
Finding	and	
debugging	

memory	leaks	in
JavaScript	with	

Chrome	DevTools



	

Gonzalo	Ruiz	de	Villa
@gruizdevilla

I	co-founded	&	work	@adesis

This	presentation	was	make	for	my
workshop	at	#spainjs	2013

$	whoami

$	aboutthis



What	is	a	memory
leak?



	Gradual	loss	
of	available	computer	memory	

when	a	program	
repeatedly	

fails	to	return	memory	
that	it	has	obtained	
for	temporary	use.



My	users	have	laptops
with	16GB	of	RAM.

So,	why	should	I	care?



Common	belief

More	memory	===	Better	performance



Reality

Memory	footprint	

is	strongly	correlated	with

increased	latencies	and	variance



Nothing	is	free:

(cheap	or	expensive)

you	will	always	pay	a		price		
for	the	resources	you	use



So,	let's	talk	about
memory



Think	of	memory	as	a	graph



Three	primitive	types:

Numbers	(e.g,	3.14159...)
Booleans	(true	or	false)

Strings	(e.g,	"Werner	Heisenberg")

They	cannot	reference	other	values.	
They	are	always	leafs	or	terminating	nodes.



Everything	else	is	an	"Object"

Objects	are	associative	arrays	(maps	or	dictionaries)

So,	the	object	is	composed	of	a	collection	of	(key,	value)	pairs



And	what	about
Arrays?

An	Array	is	an	Object	
with	numeric	keys.			



The	memory	graph	
starts	with	a	root

It	may	be	the	 	object	of	the	browser,	or
the	 	object	of	a	Node.js	module.

window
Global

You	don't	control	how	this	root	object	is	GC



What	does	get	GC?
Whatever	is	not	reachable	from	the	root.



Retaining	path
We	call	a	retaining	path	any	path	from	GC	roots	to	a	particular	object



Dominators

Node	1	dominates	node	2
Node	2	dominates	nodes	3,	4
and	6
Node	3	dominates	node	5
Node	5	dominates	node	8
Node	6	dominates	node	7



Some	facts	about	
the	V8	Garbage	Collector



Generational
Collector

Age	of	a	value

Young	Generation	

Old	Generation	

The	age	of	a	value:	number	of	bytes
allocated	since	it	was	allocated.	

Splited	in	two	spaces:	named	"to"	and
"from"
"to	space":	very	fast	allocation
filling	the	"to	space"	triggers	a
collection:	

"to"	and	"from"	swap	
maybe	promotion	to	old	generation
~10ms	(remember	60fps	->	~16ms)

Old	generation	collection	is	slow.



"To"	and	"From"	spaces



Remember:
triggering	a

collection	pauses
your	application.



	Some	de-reference
common	errors

Be	careful	wit	the	delete	keyword.

"o"	becomes	an	SLOW	object.

var	o	=	{x:"y"};	
delete	o.x;	
o.x;			//undefined

var	o	=	{x:"y"};	
o	=	null;	
o.x;			//TypeError

It	is	better	to	set	"null".
	

Only	when	the	last	reference	to
an	object	is	removed,	is	that
object	eligible	for	collection.



A	word	on	"slow"	objects
V8	optimizing	compiler	makes	assumptions	on	your	code	to	make
optimizations.

It	transparently	creates	hidden	classes	that	represent	your	objects.

Using	this	hidden	classes,	V8	works	much	faster.	If	you	"delete"
properties,	these	assumptions	are	no	longer	valid,	and	the	code	is
de-optimized,	slowing	your	code.



