
Avoiding Stalls in Garbage Collected Systems

Anton Golov (3809277)
jesyspa@gmail.com

April 21, 2014

Abstract

When implementing a general-purpose programming language, the
usage of a mark-sweep or copying algorithm for garbage collection can
lead to significant stalls: periods of time during which the program
must be suspended while garbage is collected. In this paper, we show
how such stalls can be avoided using incremental and generational
collection techniques at the cost of execution speed.

1 Introduction

The implementation of a general-purpose garbage-collected programming
language can be seen as a cooperative process between a mutator and a
collector. The mutator is responsible for executing the given program, for
which it must to allocate memory. The collector is responsible for locat-
ing memory that the mutator can no longer make use of and deallocate it,
making it available for later reuse.

The mark-sweep [McC60] and copying [FY69] algorithms lie at the basis
of garbage collection approaches [Wil92]. However, in their unmodified form,
these algorithms are ‘stop-the-world’ approaches: the mutator is allowed to
run until memory is exhausted, at which point the mutator is stopped and the
collector is invoked. Only once collection is complete is the mutator allowed
to continue. In programs which use a large amount of memory, this collection
process can take a significant time, leading to the program appearing to stall.
In interactive programs, such stalls can hamper user experience, and should
thus be avoided if possible.

We provide an overview of existing work on reducing stalls, first present-
ing the mark-sweep and copying algorithms in more detail, and then showing
how incremental and generational techniques can be incorporated in each, al-
lowing for stalls to be reduced in frequency and maximum duration. We have

1



chosen not to consider approaches based on reference counting; while these
are naturally less susceptible to pauses, they cannot reclaim cyclic structures
and so are not suitable for a general-purpose programming language imple-
mentation. Finally, we do not have the room to cover concurrent approaches.

2 Garbage Collection

Given an object in a program we can talk about its lifetime: the time be-
tween its allocation and deallocation. In many cases, it is not possible to
determine when an object can be deallocated at compile-time. In this case,
we have two options: the writer of the program must specify when this deal-
location happens, or the runtime system of the language must determine this
automatically. The latter option is collectively known as garbage collection,
following the analogy that objects that can be safely deallocated are of no
further use (‘garbage’) and should be collected. We concern ourselves with
how this can be implemented when program response time must be kept low;
in other words, how to prevent apparent ‘stalls’ in program execution while
garbage is collected.

For the purpose of talking about garbage collection it is convenient to see
memory as a directed graph, with the objects as objects and the pointers
between them as edges. Note that this graph will contain objects whose
lifetime need not be managed by us. Such objects are collectively known as
the root set. The objects we must manage, those whose lifetime is determined
at runtime; are dynamically allocated, and the region of memory used for
these objects is called the heap.

We refer to an object that can safely be deallocated as dead, and to any
other object as alive. Any object in the root set should not be deallocated by
us, and is thus by definition alive. Furthermore, any object which is pointed
to by a living object is also alive. All other objects are dead. If, by the above,
an object can be either dead or alive, it is dead. Assuming that the mutator
can access objects in the root set and follow pointers, but has no other way of
finding objects, this guarantees that any object we consider dead will never
be accessed by the mutator again. Its memory can thus be recycled.

Apart from liveness, we ascribe objects some further properties. If object
X has a pointer to object Y , we say Y is a child of X, and talk about the set
of all such Y as the children of X. Furthermore, we give each object a colour
to indicate the information the collector has about it [DLM+78]. A white
object is an object the collector has yet to see, a grey object is an object
the collector has seen, but has not yet inspected the internals of, and a black
object is one that the collector is fully done with.

2



3 Basic Algorithms

The two basic algorithms we consider are the mark-sweep [McC60] and copy-
ing [FY69] collectors. Both algorithms occasionally stop the mutator, usu-
ally when a request for allocation cannot be fulfilled, perform a graph search
through the living objects, and then deallocate all dead objects. The dif-
ferences between the two lie in how the graph search is performed and how
living objects are preserved.

3.1 Mark-Sweep

We explain a generalisation of the mark-sweep algorithm presented by Mc-
Carthy et al. [McC60]. The algorithm consists of a marking phase followed
by a sweeping phase. During marking, we start from the root set and mark
all objects reachable through a graph search as black. During sweeping, we
check the colour of every object and deallocate any that are white. Note
that the recursive nature of a graph search closely parallels our definition of
liveness.

More formally, the algorithm is as follows. Initially, we mark all objects in
the root set as grey and all other objects as white. This starts the marking
phase. While there are still grey objects, we choose any grey object X
and colour any white children it has grey. We then colour X itself black.
As objects never become lighter, and every grey object eventually becomes
black, we can be sure that this process terminates. Once this happens, the
marking phase is complete, and we proceed to sweeping. For every object,
we check whether it is white, and deallocate it if that is the case. Having
done this for every object we know that any object still left is alive.

