
XSHELLS 2.1 : User Manual

Nathanaël Schaeffer
ISTerre/CNRS

May 16, 2018

Chapter 1

Getting started

1.1 Description

XSHELLS is yet another code simulating incompressible fluids in a spherical cavity. In
addition to the Navier-Stokes equation with an optional Coriolis force, it can also time-
step the coupled induction equation for MHD (with imposed magnetic field or in a dynamo
regime), as well as the temperature (and concentration) equation in the Boussinesq frame-
work.

XSHELLS uses finite differences (second order) in the radial direction and spherical
harmonic decomposition (pseudo-spectral). The time-stepping uses a highly stable, second
order, semi-implicit, predictor-corrector scheme (with only diffusive terms treated implic-
itly).

XSHELLS is written in C++ and designed for speed. It uses the blazingly fast spher-
ical harmonic transform library SHTns, as well as hybrid parallelization using OpenMP
and/or MPI. This allows it to run efficiently on your laptop or on parallel supercomput-
ers. A post-processing program is provided to extract useful data and export fields to
python/matplotlib or paraview.

XSHELLS is free software, distributed under the CeCILL Licence (compatible with
GNU GPL): everybody is free to use, modify and contribute to the code.

1.2 Transition from versions 1.x to 2.x

Due to the change of time-stepping scheme, in xshells.par:

• adjust time-steps (x3 to x4)

• adjust constants for variable time-step

Due to internal changes, in xshells.hpp:

• some variables have their name changed. see examples.

1

https://bitbucket.org/nschaeff/shtns
http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html

Slices written by xspp are now in Numpy format (instead of text format). As a consequence,
matlab/octave display scripts have been dropped.

1.3 Requirements

The following items are required :

• a Unix like system (like linux),

• a C++ compiler,

• the FFTW library, or the intel MKL library.

• the SHTns library,

The following items are recommended, but not mandatory:

• a C++ compiler with OpenMP support,

• an MPI library (with thread support),

• the HDF5 library for post-processing and interfacing with paraview,

• Python 3, with NumPy and matplotlib (Python 2.7 should also work),

• a processor supporting the AVX instruction set.

• Gnuplot, for real-time plotting.

• EVTK, for converting slices to VTK format for paraview.

1.4 Installation

FFTW and SHTns must be installed first. FFTW comes already installed on many systems,
but in order to get high performance, you should install it yourself, and use the optimization
options that correspond to your machine (e.g. --enable-avx). Please refer to the FFTW
installation guide.

Note that it is possbile to use the intel MKL library instead of FFTW. To do so, you
must configure both SHTns and XSHELLS with the --enable-mkl option.

2

http://www.fftw.org/
https://bitbucket.org/nschaeff/shtns
http://www.hdfgroup.org/HDF5/
http://www.numpy.org/
http://matplotlib.org/
http://www.gnuplot.info/
https://bitbucket.org/pauloh/pyevtk
http://fftw.org/fftw3_doc/Installation-on-Unix.html#Installation-on-Unix
http://fftw.org/fftw3_doc/Installation-on-Unix.html#Installation-on-Unix

To install SHTns, get the latest version of SHTns, extract it and run:

./configure

make

make install

This will install the serial version (without OpenMP) of SHTns, which is the one required
for XSHELLS. If you do not have administrator privileges, you can use ./configure

--prefix=$HOME to install it in your home directory. To choose another compiler than the
default one, use ./configure CC=my-c-compiler.

To install XSHELLS, grab the XSHELLS archive, extract it, and then run

./configure

to automatically configure XSHELLS for your machine. If you have used the --prefix

option when installing SHTns, you should pass the same one to configure for XSHELLS.
Type ./configure --help to see available options, among which --disable-openmp and
--disable-mpi.

Before compiling, you need to setup the xshells.hpp configuration file (see next sec-
tion).

1.5 Configuration files

There are two configuration files:

• xshells.hpp is read by the compiler (compile-time options), and modifying it re-
quires to recompile the program. The corresponding options are detailed in section
2.2.

• xshells.par is read by the program at startup (runtime options) and modifying it
does not require to recompile the program. This file is detailed in section 2.1.

See chapter 2 for more details. Example configuration files can be found in the problems
directory.

Before compiling, copy the configurations files that correspond most closely to your
problem. For example, the geodynamo benchmark:

cp problems/geodynamo/xshells.par .

cp problems/geodynamo/xshells.hpp .

and then edit them to adjust the parameters (see sections 2.2 and 2.1).

3

https://bitbucket.org/nschaeff/shtns/downloads
https://bitbucket.org/nschaeff/xshells/downloads

1.6 Compiling and Running

When you have properly set the xshells.hpp and xshells.par files, you can compile and
run in different flavours:
Parallel execution using OpenMP with as many threads as processors:

make xsbig

./xsbig

Parallel execution using OpenMP with (e.g.) 4 threads:

make xsbig

OMP_NUM_THREADS=4 ./xsbig

Parallel execution using MPI with (e.g.) 4 processes:

make xsbig_mpi

mpirun -n 4 ./xsbig_mpi

Parallel execution using OpenMP and MPI simultaneously (hybrid parallelization), with
(e.g.) 2 processes and 4 threads per process:

make xsbig_hyb

OMP_NUM_THREADS=4 mpirun -n 2 ./xsbig_hyb

Parallel execution using MPI in the radial direction and OpenMP in the angular direction,
with (e.g.) 16 processes and 8 threads per process:

make xsbig_hyb2

OMP_NUM_THREADS=8 mpirun -n 16 ./xsbig_hyb2

Note that xsbig hyb2 requires the OpenMP-enabled SHTns (./configure --enable-openmp)

Batch schedulers

Some examples for various batch schedulers and super-computers are also available in the
batch folder.

1.7 Outputs

All output files are suffixed by the job name as file extension, denoted job in the following.
The various output files are:

• xshells.par.job : a copy of the input parameter file xshells.par, for future ref-
erence.

