
CommonJS

Draft of Standards-Track Draft Proposal for Specification

Endorsed by Nobody

Last Update
January 13, 2011

Editors
Wes Garland,
wes@page.ca

Florian Traverse,
florian.traverse@atosorigin.com

Another Name Here,
local-part@domain

Another Name Here,
local-part@domain

Modules/2.0

1.INTRODUCTION...3
1.1 Scope...3
1.2 Conformance..3
1.3 Goals..4
1.4 Modules/2.0 Name...5
1.5 Definitions...6

2.THE COMMONJS ENVIRONMENT..7
2.1 The CommonJS Module System..7
2.2 Characteristics of all modules...7
2.3 Characteristics of the Main Module...7
2.4 Concurrency Model...8
2.5 ECMAScript Language Conformance...8

3.COMMONJS MODULES...9
3.1 Module Declaration...9
3.2 Module Code Section..10
3.3 Module Identifiers..12
3.4 Module Factory Functions...12
3.5 Dependency Arrays...13
3.6 Module Providers..13
3.7 Extra-Module Environment...14

4.MODULE NAMESPACE...14
4.1 module.declare ([], f)...14
4.2 module.provide ([], f)...15
4.3 module.id...15
4.4 module.main...15
4.5 module.dependencies..15
4.6 module.load (s, f)..16
4.7 module.eventually (f)...16
4.8 module.constructor ()..16
4.9 module.uri..17

5.REQUIRE NAMESPACE..18
5.1 require (s)...18
5.2 require.paths...18
5.3 require.id (s)...18
5.4 require.uri (s)..19
5.5 require.memoize (s, [], f)..19
5.6 require.isMemoized (s)..19
5.7 require.main..19

6.BOOTSTRAPPING..20
6.1 Generic Scripting Host Environments..20
6.2 UNIX® File Interpreters (“she-bang”)...20
6.3 HTML or XHTML Document...21

7.SAMPLE MODULES..22
7.1 Generic Modules..22
7.2 Main Modules..22

8.SPECIAL THANKS...23

Page 2 of 23

1. Introduction
This CommonJS specification draws together the highly successful and widely-deployed
Modules/1.0 through Modules/1.1.1 specifications, three years of implementation expertise on a
variety of host environments, and ideas from the CommonJS Mailing List and IRC Channel. This
specification is a super-set of Modules/Wrappers, and also draws ideas from the following
proposals:

• CommonJS Asynchronous Module Definition (implemented in RequireJS, Dojo, Nodules,
and Transporter)

• CommonJS Async/A (implemented in Yabble)

• CommonJS Transports/D (implemented in RequireJS and Yabble)

• CommonJS Loaders/B

• ECMAScript.org strawman:modules_primordials

• ECMAScript.org strawman:simple_modules

This document attempts to guide runtime implementations toward CommonJS environment
interoperability, and provides guidelines for users wanting to write portable CommonJS modules
and programs.

Note

Section 1. of this document is non-normative.

1.1 Scope
This document describes the CommonJS environment and module authoring format. Environment
bootstrapping and main module loading are not specified in this document, however
recommendations are made to guide implementers.

1.2 Conformance
An execution environment conforming to this specification must provide the CommonJS
environment as described, execute modules with the described semantics, and implement all APIs
in this specification. Some APIs in this specification have formal methods for indicating that they
are not supported in a particular environment. Indicating lack of support for these APIs is sufficient
to achieve conformance.

A conformant environment may include extra APIs, short hand notation, alternate module loading
mechanics and various optimizations. This specification does not limit the functionality of
conformant environments, except to insure that all APIs described are implemented.

Modules which claim conformance with this specification must not make use of features or
interfaces which are not described in ECMAScript-262 Edition 3 or this specification without first
feature-testing their availability, or taking alternative steps to insure said features are available to
the host environment.

Conformant environments are not limited to running only conformant modules.

