evaluated different options and extensively reviewed the works in the
bibliography.

The most relevant compiler infrastructures are detailed in the following paragraphs, and at
the end of this section we conclude by providing a table comparing each of the aforementioned
key features.

2.1 GCC

The GNU compiler collection (GCC) [16] is a compiler developed by the GNU project that supports
various programming languages. It has been ported to a wide variety of processor architectures
and is deployed in several different machines and platforms. It supports C, C++, Objective-C,
Fortran, Java, Ada, Go and many others. Several tools are required for its construction (e.g. Perl,
Flex, Bison, GMP, MPC ...), and some optimization passes are only enabled if external libraries are
available. It can be extended with plugins, which can operate on the intermediate representation
(GIMPLE).

Each of the language compilers is a separate program that inputs source code and outputs
machine code. All have a common internal structure: a per-language front end parsers the source
code in that language and produces an AST.

These are converted to the middle-end representation, which is gradually lowered towards its
final, low-level form. GCC is mainly written in C.

2.1.1 General Usage/Workflow

GNU is organised into several passes. Language front end is invoked only once in order to
parse the entire input, and may use different intermediate representations and language-specific
tree codes. After finishing the parsing, the front end must translate the representation used to a
representation understood by the language independent portions of the compiler. The C compiler
calls the Gimplifier, while the Fortran translates its internal representation to GENERIC and then
following this it is then lowered to GIMPLE. The conversion from GENERIC to GIMPLE is called
Gimplification. After the code is in the language-independent IR, it is possible to call to different
passes that are handled by the pass-manager. This package is in charge of running all of the
individual passes in the correct order. Passes create several different parallel structures (like
the control flow graph or the handlers for the OpenMP expansion). After the tree-optimization
phases are completed, the code is transformed to RTL so register optimizations can be applied.
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2.1.2 Intermediate Representation

GCC uses three different IR: GENERIC, GIMPLE and RTL. Front-end modules generate code into
GENERIC, a High Level internal representation, which is then translated to a more manageable
IR called GIMPLE.

GIMPLE is a family of IR based on the tree data structure. Two levels of this IR are
implemented: High-Level GIMPLE - produced by the middle end when lowering the GENERIC
language that is targeted by all the language front ends; and Low-Level GIMPLE - obtained by
linearizing all the high-level control flow structures of high-level GIMPLE.

GIMPLE is then lowered to RTL (Register Transfer Language), which is an assembler language
for an abstract machine with infinite registers. It represents low-level features (registers, memory
addressing, bitfield operations, compare-and-branch . . . ), and it is commonly represented in a
LISP-like form.

2.1.3 Unparsing

GCC does not offer unparsing features by itself, as it is meant to be a full source-to-binary compiler.
Undoing the parsing could be possible at GENERIC level, but several semantic details are lost
after translating to GIMPLE. It may be possible to obtain a C-like representation of GIMPLE by
using the -fdump-tree-gimple flag, which is useful for debugging purposes. However, a
more complete method is required for implementing a source-to-source translation system.

2.2 Open64

Open64 [6] is an open-source multi-platform compiler, derived from the SGI compilers. It was
released as GPL in 2000, after which the University of Delaware took care of the project.

2.2.1 General Usage/Workflow

The compilation flow of Open64 is shown in Figure 1. Each step of the compilation flow is
followed by a lowering of the IR (see Section 2.2.2). Open64 is a full source-to-binary compiler,
thus, the end-point of the flow is assembler code suitable for generating the final binary.

The C and C++ front ends are based on GNU technology, while the Fortran one is the SGI
Pro64 Fortran front end. Both provide a very high level IR for the input program units, stored as
.B files. The VHO operates on this file (VHL level) to generate the phases that follow.

The LNO (Loop Nest Optimisation) module features several transformations to improve
code performance by taking advantage of the Data Cache, e.g. transforming loop to work on
sub-matrices that fit in the cache (Cache Blocking), loop interchange, etc. LNO also simplifies
the expressions to facilitate the tasks of the following steps, generates SIMD code and vector
intrinsics and also leverages OpenMP directives into intermediate code.

A driver controls the execution of the compiler, deciding which modules to load and executes
the compilation plan. The driver is responsible for invoking all steps, and managing the modules
input flags. Communication between modules is performed using intermediate temporary files.
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Figure 1

Compilation Flow of Open64

2.2.2 Intermediate Representation

The IR is called WHIRL, and it is composed of 5 levels (from the closest to the original to the
closest to the binary): Very High (VH), High (H), Mid (M), Low (L), and Very Low (VL) level.
The front end translate the original file into WHIRL which is then passed to the back end. Each
optimisation is designed to work on a particular level of WHIRL, and WHIRL lowerers are called
to translate WHIRL from the current level to the next lower level. Finally, the code generator
translates the lowest level of WHIRL to its own internal representation that matches the target
instruction. Because lowering is done only gradually, each lowering step is simpler and easier,
which decreases the overall complexity of the translation. A description of the lowering actions
for each level is shown in Figure 2. A WHIRL file generated by the front end consist of WHIRL
instructions and WHIRL symbol tables. The instructions contain references to the symbol table.
WHIRL instructions are linked in tree form.

2.2.3 Unparsing

Very High level WHIRL can be translated back to C and Fortran source code using the appropriate
Open64 tools, but almost no optimisation is performed at this level. It is possible to export the
intermediate representation to a file, or to output different stages of the compilation.
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Figure 2

Levels of WHIRL and Lowering actions

2.2.4 Querying and AST Traversal

The class WN TREE ITER base implements a STL-compatible iterator for WHIRL containers
(WN TREE CONTAINER). It is possible to define different traversal orders (pre-order or post-
order iteration). Comparison between two trees of WHIRL containers is possible through the
overloaded operators. To apply a particular operation to the WHIRL tree, the user can call
the function WN TREE WALK, which receives a WHIRL node, an operation and an instance of
WN TREE ITER to indicate how to traverse the tree. The operation is executed for each WHIRL
node. Listing 1 shows an example of calling a Tree Traversal to implement a simple node counting
operation. Querying for a node or a particular set of node can be implemented using Operations
or by implementing a derived class from WN TREE ITER base.
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1 // function object example: count the number of whirl nodes
2 struct WN_count {
3 INT num_nodes;
4 WN_count() : num_nodes(0){}
5 void operator()(WN*) {
6 ++num_nodes;
7 }
8 };
9

10 int main () {
11 ...
12 WN_TREE_walk_pre_order (wn, WN_count());
13 ..
14 }

Listing 1

Open64 Tree Traversal example

2.3 LLVM

LLVM [18] (Low Level Virtual Machine) is a compiler infrastructure written in C++. It supports
several different kinds of optimizations for programs written in arbitrary programming languages.
Several different front ends have been created which take advantage of the language-agnostic
design, such as Objective-C, Fortran, Ada, etc.

To achieve this language-agnostic design, it is necessary to have a common intermediate
representation in which code optimisations can be applied without the need for specific-language
optimisations. The IR of LLVM is a Static Single Assignment (SSA) form with a simple, language-
independent type system that exposes the primitives commonly used to implement high-level
language features.

LLVM is compatible with standard makefiles and can use GCC as a C and C++ parser. Object
files compiled with LLVM can be linked with object files built with gcc using the LLVM linker.
Notice that LLVM object files contain LLVM IR/bytecode, not machine code.

2.3.1 General Usage / Workflow

Figure 3 illustrates the compilation worfklow of a typical LLVM driver.
After collecting the command line options, which instruct the compiler driver about the passes

that it should run, the driver reads the configuration files for each pass - this will vary depending
on the kind of input files pointed by the user. These configuration files can be provided by the
user or by the tools. Each phase that is going to be executed can result in the invocation of one or
more actions. An action is either a whole program or a function in a dynamically linked shared
library. In this step, the driver determines the sequence of actions that must be executed. Actions
will always be executed in a deterministic order. The actions required to support the original
request from the user are executed sequentially and deterministically. All actions result in either
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Figure 3

LLVM Workflow

the invocation of a whole program to perform the action, or the loading of a dynamically linkable
shared library and invocation of a standard interface function within that library.

The compiler driver (llvmc) splits every compilation task into the following five distinct
phases:

• Preprocessing: This phase can be invoked for those languages supporting preprocessing.

• Translation: Converts the source language input into the IR.

• Optimization: All optimizations are performed on the IR, according to the options
provided.

• Linking: The inputs are combined to form a complete program.

2.3.2 Intermediate Representation

The LLVM code representation describes a program using an abstract RISC-like instruction set
but with key high-level information that enables effective code analysis. This includes type
information, explicit control flow graphs, and an explicit dataflow representation [7]. The main
features of the LLVM IR are:

• A low-level, language-independent type system that can be used to implement data types
and operations from high-level languages.

• Instructions for performing type conversions and low-level address arithmetic while
preserving type information.

• Two low-level exception-handling instructions for implementing language specific exception
semantics.

The LLVM code representation is designed to also be used as a human readable assembly
language representation, facilitating development and debugging.

