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Preface

PULSAR version 1.0 was released in August 2013 as a prototype so�ware provid-
ing proof-of-concept implementation of a distributed memory runtime based on
the systolic array concept [1] implemented in so�ware rather than in hardware.
The principles of this new implementation are based on thorough collaborative
research and PULSAR’s performance, scalability, and e�ciency have been shown
at large supercomputing installations [2, 3].
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CHAPTER 1

Essentials

PULSAR is a so�ware library that is implemented using the C programming lan-
guage. It provides a programming interface for C codes and it has been designed
to be e�cient on distributed-memory machines based on homogeneous multicore
processors and multi-socket systems of multicore processors. The name PULSAR
is an acronym for Parallel Ultra Light Systolic Array Runtime.

PULSAR project website is located at:

http://icl.cs.utk.edu/pulsar/

PULSAR users’ forum is located at:

http://icl.eecs.utk.edu/pulsar/forum/

1.1 Problems that PULSARCan Solve

PULSARis, bydesign, perfectly suited for systolic algorithmswhich are too numer-
ous to name here. PULSAR’s developers have succesfully solved dense systems of
linear equations and linear least squares problems and associated computations
such as matrix factorizations.
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1.2. COMPUTERS FORWHICH PULSAR IS SUITABLE

1.2 Computers for which PULSAR is Suitable

PULSAR is designed to give high e�ciency and scalability on homogeneousmulti-
core processors andmulti-socket systems ofmulticore processors connectedwith a
reasonably fast interconnect. As of today, themajority of such systems are on-chip
symmetric multiprocessors with classic super-scalar processors as their building
blocks (x86 and the like) augmented with short-vector SIMD extensions (SSE, AVX
and the like).

Support forheterogeneous (hybrid) systems, equippedwith hardware accelerators,
is planned for the future.

1.3 PULSAR versus LAPACK and ScaLAPACK

PULSAR has been designed to realize the potential of systolic arrays when imple-
mented in so�ware. Some of the linear algebra algorithms may be implemented
on top of PULSAR with substantial e�ciency. For these tasks, this may o�er a
practical replacement forLAPACKand particularly ScaLAPACK. The performance
gains over these established packages come principally from a dramatically di�er-
ent structure of the PULSAR code. Some of the improvement comes from the use
of new or improved algorithms.

1.4 Availability of PULSAR

PULSAR is distributed as source code and is, for the most part, meant to be com-
piled from source on the host system. In certain cases, a pre-built binary may be
provided along with the source code. Such packages, built by the PULSAR devel-
opers, will be provided as separate archives on the PULSAR download page:

http://icl.cs.utk.edu/pulsar/software/

The PULSAR teamdoes not reserve exclusive right to provide such packages. They
can be provided by other individuals or institutions. However, in case of prob-
lems with binary distributions acquired from other places, the provider needs to
be asked for support rather than PULSAR developers.
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1.5. COMMERCIAL USE OF PULSAR

1.5 Commercial Use of PULSAR

PULSAR is a freely available so�ware package with a license that allows its use or
inclusion in commercial packages. The PULSAR team asks only that proper credit
be given by citing this users’ guide as the o�cial reference for PULSAR.

Like all so�ware, this package is copyrighted. It is not trademarked. However, if
modi�cations are made that a�ect the interface, functionality, or accuracy of the
resulting so�ware, the name of the routine should be changed and the modi�ca-
tions to the so�ware should be noted in the modi�er’s documentation.

The PULSAR team will gladly answer questions regarding this so�ware. If modi�-
cations are made to the so�ware, however, it is the responsibility of the individual
or institution who modi�ed the routine to provide support.

1.6 Documentation of PULSAR

The PULSARpackage comes with a variety of pdf and html documentation includ-
ing:

• The PULSAR Users’ Guide (this document)

• The PULSAR README

• The PULSAR Release Notes

• The PULSAR Installation Instructions

• The PULSAR Doxygen Reference

You will �nd all of these in the documentation section on the PULSAR website
http://icl.cs.utk.edu/pulsar/.