	

Fast	Object Slow	Object

"slow"	should	be	using	a	smaller
memory	footprint	than	"fast"	(1
less	property),	shouldn't	it?

function	SlowPurchase(units,	price)	{
				this.units	=	units;
				this.price	=	price;
				this.total	=	0;
				this.x	=	1;
}
var	slow	=	new	SlowPurchase(3,	25);
//x	property	is	useless	
//so	I	delete	it
delete	slow.x;	
				

"fast"	objects	are	faster

function	FastPurchase(units,	price)	{
				this.units	=	units;
				this.price	=	price;
				this.total	=	0;
				this.x	=	1;
}
var	fast	=	new	FastPurchase(3,	25);

	
				



REALITY:	"SLOW"	is	using	15
times	more	memory



Timers

Timers	are	a	very	common	source
of	memory	leaks.

Look	at	the	following	code:

If	we	run:
With	this	we	have	a	memory	leak:

var	buggyObject	=	{
	callAgain:	function	()	{
		var	ref	=	this;
		var	val	=	setTimeout(function	()	{
			console.log('Called	again:	'	
			+	new	Date().toTimeString());	
			ref.callAgain();
		},	1000);
	}
};

buggyObject.callAgain();
buggyObject	=	null;



Closures

Closures	can	be	another	source	of
memory	leaks.	Understand	what

references	are	retained	in	the
closure.	

And	remember:	eval	is	evil

	var	a	=	function	()	{	
		var	largeStr	=	
									new	Array(1000000).join('x');	
		return	function	()	{	
					return	largeStr;	
		};	
}();	

var	a	=	function	()	{	
				var	smallStr	=	'x',	
											largeStr	=	
																new	Array(1000000).join('x');	
			return	function	(n)	{	
						return	smallStr;	
			};	
}();	

var	a	=	function	()	{	
			var	smallStr	=	'x',
										largeStr	=	
														new	Array(1000000).join('x');	
				return	function	(n)	{	
								eval('');	//maintains	reference	to	largeStr
								return	smallStr;	
					};	
}();



	
DOM	leaks	are	bigger	than	you

think

When	is	the	#tree	GC?

#leaf	maintains	a	reference	to	it's
parent	(parentNode),	and
recursively	up	to	#tree,	so	only
when	leafRef	is	nullified	is	the
WHOLE	tree	under	#tree	candidate
to	be	GC

var	select	=	document.querySelector;
var	treeRef	=	select("#tree");
var	leafRef	=	select("#leaf");
var	body	=	select("body");
body.removeChild(treeRef);
//#tree	can't	be	GC	yet	due	to	treeRef
treeRef	=	null;
//#tree	can't	be	GC	yet,	due	to	
//indirect	reference	from	leafRef
leafRef	=	null;
//NOW	can	be	#tree	GC



E

Rules	of	thumb

Use	appropiate	scope

Unbind	event	listeners

Manage	local	cache

Better	than	de-referencing,
use	local	scopes.

Unbind	events	that	are	no
longer	needed,	specially	if
the	related	DOM	objects	are
going	to	be	removed.

Be	careful	with	storing	large
chunks	of	data	that	you	are
not	going	to	use.



Object	Pools
Young	generation	GC	takes	about	10ms.

Maybe	it	is	too	much	time	for	you:

Instead	of	allocating	and	deallocating	
objects,	reuse	them	with	object	pools.

Note:	object	pools	have	their	own	drawbacks	
(for	example,	cleaning	used	objects)



Three	key	questions
1.	 Are	you	using	
too	much	memory?

2.	 Do	you	have	
memory	leaks?

3.	 Is	your	app	GCing	
too	often?



Knowing	your
arsenal



Browser	Info

You	can	measure	how
your	users	are	using

memory.

You	can	monitor	their
activity	to	detect

unexpected	use	of
memory	

(only	in	Chrome)	

>	performance.memory
MemoryInfo	{
jsHeapSizeLimit:	793000000,
usedJSHeapSize:	27600000,
totalJSHeapSize:	42100000
}



jsHeapSizeLimit

usedJSHeapSize

totalJSHeapSize

the	amount	of	memory	that	JavaScript
heap	is	limited	to

the	amount	of	memory	that	JavaScript
has	allocated	(including	free	space)

the	amount	of	memory	currently	being
used



If	usedJSHeapSize	grows	close
to	jsHeapSizeLimit		there	is	a	risk	of:



I	mean...