4

• xshells.hpp.job : a stripped-out version of the file xshells.hpp that was used
during compilation, for future reference.

• energy.job : a record of energies and other custom diagnostics. Each line of this
text file is an iteration.

• fieldX0.job : the imposed (constant) field X, if any.

• fieldX ####.job : the field X at iteration number ####, if parameter movie was set
to a non-zero value in xshells.par.

• fieldXavg ####.job : the field X averaged between previous iteration and iteration
number ####, if parameter movie was set to 2 in xshells.par.

• fieldX.job : the last full backup of field X, or field X at the end of the simulation.
Used when restarting a job.

All field files are binary format files storing the spherical harmonic coefficients of the field.
To produce plots and visualizations, they can be post-processed using the xspp program
(see chapter 3).

1.8 Limitations and advice for parallel execution

The parallelization of XSHELLS is done by domain decomposition in the radial direction
only, using MPI. In addition to this domain decomposition, shared memory parallelism is
implemented using OpenMP. There are four variants of the code that differ in the way
OpenMP is used:

• xsbig uses only OpenMP in the radial direction (no MPI). It can only run on a
single node, but does not need an MPI library. This is good for a general purpose
desktop or laptop computer, but also on NUMA nodes (although some MPI may
lead to better performance).

• xsbig mpi uses only MPI in the radial direction (no OpenMP). This is good for
medium sized problems, running on small clusters.

• xsbig hyb uses both MPI and OpenMP in the radial direction, to reduce the number
of MPI processes and memory usage. As a consequence, it is more efficient to use
a number of radial shells that is a multiple of the number of computing cores. This
parallelization strategy cannot go beyond 1 thread per radial shell, but is computa-
tionally very efficient.

• xsbig hyb2 uses MPI in the radial direction and OpenMP within a radial shell. This
reduces further the memory footprint. It is slightly slower than the previous mode
(xsbig hyb), but allows to address more computing cores. It is highly recommended

5

to use a number of radial shells that is a multiple of the number of nodes. This mode
cannot go beyond 1 MPI process per radial shell, but intra-node shared memory
parallelism allows to use all cores of a single node within each process. Note also
that the SHTns library compiled with OpenMP is needed.

In any case, the number of MPI processes cannot exceed the total number of
radial shells. It is often more efficient to use a small number of MPI processes per node
(1 to 4) and use OpenMP to have a total number of threads equal to the number of cores.

Because there is no automatic load balancing, some situations where the same amount
of work is not required for each radial shell will result in suboptimal scaling when the
number of MPI processes is increased. Such situations include (i) solid conducting shells
(e.g. a conducting inner core) and (ii) variable spherical harmonic degree truncation (e.g. in
a full-sphere problem). In these cases, especially the latter, use pure OpenMP or minimize
the number of MPI processes.

Using MPI executables (including hybrid MPI+OpenMP) is thus optimal only if the
following conditions are both met:

• all fields span the same radial domain (no conducting solid shells);

• the radial domain does not include the center r = 0 (and XS VAR LTR is not used, see
section 2.2.4).

In such cases, XSHELLS should scale very well up to the limit of 1 thread per radial shell,
and even beyond with the in-shell OpenMP mode of xsbig hyb2 (see scaling example in
Figure 1.1).

1.9 Citing

If you use XSHELLS for research work, you should cite the SHTns paper (because the high
performance of XSHELLS is mostly due to the blazingly fast spherical harmonic transform
provided by SHTns):

N. Schaeffer, Efficient Spherical Harmonic Transforms aimed at pseudo-spectral nu-
merical simulations, Geochem. Geophys. Geosyst. 14, 751-758, doi:10.1002/ggge.20071
(2013)

In addition, depending on the problem you solve, you could cite:

• Geodynamo:
N. Schaeffer et. al, Turbulent geodynamo simulations: a leap towards Earth’s core,
Geophys. J. Int. doi:10.1093/gji/ggx265 (2017)

• Spherical Couette:
A. Figueroa et. al, Modes and instabilities in magnetized spherical Couette flow,
J. Fluid Mech. doi:10.1017/jfm.2012.551 (2013)

6

http://dx.doi.org/10.1002/ggge.20071
https://doi.org/10.1093/gji/ggx265
http://dx.doi.org/10.1017/jfm.2012.551

101 102 103 104

number of cores

10 1

100

101

102

se
co

nd
s p

er
 it

er
at

io
n

Performance scaling of xshells (NR=512, Lmax=511)

Occigen2 (BroadWell) in-shell OpenMP
Froggy (SandyBridge) in-shell OpenMP
Turing (Blue Gene/Q) in-shell OpenMP
Frioul (KNL) in-shell OMP

102 103 104

number of cores

10 1

100

101

102

se
co

nd
s p

er
 it

er
at

io
n

Performance scaling of xshells (NR=1024, Lmax=893)

Curie (SandyBridge) radial OpenMP
Turing (Blue Gene/Q) in-shell OpenMP
Occigen (Haswell) in-shell OMP [NR=1152]
Occigen (Haswell) radial OMP [NR=1152]
Frioul (KNL) in-shell OMP

Figure 1.1: Performance scaling of XSHELLS, on french supercomputers with different
architectures: SandyBridge on Froggy (CIMENT) and Curie (thin nodes, TGCC); Haswell
on Occigen (CINES); Blue Gene/Q on Turing (IDRIS); and Knight’s Landing (KNL) on
Frioul (CINES). The ideal scaling for each case is represented by the dashed black lines.
Top: geodynamo simulation with Nr = 512 radial grid points and spherical harmonics
truncated after degree Lmax = 511. Bottom: geodynamo simulation with Nr = 1024 or
1152 and Lmax = 893.