Page 3 of 23

1.3 Goals
Primary Goals

This specification attempts to define a non-restrictive CommonJS environment suitable for use by
web pages, web browsers, GUI toolkits, application servers, batch systems programming,
application-embedded ECMAScript, and other host environments by addressing the following
issues:

• Creation of a single module authoring format that can be supported on all conformant
ECMAScript environments, having the following characteristics

• Able to maintain Securable Modules properties

• Interoperable with Modules/1.1 in the same CommonJS Environment

• Trivial to convert Modules/1.1 modules to Modules/2.0 format

• Specification of dependencies without the need for static analysis, including support for
computed dependencies, without restricting the host environment’s concurrency model

• More rigorous definition of the CommonJS Environment

• To clarify the availability and role of main modules (“program modules”)

• To enable the ‘return exports’ idiom

• To clarify the scope of the ‘require’ symbol, such that it may be used to share a module’s
authority

• To adjust the scope chain definition from module code downward (toward the global
object) in a way which is compatible with other module standards under consideration by
ECMA TC-39.

Secondary Goals

Note: Both “Primary” and “Secondary” goals will be merged into a
“Goals” section as this document makes it’s way through the draft /
ratification process.

• To enable end-user or plug-in patching of the CommonJS Environment in a uniform
manner across all platforms which support this functionality, and to provide a means to
detect whether or not a given CommonJS environment supports it

• To enable the replacement of the exports object with an alternate object, including
Function objects.

• More rigorous definition of the CommonJS Environment

• To make uniform recommendations for program bootstrapping

• To standardize an API for explicit lazy-loading of modules

Page 4 of 23

1.4 Modules/2.0 Name
This specification intends to signal to module developers which standard they should adhere to
when developing modules for the widest possible distribution. Calling this specification “2.0”
identifies it in a way which will encourage existing implementations to add this functionality.

While this proposal is effectively “Securable Modules” at it’s core, it is not a trivial variant. The group
of CommonJS Environments implementing this specification will have at their intersection a more
functional core.

Version numbers are also used to signal compatibility; modules written in this idiom are not
compatible with platforms supporting Modules/1.1. Additionally, this specification does not require
that platforms supporting this specification are able to execute Modules/1.1 modules. As such, a
source-compatibility barrier exists that warrants a major version increase.

Page 5 of 23

1.5 Definitions

Note
This table is non-normative.

CommonJS environment The execution environment described in §2 of this
specification

Host environment The underlying ECMAScript environment, upon which the
CommonJS environment is built

Module Stand-alone code unit

To provide a module Make a module available for use such that referencing
its exports or initializing it is possible without blocking

To load a module To fetch the source code of a module from a resource

Resource File, database entry, etc, which may contain module
source code

module identifier A non-unique string which, in conjunction with its calling
environment, identifies a unique module

module.id A unique string which canonically identifies a particular
module

Page 6 of 23

2. The CommonJS Environment
The CommonJS Environment consists of an ECMAScript execution environment embedded in an
application such as a web browser or scripting host, known as the host environment.

In an addition to the ECMAScript interpreter, the CommonJS environment provides a facility for
loading and executing ECMAScript known as the CommonJS module system, and bootstrapping
facilities that allow us to initialize and execute CommonJS scripts.

2.1 The CommonJS Module System
The CommonJS module system performs three main tasks:

2.1.1 Provide modules to the environment and memoize their exports

2.1.2 Resolve dependencies between modules

2.1.3 Allow scripts to access properties exported from modules which have been provided
to the environment

2.2 Characteristics of all modules
All modules in the in the CommonJS Environment:

2.2.1 Have a unique require function object.

2.2.2 Have a unique exports object.

2.2.3 Have a unique module object with a unique module.id.

2.2.4 Behave as singletons. This means that two calls to require() which reference the same
module’s exports must return the same object.

2.2.5 Do not affect the scope chain of other modules.

2.3 Characteristics of the Main Module
The main module, sometimes called the “program module” in server-side environments, consists of
the module initially executed by the CommonJS Environment.

The main module has the same characteristics as any other module, however since it is loaded via
environment-specific facilities (rather than the require() function), it is not always possible to know
the name of the resource providing the main module. Environments that cannot determine the
name of the main module may set its module.id to the empty string.

Examples of environment-specific modules include code found inside <SCRIPT> tags embedded
directly in an HTML document, or code below the she-bang (#!) line of a script launched via the
UNIX® exec() system call. Conforming environments may also provide a way to execute arbitrary
resources as the main module.

2.3.1 The main module has the same characteristics as other modules, except

2.3.1.1 The main module’s factory function is invoked before any other module,
through environment-specific means

Page 7 of 23

2.3.2 If the main module cannot be referenced via other APIs in this specification, it may
use the empty string as its module.id.