This approach requires setting aside extra space for the list of grey ob-
jects, but otherwise has little memory overhead per object, and requires no
modifications to the mutator. The time cost of sweeping is linear with the
size of the heap, making it the dominant term. However, on modern hard-
ware, the linear memory access sweeping has leads to marking taking up
most of the time [JHM11, Section 2.5].

3.2 Copying

The copying algorithm we explain is due to Cheney [Che70] and is most
suitable when the program only requires a small part of the memory available.
Initially, the heap is split in two, and all allocation happens in one half. When
this half is full, we copy all live objects into the other half, updating pointers
as necessary. Any objects in the first half can then be deallocated, and the

3



roles of the halves are reversed. Note that as the root set is not part of the
heap, it should not be copied; there is simply no need to, as its lifetime is
not managed by the collector.

More formally, the algorithm is as follows. At program start-up, the heap
is split in two, with one half marked the to-space and the other the from-
space. All allocation happens in to-space, and every object is allocated with
an extra newest pointer that points to itself. When memory is exhausted, the
mutator is stopped and the from-space and to-space labels are swapped. We
create two pointers, seen and scanned that point to the bottom of to-space.

We can then proceed with the copying. All objects not in the root set
that are children of a root set object are copied to to-space. Whenever such a
copy occurs, we update the newest pointer of the old instance to point to the
new instance. This means that if an object is a child of two root set objects,
it will not be copied twice. With every copy we update seen to point just
above the copied object. All copies thus end up between the scanned and
seen pointers. We can see all objects that are below the scanned pointer as
black, any objects that are between the scanned and seen pointers as grey,
and any objects that have not yet been copied as white.

While the scanned and seen pointers are not equal, we update all pointers
of the object pointed to by scanned that still point to from-space, copying
objects as above when necessary. Once this is complete, we advance the
scanned pointer. Note the similarity with the mark-sweep algorithm: copy-
ing objects can be seen as marking grey objects white, while advancing the
scanned pointer can be seen as marking the last object black. Termination
thus follows for the same reasons. Once this copying is complete, any objects
in from-space are either dead or copied, and can thus be deallocated. This
can be done in constant time, making it more efficient than sweeping.

The compact state of the heap after each collection, together with all deal-
location happening after a copy, means that allocation can be done simply
by advancing a pointer. This makes copying collection efficient; the through-
put depends largely on how often copies have to be performed, which de-
creases as memory grows. This leads to copying collection becoming faster
than both marking collection and stack allocation given sufficient extra mem-
ory [App87]. The downside is the increased memory usage, and the cost of
copying an object is usually higher than the cost of only marking it.

4 Incremental Techniques

A possible solution to the stalling problem is to split garbage collection work
that must be done into smaller portions and perform these occasionally as the

4



mutator is running. Possibilities have been found to perform small amounts
of marking [DLM+78], sweeping [JHM11], and copying [Bak78] during cer-
tain mutator actions, usually on an allocation request. These solutions only
changes the distribution of collector work over time; there is just as much
work to be done by the collector, and sometimes the mutator must do more
in order to keep the data structures consistent.

4.1 Incremental Sweeping

We start by considering incremental sweeping [JHM11, Section 2.5], as it
is the simplest option. In a system with a mark-sweep collector, we know
that the mutator cannot directly access the colour of an object. Moreover,
we know that once an object has become garbage, it cannot be seen by the
mutator again until it has been deallocated and then reallocated. We can
thus delay deallocating these objects for as long as we like, providing that
we can still satisfy allocation requests.

The algorithm is thus a simple modification of mark-sweep as described
above. Instead of performing both marking and sweeping before we allow the
mutator to run again, we only perform the marking phase. After that, sweep-
ing is done at every allocation request, deallocating some (small) number of
objects.

This change reduces the duration of the stall to be linear with the number
of live objects on the heap, making the algorithm comparable in asymptotic
complexity to a copying collector. It also does not require any additional
work of the mutator, making it simple to implement.

4.2 Incremental Marking

When introducing incremental marking [DLM+78], we need to ensure that
the actions of the mutator do not lead to us missing any live objects. As
stated, our algorithm will only mark objects that are reachable through white
objects from a grey object. If the mutator creates a pointer from a black
object to a white object X, and then destroys all white paths from grey
objects to X, X will never be marked by the collector and will be deallocated
in the next sweeping phase. The pointer that was created by the mutator
is now dangling, and if another object is allocated at the same location,
modifications to one will affect both.

In order to prevent this we must ensure that the mutator either cannot
create a pointer from a black object to a white object, or cannot destroy
all white paths from a grey object to any white object. Taking the latter
approach means that any object alive at the beginning of a marking phase

5



will certainly get marked, which is often undesirable: if an object becomes
garbage, we would rather reclaim it sooner than later. The former is thus
more often employed.