7

http://ciment.ujf-grenoble.fr/wiki-pub/index.php/Hardware:Froggy
http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
https://www.cines.fr/calcul/materiels/occigen/configuration/
http://www.idris.fr/eng/turing/hw-turing-eng.html
https://www.cines.fr/le-supercalculateur-frioul/

• Full-spheres: E. Kaplan et. al, Subcritical thermal convection of liquid metals in
a rapidly rotating sphere, Phys. Res. Lett. doi:10.1103/PhysRevLett.119.094501
(2017)

• Kinematic dynamos:
N. Schaeffer et. al, Can Core Flows inferred from Geomagnetic Field Models explain
the Earth’s Dynamo ?, Geophys. J. Int. doi:10.1093/gji/ggv488 (2016)

8

https://doi.org/10.1103/PhysRevLett.119.094501
http://dx.doi.org/10.1093/gji/ggv488

Chapter 2

Setting up the simulation

Example configuration files can be found in the problems directory.

2.1 Run-time options: xshells.par

The file xshells.par is a simple text file. Each line may contain a single statement like
var = expression, or a comment starting with #. A simple math parser allows to use
convenient expressions like sqrt(4*pi/3).

All the following features can be set in xshells.par. There is no need to recompile if
this file is changed, as it is read and interpreted at program startup.

2.1.1 Equations and controlling parameters

XSHELLS can time-step the Navier-Stokes equation in a rotating reference frame. Op-
tionally it can include (i) a buoyancy force in the Boussinesq approximation, where the
buoyancy has one or two sources obeying distinct advection-diffusion equations; and (ii) a
Lorentz (or Laplace) force for conducting fluids where the magnetic field obeys the induc-
tion equation. Precisely, the following equations can be time-stepped by XSHELLS:

∂tu + (2Ω0 +∇× u)× u = −∇p∗ + ν∇2u + (∇× b)× b + (c+ T)∇Φ0 (2.1)

∂tb = ∇× (u× b− η∇× b) (2.2)

∂tT + u.∇(T + T0) = κ∇2T (2.3)

∂tc+ u.∇(c+ C0) = κc∇2c (2.4)

∇u = 0 (2.5)

∇b = 0 (2.6)

where

• u is the velocity field.

9

• T and c are respectively the temperature and concentration fields, that contribute to
the buoyancy in the Boussinesq formulation.

• √µ0ρb is the magnetic field (ρ and µ0 are the fluid density and magnetic permeability,
but are not relevant for this equation set).

• ν is the kinematic viscosity of the fluid and is set by the variable nu in xshells.par.

• η = (µ0σ)−1 is the magnetic diffusivity of the fluid (σ is its conductivity) and is set
by the variable eta in xshells.par. Diffusivity η(r) depending on shell radius are
also supported (see sec. 2.2.3).

• κ and κc are respectively the thermal and chemical diffusivities of the fluid and are
set by the variable kappa and kappa c in xshells.par.

• Ω0 is the rotation vector of the reference frame, which is usually along the vertical
axis ez. It is set by the variable Omega0 in xshells.par, while the angle (in radians)
between ez and Ω0 is set by Omega0 angle (0 by default). Note that Ω0 is always in
the x− z plane (φ = 0).

• Φ0 is the gravity potential (independent of time), controlled by field phi0 in xshells.par.

• T0 and C0 are the imposed base temperature and concentration profiles, controlled
by fields tp0 and c0 in xshells.par.

• p∗ is the dynamic pressure deviation (from hydrostatic equilibrium), which is elimi-
nated by taking the curl of equation 2.1.

Equation 2.1 (respectively 2.2, 2.3 and 2.4) is time-stepped when u (respectively b, tp
and c) is set to an initial condition in xshells.par. Disabling an equation is as easy as
removing or commenting out the corresponding initial condition in xshells.par. Note
that currently, the concentration equation cannot be time-stepped without the
temperature equation.

10

Example If the following lines are found in xshells.par:

nu = 1.0

eta = sqrt(10)

Omega0 = 2*pi*1e3

u = 0

b = 0

#tp = 0

then the viscosity is set to ν = 1.0, the magnetic diffusivity is set to
η =

√
10, and the rotation rate is set to Ω0 = 2π × 103. The Navier-

Stokes (2.1) and the induction equation (2.2) will be time-stepped, but
not the temperature and concentration equations (2.3), simulating an
isothermal fluid.

Note that it is up to the user to choose dimensional or non-dimensional control param-
eters. A notable exception is the magnetic field, which is always scaled to the same unit
as the velocity field.

MHD without Lorentz force (e.g. kinematic dynamos)

The Lorentz force can be turned off. Just add no jxb = 1 in the xshells.par file.

Internal representation of vector fields

Vector fields are represented internally using a poloidal/toroidal decomposition:

u = ∇× (Tr) +∇×∇× (Pr) (2.7)

where r is the radial position vector, and T and P are the toroidal and poloidal scalars
respectively. This decomposition ensures that the vector field u is divergence-free.

The scalar fields T and P for each radial shell are then decomposed on the basis of
spherical harmonics.

2.1.2 Boundary conditions

Magnetic field boundary conditions are that of an electrical insulator outside the com-
putation domain, with or without external sources of magnetic field (see section 2.1.3 for
externally imposed magnetic fields).

Temperature or concentration boundary conditions are either fixed value (defined by
the T0 or C0 profile) or fixed flux (defined by ∂rT0 or ∂rC0).

11

Velocity boundary conditions can be zero, no-slip (with arbitrary prescribed velocity at
the boundary) or stress-free.

The inner and outer boundary conditions can be chosen independently. The BC U (for
velocity), BC T (for temperature) and BC C (for concentration) entries in xshells.par allow
to select the appropriate boundary conditions.

Example
The following lines in xshells.par define zero velocity and fixed temper-
ature boundary condition at the inner boundary, and no-slip and fixed
flux boundary condition at the outer boudnary.