Only zero or one main modules per instance of the CommonJS Environment are permitted.

2.4 Concurrency Model
Conformant CommonJS environments may be implemented in a variety of concurrency models.
This specification does not mandate any particular concurrency model, however it does
differentiate in places between event-loop systems and other systems. This differentiation is made
such that module authors do not need to be aware of the underlying concurrency model when
writing conformant modules.

2.5 ECMAScript Language Conformance
The host environment must conform to ECMA-262 Edition 3 or ECMA-262 Edition 5. Host
environments conforming to ECMA-262 Edition 3 must supply shims to emulate Edition 5 wherever
possible.

Modules conforming to this specification must be written to target the subset of Edition 5 that can
be implemented by shimming Edition 3.

The mandatory Edition 5 interfaces are:

Interface ECMA 262 Edition 5 §

Array.isArray 15.4.3.2

Array.prototype.indexOf 15.4.4.14

Array.prototype.lastIndexOf 15.4.4.15

Array.prototype.every 15.4.4.16

Array.prototype.some 15.4.4.17

Array.prototype.forEach 15.4.4.18

Array.prototype.map 15.4.4.19

Array.prototype.filter 15.4.4.20

Array.prototype.reduce 15.4.4.21

Array.prototype.reduceRight 15.4.4.22

Object.getPrototypeOf 15.2.3.2

Object.getOwnPropertyDescriptor 15.2.3.3

Object.getOwnPropertyNames 15.2.3.4

Object.create 15.2.3.5

Object.defineProperty 15.2.3.6

Page 8 of 23

Object.defineProperties 15.2.3.7

Object.seal 15.2.3.8

Object.freeze 15.2.3.9

Object.preventExtensions 15.2.3.10

Object.isSealed 15.2.3.11

Object.isFrozen 15.2.3.12

Object.isExtensible 15.2.3.13

Object.keys 15.2.3.14

Date.now 15.9.4.4

Date.prototype.toISOString 15.9.5.43

Date.prototype.toJSON 15.9.5.44

Function.prototype.bind 15.3.4.5

String.prototype.trim 15.5.4.20

JSON 15.12

3. CommonJS Modules
A CommonJS module code section is the group of expressions contained within a module factory
function. Any series of ECMAScript expressions that can be parsed as an ECMAScript
FunctionBody may be used as a module code section.

CommonJS module code sections defined in this specification are virtually identical to modules in
the CommonJS Modules/1.1.1 specification; that specification is largely embedded into §3.2 and
§3.3 of this document.

CommonJS modules may be stored as any type of resource, including local files, remote URLs,
database entries, and so on. The storage mechanism of a module is relevant only to the
environment’s built-in module provider and not to any consumer.

3.1 Module Declaration
3.1.1 Modules are declared with a call to module.declare(), which accepts an optional

dependency array and a module factory function

3.1.1.1 If the first argument is a function, the module is treated as though it has inferred
dependencies.

3.1.1.2 If the first argument is not a function, then it is treated as the dependency
array.

Page 9 of 23

3.1.1.3 Conformant environments must process the dependency array when it is
present.

There is no requirement to process inferred dependencies, however the CommonJS environment
may infer dependencies through any means the platform authors feel is appropriate, such as
performing static analysis on the module code body to identify calls to require().

3.1.2 Modules are declared with a call to module.declare, which accepts as one of its
parameters a module factory function.

3.1.3 Module factory functions contain module code sections.

3.1.4 Module code sections which are also valid CommonJS Modules/1.1.1 modules must
behave as though the contained module were executed in a CommonJS
Modules/1.1.1 environment.

3.1.5 Resources (e.g. files) which provide modules must do so with a single ECMAScript
SourceElement (see: ECMA-262 section 14)

3.1.6 This SourceElement is written in source format without a trailing semi-colon.

3.1.7 The module provider may throw an exception when multi-SourceElement resources
or trailing semi-colons are encountered.

3.1.8 The module factory function accepts the arguments require, exports, and module,
returning either nothing (undefined) or an alternate exports object.

3.1.9 The module provider satisfies all dependencies before the module is provided to the
environment.

3.1.10 The exports object is memoized by the module provider (made available to
require) before the module factory function is invoked.

