Finding and
debugging
memory leaks In
JavaScript with
Chrome DevTools

Gonzalo Ruiz de Villa
@gruizdevilla

| co-founded & work @adesis

This presentation was make for my
workshop at #spainjs 2013

Gradual loss
of available computer memory

when a program
repeatedly
fails to return memory

that it has obtained
for temporary use.

My users have laptops
with 16GB of RAM.

So, why should | care?

Common belief

More memory === Better performance

Reality

Memory footprint
Is strongly correlated with

iIncreased latencies and variance

Nothing is free:

(cheap or expensive)

you will always pay a price
for the resources you use

So, let's talk about
memory

Think of memory as a graph

Three primitive types:

Numbers (e.g, 3.14159...)
Booleans (true or false)
Strings (e.g, "Werner Heisenberg")

They cannot reference other values.
They are always leafs or terminating nodes.

Everything else is an "Object"

Objects are associative arrays (maps or dictionaries)

So, the object is composed of a collection of (key, value) pairs

And what about
Arrays?

An Array is an Object
with numeric keys.

The memory graph
starts with a root

It may be the window object of the browser, or
the Global object of a Node.js module.

You don't control how this root object is GC

What does get GC?

Whatever is not reachable from the root.

Root

() Object

O Primitive

Retaining path

We call a retaining path any path from GC roots to a particular object

Root

Object

O Primitive

Dominators

Node 1 dominates node 2
Node 2 dominates nodes 3, 4
and 6

Node 3 dominates node 5
Node 5 dominates node 8
Node 6 dominates node 7

Some facts about
the V8 Garbage Collector

Generational
Collector

Age of a value The age of a value: number of bytes
allocated since it was allocated.

Young Generation e Splited in two spaces: named "to" and

"from"

® "to space": very fast allocation

e filling the "to space" triggers a
collection:
® "to" and "from" swap
" maybe promotion to old generation
B ~10ms (remember 60fps -> ~16ms)

Old Generation . .
® Old generation collection is slow.

"To" and "From" spaces

Remember:
triggering a
collection pauses
your application.

Some de-reference
common errors

Be careful wit the delete keyword. o = {x:"y"};
0.X;

"0" becomes an SLOW object. 0.X;

It is better to set "null". 0 = {x:"y"};

’

© O
X

Only when the last reference to
an object is removed, is that
object eligible for collection.

A word on "slow" objects

¢ V8 optimizing compiler makes assumptions on your code to make
optimizations.

® |t transparently creates hidden classes that represent your objects.

e Using this hidden classes, V8 works much faster. If you "delete"

properties, these assumptions are no longer valid, and the code is
de-optimized, slowing your code.

Fast Object Slow Object

FastPurchase(units, price) { SlowPurchase(units, price) {
this.units = units; this.units = units;
this.price = price; this.price = price;
this.total = 0; this.total = 0;
this.x = 1; this.x = 1;
} }
fast = new FastPurchase(3, 25); slow = new SlowPurchase(3, 25);

//x property is useless
//so | delete it
slow.x;

"fast" objects are faster . . ;
slow" should be using a smaller

memory footprint than "fast" (1
less property), shouldn't it?

REALITY: "sLow" IS using 15
times more memory

Constructor Distance Objects Count Shallow Size M€E!—v'|

» SlowPurchase 3 300001 31% 3600012 3% 127200104 89%

» FastPurchase 3 300001 31% 8400012 6% 8400104 6%

Timers

Timers are a very common source
of memory leaks.

Look at the following code: buggyObiject = {

callAgain: 0{
ref = this;
val = setTimeout(01
console.log('Called again: '
+ new Date().toTimeString());
ref.callAgain();
12 X
}
I

If we run: buggyObiject.callAgain();

With this we have a memory leak: Puggyopject=null

Closures

Closures can be another source of
memory leaks. Understand what

references are retained in the
closure.