LLVM programs are composed of modules, each of which is a translation unit of the input
programs. Each module consists of functions, global variables and symbol table entries. Modules
can be merged together by the LLVM linker. Listing 2 shows an example of the Hello World
module.
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1 ; Declare the string constant as a global constant.
2 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
3

4 ; External declaration of the puts function
5 declare i32 @puts(i8* nocapture) nounwind
6

7 ; Definition of main function
8 define i32 @main() { ; i32()*
9 ; Convert [13 x i8]* to i8 *...

10 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
11

12 ; Call puts function to write out the string to stdout.
13 call i32 @puts(i8* %cast210)
14 ret i32 0
15 }
16

17 ; Named metadata
18 !1 = metadata !{i32 42}
19 !foo = !{!1, null}

Listing 2

LLVM Code Representation

2.3.3 Unparsing

LLVM has been designed as a full source-to-binary compiler. Although it is possible to extract
the different levels of Intermediate Representation to Text Files, it is not possible to recover the
original language from these representations as it is completely agnostic to the original source
language.

Theoretically speaking, it would be possible to use the IR to recreate a new source and port it
to another language by creating an IR-to-language converter. However, as far as we are aware
such a tool does not exist.

2.3.4 Querying and IR Traversal

It is possible to traverse the internal representation of LLVM using different iterator classes
available in the framework. The following is a list of the available iterators:

• Module::iterator Iterates through the functions in the module (source file)

• Function::iterator Iterates through basic blocks in the module

• BasicBlock::iterator Iterates through instructions in a block

These iterators can be extended to create new ones. The code motion is implemented with
operations on the nodes (EraseFromParent, RemoveFromParent, etc). Data dependency, Call
Graph and Alias information, among others, can be printed to a Dot graph then to an external file.
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1 // Basic ROSE translator
2 #include "rose.h"
3 int main(int argc, char **argv) {
4 // Build the AST used by ROSE
5 SgProject* sp = frontend(argc, argv);
6 // Run internal consistency test on AST
7 AstTests::runAllTests(sp);
8 // Generate source code from AST and call the vendor’s compiler
9 return backend(sp);

10 }

Listing 3

ROSE driver example

2.4 ROSE

ROSE [19] is an open source compiler framework designed to facilitate building programs for
applying source code transformations. It is primarly tailored to design and implement static
analysis tools, source code transformations, loop optimizations, performance analysis and even
static security checks of source codes. It has support for C, C++, Fortran and OpenMP.

As usual, ROSE uses a three layer approach (front end, middle end and back end). The result
of running a ROSE driver is the generation of a new source code.

ROSE uses the front end of the Edison Design Group (EDG) for C and C++, whereas Open
Source Fortran is used to generate the AST from Fortran sources.

Although the license of the front ends is not free, it is possible to redistribute it with the
framework. The resulting IR of this front end is translated into a AST. This AST preservers most
of the original source information (i.e. comments, preprocessor directives, original line numbers
and so on), making it possible to completely unparse the AST into a source file.

2.4.1 General Usage / Workflow

Figure 4 illustrates the different compiler phases of the ROSE compiler framework. After parsing
the source, ROSE converts the IR from the EDG front end into the AST. This AST is further
processed by several transformation and optimization tools. Developers can add new tools or
implement new transformations extending the class hierarchy.

Listing 3 shows an example driver routine. Line 5 invokes the front end, which returns the
AST of the original program. This AST is unparsed to rebuild the original source.

2.4.2 Intermediate Representation

The internal representation of ROSE is SAGE III (derived from SAGE++, [5]). SAGE III is
automatically generated with a tool included within ROSE. When a code is parsed by the front
end, a connection code translate EDG IR into SAGE III. This enables to distribute EDG binary
files along ROSE while respecting licensing concerns.
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Figure 4

Usual Workflow of a ROSE driver

2.4.3 Unparsing

As mentioned before, ROSE outputs a source file. It attempts to produce an output file as close to
the original as possible, however, some differences may arise. Most of these differences come from
the fact that there is more than one way to write the same expression in the original language. For
reasons that will be described in the following section of this document, it is worth highlighting
the following differences: (1) Variable declarations are normalized to separated declarations, (2)
Normalization of member access from a pointer, and (3) Array indexing is represented through
pointer arithmetic.

2.4.4 Querying

One of the critical features of a StS tool is the ability to search for particular nodes or subtrees.
In ROSE, this is called querying. ROSE offers several querying features for nodes and/or
subtrees. Common queries are already predefined (for example, looking for a particular variable
declaration), and a developer can implement their own queries implementing the NodeQuery
interface.
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1 class MyVisitor:
2 public AstSimpleProcessing {
3 protected :
4 void virtual visit (SgNode* node) ;
5 }
6

7 MyVisitor::visit (SgNode* node) {
8 cout << node->get_class_name() << endl;
9 }

Listing 4

ROSE Traversal example

2.4.5 AST Traversal

ROSE aids the library writer by providing a traversal mechanism. This mechanism visits all the
nodes of the AST in a predefined order. It can be used to compute attributes or to perform an
analysis of the code.

Based on a fixed traversal order, the framework provides inherited attributes to pass
information down the AST (top-down processing) and synthesized attributes for passing
information up to the AST (bottom-up processing). Inherited attributes can be used to propagate
context information along the edges of the AST, whereas synthesized attributes can be used to
compute values based on the information in the subtree. One function for computing inherited
attributes and one function for computing synthesized attributes must be implemented when
attributes are used.

Different interfaces are provided which will allow either one, both, or no attributes to be used;
in the latter case it is a simple traversal with a visit method called at each node. AST Traversal is
offered through the AST*Processing classes. An example is shown in Listing 4.

2.5 Cetus

Cetus [8] is a StS framework designed to implement code transformations. The current version
supports ANSI C via ANTLR 2 [29], and it is implemented in Java. Cetus derives from the original
POLARIS [28] compiler framework, although the Cetus project attempts to be more general than
the previous one.

2.5.1 General Usage / Workflow

As usual, Cetus is divided into three different layers; the front end, the middle end (with the IR)
and the back-end. Figure 5 illustrate the Cetus architecture.

Compiler writers usually only need to extend the Driver class to implement any kind of
transformations, as shown in Listing 5
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1 public class MyDriver extends Driver {
2 public void run(String[] args) {
3 parseCommandLine(args);
4 parseFiles();
5 if (getOptionValue("parse-only") != null) {
6 System.err.println("parsing finished and parse-only option set");
7 Tools.exit(0);
8 }
9 runPasses();

10 PrintTools.printlnStatus("Printing...", 1);
11 try {
12 program.print();
13 } catch (IOException e) {
14 System.err.println("could not write output files: " + e);
15 Tools.exit(1);
16 }
17 }
18 public static void main(String[] args) {
19 (new MyDriver()).run(args);
20 }
21 }

Listing 5

Java code to create a driver using the Cetus API

13



Figure 5

Cetus architecture

2.5.2 Intermediate Representation

In Cetus, the IR follows a hierarchical statement structure, directly reflecting the block structure of
a program. A class hierarchy is used to implement the IR. Although this block structure and the
subsequent implementation of the Unparsing and Transversal classes make it difficult to implement
languages other than C, some additional abstract classes are provided to ease this task. A C++
front end is in progress, and there are plans to implement Java and Fortran90 back ends.

The IR has been designed to be easily understood by users. The contents of a source file are
stored in traslation units and procedures represent individual functions. Procedures
include a list of simple or compound statements, representing the program control flow in a
hierarchical manner. Each node of the IR can be annotated with comments or directives.

2.5.3 Querying and Traversal

Iterators following the Java Programming style are available. Listing 6 shows an example of
a DepthFirst iteration. Other iterators, such as Bread-first or Flat are available. The next(c)
method returns the next object of the class c.

Other traversals apart from basic syntactic order are available. For example, it is possible to
instantiate a caller traversal, which iterates across the calltree of a program.

Querying is implemented by means of iterators. The instanceof Java operator can be used to
check if a particular node of the IR is an instance of a class.

2.6 Mercurium

Mercurium [14] is a StS compilation infrastructure designed to implement the StarSs programming
model [30], although it has been extended as well.
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1 /* Iterate depth-first over program which is instance of Program */
2 DepthFirstIterator dfs_iter = new DepthFirstIterator(program);
3

4 while (dfs_iter.hasNext()) {
5 Object o = dfs_iter.next();
6 if (o instanceof Loop) {
7 System.out.print("Found instance of Loop");
8 }
9 }

Listing 6

Java code to iterate through the Cetus IR and print a message whenever a for loop is traversed

1 #pragma hlt unroll factor(24)
2 for (i = 0; i < 100; i++) {
3 a[i] = i + 1;
4 }

Listing 7

Loop unrolling in Mercurium

Mercurium is composed by a set of plugins written in C++ that are automatically loaded by the
compiler following instructions from a compilation configuration file. High-level transformations
at IR level are implemented similarly to those available in Cetus and ROSE.

2.6.1 General Usage / Workflow

Figure 6 shows the Mercurium workflow. The compiler receives input in the form the source
code written in C, C++ or Fortran and processes it through the front end, to generate a high-level
interface. Later, a set of transformations are applied. Some parts of the original code may be
outlined to an external file, enabling other back ends to process these external parts.