Notes

The single-SourceElement rules written to allow validation of module
resources by surrounding the module declaration with parentheses and
invoking eval(), and to ease composition of resources for transporting
multiple modules inside an ECMAScript Object or Array literal.

The exports object memoization step in 2.4.9 is necessary for the correct
resolution of transitive and circular dependencies, and is consistent with
Modules/1.0.

3.2 Module Code Section
This section addresses how module code sections should be written in order to be interoperable
among a class of module systems that can be both client and server side, secure or insecure,
implemented today or supported by future systems with syntax extensions.

These modules are offered privacy of their top scope, facility for importing singleton objects from
other modules, and exporting their own API. By implication, this specification defines the minimum
features that a module system must provide in order to support interoperable modules.

3.2.1 In a module code section, there is a free variable require, that is a Function object.

Page 10 of 23

3.2.1.1 The require function accepts a module identifier.

3.2.1.2 require returns the exported API of the foreign module.

3.2.1.3 If there is a dependency cycle, the foreign module may not have finished
executing at the time it is required by one of its transitive dependencies; in this
case, the object returned by require must contain at least the exports that the
foreign module has prepared before the call to require that led to the current
module's execution.

3.2.1.4 If the requested module cannot be returned, require must throw an error.

3.2.2 The require function may have a main property which represents the top-level
module object of the program. This property must be referentially identical to the
module object of the main program.

Deprecation

This property is deprecated, but included for backwards compatibility
with Modules/1.1.1.

3.2.2.1 The require function may have a paths attribute, defined in §5.2

3.2.2.2 The paths property must not exist in sandbox (a secured module system).

In a module code section, there is a free variable called exports, that is an object that the
module may add its API to as it executes.

3.2.2.3 Modules must use the exports object as the only means of exporting, except
during module initialization

3.2.2.4 During module initialization, modules may return an alternate exports value,
which may be an object or a function object

3.2.2.5 Conformant modules which return alternate exports may not invoke the require
function during module initialization

3.2.3 In a module code section, there must be a free variable module, that is an Object.

3.2.3.1 The module object must have a id property that is the top-level "id" of the
module. The id property must be such that require(module.id) will return the
exports object from which the module.id originated. (That is to say module.id
can be passed to another module, and requiring that must return the original
module). When feasible this property should be read-only, don't delete.

3.2.3.2 The module object may have a uri String that is the fully-qualified URI to the
resource from which the module was created. The uri property must not exist
in a sandbox.

Deprecation

This property is deprecated, but included for backwards compatibility
with Modules/1.1.1.

Page 11 of 23

3.3 Module Identifiers
3.3.1 A module identifier is a String of "terms" delimited by forward slashes.

3.3.2 A term must be a series of one or more module identifier characters, ".", or "..".

3.3.2.1 module identifier characters are the set of lowercase characters, numbers, the
underscore character, the dash character, and the period.

3.3.3 Module identifiers must not have file-name extensions like ".js".

3.3.4 Module identifiers may be "relative" or "top-level". A module identifier is "relative" if the
first term is "." or "..".

3.3.5 Top-level identifiers are resolved off the conceptual module name space root.

3.3.6 Relative identifiers are resolved relative to the identifier of the module for which
"require" was instantiated.

3.4 Module Factory Functions
3.4.1 Module factory functions contain the module code sections.

Each module factory function accepts as its first three arguments require, exports, and module.

3.4.1.1 Conformant modules will spell the arguments out in full – require, exports,
module.

Page 12 of 23

3.5 Dependency Arrays
3.5.1 Module dependencies are formally described with a dependency array.

3.5.2 Dependency arrays contain only String or Object values.

3.5.3 It is not required that the dependency array in a module declaration be an array
literal.

3.5.4 Each array element which is a String value represents a dependency upon a
module whose exports may be referenced by passing the array element as an
argument to require() from within the module code section, ignoring masking
conflicts with labeled dependencies.

3.5.5 Each array element which is an object contains one or more labeled dependencies

3.5.5.1 Each labeled dependency object has ownProperties whose values are
treated the same way as strings values in the dependency array.

3.5.5.2 Each label (ownProperty name) represents a name which can be used by
require() to reference the dependent module’s exports from within the module
code body.