And remember: eval is evil

var a = function () {
var largeStr =
new Array(1000000).join('x");
return function () {
return largeStr;
)i
3}

var a = function () {

var smallStr = "X/,

largeStr =
new Array(1000000).join('x");
return function (n) {
return smallStr;

h

30

var a = function () {
var smallStr = 'x,
largeStr =
new Array(1000000).join('x");
return function (n) {
eval("); //maintains reference to largeStr
return smallStr;
I
05

DOM leaks are bigger than you
think

body

!iiii%!

@
]

@
]

attleaf

When is the #tree GC?

var select = document.querySelector;
var treeRef = select("#tree");

var leafRef = select("#leaf");

var body = select("body");
body.removeChild(treeRef);

//#tree can't be GC yet due to treeRef
treeRef = null;

//#tree can't be GC yet, due to
//indirect reference from leafRef
leafRef = null;

/INOW can be #tree GC

#leaf maintains a reference to it's
parent (parentNode), and
recursively up to #tree, so only
when leafRef is nullified is the
WHOLE tree under #tree candidate
to be GC

Rules of thumb

Use appropiate scope

Unbind event listeners

Manage local cache

Better than de-referencing,
use local scopes.

Unbind events that are no
longer needed, specially if
the related DOM objects are
going to be removed.

Be careful with storing large
chunks of data that you are
not going to use.

Object Pools

Young generation GC takes about 10ms.
Maybe it is too much time for you:

Instead of allocating and deallocating
objects, reuse them with object pools.

Note: object pools have their own drawbacks
(for example, cleaning used objects)

Three key guestions

1. Are you using
too much memory?

2. Do you have
memory leaks?

3. Is your app GCing
too often?

Knowing your
arsenal

> performance.memory
Memorylnfo {
jsHeapSizeLimit: 793000000,
used]SHeapSize: 27600000,
total]SHeapSize: 42100000

}

the amount of memory that JavaScript
heap is limited to

the amount of memory that JavaScript
has allocated (including free space)

the amount of memory currently being
used

If usedJSHeapSize grows close
to jsHeapSizeLimit there is a risk of:

| mean...

He's Dead, Jim!

Something caused this webpage to be killed, either because the operating system
ran out of memory, or for some other reason. To continue, press Reload or go
to another page.

Learn more

Chrome DevTools

Ctri+Shift+l
Y

https://developers.google.com/chrome-developer-tools/

@& O O Developer Tools - http://closure-library.googlecode.com fsvn/trunk/closure/goog/de...

& = @ e G O A [TY

Elerments Resources Metwork Sources Timeline Profiles Audits Console

Sourc... | Content scripts [1N~ SN N Paused
¥ Watch Expressions + C

b Call Stack
» Scope Variables
¥ Breakpoints
position where the popup is al
DOM Breakpoints
XHR Breakpoints ik
Event Listener Breakpoints

trunk/closure/go...

useragent.js

Q O {2 Lo

Memory timeline

Elements Resources MNetwork Sources | Timeline | Profiles Audits Console Redirect PageSpeed Angular)S

== Events

il Frames

RECORDS
Event (focus)
B Recalculate Style
Event (mousedown)
® Paint (B4 x 28)
COUNTERS
B Document Count [1-1]
B DOM Node Count [49 - 49]

B Event Listener Count [21 - 21]

® Loading ¥ Scripting [Rendering § Painting 4 of 98 records shown

Memory Profiling

Taking snapshots

= Developer Tools - http://code.google.com/intl/de-DE/chrome/devtools/docs/heap-profiling.html

Elements Resources Metwork Scripts Timeline ' Profiles ' Audits Conzole Search Profiles

ct profiling type
HEAP SNAPSHOTS
Collect JavaScript CPU Profile

CPL fi ire the execution time |) s JavaScript
functions

Collect CS5S Selector Profile

<& Heap Snapshot

ea apshot profile w memory distribution among your page's JavaScript
objects and related DOM nodes