1.7 PULSAR Support

PULSAR has been thoroughly tested before its release, using multiple combina-
tions ofmachine architectures, compilers andBLAS libraries. The PULSARproject
supports the package in the sense that reports of errors or poor performance will
gain immediate attention from the developers. Such reports – and also descrip-
tions of interesting applications and other comments – should be posted to the
PULSAR users’ forum:
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1.8. FUNDING

http://icl.cs.utk.edu/pulsar/forum/

1.8 Funding

The PULSAR project was funded in part by the National Science Foundation.
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CHAPTER 2

Fundamentals

2.1 Design Principles

Systolic arrays has long been touted to o�er a data-centric execution model that
is a viable alternative to the von Neumann architecture. However, the need for
fully custom hardware to realize their potential turned out to be a major obsta-
cle to their wide-spread use. In the past, only a few implementations of systolic
arrays were attempted, which is insu�cient to become a viable solution capable
of competing with the proliferation of integrated circuits based on the von Neu-
mann model. The inherent limits of a single systolic design manifest themselves
in the inability of a single systolic array tackle more than one speci�c algorithmic
challenge. This stark contrast with the general-purpose CPUs, which can tackle
virtually any programmatic task, albeit with potentially low performance. The
PULSAR project is a proof-of-concept e�ort whose aim is to show how the sys-
tolic design principles may be applied as a so�ware solution to deliver algorithms
with unprecedented strong scaling [4] capabilities in addition to very good weak
scaling performance [5]. Systolic array for the QR decomposition was developed
and a so�ware virtualization layer which was used formapping of the algorithm to
a large distributed memory system. In multiple experiments [2, 3], strong scaling
properties were discovered, far superior to the best existing solutions.
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2.2. CONCEPTUAL FRAMEWORK

2.2 Conceptual Framework

The so�ware realization of the systolic design is accomplished in PULSAR with a
so�ware infrastructure that virtualizes systolic array and/or wavefront array archi-
tectures. In this infrastructure, the node of the virtual systolic array is referred to
as a Virtual Data Processor (VDP), as opposed to the Data Processing Unit (DPU)
known from the original systolic array literature. The actual hardware processor
(a core, a multicore CPU, or a hardware accelerator) will be referred to as a Phys-
ical Data Processor (PDP). The connections structure of the virtual array will be
called a Virtual Network Topology (VNT) and to the topology of the actual hard-
ware interconnect – Physical Network Topology (PNT). The basic idea underlying
PULSAR is to map the computational problem to a systolic array architecture and
then map the systolic array design to the underlying hardware through a so�ware
virtualization layer. Three distinct stages ofmapping can be distinguished as listed
below:

• mappingof theDirect AcyclicGraph (DAG) of the computation to the systolic
arrayarchitecture (mappingof computational tasks to theVDPs andmapping
of data�ow to the VNT),

• mapping of the VDPs of the systolic array to the PDPs of the hardware (typ-
ically mapping multiple VDPs to a single PDP),

• mapping of the VNT of the systolic array to the PNT of the hardware (em-
bedding the graph of the VNT in the graph of the PNT).

PULSAR is a prototype library that implements the above concepts and is available
for experimentation with new and exisiting systolic algorithms.

2.2.1 Systolic Algorithms

Some of the algorithms required by PULSAR can be categorized as standard linear
algebra algorithms. Triangular solve is a good example here. Such algorithms have
been verywell studied andmultiple systolic implementations have been proposed
before. Some of PULSAR’s showcase algorithms have been developed recently,
speci�cally the class of tile algorithms including tile QR and LU factorizations [6].
Since the systolic array era precedes these discoveries, no systolic arrays for these
algorithms have been proposed but recent research results[2, 3] suggest the they
map well to the old paradigm.

Both the classic and the novel algorithms are very much suitable for systolic de-
signs. The majority of them can be de�ned by a few loop nests with three levels
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2.2. CONCEPTUAL FRAMEWORK

of nesting. As a result, these algorithms have regular DAGs with clearly visible
structure. Also, they have easily identi�able wavefronts, mostly corresponding to
the le� looking versions of the algorithms (lazy evaluation). Nevertheless, some of
these algorithms, especially the new ones can still pose design challenges due to
non-trivial data dependency patterns.