BC_U = 0,1 # inner,outer boundary conditions

(0=zero velocity, 1=no-slip, 2=free-slip)

BC_T = 1,2 # 1=fixed temperature, 2=fixed flux.

2.1.3 Initial conditions and imposed fields

Predefined fields

Several predefined fields are defined in xshells init.cpp. The command ./list fields

prints a list of these predefined fields, with their name in the first column. You can simply
use this name in the xshells.par file to define an initial condition. You can also add your
own by editing xshells init.cpp.

Imposed fields are only supported for the gravity potential phi0 and for the basic
state of temperature tp0 and concentration c0. Imposed magnetic fields can be obtained
through the appropriate boundary conditions (magnetic fields generated by currents out-
side the computation domain only). Some predefined magnetic field include these boundary
conditions, making them actually imposed fields (and are labeled as such). Note also that
a linear mode exist which support arbitrary base fields (see §2.2.6).

12

Example The following lines in xshells.par set up the geodyanmo
benchmark initial conditions.

E = 1e-3

Pm = 5

Ra = 100

u = 0 # initial velocity field

b = bench2001*5/sqrt(Pm*E) # initial magnetic field (scaled by

sqrt(1/(Pm*E)))

tp = bench2001*0.1 # initial temperature field

tp0 = delta*-1 # imposed (base) temperature field

phi0 = radial*Ra/E # radial gravity field (multiplied by

Ra/E to match geodynamo benchmark)

Field files as initial conditions

In addition, any field file can be given as initial condition. If the radial grid is not the
same, the field must be interpolated on the new grid. To avoid mistakes, interpolation is
disabled by default and must be enabled by interp = 1 (often found near the end of the
xshells.par file).

Example The following lines start from the velocity field saved in file
fieldU.previous job, which was performed at different parameters and
with a different number of radial grid points.

u = fieldU.previous_job # initial velocity field

interp = 1 # allow interpolation, to be able to use fields

defined on a different radial grid as initial condition.

2.1.4 Forcing

Besides thermal convection, mechanical forcing can be imposed at the boundaries.
Predefined variable a forcing and w forcing define the amplitude and frequency of

a forcing. The precise nature of the forcing (e.g. differential rotation) must be defined in
the xshells.hpp file before compilation (see section 2.2.5).

13

2.1.5 Spatial discretization

Radial grid

XSHELLS uses second order finite differences in radius. The total number of radial grid
points is defined in xshells.par by the variable NR. The radial extent of each field is
set using the corresponding R X variable, which stores a pair of increasing positive real
numbers defining the radial extent of the field. The NR grid points will be distributed
between radii corresponding to the minimum and maximum of these values. Currently,
only the magnetic field can extend beyond the velocity field, modeling conducting solid
layers.

Example The following lines in xshells.par define the radial extent
of the fields:

R_U = 7/13 : 20/13

R_B = 0.0 : 20/13

R_T = 7/13 : 20/13

The default grid refines the number of points in the boundary layers, and this refinement
can be controlled by the variable N BL that stores a pair of integers, the first and second
being the number of points reserved for the inner and outer boundary layer respectively,
reinforcing the normal refinement. The code generating the grid can be found in the
grid.cpp file.

Example The following lines in xshells.par define a grid with a total
of 100 radial grid points, with 10 and 5 points reserved to the refinement
of the inner and outer boundary layer respectively.

NR = 100

N_BL = 10,5

Alternatively, a radial grid can be loaded:

• from a text file containing the radius of each grid point (increasing) in a separate
line.

• from a previously saved field (see section 1.7).

In both cases, simply indicate the filename in the r variable. It will override the NR and
N BL variables.

14

Example The following line in xshells.par will use the same grid as
the field stored in file fieldU 0001.previous

r = fieldU_0001.previous # load grid from file

Angular grid and spherical harmonic truncation

XSHELLS uses spherical harmonics to represent fields on the sphere:

f(θ, φ) =
M∑

m=0

L∑
`=mK

fmK
` Y mK

` (θ, φ) (2.8)

where Y m
` is the spherical harmonic of degree ` and order m. The expansion uses a K-fold

symmetry in longitude (φ) and is truncated at maximum degree L and order MK. If
K = 1 and M = L, it is the standard triangular truncation.

L, M and K are set in xshells.par using the Lmax, Mmax and Mres variables respec-
tively. You must ensure that L ≥MK.

The angular grid (spanning the co-latitude θ and longitude φ) consists of Nphi regularly
spaced points in longitude, and Nlat gauss nodes in latitude. If these are not specified,
XSHELLS will choose the values for Nlat and Nphi in order to ensure best performance
and no aliasing of modes (Nlat > 3L/2 and Nphi > 3M).

Example These lines limit the spherical harmonic degree to 170. A 3-
fold symmetry is used, and the maximum harmonic order is 56×3 = 168.

Lmax = 170 # max degree of spherical harmonics

Mmax = 56 # max fourier mode (phi)

Mres = 3 # phi-periodicity.

Most likely, 180 regularly spaced points in longitude and 256 gauss nodes
in latitude will be used here.

2.1.6 Time-stepping

XSHELLS uses a semi-implicit, second order, predictor-corrector scheme labeled P (EC)2E.
Although this scheme requires three times more work per time-step than the classical
Crank-Nicolson-Adams-Bashforth (CNAB) scheme, it allows time-steps from three to four
times that of CNAB, leading to shorter time-to-solution1. The diffusive terms are treated
implicitly, while the non-linear terms are treated explicitly.

The time-step of the numerical integration is set by dt in xshells.par.

1before version 2.0, a classical CNAB scheme was used

15

The sub iter variable is half the number of time-steps taken before any diagnostic
is computed and written to file energy.job or displayed on screen. For example, if
sub iter = 50, then 100 time-steps will be performed before computing and printing
some diagnostics. This is then called an iteration.