Reading your results
Summary

Elements Resources Network Sources Timeline | Profiles | Audits Console Redirect Angular)S PageSpeed

Profiles
Constructor Distance Objects Count Shallow Size “Retaine:

HEAP SNAPSHOTS » (compiled code) 3 5678 F 1290600 50 1801128

I » (array) 14307 1264912 2 1541632

. » (closure) 8960 322560 7% 1384460

> (system) 28965 2 597784 1338092

» Object 4740 4°¢ 82988 2 1117748

» Window / http://localhost:3000/exam... B 09 320 717 404

> Array 1691 27072 630380

20004 9 560136
16 359880 8%
16 0 200040 4%

16 112

12 0 104

32

32

2
2
2
2
1
2
2
2
2
2
3
4
4

Object's retaining tree

Object Retaine... -Bis-.ﬂ
vstringCache in Window / localhost:3000/example/3 @3 570140 1
12%

» global in @36587 276 0% 30860 2
1%

Summary ¥ All objects

EYE-CATCHING THINGS
IN THE SUMMARY

Distance:
distance from the GC root.
If almost all the objects of the same type
are at the same distance,
and a few are at a bigger distance,
that's something worth investigating.
Are you leaking the latter ones?

MORE EYE-CATCHING THINGS
IN THE SUMMARY

Retaining memory:
the memory used by the objects
AND
the objects they are referencing.
Use it to know where are you
using most of the memory.

A TIP ABOUT CLOSURES

It helps a lot to name the functions, so you easily distinguish between
closures in the snapshot.

function createLargeClosure() {
var largeStr = new Array(1000000).join('x');

var IC = function() { //this IS NOT a named function
return largeStr;

Ii;

return IC;

}

function createLargeClosure() {
var largeStr = new Array(1000000).join('x');
var IC = function IC() { //this IS a named function
return largeStr;
Ii;
return IC;

}

Constructor Distance Objects Co... Shallow Size]

¥ (closure) [2 [22371 14%| 805356 9099100 65%
p» function 1C() @143221 36 1000076 7%
e ver-pu— | 36 1000076 7%

ieclosures, js:8 36 1000076 7%
return largeStr; | 36 1000076 7%

36 1000076 7%

I , 36 1000076 7%
» function() @43927 . 36 21368 0%

Switching between
shapshots views

Summary: groups by constructor name
Comparison: compares two snapshots
Containment: bird's eye view of the object structure
Dominators: useful to find accumulation points

Understanding node colors

ptz Timeline ' Profiles

Retained Size
5852

1188

¥ Detached Tee

entri
>Detached 004 tree /27 2 o o

Object's retaining tree

»>
»>
»>
»>
»>
»>
»>
»>

Retained Si
HTMLDivElement
HTMLDivElement
HTMLDivElement
HTMLDivElement
HTMLDivElement
HTMLDivElement
HTMLDivElement
HTMLDivElement

Q @ © Summary % | All objects

MEUA: object has a JavaScript reference on it

@: detached node. Referenced from one
with yellow background

You can force GC from Chrome
DevTools

When taking a Heap Snapshot, it is automatically forced.
In Timeline, it can be very convenient to force a GC.

= Events

il Frames

RECORDS

@ Paint (1440 x 230)

B Paint (1440 x 230)

& Recalculate Style
Event (mousedown)

S Pmiee £ AR Y
COUNTERS

M Document Count [2 - 2]

Il DOM Node Count [65 - 5115
1

M Event Listener Count [2 - 2]

> Q @ O ¥ [= al ¥ [Loading ¥ Scripting Rendering B Painting 35 of 106 records shown

Memory leak pattern

Some nodes are not being collected:

Elements Resources Network Sources | Timeline | Profiles s Console

10.30s 12.02s 15.45s 17.17s

il Frames

RECORDS
@ Recalculate Style
Event (mousedown)
Paint (219 x 28)
@ Recalculate Style

10.30s

COUNTERS

Il Document Count [1-1]

Il DOM Node Count [33 - 173]

H Event Listener Count [1-1]

All ¥ @ Loading ¥ Scripting § Rendering [Painting 42 of 96 records shown

The 3 snapshot
technique

Rationale

Your long running application is in an
stationary state.