As in Cetus (see Section 2.5) Mercurium also features a component that is responsible for high-
level transformations. These code transformations are aimed to code optimization. Different loop
transformations are available to the programmer through the #pragma hlt directive. Listing 7
shows an example of the directive to perform loop-unrolling.

Listing 8 shows an example of loop collapse in Mercurium: given a perfect nest of regular loops,
loop collapse creates a single loop that iterates over the n-dimensional iteration space.

Several other loop transformations (blocking, interchange, fusion, distribution, etc.) are also
available in mercurium through the #pragma hlt directive.
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Figure 6

Mercurium workflow

2.6.2 Intermediate Representation

The IR of Mercurium is based on an augmented abstract syntax tree. A class hierarchy of nodes
is exposed to the developer and different operators allowing them to manipulate the trees are
available.

New code is created using plain source using stream operators.

2.6.3 Querying and AST Traversal

Although possible, it is not necessary to work direclty with TL::AST t, as several wrappers
(named LangConstruct) are available.

AST Traversal can be achieved through the usage of predicate classes, which assert that some
boolean properties on the tree nodes are matched. Pre-created predicates are available to walk
only specific node (for example, FunctionDefinitio::predicate).

2.6.4 Unparsing

Mercurium is capable of unparsing AST nodes using an overloaded stream operator. Redirecting
any pointer to an IR subtree recreates its original C (or C++) code.
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1 #pragma hlt collapse
2 for (i = 0; i < 100; i++)
3 for (j = 0; j < 200; j++)
4 for (k = 0; k < 300; k++)
5 a[i][j][k] = i * j * k;

Listing 8

Loop collapse in Mercurium

2.7 Final Remarks

Table 1 shows an overview of the different characteristics of the compiler frameworks that we
have studied in this Section.

LLVM, Open64 and GCC are powerful compilers. The internet is full of information about
them and new information is being added regularly. When we started our research back in 2008,
we found that finding information on these compilers was far more difficult than it is today.
However, despite all of the available information, writing a compiler pass for any of them still
remains a challenge due to the enormity of their codebases.

In these three cases, transformations have to be implemented in the Internal Representation,
which means writing transformations at low level. This is great for implementing classic compiler
optimisations, but it may give rise to explaining loop level transformations (like loop tiling)
to students. In the case of Open64 or GCC, working with the front end is not an easy task.
Programmers are expected to work after the front end has parsed the code into the IR, so adding
new features to a language requires in-depth knowledge of the particular front end. Depending
on how the new features modify the original language the generation of WHIRL (Open64) or
GIMPLE (GCC) have to be modified as well.

ROSE is a great tool for developers wanting to write code analysis tools, or even simple
source-to-source translation. The High-Level intermediate representation facilitates code motion
and it is possible to print the status of the tree, verify its correctness and insert or remove children
to any node without too much effort. However, the front end is a black-box which the user has
little or no access to (none if using Fortran).

The Cetus project was in its early stages when we first carried out this survey, and it was not
very stable. However, their ideas about a flexible and easy accessible IR were interesting, and our
design was inspired by this work.

Mercurium was not completely public and accessible four years ago. Even today, not enough
documentation is available, and playing around with the front end is not an easy task.

As none of the available tools completely satisfied our needs, we decided to write our own
compiler translator. We did not aim to produce a high-quality commercial compiler, but an
easy-going research tool capable of performing code transformations with little development and
without excessive bootstrapping time (i.e. time from not knowing anything from the compiler
architecture to being able to do useful work).

The pycparser project [4] featured a nearly complete C parser written in Python. The
availability and maturity of this project greatly influenced our decision to tackle the laborious
task of implementing an entire C front end.
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Table 1

Final comparison of compilers

Feature Open64 GCC ROSE Cetus Mercurium LLVM
Flexible Parser No No No Some Some No
Portability Some Some Some Some Some Some
Step-by-step No No Some Some No No
StS Transform. No No Yes Yes Some No
Recover orig. file No No Yes Yes Some No
Documentation Some Some Yes Some No Yes

3. Design Considerations and Basic Concepts

In this Section we discuss some design donsiderations and introduce basic concepts.
As the aim of YaCF is to develop StS transformations, the IR chosen is an augmented syntax

tree. Details of the IR are provided in Section 4.. Part of the information used to augment
the AST is the Symbol Table (ST), as described in Section 5.. Outside these packages, a bin
directory contains Python driver scripts to perform particular tasks, such as implementing code
transformations. The majority of the work in the YaCF Frontend and the IR is derived from the
pycparser project [4].

YaCF Components have been grouped together into three packages: FRONTEND, MIDDLEEND
and BACKEND, through which the Internal Representation (IR) of YaCF is used. Details of each
package can be found in Sections 6., 7. and 8.. Figure 7 illustrates the overall StS transformation
process.

Figure 7

Overall translation workflow executed by a typical YaCF driver

The typical use case for a YaCF developer is to implement a StS transformation. A YaCF
developer would normally use YaCF to implement a StS transformation. This is the most common
application of the tool. Code transformations are usually implemented at IR level which means
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the source will have had to have been parsed first. The user would then like to recover the original
file after the transformation, so once modified, the file has to be unparsed (or re-written) once
again into the input language.

In YaCF a driver is the script that orchestrates a code transformation. From the driver, the
parser is called, the IR is generated and it is passed to the next modules for processing. Usually
drivers end up calling a Writer to unparse the final AST into the original input language. However,
this is not mandatory such as when drivers are used to gather statistics from the source code.

The code translation can be split into two separate steps: (1) Searching for a particular pattern
or idiom in the code and (2) Applying the desired transformation on the nodes matching the
criteria. Within YaCF these two tasks are implemented in two class hierarchies: The Filter (1) and
the Mutator (2).

A Filter is an implementation of the generic Visitor Pattern [21], which traverses the IR looking
for matching nodes. The Visitor Pattern design provides a way of separating an algorithm from
the object structure on which it operates. A practical result of this separation is the ability to
add new operations to existing object structures without modifying those structures. A Mutator,
or Transformer, is a class that contains a Filter; it is designed to apply the contents of a specified
function to each node matching the Filter.

The entire YaCF framework is built using these two basic concepts. Complex transformations
are composed by several nested Filters and Mutators. Usually, a Runner class is used to group
together several transformations required to accomplish a major code transformation. Runner
classes contain source storage facilities and code templates, and they are used to prepare the
environment before (and after) calling a set of Mutators.

3.1 Filter

All Filters are derived from the GenericFilterVisitor class. This class, derived from the original
Visitor class from the pycparser project [4] implements several top-down traversals of the IR.
A ReverseVisitor that traverses the tree from bottom-up is also available. However, this visitor
requires the parent link to be set, thus, it is not possible to traverse raw AST nodes. IR levels are
discussed later in Section 4..

To implement a new Filter, it is necessary to extend the GenericFilterVisitor class, as shown in
Listing 9. The constructor of this Filter has to call the constructor of the parent (call to super in
the Listing). The condition func determines the matching condition for the Filter. The parameter
of this condition function is always the current node being visited, and it must return True if
the node matches the criteria or False otherwise. Any other returning value is considered an
error and will raise an exception. The condition function in Listing 9 checks that the type of the
current node is a declaration. Additional information about nodes and subtree types is available
in Section 6..

More complex Filters can be written taking advantage of the Visitor pattern. Overriding the
visit method for a particular kind of node forces all traversals to execute the contents of the
method. Listing 10 shows an example of this situation. Suppose we want a Filter to match
all declarations inside a function called foo. We can extend the code from Listing 9 with an
additional method visit FuncDef (see Listing 10). The method is called each time a node of that
kind is visited. If the node is the one we are looking for, we set the variable to True. When
visiting declaration nodes, if the variable is True we know we are inside the desired function,
thus, we mark that this is the desired node.
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1 class ExampleFilter(GenericFilterVisitor):
2 """ Returns the first node matching the example node
3 """
4 def __init__(self):
5 def condition(node):
6 if type(node) == c99_ast.Decl:
7 return True
8 return False
9 super(ExampleFilter, self).__init__(condition_func = condition)

Listing 9

A simple implementation of a Filter that will iterate throught all the declarations of a given
subtree

Notice that: (1) The visit FuncDef method is called before checking the condition and that (2)
as the new method overrides any of the defaults, to continue traversing down the AST we have
to manually call the generic visit method for each of the attributes of the FuncDef node that we
want to visit.

The GenericFilterVisitor class implements a variety of methods:

• apply: Looks for the first node matching the criteria and returns.

• iterator: Iterates over all of the matching nodes preserving the grammatical ordering.

• fast iterator: Iterates over all matching nodes in a deep first search fashion (it is faster but
does not guarantee grammatical order).

3.2 Mutator

Mutators are created by extending the AbstractMutator class. The code transformations (aka
mutations) usually contain a Filter that selects which nodes will be transformed. A mutatorFunction
method has to be specified, and it must contain the code to perform the desired transformation.

Mutators modify the IR, but they must ensure its consistence (i.e. update Symbol table, parent
links, and so on). Additional information about the Internal Representation is available in Section
4..

Note: Recursive Mutators
When implementing a Mutator, it is important to take into account the kind of transformation

being applied. If the transformation alters the IR in such a way that might match again the condition,
it will enter into an infinite loop, matching and applying the same Mutator repeatedly.