3.5.5.3 Labeled dependency names that conflict with other module identifiers have
precedence.

3.5.5.4 Labeled dependencies must not affect module name resolution in other
modules.

3.5.6 There is no limit on the number of dependencies specified in the dependencies array,
nor the number of dependencies specified in a labeled dependency object.

3.5.7 A reference to the dependency array is made available to the module as
module.dependencies. If the module was declared without a dependency array,
this value is undefined.

3.6 Module Providers
The term “module provider” describes a facility which loads modules and module dependencies
into the CommonJS environment so that their exports can be referenced by a call to require().

Module provider plug-ins are possible with this specification, allowing third parties to create module
providers that extend the base functionality of the CommonJS environment. These plug-ins, which
are defined by overriding properties on module.constructor.prototype, use calls in the require
namespace to notify the CommonJS environment of newly-provided modules. Executing the
module factory function is left to the CommonJS environment.

Page 13 of 23

Notes

A conforming environment may use a just-in-time-provide optimization
which delays loading and providing of modules until their exports are
referenced by require.
A conforming environment may also use the all-module-provide
optimization, which behaves as though the main module depends on all
possible modules.
Most current Modules/1.1 CommonJS environments implement both
these optimizations, as they were implied in Modules/1.0.

3.7 Extra-Module Environment
Conformant CommonJS platforms may provide a mechanism to execute ECMAScript code
outside of any module’s context.

This extra-module environment, which typically (but not necessarily) uses the global object as its
lexical scope,

3.7.1 Has a free variable named module, which is an object that has the same constructor
as the module object visible from any CommonJS module, except that

3.7.1.1 This module object has an undefined id property

3.7.2 Has a free variable named require which behaves exactly the same as the require
function made available to any module, except that

3.7.2.1 relative module identifiers are undefined

3.7.2.2 The main module in an HTML page is typically, but not necessarily, declared by
module.declare, executed from the extra-module environment. See §6
Bootstrapping , for further details.

4. Module Namespace
The module object, available in every module in every CommonJS environment, acts as a
namespace for module- and module-system information which do not impact the securability of
the module system.

This namespace, in conjunction with the require namespace, exposes sufficient detail about the
underlying module system implementation to allow CommonJS users to modify the underlying
behavior of the module system. These modifications may then implement alternative module
formats, storage mechanisms, package systems, etc, on top of this specification, by overriding
either properties of the local module object, or module.constructor.prototype.

4.1 module.declare ([], f)
This function wraps the module’s dependencies and factory function into a unit, accepting as
parameters an optional array of dependencies and the module factory function.

Page 14 of 23

Environments that support module provider plug-ins must resolve dependencies via
module.provide when module.provide is not set to the environment’s default value (i.e. it has
been overridden by a plug-in).

See §3.1 for further details.

4.2 module.provide ([], f)
This function accepts a dependency list and a callback function. It satisfies the dependencies by
providing them to the environment (eventually invoking module.declare), and then invokes an
optional callback. The dependency list format is described in §3.5.

This function

4.2.1 Iterates over the list of dependencies in no particular order

4.2.2 Ignores dependencies which have already been provided to the environment

4.2.3 Loads each dependent module and invokes it (executes module.declare)

4.2.3.1 This step must be implemented with module.load if the load property of this
module object differs from the environment’s default value, and the
environment supports module provider plug-ins.

4.2.3.2 There is no restriction with respect to parallel loading, or interleaving of
operations.

4.2.4 Determines the dependencies of all dependent modules, recursively, and provides
those as well.

4.2.5 Once the dependencies have all been provided to the environment, the callback
function is invoked.

4.2.6 Alternate implementations of module.provide (i.e. those which are part of a plug-In)
must invoke the callback function with module.eventually.

4.3 module.id
4.3.1 Uniquely identifies a module.

4.3.2 require(module.id) must return this module’s exports object.

4.3.3 Is referentially identical to require.id(module identifier).

4.4 module.main
4.4.1 Is a reference to the main module’s exports object.

4.5 module.dependencies
4.5.1 module.dependencies is a reference to the module’s dependency declaration

array.

4.5.2 This array is informative only: modification of this array has no effect on the module
once the module has been provided to the environment.

Page 15 of 23

4.6 module.load (s, f)
4.6.1 This function exists to provide a hook into the module loading process for a module

provider plug-in. It is typically invoked by module.provide.