A Memory

0
A Time

Memory oscillates around a constant value.

(or has a constant, controlled, expected and justified growth).

What do we expect?

New objects to be constantly and
consistently collected.

Let's say we start from a steady
state:
Checkpoint #1

We do some stuff
Checkpoint #2

We repeat the same stuff
Checkpoint #3

Again, what should
we expect?

All new memory used between
Checkpoint #1 and Checkpoint #2
has been collected.

New memory used between Checkpoint #2 and
Checkpoint #3 may still be in use in Checkpoint
#3

The steps

e Open DevTools

e Take a heap shapshot #1

e Perform suspicious actions

e Take a heap shapshot #2

e Perform same actions again

e Take a third heap snapshot #3

e Select this snapshot, and select
"Objects allocated between
Shapshots 1and 2"

Elements Resources Network Sources Timeline Profiles | Audits Console

| Profiles
Nt Constructor Distance Objects ... Shallow Size Retained .
HEAP SNAPSHOTS » HTMLDivE lement 20 |
» HTMLDivE lement 20
Snapshot 1 v HTMLDivElement @55535 20
» nat : Detached DOM tree / 4 entries 0
Snapshot 2 »__proto__ :: HTMLDivElement @ 16

EE) Relils » HTMLDivE lement 20
20

! Snapshot 3 » HTMLDivE lement

1.4MB » HTMLDivElement 20
» HTMLDivE lement 20
» HTMLDivE lement 20

e UTMI NS BT Aamant an
Object's retaining tree

TV VU W W B W W W

Object Shallow Size Retained Slze Dista. &
v [37] in Array @44265 16 3952
> 1ea kedNodes in Wi 99191 40 20868
0 40

in HTMLDlvElement 5 20 60
in Text 655 20 20
20 20

Summary v Objects allocated between Snapshots 1 and 2v¥ ?

The 3 snapshot
technique

evolved

Simpler & more
powerful

but...
Do you
have Chrome
Canary installed?

Brand new feature:

Record Heap
Allocations

% Elements Resources Network Sources Timeline | Profiles | Audits Console AngularJS PageSpeed

Profiles

Select profiling type

Collect JavaScript CPU Profile
CPU profiles show where the execution time is spent in your page's JavaScript functions.
Collect CSS Selector Profile
/ how long the selector matching has taken in total and how m
hed DOM elements. The results are approximate due to

optimizations.

Take Heap Snapshot

Heap snapshot profiles show memory distribution among your page's JavaScript objects and related
DOM nodes.

Record Heap Allocations

Record JavaScript object allocations over time. Use this profile type to isolate memory leaks.

Start

Blue bars : memory allocations.
Taller equals more memory.

Grey bars : deallocated

% Elements Resources Network Sources Timeline | Profiles | Audits Console PageSpeed Angular]S

(ﬂ ‘ Profiles

HEAP TIMELINES

Snapshot 1
6.7 MB

Constructor Distance Objects C... Shallow Size
> (closure) 2 3 108 3000228
» system / Context 84 3000120

3
> (string) 4 3000036 3000036
(5]

» (comniled code) k64 2928

Object's retaining tree

Object Shallow Size Retained Size MI

Q @ 0O Summary v All objects v ? Selected size: 2.9 MB

Let's play!
You can get the code from:

https://github.com/gonzaloruizdevilla/debuggingmemory.git

Or you can use:

http://g00.9l/4SK53

Thank you!

gonzalo.ruizdevillagadesis.com
agruizdevilla

(btw, we are hiring!)