4. Internal Representation

YaCF has been designed as a StS translation tool, thus, it does not offer functionality to generate
low-level code. The IR is based on an annotated (sometimes called augmented) high-level tree-
layered AST, which maintains a close relation to the original source, while facilitating the work of
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1 class ExampleFilter(GenericFilterVisitor):
2 """ Returns the first node matching the example node
3 """
4 def __init__(self):
5 self._inside_foo = False
6 def condition(node):
7 if type(node) == c99_ast.Decl \
8 and self._inside_foo = True:
9 return True

10 return False
11 super(ExampleFilter, self).__init__(condition_func = condition)
12

13 def visit_FuncDef(self,node):
14 if node.name == "foo":
15 self._inside_foo = True
16 self.generic_visit(node.body)
17 self._inside_foo = False

Listing 10

A more complex example of Filter where only those declarations inside a particular function will
be traversed

1 class ExampleMutator(AbstractMutator):
2 """ Apply a mutation
3 """
4 def filter(self, ast):
5 def is_decl:
6 if type(node) == c_ast.Decl:
7 return True
8 return False
9 return DeclFilter(ast, condition_func = is_decl)

10 def mutatorFunction(self, ast):
11 # .... do something here with the matching node
12 return ast

Listing 11

Example of a Mutator that will apply a transformation to all declarations within a subtree
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1 pi_omp = 0.0f;
2 #pragma omp parallel for private(i,local) reduction (+: pi_omp)
3 for (i = 0; i < N; i++) {
4 local = (i + 0.5)*w;
5 pi_omp = pi_omp + 4.0/(1.0 + local*local);
6 }
7 pi_omp *= w;

Listing 12

Implementation of the π computation using OpenMP

the developer of code transformations. Developers only need to work with tree-like structures
resembling the structure of the original code, rather than focusing on low-level intermediate code.
Each node of the IR denotes an element of the original language. For example, in the C front
end, the if statement or a function definition are nodes of the tree structure. Figure 8 shows an
example of a subtree. Figure 9 shows the IR structure corresponding to a more complex C code
(Listing 12) that computes an aproximation for the constant π.

The IR syntax is abstract, which means that it does not represent every detail appearing in the
real syntax. For instance, grouping parenthesis are implicit in the tree structure, and a syntactic
construct such as an if-condition-then expression is denoted by a single node with two
branches. Each node of the IR is a Python class. Nodes of the IR contain three different kind
of attributes: simple attributes (any Python class), a child node (a reference to a son) or a list of
children nodes (when an attribute of the node may contain several values). Filters (see Section
3.1) use children and list of children nodes to traverse the tree. Other elements of the Framework
rely on simple attributes to work (for example, a Mutator can alter the name attribute of a node).
Information might be added to each node after a translation or an analysis is run, a process
referred to as annotation. Traditionally, transformations used the setattr and getattr functions to
set and get information from the IR. Recent versions of YaCF feature a new annotate dictionary
to store the new attributes using a more homogeneous interface.

All nodes of the IR inherit from the IRNode class, and contain the following base attributes
and methods:

• parent: Provides a reference to the direct parent node, if any.

• coord: Coordinates of the equivalent lexeme for the node in the file (i.e. line number).

• show(): Prints the node in a human-readable form (but not in the original language).

• children(): Returns all descendant nodes from the current ones.

• getRootNode(): Traverses the parent links up to the top node.

• getContainerAttribute(): Returns the attribute of the parent node (if any) linking with the
current node.

Depending on the information available on the IR, we distinguish the following incremental
levels (i.e. states):
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Figure 8

IR for the statement if(a>1) printf("%d",a)

• IR-1 or AST: This is the result of parsing a source code with any of the implemented front
ends. It contains only basic parsing information. The parent attribute is not set. Neither the
ST nor the Writer are available at this level. A description of the FRONTEND package which
provides details on the creation of the AST for a particular language, is available in Section
6.. Here we only describe the overall IR structure.

• IR-2: This is the result of processing a IR-1 subtree with the AstToIR class. After the
annotation process, a ST is available for the entire subtree, it is possible to re-print any node
of the IR in the original language, and the parent link is properly set. At this level, two
additional attributes (sequence and depth) are available.

• IR-3: The back ends might need to add further information to the nodes in the AST. To
represent this fact, we will refer to the IR-3 level whenever we are describing a process in
which a YaCF component adds information to the IR-2. If a transformation requires the
information added by another one, we specify that using the notation IR-3.name where
name is the name of the component which augments the IR. For example, a transformation
requiring the information from the CUDA back end will require the IR-3.CUDA.

4.0.1 The AstToIR class

In order to transform the IR-1 into a functional IR-2, it is necessary to use the AstToIR transformer
class. The AstToIR class has been implemented following the Flyweight pattern [15]. This forces
subsequents calls to the apply method of this class with the same node to reuse precomputed
information (particularly the Symbol Table (ST)). The root node of the tree (FileAST) is used to
maintain a cache of the currently available IR. The AstToIR class is not generic to all front ends
and some of them might have their own implementation, that will always be derived from the
original. The AstToIR class performs the following tasks:

• Replaces the str method with a call to the appropriate writer/unparser

• Connects the parent link. Using a deep first search strategy, the parent link in each node
of the IR is connected. The parent link of the root node (usually a FileAST node) is set to
None.
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Figure 9

IR generated for the main loop of the π computation example shown in Listing 12

• Creates the Symbol Table: an object of the ST class is created (see Section 5.) and the class
SymbolTableBuilder is used to initialize the ST and update the information of the IR.

To apply the aforementioned transformations, the user has to call the annotate method. Using
the getSymbolTable method of the same class it is possible to retrieve the ST that has been created
during the annotation process.

4.1 Manipulating the IR

It is possible to manipulate the IR using standard Python tools, like setattr or getattr.
However, for convenience, a set of tools is available in the TOOLS.TREE package. These tools
work on the IR-2 level, but they do not require information from the ST as they only work within
the tree.

Three operations to manipulate the IR are implemented: Insert, Replace and Remove. Figure 10
shows the insertion of a new subtree into the IR. Tools to manipulate the IR work on two stages:
Firstly they build an instance of the tool and then they apply it to a subtree. This enables YaCF to
reuse part of the process when the same operation is applied several times to the same subtree.

InsertTool performs insertions on the subtree. Its constructor receives a subtree to be inserted.
The apply method receives the node that will be the parent of the subtree and the attribute where
it is going to be inserted. If the attribute where the node will be inserted is a list of nodes, it is
possible to specify a position inside the list, choosing one of the following values: begin, end,
after and before. The values after and before allow users to insert the node immediately
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1 it = InsertTool(subtree = new_subtree)
2 it.apply(node1, ’attribute’, position = "begin")
3 it.apply(node2, ’attribute’, position = "after")

Listing 13

Inserting a subtree inside the main IR

1 ReplaceTool(new_node = new_subtree, old_node = old).apply(old.parent,
’attr’)

Listing 14

Replace a subtree inside the main IR

after or before an existing node on the list, which is specified by the parameter prev. A code
example for this operation is shown in Listing 13.

In a similar fashion to the InsertTool, a ReplaceTool and a RemoveTool are also available. Figures
10, 11 and 12 show the effect of these operations on the IR. Listing 14 shows an example code to
perform a replacement of a subtree within the main IR.

5. Symbol Table

The YaCF ST is designed to be independent of the parsing process. It can be created or updated
at any stage of the StS translation. The ST is implemented as an extension of a Python dictionary.
Usual ST operations, such as lookUp and addSymbol, are implemented in this class.

The creation of the ST for an IR is performed through the builder class SymbolTableBuilder,
which is a Visitor that creates the IR by traversing the tree in grammatical order.

The easiest way to create a ST is to instantiate an object of the SymbolTable class and then
invoke the SymbolTableBuilder to initialize it, as shown in Listing 15.

Each element of the ST is stored as a Symbol object, and holds the following information:

• name: Name of the Symbol.

• node: Reference to the original node in the AST.

• type: Type of the node, reference in the IR.

• scope: Scope information (see Section 5.1).

• btype: Basic type of the ID (for example, in C, if the identifier is an integer).

• sizeExpression: Expression to determine the size of the variable.

• extra: A dictionary holding optional information for different compiler stages.
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Figure 10

Insertion of a new parameter in a function call

Symbol objects can be printed to a string for debugging purposes. They can also be compared
using two simple rules: (1) Two Symbol instances are equivalent iff they have the same name
and the same scope, and (2) Symbol instance A is greater than Symbol instance B if and only if
scope(A) is greater than scope(B).

5.1 Scope Information

As the ST can be created at any stage of the translation process, and it might even be created for a
subtree disconnected from the main IR of the code; the coordinate of the lexeme relative to the
IRNode is not enough to locate an identifier in the ST. To replace the line number information,
each node of the AST is decorated with two additional attributes: the sequence number and the
depth. The sequence number is assigned sequentially to each node of the IR in grammatical order,
starting from zero. The depth value indicates the number of grammatical nested scopes preceding
the declaration. For this reason, each symbol has a Scope attribute, which describes the proper
scope of the declaration. Algorithm 1 is used to insert an element in the SymbolTable, whereas the
Algorithm 2 is used as the lookup for symbols.