4.6.2 When defined, this function

4.6.2.1 Accepts a module identifier and a callback function.

4.6.2.2 Fetches the source code to the named module.

4.6.2.3 Causes the module’s source code (module.declare statement) to be
evaluated.

4.6.2.4 Invokes the callback.

CommonJS environments that do not support module provider plug-ins must set this property to
false. Module provider plug-ins should test this property during initialization to determine if the
environment supports plug-ins.

4.7 module.eventually (f)
This function exists to bridge the gap between CommonJS environments that are built on event
loops, and those that are not, for the purposes of writing module provider plug-ins. This function
accepts a callback function, and causes it to be invoked - eventually.

CommonJS environments built on event loops may invoke the callback function directly, or place
the callback in the underlying environment’s event loop.

CommonJS environments which are not built on event loops must place the callback on a
pending event list.

If the CommonJS program terminates due to an uncaught exception, no callbacks are invoked.
When the CommonJS program terminates normally:

4.7.1 All callbacks are invoked

4.7.2 Callbacks are invoked in first-in, first-out order

4.7.3 Callbacks are invoked using the main module’s global object

4.7.4 Callbacks may use module.eventually to add callbacks to the end of the list

4.7.5 The behavior of the CommonJS environment is not defined if invoking a callback
yields an uncaught exception

4.8 module.constructor ()
4.8.1 Is provided automatically by the host environment, via inheritance from Object.

4.8.2 Is the constructor used to create all module objects in a given CommonJS
environment.

4.8.3 Is not Object.

4.8.4 module.constructor and any of its properties, including
module.constructor.prototype, may be frozen in a secure environment.

Page 16 of 23

4.8.5 Overriding properties of module.constructor.prototype is the correct way to
implement a module provider.

4.9 module.uri
This property is deprecated and the name reserved for CommonJS Modules/2.0 environments
wishing to provide backwards compatibility with Modules/1.1.1 modules using this feature.

Page 17 of 23

5. Require Namespace
The require symbol acts as both a function and a namespace object for providing authoritative
information about the CommonJS environment. A unique instance of require is provided for each
module. Modules may pass require objects to other modules in order to hand off their authority.

All knowledge about the CommonJS environment and the underlying host environment, as it
pertains to the module system, is encapsulated in this namespace.

Secure environments must implement require as a frozen function with read-only, don’t-delete
properties.

5.1 require (s)
When invoked as a function, require()

5.1.1 Accepts a module identifier and returns a module’s exports.

5.1.2 If a module has been provided to the environment, but the module’s factory function
has not been executed, the factory function is executed before the call returns

5.1.3 If a module has not been provided to the environment, require() must throw an
exception

5.1.3.1 It is acceptable, but not required, for the CommonJS environment to make an
attempt to provide the module during the require call. This is the just-in-time
provide optimization discussed in §3.5.

5.1.4 If a passed module identifier refers to a labeled dependency (see §3.5), this reference
takes precedence over the method of locating module exports described in §3.2.

5.2 require.paths
5.2.1 Environments that do not support searchable module paths must not set this property.

5.2.2 Environments which support searchable modules paths must set this property to an
object which is an Array.

5.2.3 The require.paths array contains a list of canonical pathnames which are
searched, in order, when resolving a non-relative module identifier

5.2.4 The environment may search additional paths, before or after, the paths specified in
require.paths

5.2.5 Replacing require.paths has undefined behavior; modules should use Array
methods such as push, pop, shift, or unshift paths to adjust the array.

5.2.6 require.paths is referentially identical for all modules in the environment

5.3 require.id (s)
5.3.1 This function accepts as its argument a module identifier, returning the corresponding

canonical module.id

5.3.2 require(require.id(name)) is equivalent to require(name)

Page 18 of 23

5.3.3 Can be used to generate canonical module.id values for modules which have not
yet been provided to the environment

5.4 require.uri (s)
This interface provides information to module provider plug-ins wishing to override portions of the
default module provider, for example, by replacing module.load.

5.4.1 This function accepts as its argument a module identifier or module identifier path,
returning a URI as a String which canonically identifies the resource.

5.4.2 When the passed argument contains path separators, the final portion of the
argument remains the same.

5.4.3 There is no requirement that any module S retrieved from the location given by
require.uri(S) have module.uri === require.uri(S).