Besides the opportunity to design systolic arrays for the new algorithms, a new
range of opportunities presents itself in the context of so�ware implementation.
PULSAR systolic array design opportunities are much greater due to the lack of
constraints that solelyhardware implementationswould otherwise present. In par-
ticular, di�erent shapes of systolic arrays (e.g. rectangular, hexagonal, triangular)
maybe freely explored on top of PULSAR’s runtime and it is possible to freely ven-
ture into higher dimensions. Planar layouts are no longer a limiting factor. Since
most of the algorithms of interest may be expressed with loop nests of varying a
levels of nesting, it is reasonable to suppose that their communication pro�le could
be improved by increasing the number communication channels whenmoving to
three dimensions.

And last, but not least, an important aspect of systolic array design is the problem
of composition, i.e, connecting di�erent systolic arrays to build one which com-
bines di�erent operations. The canonical example here is combining of Gaussian
elimination with triangular solve to arrive at a solution to a linear system. Given
the much larger design space for each of the component systolic arrays, we have a
much greater freedom due to a larger design space for the composition of systolic
arrays.

To sum up, PULSAR provides:

• improved virtual systolic array designs for classic algorithms,

• improved virtual systolic array designs for novel algorithms,

• novel compositions of classic and novel systolic arrays.
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CHAPTER 3

Software Interfaces

3.1 Naming Conventions

PULSARAPI presents an object-oriented interface to the user through C program-
ming language calls. PULSAR functions begin with the prt pre�x which stands for
PULSARruntime. PULSAR-speci�c constants are pre�xedwith the stringPRT. The
header �le with PULSAR’s C bindings is called prt.h and the user codes should
include it to ensure proper calling sequences:

#include <prt.h>

Throughout this chapter, it is assumed that this header �le have been included in
the user source code; preferably, somewhere at the beginning of the �le to inform
the compiler of PULSAR’s data structures and functions’ calling conventions and
trigger compile-time errors if these are not adhered to.

3.2 MemoryManagement

For the most part, memory allocation and deallocation of PULSAR has to be man-
aged by the user. The routines for this purpose have the su�x new and delete,
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3.3. CREATION AND DISPOSAL OF PULSAR’S VSAS

respectively. However, PULSAR eases the burden of manual memory manage-
ment by taking over the ownership of object references when they are passed into
PULSAR functions. For example, functions with su�x insert inserts one object
(obj1) into another object (obj2). A�er insertion, PULSAR takes over the own-
ership of the inserted object (obj1) and the user does not (and should not) have
deallocate it any more. Instead, when deallocation of obj2 will take care of deal-
locating both objects.

3.3 Creation and Disposal of PULSAR’s VSAs

Before any other PULSAR API calls, the user should �rst initialize the MPI library
by a call to MPI Init(). The PULSAR library does not have the corresponding
initialization call. Instead, initialization is performed on a per-VSA basis. But �rst,
a new VSA has to be allocated by a call to prt vsa new():

prt_vsa_t *my_vsa = prt_vsa_new(num_threads, &global_store,
vdp_to_core);

The code above declares aVSAvariablemy vsa and initializes it with an emptyVSA
through a call to prt vsa new(). Parameter num threads speci�es the num-
ber of local threads to be used for execution of VDP code. Upon execution, each
VDP will receive the pointer global store, which provides information com-
mon to all VDP and is de�ned by the user. The function vdp to core de�nes a
user mapping between VDPs and cores. A sample mapping function that uses the
�rst element of VDP’s identi�er tuple and returns the remainder of division by the
number of cores:

int
vdp_to_core(int *vdp_id_tuple, void *global_store,

int num_cores) {
return vdp_id_tuple[0] % num_cores;

}

Just as there is no explicit function to initialize PULSAR, there is also no single call
to shut down it. This is due to the fact that PULSAR does not have any internal
data that require explicit allocate and deallocation. The only requirement from
the memory management perspective is a proper deallocation of all the allocated
VSAs with calls to prt vsa delete():

prt_vsa_delete(my_vsa);
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3.4. CONFIGURATION OF PULSAR’S VSAS

As a convenience to the user, the call to the prt vsa delete() function deallo-
cates not only the VSA itself but all its associated VDPs, their channels, and tuple
identi�ers.

3.4 Con�guration of PULSAR’s VSAs

Before executing VSAs code, it is possible to con�gure the runtime behavior of
PULSAR by calling the prt vsa config set() function with an appropriate
constant. Currently, the following calling sequences are supported:

• prt vsa config set(my vsa, PRT VDP SCHEDULING,
PRT VDP SCHEDULING AGGRESSIVE) forces PULSAR to execute cur-
rent VDP’s code as long as possible and preempt only if it runs out of data to
process and/or blocks on a communication call.