Listing 17 shows a C code with several name conflicts. Identifier i is declared several times
(lines 3, 6 and 12). Printing the ST corresponding to the code in Listing 17 produces the output
shown in Listing 16.

Notice how each declaration of i has a separate entry in the ST (lines 20, 22 and 27 in Listing
17). Level 0 of the ST contains general language declarations and implicit types, like GNU built-in
types, or basic language types.
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1 from Frontend.SymbolTable import SymbolTable, SymbolTableBuilder
2 st = SymbolTable()
3 tsv = SymbolTableBuilder(symbol_table = st)
4 tsv.visit(some_ast)

Listing 15

Initialization of a SymbolTable

Algorithm 1 Insertion of a symbol in the Symbol Table
function ADDSYMBOL(decl, depth)

sizeExpression← buildSizeExpression(decl)
nsymbol ← Symbol(decl, depth, sizeExpression)
for all symbol in st[depth] do

if nsymbol = symbol then return
end if

end for
st[depth].insort(nsymbol)

end function

Algorithm 2 Looks for the declaration of an identifier in the Symbol Table
function LOOKUP(id)

depthact ← min(id.depth, len(st))
while depthact ≥ 0 do

for all symbolinst[depthact] do
if id.sequence ∈ symbol.scope then

if symbol.name = id.name then return symbol
end if

end if
end for

end whilereturn Identifier Not Found
end function
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1 Symbol table
2 ==========================
3 Level : 0
4

5 [{float: float, (0, None)}
6 {int: int, (0, None)}
7 {char: char, (0, None)}
8 {double: double, (0, None)}
9 {FILE: FILE, (0, None)}

10 {bool: bool, (0, None)}
11

12 Level : 1
13

14 [{foo: char, (1, 73)}
15 {func: int, (32, 73)}
16 {main: int, (67, 73)}]
17

18 Level : 2
19

20 [{i: int, (7, 33)}
21 {j: int, (11, 33)}
22 {i: int, (39, 68)}]
23

24 Level : 3
25

26 [{foo: char, (16, 32)}
27 {i: int, (21, 32)}]

Listing 16

Content of the ST after analyzing the code in Listing 17
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These declarations are introduced by the builder before visiting the tree. The declarations of
the code start in level 1, with the declaration of foo as a char. The numbers enclosed in parenthesis
represent the start and end of the scope of the corresponding declaration. In the case of foo, the
declaration is valid between sequence numbers 1 (beginning of the file) and 73 (end of the file).
Notice that sequence number are not related in any way with line numbers in the source code.
Function declarations appear on level 1 and their scope covers the declaration itself and continues
right throught to the end of the file. Basic type (btype) of a function declaration represents its
type.

Scope depth information suffices to differentiate the declarations in lines 2 and 5 in Listing 17,
however, to distinguish the declarations in lines 2 and 12, it is necessary to take into account their
sequence numbers.

5.2 Computing the Size of Elements

In some situations it is necessary to have access to the size of a particular element in the ST. This
information is usually machine dependant (integers or doubles do not always have the same size),
thus, it is not possible to have that information to hand when transforming the source. However,
it is possible to extract an expression that computes the size of the element in terms of the original
code, and, when compiled with the machine-dependant compiler, will generate the real size of
the element.

When building the ST using the SymbolTableBuilder, information about the number of elements
and the basic type of the declarations is stored in attributes. This information is used to create an

Figure 11

Replace operation of a parameter in a function call
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Figure 12

Remove operation of a parameter in a function call

expression that, when evaluated, will compute the total size of the declaration in memory. Notice
that it is not possible to know information about pointers at translation time, but it is possible
to compute that information at runtime. For example, if an structure contains a void pointer,
the computed expression will not reflect the real size of the structure. However, the computed
expression is sufficient to estimate the size of structures or arrays.

6. The FRONTEND

The FRONTEND package is based on the pycparser Python module. pycparser [4] is a C
lexical and syntax analyzer completely written in Python. We have derived most of the structure
of the FRONTEND from pycparser.

The YaCF FRONTEND package contains several components:

• C99, OpenMP, OpenACC and GNU syntax analyzers.

• Abstract Syntax Tree (AST).

• Symbol Table.

• Internal Representation: an extension of the AST with additional information. This
information is used in source code transformations.

Figure 13 shows the YaCF class hierarchy. Class PLYParser is the base class of the YaCF FRONTEND.
PLYParser controls some syntax errors and holds general information about parsers. Each

parser in YaCF must inherit from PLYParser. Lexical analyzers for differente languages inherit
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1 char * foo;
2 int func () {
3 int i,j;
4 {
5 char * foo;
6 int i;
7 printf("%d",i);
8 }
9 }

10

11 int main() {
12 int i;
13 foo = NULL;
14 func()
15 printf("%d",i);
16 if (foo) printf("%s", foo);
17 }

Listing 17

C code example with nested declaration scopes

from C99Lexer. The design allows the developer to extend each lexer with specific rules. In a
similar fashion, all parsers inherit from class C99Parser.

Parsers are implemented following a Factory Pattern, enabling the developer to combine
different extensions of the C language into one new parser. The bottom section of Figure 13
shows the AstToIR class of the YaCF parser created by the FrontendFactory class combining C99
and OpenACC parsers.

6.1 Defining a New Language

Languages are defined in the FRONTEND package by creating a Python module containing a
file named languagename ast.cfg which lists the nodes of the language. All the AST nodes
in YaCF are configured in this file enabling the compiler to create the AST with the correct
information. Listing 18 shows an example of this file. In line 1, an array declaration node
(ArrayDecl) is specified. The list of attributes is specified as a list in the same line. For example,
an array declaration node has two attributes: the type and the dimension of the array. This
information will be filled by the right parser using syntax-directed translation. The attributes with
an asterisk indicate to the compiler that the node has a child node, while two asterisk indicate a
sequence of child nodes. The Compound node in line 8 represents a list of blocks in the source
code.

From the configuration file, YaCF generates a set of AST Python classes. Each class represents
a node in the AST. With this information the parser can fill in all the information. Listing 19
shows part of the OpenMP parser. Each grammar production features a method and each method
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Figure 13

FRONTEND package class hierarchy

1 ArrayDecl: [type*, dim*]
2 ArrayRef: [name*, subscript*]
3 Assignment: [op, lvalue*, rvalue*]
4 BinaryOp: [op, left*, right*]
5 Break: []
6 Case: [expr*, stmt*]
7 Cast: [to_type*, expr*]
8 Compound: [block_items**]

Listing 18

Part of the C99 AST configuration file
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1 def p_clause_2(self, p):
2 """ clause : REDUCTION LPAREN reduction_operator COLON

identifier_list RPAREN """
3 p[0] = [omp_ast.OmpClause(type = p[3] , name = ’REDUCTION’,

identifiers = p[5], coord = self._coord(p.lineno(1)))]
4

5 def p_clause_3(self, p):
6 """ clause : NOWAIT """
7 p[0] = [omp_ast.OmpClause(type = str(p[1]) , name = str(p[1]).upper

(), identifiers = None, coord = self._coord(p.lineno(1)))]

Listing 19

Extract from the OpenMP parser of YaCF showing the interpretation of the reduction and
nowait clauses

creates the appropriate AST node. For example, the OpenMP reduction clause is parsed in line
2 while an AST node with the reduction type and the identifiers is created in line 3.

7. The MIDDLEEND

The input of the package MIDDLEEND is an IR and the output is another IR with the same, or
higher, level. The packages in MIDDLEEND are commonly used as for intermediate processing
to optimise or prepare codes so the BACKEND packages can proceed. Some packages used for
analysis of codes can also be found in the MIDDLEEND.

7.1 Data Dependency Analysis

Some situations might require an analysis of the data dependency in the code. For these situations,
YaCF features a (basic) Data Dependency Analysis tool. Dependency analysis produces execution-
order constraints between statements.

Listing 20 shows a block statement with a typical expression statement. If statement S1
precedes S2 in their given execution order, we write S1 C S2 (Notation from [24]). A dependence
between two statements in a program is a relation that constraints their execution order. A control
dependence is a constraint that arises from the control flow of the program, such as S2 with S3
and S4 in Listing 20. These dependences are written as S1δcS2. A data dependence is a constraint
that arises from the flow of data between statements, such as S3 and S4 in Listing 20. If we reorder
these statements, the result could be incorrect.

Data dependencies can be classified into four types:

1. If S1 C S2 and the former sets a value that the latter uses, we call this a flow (or true)
dependence, and it is written as S1δ f S2.