The algorithm must be modified as follows: instead of marking when
memory is exhausted, a marking phase starts as soon as a sweeping phase
is complete, and a small number of objects are marked periodically. Addi-
tionally, whenever the mutator creates a pointer from a black object to a
white object it must make either of the objects grey. Both choices guar-
antee correctness, but have a drawback; greying the white object can lead
to reclaiming less garbage than possible, while greying the black object can
prolong the marking phase.

Due to the mutator cooperation necessary to maintain consistency, this
modification comes at a cost of mutator throughput; while the work of the
collector will be better spread out over time, the work of the mutator will
be strictly greater than what it had been. Furthermore, care must be taken
that marking occurs fast enough to never run out of memory; if an allocation
request cannot be satisfied, the remainder of the marking phase must be
performed immediately, leading to a stall. This problem can, fortunately, be
resolved by keeping track of how much memory is free at the beginning of a
marking phase and adjusting the rate of marking accordingly.

4.3 Incremental Copying

An incrementally copying collector [Bak78] must avoid all the pitfalls of an
incrementally marking collector, as described above, but must also ensure
that any reads are performed on the newest copy of an object. If no precau-
tions are taken, an object may be copied and then written to by an outdated
pointer. As a consequence, writes may silently be ignored, while the same
situation for reads can cause access to an old value.

We can avoid this by ensuring that whenever the mutator accesses a
pointer, it is updated to point into to-space. The algorithm is thus as fol-
lows: when garbage collection starts, the roles of to-space and from-space
are reversed. On every allocation, some number of objects are copied, as in
a non-incremental copying collector. In addition to that, whenever the mu-
tators reads a pointer value, it checks whether this pointer is to from-space.
If so, the object is copied if necessary, and the pointer is updated. This way,
we ensure that the mutator never sees old copies of objects.

This approach is effective, but rather inefficient without hardware sup-
port. Every read now involves a conditional branch, which can degrade per-
formance significantly. Furthermore, a read can also involve a copy, which
makes performance less predictable.

6



A more intricate but often better-performing scheme is to only copy ob-
jects when a pointer to a from-space object is written to an already scanned
object. In order to prevent reading and writing incorrect data, an extra in-
direction is always performed through the newest pointer. This can only
reduce the amount of copying work that must be done, as objects may be-
come unreachable after being read from; however, it is still at the cost of a
pointer indirection per read.

5 Generational Techniques

Experience shows that most programs written in garbage-collected languages
have a large number of objects that live briefly, and significantly fewer objects
that persist for a long time [LH83]. This suggests that garbage-collecting
recently allocated objects is more fruitful than collecting older objects, and
should thus be done more often.

In order to make use of this we split the heap into several ‘generations’,
numbered from zero onwards. All allocation happens in generation zero.
When garbage collection must be performed, instead of always collecting the
whole heap, we only collect all generations up to some given one. This ensures
that generation zero, which will contain most of the garbage, will be collected
most often. Each object tracks how many collections it has survived; once this
number passes a threshold it is moved to the next generation. Put together,
this ensures that long-living objects are still collected, but less often.

Collecting only a few generations takes significantly less time than col-
lecting the entire heap, reducing the average pause time. Given the expected
memory usage pattern, older objects will have to be touched less often, re-
ducing the overall work of the collector, and increasing program throughput.
However, when the oldest generations are scanned, the full heap will still be
traversed and so the maximum pause time is unaffected.

Generational collection techniques have two pitfalls. Extra care must be
made to handle so-called down-pointers: pointers from an older generation
to a younger one. Additionally, generational collection is an optimization for
the common case of memory usage. In applications where usage patterns are
vastly different, these changes will do more good than harm.

5.1 Handling Down-Pointers

An unfortunate consequence of only collecting a part of the heap is that the
rest of the heap becomes part of the root set. While the algorithms presented
above are still correct for a root set of such size, the time necessary to scan it

7



is too great for practical use. One of the main challenges in the development
of generational garbage collectors is how to reduce the number of objects
that need to be scanned.

There are three key approaches to this problem: indirection tables, store
lists, and marking. The first paper on generational collection [LH83] sug-
gested that all references from older generations to newer ones could go
through so-called indirection tables, which would be significantly smaller
than the generations themselves, and could thus be scanned in reasonable
time. Whenever a generation was collected, its tables would also be cleaned
of any unused entries.

However, due to the need to check at each access whether a pointer is
direct or indirect, this scheme is not efficient enough for practical use unless
hardware support is available. Both alternative schemes allow for pointers
between generations to be direct, storing the data elsewhere. The difference
lies in what is tracked: store list schemes such as Ungar’s Generational Scav-
enging [Ung84] keep track of objects that are pointed to by older generations
while marking schemes such as page marking [Moo84] keep track of areas
of memory where pointers to such objects occur. The choice of approach is
non-trivial; store lists are easier to combine with an incremental collector,
while marking can benefit from hardware support.