The iter max variable is the total number of iterations, so that the total number of
time-steps before the code will stop is iter max × 2× sub iter.

By setting dt adjust = 1, an (experimental) automatic time-step adjustment can be
turned on. In that case, the number of sub-iterations sub iter is also adjusted so that
an iteration is a constant time span, and thus the outputs happen at fixed time intervals
∆T = 2× sub iter × dt.

Finally, iter save controls the number of iterations before a (partial) snapshot is saved
to disk.

Example The following lines in xshells.par will use a time-step of
0.01 for the numerical integration:

dt_adjust = 0 # 0: dt fixed (default), 1: variable time-step

dt = 0.01 # time step

iter_max = 300 # iteration number (total number of text and

energy file ouputs)

sub_iter = 25 # sub-iterations (the time between outputs

= 2*dt*sub_iter is fixed even with variable dt)

iter_save = 10 # number of iterations between field writes

Output will occur every ∆T = 0.01× 25× 2 = 0.5 time units (an itera-
tion). The program will stop after iter max=300 outputs (or iterations),
spanning a total physical time of tend − tstart = 150.0. Partial fields are
saved every 10 iterations, or every 5.0 physical time units, if movie = 1

is set (see below).

2.1.7 Real time plotting

At each iteration, XSHELLS can plot the kinetic and magnetic energies as a function of
time, using gnuplot. Note that the plots are refreshed every iteration, but no more than
once every two seconds. This allows to follow program execution in real-time, but might
not be useful for high performance distributed jobs. The interaction with gnuplot must be
turned on by passing the --enable-gnuplot option to ./configure.

The variable plot in the file xshells.par then allows some control:

• plot = 0: disables plotting.

• plot = 1: shows plot on display; if no display found, write to png file instead. This
is the default.

16

http://gnuplot.sourceforge.net/

• plot = 2: saves plot to png file only.

• plot = 3: shows plot on display (if available) and also saves plot to png file.

2.1.8 Time lapse field snapshots

The parameter movie controls the field snapshots, saved every iter save iterations (see
above).

• movie = 1 : the initial field is saved to fieldX 0000.job, after iter save iterations
the fields are saved to fieldX 0001.job, then fieldX 0002.job, and so on.

• movie = 0 : no such fields are saved.

• movie = 2 : in addition to the snapshots of the fields, the time-average since the last
snapshot is also computed and saved.

The parameter prec out controls the precision (single or double precision) of the snap-
shot files. In order to save disk space, the snapshots are saved in single precision by default
(prec out = 1), which should be enough to make plots, but not suitable for restarting or
computing gradients. If you need double precision snapshots, set prec out = 2. To save
further disk space, snapshots can be truncated at lower spherical harmonic degree and
order, using the parameters lmax out and mmax out, respectively.

The snapshots can then be post-processed with xspp to produce plots or movies (see
3).

Example The following lines in xshells.par instruct the program to
output snapshots and time-averages of the axisymmetric component of
the fields, every iter save iterations:

movie = 2 # 0=field output at the end only (default),

1=output every iter_save, 2=also writes

time-averaged fields

lmax_out = -1 # lmax for movie output (-1 = same as Lmax, which

is also the default)

mmax_out = 0 # mmax for movie output (-1 = same as Mmax, which

is also the default)

prec_out = 2 # write double precision snapshots.

2.1.9 Checkpointing and restarting capabilities

By default after initialization the job starts at the beginning (iteration 0). It is easy to
start a new job by using as input fields the field files written by a previous job, effectively
continuing that job.

17

Sometimes, it is useful to automatically continue a stopped or killed job (e.g. in batch
execution environments found in high-performance computing machines). By default, a full
resolution snapshot is written to disk every four hours. Parameters found in xshells.par

allow to tune that interval, and enable restart from these checkpoint automatically when
the program is run again.

For increased safety, when writing a new checkpoint (or backup) to file fieldX.jobname,
the previous one is first renamed to fieldX back.jobname. This file may allow to continue
a simulation in case of an unexpected termination of the program while writing the new
checkpoint.

If restart = 1, the program will start by looking in the current directory for check-
point files that have been saved by a previous run with the same job name, and use these
to resume that job.

Example
Suppose that on a supercomputer, the wall time of the jobs is limited
to 24 hours. In order to run a job that spans several days, the following
lines in xshells.par allow a job to be resumed by simply resubmitting
it:

restart = 1 # 1: try to restart from a previous run with

same name. 0: no auto-restart (default).

backup_time = 470 # ensures that full fields are saved to disk at

least every backup_time minutes, for restart.

nbackup = 3 # number of backups before terminating program

(useful for time-limited jobs).

0 = no limit (default)

In addition, a checkpoint (or backup) is written to disk every 470 min-
utes, and the program will stop after writing the third backup, thus leav-
ing 30 minutes of safety time for program initialization and file writing
time. In case of a system failure, no more than 470 minutes of computing
time will be lost.

2.1.10 Advanced options

Fine tuning of the automatic time-step selection is possible through some vari-
ables.

C u is a safety factor for the standard CFL (based on the velocity and the grid size).
In some cases C u = 1 gives good results, but in other cases a more stringent value is
needed (e.g. C u = 0.1). C vort and C alfv control the time-step adjustment (active if
dt adjust=1), regarding vorticity and Alfvén criteria, respectively. The lower the values
of C vort and C alfv, the smaller the adjusted time step will be.

In addition, to prevent too many time step adjustments, if dt tol lo < dt/dt target

18

< dt tol hi, no time-step adjustment is done.

Example

C_u = 0.1 # default: 0.1

C_vort = 0.1 # default: 0.1

C_cori = 0.1 # default: 0.1

C_alfv = 1.0 # default: 1.0

dt_tol_lo = 0.8 # default: 0.8

dt_tol_hi = 1.1 # default: 1.1

Variable spherical harmonic degree truncation is controlled by setting the variable
rsat ltr in xshells.par. This is possible only if XSHELLS was compiled with variable
truncation enabled (see section 2.2.4).