2. If S1 C S2 , S1 uses a particular variable’s value and S2 sets it, then we have an
antidependence (written S1δaS2).
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1 S1 a = b + c
2 S2 if (a > 10) goto L1
3 S3 d = b * e
4 S4 e = d + 1
5 S5 L1: d = e / 2

Listing 20

Control and data dependency example extracted from [24]

1 a[3] = a[5] * a[i];
2 x = h * ((double) i - 0.5);
3 sum += 4.0 / (1.0 + x * x);

Listing 21

Example of a SESE block statement with variable dependencies

3. If S1 C S2 , and both of them set the same variable variable then we have an output
dependence (written S1δoS2).

4. If S1 C S2 , and both of them read a variable then we have an input dependence (written
S1δiS2).

It is possible to extend the definition of data dependencies from the statements to the variables
themselves: let V1 and V2 be variables declared in a program; and let there be S an statment of
that program containing an expression involving both V1 and V2. Expressions can either read
variables or write them. If statement S modififes or updates the value of variable V2 by solving
an expression in which V1 is involved, we can state that V2 depends on V1 (V1δ f V2). Variable
dependency, like statement dependency, is transitive, i.e. if V2 depends on V1 and V3 depends on
V2, then V3 depends also on V1:

V1δ f V2 ∧V2δ f V3 =⇒ V1δ f V3
A Data Dependency Analysis module is available within YaCF (DATAANALYSIS.LLCSCOPE).

It is capable of generating a dependency graph of the variables used in a SESE block of statements.
The class DGraph implements the dependency graph using a dictionary containing instances

of Dnode. Dnode associates a node of the ST with a list of predecessors and a list of successors.
A predecessor of a variable is any variable to which the current variable has a dependency, i.e.
if the current variable is V2, it predecessor list will contain all V1 satisfying V1δV2. A successor
of a variable is any variable which the current variable creates a dependency, i.e. if the current
variable is V1, the list of sucessors contains all V2 satisfying V1δV2.

The DGraphBuilder populates a DGraph data structure. Each occurrence of an ID creates an
instance of DNode and adds it to the current DGraph instance if it has not already been inserted.
When the DGraphBuilder visit an assignment expression, the predecessor and successor lists of
the nodes involved in the assignment are updated. There is no interprocedural analysis support
currently available in YaCF . This forces the analysis to assume that all variables passed through
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a function call are read and written. It also creates dependencies among them. The algorithm
used to populate each DGraph instance is shown in Algorithm 3.

Algorithm 3 Analysis of an Assignment node
function VISIT ASSIGNMENT(node, visitednodes)

rvalue← visit(node.rvalue)
lvalue← visit(node.lvalue)
for all r in rvalue do

for all l in lvalue do
succ(l)← succ(l) + l
pred(r)← pred(r) + s

end for
end for

end function

7.1.1 Data Dependency Graph

It is possible to print the dependency graph of the variables inside a block statement whenever it
is required by using the DataDependencyTool.

Each node of the graph represents a variable used in the block statement. A dependency
between V1 and V2 is represented by an arrow from the node of V1 to the node of V2. If a cycle
appears in the graph (i.e. V1δ f V2 and V2δ f V1) it means that the variable is being reused, for
example, in a reduction.

Figure 14 shows the variable dependency graph generated for the code in Listing 21. Variable
sum has a cycle over itself in the graph representing the reduction operation. The value of sum is
computed based on the values of the X variable, which in turn is computed based on values from
h and the loop variable i. A blue color on a node indicates that the variable is read-only, whereas
the red color implies that the variable is both read and read-only. A green color (not shown in
Figure 14) is used when the variable is only written.

7.1.2 Checking dependencies

Instances of class DGraph contain a method checkDependency. This method accepts two instances
of class Dnode as parameters and checks if the first one has a dependency with the second one
(i.e. checks if the latter is in the predecessor set of the former or in any of the predecessor sets
of any of its predecessors). Transitive dependencies are checked traversing the successor and
predecessor lists.

7.2 Loop Analysis

A major part of the optimization effort in any compiler is usually devoted to loops. YaCF provides
developers with a tool to perform loop analysis (ParametrizeLoopTool).
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Figure 14

Variable dependency graph for the code in Listing 21

Applying ParametrizeLoopTool to a loop node of the IR (i.e. a For) node will create a dictionary
containing information about the loop. Some restrictions apply. Current implementation limits
the parameters captured from a given loop to canonical loop or canonical loop nests. The most
relevant parameters extracted by ParametrizeLoopTool are:

• loop variable: Variable to iterate.

• iteration expression: Expression to define the next loop step.

• init value: Starting value for the iteration variable.

• first iteration: Value for the first iteration (expression).

• last iteration: Value for the last iteration (expression).

• loop stride: Distance between two iterations (expression).

• number of iterations: Total number of iterations (expression).

This information is stored in IR format (i.e. subtree expressions). For example, Table 2 details
the information extracted by the ParametrizeLoopTool from the loop in Listing 22.

Parameter Value
Loop variable i
Stride 1
Condition Node i ≤ N
Last iteration (Itlast) N − 1
Number of iterations (Itlast − It f irst)/1
Iterator i+ = 1

Table 2

Information extracted from the loop in Listing 22
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1 for (int i = 0; i < N; i++)
2 a[i] = b[i];

Listing 22

A canonical C loop

Notice that some of the parameters extracted are not constant values, but expressions written
in the IR language. These expressions will then be rewritten in the original language by a Writer.
The final value will be computed at execution time.

7.3 Loop Optimizations

Due to the nature of StS compilers, loop optimizations play a dominant role in code optimization.
YaCF implements several loop optimizations as interchange, unswitch, unroll, or tiling. These
transformations can be reffered to by different names in the literature, and many of them are also
implemented in other StS compilers such as Cetus (Section 2.5) or Mercurium (Section 2.6).

The optimizations available in YaCF have been implemented following the Mutator and Visitor
software patterns [15] in the MIDDLEEND.LOOP.MUTATOR directory. This directory contains the
key Mutators responsible for carrying out processing on the intermediate code IR-2 (Section 4.).
For example, the module LOOPTILING.PY contains the LoopTilingMutator which is responsible for
implementing a rectangular loop tiling on the AST type supplied, i.e. a tiling with constant tile
sizes (see Section 7.3.4 for details).

These Mutator make extensive use of tools such as ParametrizeLoopTool for handling loops, or
those available in the TOOLS.TREE package such as ReplaceTool.

In YaCF the programmer is responsible for verifying the safety of certain optimizations which
are not always applicable. That is, there is no guarantee that some transformations such as loop
tiling, retain the original semantics of the source code after being applied. Ensuring program
correctness is the responsability of the YaCF user.

7.3.1 Loop Common

The package COMMON.PY in the MIDDLEEND.LOOP directory contains a number of Mutators
and Filters common to many optimizations and drivers, the LoopFilter is one of them. This Filter
searches for a For node in the entire AST.

The default behavior of LoopFilter is to iterate over the AST to return all the encountered For
nodes. The Filter can be parametrized with an identifier parameter to discriminate on the loop
index variable, specifying the loop or loops it will search for.

7.3.2 Loop Interchange

This transformation is the process of exchanging the order of two perfectly nested loops. One
major purpose of loop interchange is to improve the cache performance for accessing array elements.
It is not always safe to exchange the iteration variables due to dependencies between statements
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1 double a[N][M], b[N];
2

3 for (int i = 0; i < N; i++)
4 for (int j = 0; i < M; j++)
5 a[i][j] = a[i][j] * b[j];

Listing 23

Loop nest before aplying loop interchange

1 double a[N][M], b[N];
2

3 for (int j = 0; i < M; j++)
4 for (int i = 0; i < N; i++)
5 a[i][j] = a[i][j] * b[j];

Listing 24

The result of applying loop interchange to the loop nest in Listing 23

for the order in which they must execute. To determine whether a compiler can safely interchange
loops a dependence analysis must first be carried out.

In the basic example shown in Listings 23 and 24 the effect of the transformation can be
observed.

In YaCF, this effect is the default behaviour of the LoopInterchangeMutator when providing it a
subtree of the AST containing the outermost loop. Nevertheless, LoopInterchangeMutator enables
more useful applications such as swapping two nested loops when there are other loops between
in a perfect nesting. This feature is useful, particularly when the number of loop nests is greater
than two, for implementing some versions or loop tiling as we will see in Section 7.3.4.

7.3.3 Strip-mining

Strip-mining, also known as loop sectioning, is a loop-transformation technique for enabling
SIMD-encodings of loops, as well as providing a means of improving memory performance.
By fragmenting a large loop into smaller segments or strips, this technique transforms the loop
structure in two ways:

• It increases the temporal and spatial locality in the data cache if the data are reusable in
different passes of an algorithm.

• It reduces the number of iterations of the loop by a factor of the length of each “strip”, or
number of operations being performed per SIMD operation.

Strip-mining is equivalent to a rectangular tiling (see Section 7.3.4) being applied to simple loops.
The transformation has been successfully applied to code optimization in vectorial computers
[17, 2, 3].
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1 double a[N];
2

3 for (int i = 0; i < N; i++)
4 a[i] = 0;

Listing 25

An example of a simple C canonical loop zeroing an array

1 double a[N];
2

3 for (int _i_ = 0; i < N; i += B)
4 for (int i = _i_; i < min(_i_ + B, N); i++)
5 a[i] = 0;

Listing 26

Loop in Listing 25 after aplying strip-mining with strip size B

Listing 26 shows the effect of applying the LoopStripMiningMutator to the loop shown in
Listing 25.