Chrome	DevTools
Ctrl+Shift+I		

⌥⌘I
https://developers.google.com/chrome-developer-tools/



Memory	timeline



Memory	Profiling
Taking	snapshots



Reading	your	results
Summary



EYE-CATCHING	THINGS
IN	THE	SUMMARY

Distance:	
distance	from	the	GC	root.	

If	almost	all	the	objects	of	the	same	type	
are	at	the	same	distance,	

and	a	few	are	at	a	bigger	distance,	
that's	something	worth	investigating.	

Are	you	leaking	the	latter	ones?



MORE	EYE-CATCHING	THINGS
IN	THE	SUMMARY

Retaining	memory:
the	memory	used	by	the	objects	

AND	
the	objects	they	are	referencing.
Use	it	to	know	where	are	you	
using	most	of	the	memory.



A	TIP	ABOUT	CLOSURES

It	helps	a	lot	to	name	the	functions,	so	you	easily	distinguish	between
closures	in	the	snapshot.

function	createLargeClosure()	{
				var	largeStr	=	new	Array(1000000).join('x');
				
				var	lC	=		function()	{	//this	IS	NOT	a	named	function
								return	largeStr;
				};
				return	lC;
}

function	createLargeClosure()	{
				var	largeStr	=	new	Array(1000000).join('x');
				var	lC	=	function	lC()	{	//this	IS	a	named	function
								return	largeStr;
				};
				return	lC;
}

				



Switching	between
snapshots	views

Summary:	groups	by	constructor	name
Comparison:	compares	two	snapshots

Containment:	bird's	eye	view	of	the	object	structure
Dominators:		useful	to	find	accumulation	points



Understanding	node	colors

	
	Yellow	:		object	has	a	JavaScript	reference	on	it

	Red	:	detached	node.	Referenced	from	one	
with	yellow	background



You	can	force	GC	from	Chrome
DevTools

When	taking	a	Heap	Snapshot,	it	is	automatically	forced.
In	Timeline,	it	can	be	very	convenient	to	force	a	GC.



Memory	leak	pattern
Some	nodes	are	not	being	collected:



The	3	snapshot
technique



Rationale

Your	long	running	application	is	in	an
stationary	state.

Memory	oscillates	around	a	constant	value.

(or	has	a	constant,	controlled,	expected	and	justified	growth).



What	do	we	expect?

New	objects	to	be	constantly	and
consistently	collected.	



Let's	say	we	start	from	a	steady
state:

Checkpoint	#1

We	do	some	stuff
Checkpoint	#2

We	repeat	the	same	stuff
Checkpoint	#3



Again,	what	should
we	expect?

All	new	memory	used	between
Checkpoint	#1	and	Checkpoint	#2

has	been	collected.

New	memory	used	between	Checkpoint	#2	and
Checkpoint	#3	may	still	be	in	use	in	Checkpoint

#3



The	steps
Open	DevTools
Take	a	heap	snapshot	#1
Perform	suspicious	actions
Take	a	heap	snapshot	#2
Perform	same	actions	again
Take	a	third	heap	snapshot	#3
Select	this	snapshot,	and	select
"Objects	allocated	between	
Snapshots	1	and	2"





The	3	snapshot
technique	
	evolved	



Simpler	&	more
powerful
but...
Do	you

have	Chrome
Canary	installed?



Brand	new	feature:

Record	Heap
Allocations





	Blue	bars	:	memory	allocations.
Taller	equals	more	memory.
	Grey	bars	:	deallocated



Let's	play!
You	can	get	the	code	from:

https://github.com/gonzaloruizdevilla/debuggingmemory.git

Or	you	can	use:

http://goo.gl/4SK53



Thank	you!
gonzalo.ruizdevilla@adesis.com

@gruizdevilla

(btw,	we	are	hiring!)