• prt vsa config set(my vsa, PRT VDP SCHEDULING,
PRT VDP SCHEDULING LAZY) forces PULSAR to start execution of VDP’s
code and let it proceed independently (either block or continue running)
depending on availability of data.

• prt vsa config set(my vsa, PRT SVG TRACING,
PRT SVG TRACING ON) turns tracing on and produces an SVG (Scalable
Vector Graphics) �le at the end of the VSA’s execution.

• prt vsa config set(my vsa, PRT SVG TRACING,
PRT SVG TRACING OFF) turns the tracing facility o�.

3.5 Initialization Procedure for an Empty VSA

Anewly allocated VSA is empty – it has no VDPs and no connecting channels. This
may be changed with a series of calls that operate on VDPs and their channels.

3.5.1 Creating a VDP

A new VDP is created with a call to prt vdp new():

prt_vdp_t *my_vdp = prt_vdp_new(tuple, counter, function,
local_store_size, num_inputs, num_outputs, trace_color);
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3.5. INITIALIZATION PROCEDURE FOR AN EMPTY VSA

this single call allocates and fully initializes a VDP. The parameters of the call are
as follows:

1. tuple (type: int *) is a PULSAR tuple (see §3.7.2) that provides a unique
identi�er to the VDP that may be used for creating channels of communica-
tion between VDPs.

2. counter (type: int) is an integer value that determines howmany execution
steps the VDP has to perform.

3. function (type: prt vdp function t) is a function that contains the VDP
code.

4. local store size (type: size t) is the size of VDP’s local storage that
needs to be allocated for the VDP before it starts executing.

5. num inputs (type: int) is the number of input channels that will be used by
PULSAR to communicate data to the VDP.

6. num outputs (type: int) is the number of output channels that will be used
by PULSAR to communicate data to the VDP.

7. trace color (type: int) is the integer representation of the colorwhichwill
be used to show this VDP’s execution in the trace. The color components,
red, green, blue, are speci�ed in the three least signi�cant bytes of the value.
For example, black color is 0, white is 0xffffff, red is 0xff0000, green is
0x00ff00, and blue is 0x0000ff.

A�er the call, references to the tuple identi�er is taken over by PULSAR and the
user should not deallocate it. It will be reclaimed upon deallocation of the VDP.

3.5.2 VDP’s Code and Its Invocation

VDP is activated by PULSAR by calling the VDP function speci�ed in a call to
prt vdp new(). The VDP function has to be speci�ed by the user and here is
a simple implementation with relevant comments included in the code:

void
my_vdp_function(int *tuple, int counter,
prt_channel_t **input, prt_channel_t **output,
void *local_store, void *global_store) {
int vdp_id = tuple[0]; // extract ID of VDP

11



3.5. INITIALIZATION PROCEDURE FOR AN EMPTY VSA

// extract pointer to my local data storage
my_local_store *ls = (my_local_store *) local_store;

// extract pointer to my global data storage
my_global_store *gs = (my_global_store *) global_store;

// compute on VDP’s data based on value of ’counter’
// communicate with other VDPs using input/output channels

}

3.5.3 Connecting VDPs Using Channels

Upon creation, VDPs are assigned a �xed number of input channels and output
channels. They are used for one-directional communication betweenVDPs during
execution. Channels are created with a call to prt channel new():

prt_channel_t *my_channel = prt_channel_new(
data_count, mpi_datatype,
src_tuple, src_slot, dst_tuple, dst_slot );

The number of data elements in a packet is speci�ed with data count and
mpi data speci�es the MPI data type of the elements. The source VDP of the
data is given by its tuple identi�er src tuple and the slot number src slot.
Similarly, the identi�er of the destination VDP and its slot number are given by
dst tuple and dst slot, respectively. The ownership of the tuples’ references
is taken over by PULSAR and should not be deallocated by the user.