In Listing 26 we observe (line 3) that a new loop has been introduced enclosing the original
loop. The new loop runs over the original iteration space in blocks of size B. Its index variable
sets the start and end of the new inner loop (line 4), which now iterates over each block. As a
result of applying strip-mining, the iterations will execute in consecutive blocks of size B indexed
by i . The limit min( i + B, N) ensures that the new code does not run extra iterations.

As all dependencies of a program are lexicographically positive, strip-mining is always safe to
apply [36].

7.3.4 Loop Tiling

Loop tiling, also known as loop blocking was promoted by Francois Irigoin and Michael Wolfe at
the end of the 80s [34, 35]. It is one of the most important iteration reordering loop optimizations.
From loop tiling it is possible to extract beneficial properties for both parallel machines and for
multiple level cache monoprocessors exposing space locality [36]. Loop tiling includes those
loop otimizations which reorder its iteration space. Some examples of these are loop interchange,
loop skewing, or strip-mining among others. All these transformations change the order in which
iterations are executed, while preserving the order of the statements into each iteration.

YaCF implements square or rectangular tiling [36]. It is named rectangular from the shape of
the blocks that run the iteration space when loop tiling is applied to a two-dimensional space (two
nested loops). Formally, the name is kept for higher dimensions as the geometric properties of
the rectangles are also preserved.

In the following paragraphs we briefly describe the algorithm that YaCF features for automatic
rectangular tiling (for further reading, see also [32]).
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1 double a[N][N], b[N][N], c[N][N];
2

3 for (int i = 1; i < N; i++)
4 for (int j = 1; j < N; j++)
5 for (int k = 1; k < N; k++)
6 c[i][j] = c[i][j] + a[i][k] * b[k][j];

Listing 27

Square matrices product, example of a perfect loop nest

Listing 27 shows a series of three perfectly nested loops. It corresponds to a square matrices
multiplication code, and provides a good example of how to obtain the same benefits as those
mentioned with strip-mining in Section 7.3.3, but now applied to nested loops.

The first optimization used by loop tiling is strip-mining. By applying strip-mining to each of
the loops in Listing 27 (lines 3, 4 and 5) three new loops are created as shown in Listing 28 (lines
3, 5 and 7) and the bounds of the original loops (lines 4, 6, and 8) are changed as described in
Section 7.3.3 .

So, strip-mining itself can produce a program for the matrix product using 6 loops.
Nevertheless, the order in these loops is not correct for our purposes, as it does not correspond
to a matrix product algorithm with a blocked iteration space. Strip-mining itself does not split a
nested loop iteration space into strips.

The second transformation we are going to apply is loop interchange. To obtain a correct code,
we need to move the new loops generated by strip-mining outwards, and move the original
loops inwards.

This is achieved with loop interchange and the resulting code is shown in Listing 29.
Note that it is safe to apply loop interchange for the matrix product code, but it is not for many

other useful programs including some partial differential equation methods.

Algorithm 4 Automatic loop tiling in YaCF

function LOOPTILINGMUTATOR(ast, indexes, sizes)
for i = 0 to length(indexes)− 2 do

loop← LoopFilter(ast, indexes[i])
LoopStripMiningMutator(loop, sizes[i])
LoopInterchangeMutator(loop, indexes[i], indexes[i + 1])

end for
loop← LoopFilter(ast, indexes[−1])
LoopStripMiningMutator(loop, sizes[−1])
for i = length(indexes)− 2 to 0 do

LoopInterchangeMutator(ast, indexes[i + 1], indexes[i])
end for

end function
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1 double a[N][N], b[N][N], c[N][N];
2

3 for (int _i_ = 1; _i_ < N; _i_+= B)
4 for (int i = _i_; i < min(N, _i_ + B); i++)
5 for (int _j_ = 1; _j_ < N; _j_+= B)
6 for (int j = _j_; j < min(N, _j_ + B); j++)
7 for (int _k_ = 1; _k_ < N; _k_+= B)
8 for (int k = _k_; k < min(N, _k_ + B); k++)
9 c[i][j] = c[i][j] + a[i][k] * b[k][j];

Listing 28

Square matrices product with its loops incorrectly ordered after applying strip-mining

1 double a[N][N], b[N][N], c[N][N];
2

3 for (int _i_ = 1; _i_ < N; _i_+= B)
4 for (int _j_ = 1; _j_ < N; _j_+= B)
5 for (int _k_ = 1; _k_ < N; _k_+= B)
6 for (int i = _i_; i < min(N, _i_+B); i++)
7 for (int j = _j_; j < min(N, _j_+B); j++)
8 for (int k = _k_; k < min(N, _k_+B); k++)
9 c[i][j] = c[i][j] + a[i][k] * b[k][j];

Listing 29

The effect of applying square loop tiling with tile size B to the code in Listing 27
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1 ...
2 for (int i = 0; i < N ; i++)
3 if (b[i] != 0)
4 a[i] = b[i] * c[i]
5 else
6 break;
7 ...

Listing 30

An example of a loop body with a break statement

Algorithm 4 describes the implementation of tiling by YaCF. The algorithm receives the AST
subtree corresponding to the outermost loop, an index list of the loops to be processed, and the
block sizes to apply when processing each loop in the former list. It is worth noticing that it is
common for sizes to be different to each loop.

The reader may observe that it is possible to obtain a similar code to that shown in Listing 29
by repeatedly applying strip-mining and loop-interchange over each nested loop in the code shown
in Listing 27. Repeatedly applying strip-mining and loop-interchange corresponds to the first for
loop and the last LoopStripMiningMutator in Algorithm 4.

Now, the only thing that remains to be done is reorder the series of inner loops to restore
their original order. To obtain the final code (Listing 29) it is enough to apply several
LoopInterchangeMutator transformations to the loop list inversely. That process is performed
by the second loop in Algorithm 4.

7.4 The Outliner

To facilitate certain transformations or specific analysis phases, it is easier to extract a piece of
code from a code block to an external function, a process which is called Outlining. Although
this might be seen as a trivial task, it is critical to take into account several side effects that might
occur while applying this code motion technique. For example, in C, any variable used inside a
block whose value is modified has to be passed by reference. This ensures that the value modified
in the function is the original one and not a copy residing in the stack.

It is also important to take into account potential breaks in the code. For example, suppose
that we want to extract the body of the loop in Listing 30 to an external function (i.e. each iteration
of the loop will call the outlined function). This will generate the code in 31. However, this code
is not correct as the break statement is not inside a for loop. The compiler has to analyse the
loop and provide a proper replacement to keep the original code working. In this case, we have
decided to replace the break statements by return statements with a known value, and to
check inside the loop body for that return value.

More complex situations can arise when labels and jump statements (i.e. GOTO statements) are
involved. For the sake of simplicity, in the current section we will assume that the code segment
that we want to outline is Single entry - Single exit block (SESE).

The class OutlinerMutator from the package MIDDLEEND.FUNCTIONS implements a function
outliner. This Mutator creates a new function, called the outlined function. The body of the
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1 void outlined_function(int * a, int * b, int * c, int i)
2 {
3 if (b[i] != 0)
4 a[i] = b[i] * c[i];
5 else
6 break;
7 }
8 ...
9 for (int i = 0; i < N ; i++)

10 outlined_function(a,b,c,i);

Listing 31

Incorrect extraction of the loop body. The break statement is no longer syntactically correct.

outlined function will be a copy the block statement that we want to outline. It also replaces
the original (passed by reference) block in the IR by a function call to the previously created
outlined function. The Mutator returns a reference to this new call inside the original tree, and
the method get outlined function can be used to retrieve the outlined function. The Mutator
has been designed so the outlined function can be written onto an external file, and compiled
independently. The outlined function can be injected on the original AST, or not, depending on
the instance parameters.

It is also possible to retrieve only the function definition, or the type declarations required to
define the variables used inside the function body. Constructor-time parameters enable developers
to instruct the Mutator to not replace the original code and just extract the outlined function, or to
change the name of the outlined function.

To avoid replacing all occurrences of the variables in the outlined function by references to the
parameters, the Mutator takes advantage of the scope nesting to create new local replacements
of the parameter variables. However, this changes the default C pass-by-reference parameter
passing scheme to a copy-and-restore, so this transformation can produce side-effects in some
situations, particularly when using threads. Instead of using this transformation, it is possible to
use a traditional replacement of all occurences of R/W parameters by references by changing a
parameter in the constructor. The final decision is left up to the YaCF user.

8. The BACKEND

The BACKEND package contains transformations whose destination is a programming language.
These transformations usually operate over the IR and then use a Writer to generate a final code.

All subpackages under this package follow the same structure. The subpackage is named after
the destination target or platform (for example, a back end named Cuda will generate CUDA
code). If the back end is meant to be run alone (it is not part of another), it has to contain a Runner
class that specifies how to create the destination code. Also, inside this subpackage, there must
be a FILTER directory containing the Filters used, a MUTATORS directory with the Mutators used,
and a WRITERS directory if any particular Writer is required. A TEST directory may appear also,
containing testing scripts for each back end implementation. Documentation of the back end has
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1 <%
2 from Backends.Common.TemplateEngine.Functions import decl_of_id
3 %>
4 int ${functionName} ( ${’,’.join(loop_parameters[’inside_vars’])} )

{
5 ## This function is just a test
6 %for elem in loop_parameters[’inside_vars’]:
7 ${decl_of_id(elem)}
8 %endfor
9

10 }

Listing 32

Example of template mixing C and Python code with the template tags

to be available on the init file of the package. If the back-end uses any template file, it must be
stored under the TEMPLATE directory.