5.4.4 There is no restriction on the protocol indicated by the URI; local inventions are
permitted.

5.5 require.memoize (s, [], f)
This interface allows module provider plug-ins a way to provide modules to the environment.

5.5.1 This function accepts as its arguments a canonical module.id, dependency array,
and module factory function.

5.5.2 If the module has already been provided, an exception is thrown.

5.5.3 Once this call completes, the module has been provided; i.e. a subsequent call to
require(s) will not throw an exception.

5.6 require.isMemoized (s)
This interface allows module provider plug-ins a way to determine if a module has already been
provided to the environment, e.g. to eliminate duplicate server requests when resolving
dependencies. This function :

5.6.1 Accepts as its arguments a canonical module.id.

5.6.2 Returns true if the module has already been provided; false otherwise.

5.7 require.main

Deprecation

This property is deprecated and the name reserved for environments
wishing to provide backwards compatibility with Modules/1.1.1 modules
using this feature.

5.7.1 See §3.2.

Page 19 of 23

6. Bootstrapping
Bootstrapping refers to process of initializing the CommonJS environment, loading the main
module, and invoking the main module’s factory function.

As bootstrapping is necessarily non-uniform across environments, this section of the specification
exists only in the form of recommendations. Conformant CommonJS environments are not required
to implement and of the recommendations in this section.

The section recognizes the existence of a CommonJS environment argument vector, but does not
specify how it accessed.

6.1 Generic Scripting Host Environments
This environment is the simplest type of “server-side” CommonJS installation. Module resources are
files on the local filesystem, and the CommonJS environment is invoked like any other program in
the host environment.

It is recommended that a scripting host passed a single argument treat that argument as the
filename of a program module.

It is recommended that arguments after a “--” argument be treated as the CommonJS
environment’s argument vector.

It is recommended that relative require calls from the main module are loaded relative to the
directory given by the main module’s filename.

It is recommended that host-environment files storing CommonJS modules end with “.js”.

6.2 UNIX® File Interpreters (“she-bang”)
This environment is very similar to the scripting host environment, except that rather than using the
host operating system to run the scripting host, the user runs CommonJS program directly.

To loosely recap the UNIX model, the file containing the script has execute permissions, telling the
operating system that it should load and run it via the exec() system call. When exec() loads the
file, it discovers that the script starts with the characters “#!”, and so parses the rest of the first line
to determine the name of the file interpreter. This file interpreter is then invoked by the operating
system, which is passed the name of the script to run, along with the script’s argument vector.

It is recommended that during the build or install phases of the CommonJS environment, that
environments supporting a UNIX file interpreter offer to create a symbolic link named “commonjs”
on the user’s path which points to the file interpreter. This will allow users interested in creating
portable executable programs written in CommonJS to begin their scripts with the
“#! /usr/bin/env commonjs” prologue.

It is recommended that script line numbers reported by the CommonJS environment conform to
actual line numbers in the file. This means that the line beginning with “#!” is line one and the
ECMAScript program begins on line two. An easy way to achieve this behavior is to instruct the host
ECMAScript environment to begin parsing the script when the script’s file pointer is advanced such
that the next character read from the file is the first new-line character in the file.

Page 20 of 23

It is recommended that the argument vector passed by the exec() system call to the file
interpreter is treated as the CommonJS environment’s argument vector.

It is recommended that relative require calls from the main module are loaded relative to the
directory given by the main module’s filename.

It is recommended that host-environment files storing CommonJS modules end with “.js”.

6.3 HTML or XHTML Document
This environment is similar to the UNIX file interpreter environment in that a non-ECMAScript
preamble is necessarily part of the same resource as the main module.

It is recommended that host-environment URIs storing CommonJS modules end with “.js”.

It is recommended that the main module has the empty-string module.id, and is declared inline in
a <SCRIPT> tag.

It is recommended that the environment encourage users to place the <SCRIPT> tag which loads
the CommonJS environment as close to the top of the <HEAD> section in the document as
possible, so that the CommonJS extra-module environment is available as soon as possible.

It is recommended that the environment implement a variation of the following algorithm (courtesy
Kris Zyp) to determine the module id when modules are loaded via <SCRIPT> tags by examining
the SRC attribute at runtime :

• In non-IE browsers, the onload event is sufficient, it always fires immediately after the script
is executed.