A�er successful creation, a channel has to be associated with a VDP which can be
achieved with a call to the prt vdp channel insert function:

prt_vdp_channel_insert(my_vdp, my_channel, direction, slot );

where direction can be either PrtInputChannel or PrtOutputChannel de-
pending on the channel’s direction of communication and slot designates the
slot to use among the available slots allocated during the call to theprt vdp new()
function. The ownership of the reference of a channel inserted into a VDP is taken
over by PULSAR and should not be deallocated by the user. It will be deallocated
upon deallocation of the VDP.
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3.5. INITIALIZATION PROCEDURE FOR AN EMPTY VSA

3.5.4 Communicating between VDPs through Channels

VDPs can communicate between each other using their channels.

To receive amessage from my channel, the prt channel pop() function has to
be called:

prt_packet_t *my_packet = prt_channel_pop(my_channel);
compute(my_packet->data);

The payload of the packet can be accessed through the datamember.

To send a packet to another VDP, we �rst have to allocate a packet through a call to
the prt packet new():

prt_packet_t *my_packet = prt_packet_new(size_in_bytes);

The size of the packets payload, size in bytes, has to be given in bytes. Before
sending, the payload has to be initialized but since the datamember of the packet
structure is of type void *, it has to be cast to a type more useful for the user:

double *x = (double *)my_packet->data;

With payload data in place, the packet can be send through a call the
prt channel push() function:

prt_channel_push(my_channel, my_packet);

Regardless of where the packet came from, either a call to the
prt channel pop() or the prt packet new() function, it has to be deal-
located with a call to the prt packet release() function:

prt_packet_release(my_packet);

3.5.5 Adding a VDP to a VSA

A VSA is a collection of VDP’s and it is very easy to add a VDP to a VSA with the
prt vsa vdp insert() function a�er the VDP have been fully de�ned and con-
nected to other VDPs:
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3.6. EXECUTING THE VSA CODE

prt_vsa_vdp_insert(my_vsa, my_vdp);

The ownership of the reference of the VDP is taken over by PULSAR and should
not be deallocated by the user. It will be deallocated upon disposal of the VSA.

3.6 Executing the VSACode

Once the VSA has been constructed out of VDPs and their connections, it be exe-
cuted with a single call to the prt vsa run() function:

prt_vsa_run(my_vsa);

3.7 Auxiliary PULSARRoutines

3.7.1 Time of Day

The function pulsar time of day() returns the current time of day in a much
the same way as POSIX gettimeofday() does. The main di�erence is the fact
that the return value is combined into a single �oating point value that represents
the number of seconds:

double time_of_day = pulsar_time_of_day();

The return value will not be a whole number formost invocations and the fraction
part represents the micro-seconds obtained from the call to gettimeofday().

3.7.2 Tuple Storage

For convenience, PULSAR provides a tuple data type that stores tuples of integer
values. Each tuple is an array of integers terminated by the INT MAX value, hence
INT MAX cannot be stored in a PULSAR’s tuple.

A tuple may be created by a call to the prt tuple new() function:

int *tuple = prt_tuple_new(len, e1, e2, e3, ...);
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3.7. AUXILIARY PULSAR ROUTINES

where the �rst argument length speci�es the length of the tuple and the tuple ele-
ments are e1, e2, e3, and so on.

Deallocation of the tuple is simply done by calling the standard C library function
free(). If, however, a tuple is passed into any of the PULSAR functions the user
looses the ownership of the reference to the tuple and PULSAR becomes respon-
sible for deallocation the memory.

There are six macros provided in the PULSAR headers that are a safer alternative
to the prt tuple new() function because they allow the compiler to catch the
error of passing the wrong number of arguments a�er the tuple length. These
macros are prt tuple new1(), prt tuple new2(), prt tuple new3(),
prt tuple new4(), prt tuple new5(), and prt tuple new6().

Caution: majority of PULSAR functions that accept tuples as parameters assume
that the tuple was allocated with the prt tuple new() function. A commonmis-
take is to pass to such a function a tuple allocated on the stack:

int *stack_tuple[4] = {1, 2, 3, INT_MAX};
prt_vdp_t *my_vdp = prt_vdp_new(stack_tuple, counter,

function, size, ninputs, noutputs, color);
prt_vsa_vdp_insert(my_vsa, my_vdp);

// attempt to deallocate ’stack_tuple’
prt_vsa_delete(my_vsa); // ERROR

The variable stack tuple resides on the function stack and is not suitable for use
with PULSAR functions. In particular, it cannot be deallocated with a call to the
free function. The error will manifest itself upon the call to prt vsa delete().
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