Spectral convergence of fields is checked by comparing the maximum of the end of
the spectrum (four last modes) with the maximum of the spectrum. The first few modes
are ignored (because their amplitude can be related directly to forcing or imposed fields).
The variables sconv lmin and sconv mmin that can be set in xshells.par define the
first spherical harmonic degree and order respectively that are considered when checking
spectral convergence in the ` or m spectra. The default value is 3 for both variables.
Setting a value larger than Lmax disables spectral convergence checks. Note also that the
convergence checks are skipped when only a few modes are computed.

Example

sconv_lmin = 3 # ignore l=0-2 for spectral convergence.

sconv_mmin = 1 # ignore m=0 for spectral convergence.

The SHTns library can be controlled in terms of algorithm used for transforms, and
in terms of polar optimization threshold.

The sht type variable allows to constrain the transform method used:

• sht type = 0 : select fastest method using a classic Gauss-Legendre grid (default
setting).

• sht type = 1 : select fastest method, allowing also regular grids (with DCT) which
may be faster for small Mmax.

• sht type = 2 : impose a regularly spaced grid (not recommended as it is often
slower).

19

• sht type = 3 : force a regularly spaced grid using DCT (not recommended as it is
often slower).

• sht type = 4 : debug mode; initialization time is reduced, but a default method is
used (no selection of fastest method).

• sht type = 6 : use a Gauss-Legendre grid with on-the-fly computation (preferred
when parallel execution or big resolutions).

Finally, the polar optimization threshold can be adjusted with sht polar opt max, the
value below which coefficients near the pole are neglected. To give the reader some more
insight, here are a some possible values and their impact:

• sht polar opt max = 0 : no polar optimization.

• sht polar opt max = 1e-14 : very safe optimization (default).

• sht polar opt max = 1e-10 : safe optimization.

• sht polar opt max = 1e-6 : aggressive optimization.

2.1.11 Beta features

The following features have not been thoroughly tested and may not work flawlessly in all
situations. If you want to use them, please test and report bugs.

Non-linear terms in linear mode can be included to compute the saturation of an
instability growing on a base flow. The program must be compiled in linear mode (see
2.2.6), and each non-linear term can be activated separately using a comma separated list
in xshells.par:

nonlin = ugu,uxb,jxb,ugt,ugc

where ugu, uxb, jxb, ugt and ugc activate respectively u.∇u, ∇× (u× b), (∇× b)× b,
u∇T , u∇C for the perturbations u,b,T and C in the equations (see 2.1.1).

Example To compute a kinematic dynamo growing on a saturated
hydrodynamic instability, use:

nonlin = ugu,uxb # include only u.grad(u) and curl(u x b)

2.2 Compile-time settings: xshells.hpp

All the following settings can be found in xshells.hpp. You have to recompile the program
if you change this file.

20

https://bitbucket.org/nschaeff/xshells/issues

2.2.1 Custom diagnostics

Enable by uncommenting:

#define XS_CUSTOM_DIAGNOSTICS

In addition to the total energy of the three fields U , B and T , which are saved ev-
ery 2 sub iter time steps (see section 2.1.6), custom diagnostics can be defined in the
custom diagnostic() function, found in the xshells.hpp file. They are computed every
iteration and saved in energy.job after the energies. The best is to look at the existing
diagnostics defined in the custom diagnostic() function to add your own.

2.2.2 Variable time-step

Enable compilation of variable time-step code by uncommenting:

#define XS_ADJUST_DT

In addition,variable time-step must also be allowed by setting dt adjust = 1 in file xshells.par
(see also section 2.1.6).

2.2.3 Variable conductivity

In equation 2.2, conductivity can depend on radius r. To define a conductivity profile η(r),
uncomment:

#define XS_ETA_PROFILE

and then define your profile in the calc eta() function, found in the xshells.hpp file. The
purpose of calc eta() is simply to fill the array etar with values of the magnetic diffusivity
for every radial shell. The program handles continuous profiles as well as discontinuities
in η(r) properly and automatically.

2.2.4 Variable spherical harmonic degree truncation

In order to compute in a full sphere and avoid problems near r = 0, the spherical harmonic
expansion must be truncated at low degree near r = 0. XSHELLS can truncate the
spherical harmonic expansions at a different degree for each shell, when the following line
is uncommented in xshells.hpp:

#define VAR_LTR 0.5

The value of VAR LTR (0.5 in the line above, which is a good choice for full-sphere compu-
tations) is used as α in the formula to determine the truncation degree `tr:

`tr(r) = Lmax

√
r

αrmax

+ 1

where Lmax is defined by Lmax in xshells.par and rmax is the radius of the last shell.
Note that `tr cannot exceed Lmax.

Note also that α can be overridden by the rsat ltr variable in xshells.par.

21

2.2.5 Boundary forcing

Amplitude and frequency are set at runtime by a forcing and w forcing in the xshells.par
file.

Time dependent boundary forcing are defined in the function calc Uforcing(),
found in the xshells.hpp file. In this function you must define a name for your forc-
ing through the macro U FORCING. The angular velocity of the solid bodies (defining the
boundary of the fluid shell) can be set in this function. It will be used as a boundary
condition for the flow if no-slip boundaries are used (see section 2.1.2).

See the example found in the problems/couette/ folder for more details, and uncom-
ment the part of the function corresponding to your problem. In particular axial differential
rotation of the inner or outer boundary can be used to simulate a spherical Couette flow;
equatorial differential rotation (or spin-over) can be used to simulate precession or nutation.

Note that the rotation rate of the solid bodies is also used in the induction equation if
the magnetic field extends into the solids (conducting solid shells).