• In IE, if the script is in the cache, it actually executes *during* the DOM insertion of the
script tag, so you can keep track of which script is being requested in case
module.declare() is called during the DOM insertion.

• In IE, if the script is not in the cache, when module.declare() is called you can iterate
through the script tags and the currently executing one will have a script.readyState
== "interactive".

Note

As of this writing, “IE” refers to Microsoft Internet Explorer versions 6
through 8. It is anticipated that Internet Explorer 9 will behave the same
as the other browsers on the market.

Page 21 of 23

7. Sample Modules
7.1 Generic Modules

Sample Module: math.js
module.declare(function(require, exports, module) {
 exports.add = function() {
 var sum = 0, i = 0, args = arguments, l = args.length;
 while (i < l) {
 sum += args[i++];
 }
 return sum;
 }
})

Sample Module: increment.js
module.declare(['math'], function(require, exports, module) {
 var add = require('math').add;
 exports.increment = function(val) {
 return add(val, 1);
 };
})

7.2 Main Modules

Sample Main Module, generic scripting hosting environment: program.js
module.declare(["increment"], function(require, exports, module) {
 var inc = require('increment').increment;
 var a = 1;
 inc(a); // 2

 // module.id === "program"
})

Sample Main Module, UNIX file interpreter idiom: program.js
#! /usr/bin/env commonjs
module.declare(["increment"], function(require, exports, module) {
 var inc = require('increment').increment;
 var a = 1;
 inc(a); // 2

 // module.id === "program"
})

Sample Main Module, HTML document environment
<HTML>
 <HEAD>
 <SCRIPT type="text/javascript">
 module.declare(["increment"], function(require, exports, module) {
 var inc = require('increment').increment;
 var a = 1;
 inc(a); // 2

Page 22 of 23

 // module.id === ‘’
 })
 </SCRIPT>
 </HEAD>
 <BODY onload="module.provide(['increment'], program)">
 </BODY>
</HTML>

8. Special Thanks
This specification would not be possible with the work of dozens of people; enumerating
everyone’s contribution would be a non-trivial task. We’d like to take this opportunity to thank a
few key people, and hope we haven’t left anyone out:

• Kevin Dangoor for getting the ServerJS/CommonJS ball rolling

• Ihab Awad, Kris Kowal for Securable Modules

• Kris Zyp, James Brantly for research in browser-side module systems

• Dean Landolt for helping to discover the module.constructor.prototype monkey-
patch pattern

• Dean Landolt and Stefaan Coussement for inventing and refining labeled dependencies

• Brendan Eich for JavaScript

• ECMA and TC-39 for ECMAScript-1 through ECMAScript-5, and ongoing work

• All the members of the CommonJS mailing list

Page 23 of 23

	1. Introduction
	1.1 Scope
	1.2 Conformance
	1.3 Goals
	1.4 Modules/2.0 Name
	1.5 Definitions

	2. The CommonJS Environment
	2.1 The CommonJS Module System
	2.2 Characteristics of all modules
	2.3 Characteristics of the Main Module
	2.4 Concurrency Model
	2.5 ECMAScript Language Conformance

	3. CommonJS Modules
	3.1 Module Declaration
	3.2 Module Code Section
	3.3 Module Identifiers
	3.4 Module Factory Functions
	3.5 Dependency Arrays
	3.6 Module Providers
	3.7 Extra-Module Environment

	4. Module Namespace
	4.1 module.declare ([], f)
	4.2 module.provide ([], f)
	4.3 module.id
	4.4 module.main
	4.5 module.dependencies
	4.6 module.load (s, f)
	4.7 module.eventually (f)
	4.8 module.constructor ()
	4.9 module.uri

	5. Require Namespace
	5.1 require (s)
	5.2 require.paths
	5.3 require.id (s)
	5.4 require.uri (s)
	5.5 require.memoize (s, [], f)
	5.6 require.isMemoized (s)
	5.7 require.main

	6. Bootstrapping
	6.1 Generic Scripting Host Environments
	6.2 UNIX® File Interpreters (“she-bang”)
	6.3 HTML or XHTML Document

	7. Sample Modules
	7.1 Generic Modules
	7.2 Main Modules

	8. Special Thanks