A set of common classes for Visitors, Filters and Transformers are stored in the COMMON
sub-package. These common classes have been already described in Section 3.. Commonly used
Filters are defined in the GENERICVISTIORS module whereas common used Mutators are defined
in the ASTSUPPORT module.

8.1 The Template Subsystem

When working in StS transformations, there are situations where the back-end writer has to fill a
pattern written in the destination language with parameters of the current code.

Using the IR manipulation tools, the process will require several insertions and replacements
of nodes, together with manually created instances of nodes to recreate the tree. If the parameters
of the library change at any point, or we want to implement additional operations, it would be
necessary to re-write most of the code as the new IR will be different.

To facilitate the manipulation of the IR, it is possible to create a template. A template is a
Python string with placeholders for variables, indicated by ${...}$. The template engine (Mako
[22] in the current version of YaCF) will replace these placeholders with the values of the variables
at runtime, and generate a new string with the information. This string can be parsed with the
parse snippet method of the Mutator class, generating a new IR.

An example of a template is shown in Listing 32. Placeholders can also be used to insert raw
Python code, that will be evaluated when parsing the template (see Line 4). Python functions
used inside templates can be declared on external modules (Line 2 for the import, Line 7 for
the usage). Some commonly used functions are available on the FUNCTIONS module of the
TEMPLATEENGINE directory. Template comments (i.e. code that will not be evaluated by the
template engine and that will not appear on the destination code) can be specified using double
hash (##) before the text (Line 6). More complex control structures, like if/else or for statements
(Line 5) are available. These loop control structures enable back-end writers to express complex
code patterns in the source code in a clear and readable way.

44



1 self.parse_snippet(template_code, {’reduction_vars’ :
reduction_vars,

2 ’shared_vars’ : shared_vars}, name = ’Retrieve’,
show = False)

Listing 33

Calling the parse snippet from the Mutator to generate the AST of the code after filling the template

To parse a template, the user has to specify all the variables of the template as it is shown in
Listing 33.

The name and show parameters are used for debugging purposes. In the event of an error
parsing the template, an exception is raised. If the show parameter is set to True, the template is
also printed to the standard output.

The code generated by the template must be syntactically correct thus, attention is required in
situations where the snippet might not form a valid C code.

8.2 The DOT Back end

To facilitate understanding the IR representation, and to alleviate the development effort when
creating source transformations, it is necessary to provide developers with tools to represent the
IR at any point. A DOT back end has been implemented to facilitate this task.

DOT [33] is a plain text graph description language. The language allow to describe graphs
that both humans and computer programs can use.

The DOT back end contains a Visitor which creates a representation of the graph in the DOT
language. Nodes in the DOT graph are nodes of the DOT language. Arcs in the DOT graph
represent the relation between IR nodes (which node contains which one).

This back-end is used by the DOTDebugTool to create snapshots of the translation process and
debug the internal IR. However, it can be used standalone to print the results of a StS translation
to a file, or as part of any other tool. Listing 34 shows part of the output of the DOT commands
used to generate the Figure 9.

8.3 The Writer Classes

A Writer is a class implementing a Visitor pattern which traverses the IR generating a source code.
This source code could be the original, like in a C-to-C translator, or a different one. Writers can be
applied to any AST subtree, although some implementations of the Writer might require features
only available on augmented IR.

As is typical in other classes following the Visitor pattern, each method visits an element of
the AST/IR, and performs an action.

8.3.1 OffsetWriter

When unparsing codes (i.e. recovering the original source from the IR), it is interesting to recover
not only the source code but some part of the original indenting, or at least make a best-effort
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1 digraph G {
2 FileAST__DOT__0[label = "FileAST"];
3 FileAST__DOT__0 [shape=box, color=red, style=filled];
4 FuncDef__DOT__1[label = "FuncDef"];
5 FileAST__DOT__0-> FuncDef__DOT__1[label = "ext"];
6 Compound__DOT__2[label = "Compound"];
7 FuncDef__DOT__1-> Compound__DOT__2[label = "body"];
8 i_3[label = "i"];
9 Compound__DOT__2-> i_3[label = "block_items"];

10 TypeDecl__DOT__4[label = "TypeDecl"];
11 i_3-> TypeDecl__DOT__4[label = "type"];
12 int_5[label = "int"];
13 TypeDecl__DOT__4-> int_5[label = "type"];
14 int_5-> int[label = "names"];
15 n_7[label = "n"];
16 Compound__DOT__2-> n_7[label = "block_items"];
17 Constant__DOT__8[label = "Constant"];
18 n_7-> Constant__DOT__8[label = "init"];
19 TypeDecl__DOT__9[label = "TypeDecl"];
20 n_7-> TypeDecl__DOT__9[label = "type"];
21 TypeDecl__DOT__9-> int[label = "type"];
22 pi_11[label = "pi"];
23 Compound__DOT__2-> pi_11[label = "block_items"];
24 TypeDecl__DOT__12[label = "TypeDecl"];
25 pi_11-> TypeDecl__DOT__12[label = "type"];
26 double_13[label = "double"];
27 TypeDecl__DOT__12-> double_13[label = "type"];
28 double_13-> double[label = "names"];
29 sum_15[label = "sum"];
30 Compound__DOT__2-> sum_15[label = "block_items"];
31 TypeDecl__DOT__16[label = "TypeDecl"];
32 sum_15-> TypeDecl__DOT__16[label = "type"];
33 TypeDecl__DOT__16-> double[label = "type"];
34 ...

Listing 34

Example of the DOT Back end output
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attempt to generate readable code. To accomplish this task, a basic class from where writers can
be inherited is available. OffsetWriter offers basic features to write strings to a file descriptor
(standard output by default) providing an offset value. When writing the output, offset number
of spaces will be prepended to the string.

8.3.2 C99Writer

C99Writer unparses a C99 [23] IR back to C99 code. Some considerations have to be taken into
account:

• Comments are not restored as they are not in the IR.

• Original parenthesis are lost during parsing, Writer has its own rules to apply parenthesis
to expressions.

• It does not handle pragma statements.

8.3.3 OmpWriter

OmpWriter unparses a C99 IR with OpenMP [27] annotations back to the original. The
considerations are the same as those mentioned above, except that any OpenMP pragma is
printed conforming 3.0 revision of the standard ([26]).

8.4 The CUDA Back end

The CUDA module features a set of Mutators capable of generating CUDA code from OpenMP
sources. In the following paragraphs we focus on the components that are currently supported:
The Kernelize and the Platform classes. In order to extract and write a CUDA kernel from a Loop
first the Loop parameters need to be extracted using the ParametrizeLoopTool as described in
Section 7.2.

8.4.1 Platform

The variables used in the loop have to be classified to decide its location in the device memory.
Table 3 shows how input variables are transformed.

Kernel Parameter Value
Kernel Parameters All variables used in the kernel except from register variables
Reduction Variables Variables in the reduction list of the loop parameters
Registers All variables declared inside the kernel
Code Loop body

Table 3

Placement of variables according to loop information
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The class Platform also performs several analysis over the kernel code to facilitate optimization
on further phases. Three parameters are extracted from the analysis: Number of Flops, Number
of Memory Accesses and Divergence factor.

8.4.2 Kernelize

The Kernelize receives the parameters of the kernel (as returned by Platform) and writes the
final device kernel. Writing the kernel makes use of the Template Subsystem. Templates are
filled with the parameters. Some convenience functions are implemented on the template layer to
convert Symbols into different forms, such as declarations, parameters or pointers. These handler
functions, stored in BACKENDS.COMMON.TEMPLATEENGINE.FUNCTIONS work on Symbol nodes
and are able to make basic representation transformations on the template itself. In addition to
writing the kernel, Kernelize also calls the inlineCalledFunctions to ensure that the functions called
from the kernel are inlined and ensures that the only functions called but not defined are native
functions of the device (such as sqrt or exp). A configuration parameter enables this method to
replace the precise version of these functions by a less precise, but faster, implementation on the
device hardware. Kernelize uses separate kernels for different situations, depending on the kind
of kernel (1D, 2D or 3D kernels) or if there are reductions involved.

8.5 The OPENCL Back end

In a similar fashion to the CUDA Backend, the OpenCL back end implements the generation of
OpenCL code. The structure of the back end is the same. The Platform is just a placeholder to call
the CUDA version as the parameters required are the same. The Kernelize implements OpenCL
specific semantics using a different set of Templates for each different class of kernel.

9. Final Remarks

In this Chapter we have provided a detailed description of our StS tool: YaCF. The YaCF
tool has enabled us to fast-prototype languages, techniques and optimizations with very little
development effort on our part, and it has provided us with a steady learning curve. YaCF is not
a production-ready compiler. Transformations are not entirely safe and might generate incorrect
code. However, the tool suffices for a controlled research environment in which the developer is
focused on the features offered, rather than on its completeness.
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