Arbitrary stationary boundary flows You can impose arbitrary stationary flows at
the solid boundaries. Uncomment:

#define XS_SET_BC

and change the set U bc() function found in xshells.hpp according to your needs.
Note that the boundary conditions for the poloidal velocity field is stored in the shell
beyond the first or last fluid shells (respectively NG-1 and NM+1). See for example the
xshells.hpp file in the problems/full sphere/ folder. Note that the solid should not be
conducting if this feature is used, as no corresponding solid flow will be generated.

2.2.6 Linearized equations and base fields

To replace the equations with their linearized version (no (∇×u)×u, no (∇×b)×b, no
u.∇c), uncomment:

#define XS_LINEAR

Note that spherical harmonic transforms are not needed anymore if there are no base fields,
leading to a much faster program. Base fields are also supported, and can be set using u0,
b0 and tp0 in the xshells.par file. See also the example located in problems/taw.

22

Chapter 3

Post-processing and visualization

Several tools are available for post-processing and visualization of data produced by the
XSHELLS code:

• xsplot.py: a python module for plotting 1D or 2D data.

• xsplot: command-line interface to xsplot.py.

• xspp: command-line tool for extracting slices, profiles, spectra and more from the
field files.

• pyxshells.py: a python module that can load and handle the binary XSHELLS
field files.

The python module xsplot is provided to load and display data from XSHELLS. It can
be used interactively or within scripts. Such Python scripts using matplotlib and xsplot
are located in the matplotlib dierectory, and can be called from command line.

xsplot can also be used directly from command line and it will guess the type of file
and display it accordingly.

The python modules should be installed by calling make install-py, or explicitly
python setup.py install --user from the python subdirectory. In addition, it is con-
venient to copy the small script python/xsplot in your path, so that you can invoke xsplot
from any directory.

3.1 Plotting time-dependent quantities

Time-dependent quantities, such as the energies and other custom diagnostics which are
stored in the energy.job file (see section 2.2.1) are also easy to plot with the xsplot tool.

23

Example By default, xsplot displays kinetic and magnetic energy as a
function of time:

xsplot energy.job

A list of all available quantities is also shown.
To plot other quantities (see section 2.2.1), for instance kinetic energy
and viscous dissipation, use:

xsplot energy.job -c Eu,D_nu

The load diags function in the xsplot module can be used to retrieve conveniently
any diagnostic. It returns a dictionary of time series for easy plotting.

Example To plot the magnetic to kinetic energy ratio as a function of
time:

> from pylab import *

> import xsplot

> d = xsplot.load_diags(’energy.job’)

> t = d[’t’]

> plot(t, d[’Eb’]/d[’Eu’]) # plot magnetic to kinetic energy ratio

3.2 Dealing with 3D fields

Fields are stored in binary files (see 1.7), using a custom format. They can be handled
after the simulation by the xspp command line program. Alternatively, the pyxshells

python module can also read, write and handle these files (see section 3.2.5).

3.2.1 Using the xspp command-line tool

Compile the program by typing make xspp. Invoking it without arguments (by running
./xspp) will print a help screen including the commands and their syntax.

24

Example The following will display information about the file
fieldU.job (resolution, precision, time of the snapshot, ...):

./xspp fieldU.job

To compute the energy and maximum value of the curl of the field:

./xspp fieldU.job curl nrj max

To extract the field values along a line spanning the x-axis from x = −1
to x = 0.8, and also display total energy of field:

./xspp fieldU.job line -1,0,0 0.8,0,0 nrj

Add two fields and save the result to a new file (the first file will set the
resolution for the result):

./xspp fieldT_0004.job + fieldT0.job save fieldT_total_0004.job

Extract only a given range of spherical harmonic coefficients (2 to 31)
and computes the corresponding energy:

./xspp fieldB.job llim 2:31 nrj

Note that xspp is not parallelized using MPI, so that for very big cases you might run
out of memory (although it can operate out-of-core – without actually loading the whole
file in memory – in some cases). As a workaround you can always reduce the spherical
harmonic truncation while reading your big files with the llim option (see example avobe).

3.2.2 Extract 2D slices

One of the most common usage for xspp is to extract two-dimensional slices of the 3D data
stored in spectral representation in the field files. Four types of 2D slices are available:

• Meridian cuts (a plane containing the z-axis), with the merid command;

• Equatorial cuts (the plane z = 0), with the equat command;

• Surface data (on a sphere of given radius r), with the surf command;

• Disc cuts (an arbitrary plane), with the disc command;

When these commands are given to xspp, NumPy files corresponding to the required cuts
are written to the current directory. These NumPy files (*.npy) can then be loaded and
displayed using Python with NumPy and matplotlib (see next section).

25

Example A meridian cut at φ = 0:

./xspp fieldU.job merid

An equatorial cut, and a meridian cut at φ = 45degrees, of the vorticity
(curl of U)

./xspp fieldU.job curl equat merid 45

Extract the field at the spherical surface closest to r = 0.9, using only
the symmetric components.

./xspp fieldU.job sym 0 surf 0.9

Make a cut at z = 0.7, using 200 azimuthal points, with field truncated
at harmonic degree 60:

./xspp fieldU.job llim 0:60 disc 200 0,0,0.7

3.2.3 plotting with python/matplotlib

The python module xsplot is provided to load and display cuts produced by xspp. It can
be used interactively or within scripts. Such Python scripts using matplotlib and xsplot
are located in the matplotlib dierectory, and can be called from command line. xsplot

can also be used directly from command line and will guess the type of cut of your file and
display it accordingly.

The python module should be installed by calling make install-py, or explicitly
python setup.py install --user from the python subdirectory. In addition, it is con-
venient to copy the small script python/xsplot in your path, so that you can invoke xsplot
from any directory.