5.2 Memory Usage Patterns

Generational garbage collection aims to reduce copying of old objects while
reclaiming young objects sooner. As seen above, this provides a significant
benefit if the number of short-lived objects greatly exceeds the number of
long-lived objects. In the presence of a different memory usage pattern, how-
ever, the usage of multiple generations can instead increase collector work.
For example, if the lifetime of most objects is roughly equal, objects that have
been promoted are likely to die sooner than those in the young generation.
Work done to collect the youngest generation will mostly be wasted, while
objects in older generations will be deallocated much later than possible.

Another important requirement to make generational garbage collection
efficient is that there are relatively few pointers from older generations to
newer ones. If this is violated, the cost of finding all such pointers, or of
tracking all pointees of such pointers, becomes higher than the gain from
collecting only a part of the heap.

Knowledge about the memory use patterns of a program can allow tun-
ing the garbage collector to reduce these issues. Until compiler technology
reaches the level where such knowledge can be distilled from the program, it
is beneficial to allow the user to tweak parameters such as the relative sizes

8



of the heaps, the rate of advancement to older generations, and the frequency
at which older generations are collected.

6 Conclusions

We have seen that when necessary, pauses can be reduced to acceptable levels
using incremental and generational techniques. The two can be combined
provided the requirements on the mutator are compatible, which is usually
the case. Generational garbage collection can be used to improve overall
program efficiency and reduce the average pause time, while incremental
collection can be used to decrease both average and maximum pause time.
Both have mutator overhead, but it is sufficiently low for the approaches to
be useful in practice.

Further measures can be taken, particularly if more is known about the
way memory is used. If the problem domain is restricted so that struc-
tures are exclusively acyclic, a reference counting algorithm could be used
instead [Col60]. Alternatively, restricting the mutator to immutable opera-
tions allows us to make use of the algorithm presented by Armstrong and
Virding [AV95]. Research has also been done on allowing the mutator and
collector to be run concurrently [DLM+78, NR87].

References

[App87] Andrew W. Appel. Garbage collection can be faster than stack
allocation. Inf. Process. Lett., 25(4):275–279, June 1987.

[AV95] Joe L. Armstrong and Robert Virding. One pass real-time gen-
erational mark-sweep garbage collection. In Proceedings of the
International Workshop on Memory Management, IWMM ’95,
pages 313–322, London, UK, UK, 1995. Springer-Verlag.

[Bak78] Henry G. Baker, Jr. List processing in real time on a serial com-
puter. Commun. ACM, 21(4):280–294, April 1978.

[Che70] C. J. Cheney. A nonrecursive list compacting algorithm. Com-
mun. ACM, 13(11):677–678, November 1970.

[Col60] George E. Collins. A method for overlapping and erasure of lists.
Commun. ACM, 3(12):655–657, December 1960.

9



[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: An exercise
in cooperation. Commun. ACM, 21(11):966–975, November 1978.

[FY69] Robert R. Fenichel and Jerome C. Yochelson. A lisp garbage-
collector for virtual-memory computer systems. Commun. ACM,
12(11):611–612, November 1969.

[JHM11] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage
Collection Handbook: The Art of Automatic Memory Manage-
ment. Chapman & Hall/CRC, 1st edition, 2011.

[LH83] Henry Lieberman and Carl Hewitt. A real-time garbage collector
based on the lifetimes of objects. Commun. ACM, 26(6):419–429,
June 1983.

[McC60] John McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part i. Commun. ACM, 3(4):184–
195, April 1960.

[Moo84] David A. Moon. Garbage collection in a large lisp system. In
Proceedings of the 1984 ACM Symposium on LISP and Functional
Programming, LFP ’84, pages 235–246, New York, NY, USA,
1984. ACM.

[NR87] Stephen C. North and John H. Reppy. Concurrent garbage collec-
tion on stock hardware. In Proc. Of a Conference on Functional
Programming Languages and Computer Architecture, pages 113–
133, London, UK, UK, 1987. Springer-Verlag.

[Ung84] David Ungar. Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm. SIGSOFT Softw. Eng.
Notes, 9(3):157–167, April 1984.

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques. In
Proceedings of the International Workshop on Memory Manage-
ment, IWMM ’92, pages 1–42, London, UK, UK, 1992. Springer-
Verlag.

10


	Introduction
	Garbage Collection
	Basic Algorithms
	Mark-Sweep
	Copying

	Incremental Techniques
	Incremental Sweeping
	Incremental Marking
	Incremental Copying

	Generational Techniques
	Handling Down-Pointers
	Memory Usage Patterns

	Conclusions