26

Example Produce a meridian and an equatorial cut with xspp:

./xspp fieldU.job merid equat

From command prompt, quickly load and plot all components of the field
in this meridional slice, as well as in the equatorial plane.

xsplot o_merid_0.npy o_equat.npy

xsplot has several convenient options. For instance you can plot the
first two components only (using -c option), and specify a range for the
colormap (using the -z option):

xsplot o_equat_0.npy -c 0,1 -z "(-1e-3,2e3)"

Alternatively, from an Ipython interpreter (or notebook, or script), load
and plot the φ-component of the field in the meridional and equatorial
slices:

> import xsplot

> a = load(’o_merid_0.npy’)

> xsplot.plot_slice(a, 2) # plot third (phi) component

> d = load(’o_equat.npy’)

> xsplot.plot_slice(d, 1) # plot second (phi) component

Several useful scripts for basic and advanced plotting can be found in the matplotlib

directory.

3.2.4 3D visualization with paraview

From the paraview website: ParaView is an open-source, multi-platform data analysis and
visualization application. ParaView users can quickly build visualizations to analyze their
data using qualitative and quantitative techniques.

Full spatial fields can be saved to XDMF format, which can be loaded by paraview. Note
that the HDF5 library is required for this to work, and must be found by the configure

script. If so, Simply run:

make xspp

./xspp fieldB_0004.job hdf5 B_cartesian.h5

The file B cartesian.h5.xdmf describes the cartesian components of the vector field B
on a spherical grid that can be read directly by paraview (if prompted for a loader, select
’XDMF’).

27

http://www.paraview.org

3.2.5 Advanced post-processing using pyxshells

For more complex post-processing, xspp may not be enough. The python module pyxshells
allows you to quickly write your own scripts to work directly with the spectral fields stored
in the field files output by XSHELLS, cast them to spatial domain, and so on.

To install the python modules, type make install-py. You can then import the
pyxshells module from any python script.

Example Here is an example of what pyxshells can do:

> import pyxshells

> f = pyxshells.load_field(’fieldU.job’)

> r = f.grid.r # the radial grid

> KE = f.energy() # computes the energy

> f.sht.set_grid() # prepare the spherical grid

> u3D = f.spat_full() # the 3D field in spherical coordinates

> ur,ut,up = f.spat_shell(len(f.grid.r)-1) # surface field

> ur,ut,up = f.spat_merid() # meridional slice

> ur,ut,up = f.spat_equat() # equatorial slice

28

Chapter 4

Hacking

4.1 Main source files

The main programs (xsbig, xsbig mpi and xsbig hyb) all share the same source code:

• xshells big.cpp is the main source file, including the main loop, and all the solver
logic.

• xshells.hpp is where a lot of customization goes on. See section 2.2.

• grid.cpp contains functions related to the radial grid and to the banded matrix
linear solver.

• xshells spectral.cpp contains the definition of the classes used to describe spectral
fields (scalar and vector), and the implementation of most associated methods.

• xshells io.cpp contains methods and functions to load and store fields to file on
disk.

• xshells physics.cpp generation of evolution matrices and computation of physical
quantities.

• xshells init.cpp initialization functions and predefined fields.

• findiff.cpp finite difference derivatives.

• xshells linop.cpp Linear operators (banded matrices) and solvers.

• xshells sparse.cpp To handle the Coriolis force implicitely, we rely to large sparse
matrices.

The post-processing program xspp uses the previous source files but also:

• xspp.cpp as main source file (instead of xshells big.cpp)

29

• xshells spatial.cpp contains the definition of the classes used to describe spatial
fields (scalar and vector), their relationship with spectral representation and associ-
ated methods.

• xshells render.cpp contains method implementations for rendering fields on grids
and slices, as well as output to hdf5 files.

4.2 Doxygen

The source code also contains Doxygen documentation comments. Run make docs to
generate the documentation targeted at developers and contributors in the doc/html/

folder.

4.3 Mercurial repository

To track the changes to the code, the distributed version control system Mercurial is used.
The main mercurial repository, found at https://bitbucket.org/nschaeff/xshells al-
lows you to use the latest (unstable) revision (at your own risk). You can also fork it and
propose to merge your changes.

30

http://mercurial.selenic.com/
https://bitbucket.org/nschaeff/xshells

Chapter 5

Frequently Asked Questions

Why is XSHELLS so fast? Short answer: it uses SHTns for spherical harmonic trans-
forms and tries to preserve data locality. A Longer answer can be found in this
presentation: http://dx.doi.org/10.6084/m9.figshare.1304532.

What are the differences with the PARODY code? The numerical methods are ba-
sically the same, but their implementations are different. The PARODY code is
written in Fortran. The performance and scalability of XSHELLS are better.

Why is XSHELLS not written in Fortran? Because we don’t like Fortran, and we
would not be able to get the same level of performance out of a Fortran code. But
maybe you could !

31

https://bitbucket.org/nschaeff/shtns/
http://dx.doi.org/10.6084/m9.figshare.1304532

	Getting started
	Description
	Transition from versions 1.x to 2.x
	Requirements
	Installation
	Configuration files
	Compiling and Running
	Outputs
	Limitations and advice for parallel execution
	Citing

	Setting up the simulation
	Run-time options: xshells.par
	Equations and controlling parameters
	Boundary conditions
	Initial conditions and imposed fields
	Forcing
	Spatial discretization
	Time-stepping
	Real time plotting
	Time lapse field snapshots
	Checkpointing and restarting capabilities
	Advanced options
	Beta features

	Compile-time settings: xshells.hpp
	Custom diagnostics
	Variable time-step
	Variable conductivity
	Variable spherical harmonic degree truncation
	Boundary forcing
	Linearized equations and base fields

	Post-processing and visualization
	Plotting time-dependent quantities
	Dealing with 3D fields
	Using the xspp command-line tool
	Extract 2D slices
	plotting with python/matplotlib
	3D visualization with paraview
	Advanced post-processing using pyxshells

	Hacking
	Main source files
	Doxygen
	Mercurial repository

	Frequently Asked Questions

