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Introduction

Measuring the uncertainty, independence, association, inner product or distance of random variables is a central problem
with numerous applications. Despite the large number of successful applications and emerging potentials, there are quite
few available packages in the area which would help the comparison of different information theoretical measures and



estimation techniques.

L' To remedy this serious bottleneck and provide a platform in a rapidly evolving, free software

environment we created the Information Theoretical Estimators (ITE) in Python toolbox. It

1. is the redesigned, Python implementation of the Matlab/Octave ITE toolbox?.

2.

3.
4.

can estimate numerous entropy, mutual information, divergence, association measures, cross quantities, and kernels
on distributions (see the list below).

can be used to solve information theoretical optimization problems in a high-level way.

comes with several demos.

Some details:

¢ Estimated quantities:

entropy: Shannon entropy, Rényi entropy, Tsallis entropy (Havrda and Charvat entropy), Sharma-Mittal
entropy, ®-entropy ( f-entropy).

mutual information: Shannon mutual information (total correlation, multi-information), Rényi mutual in-
formation, Tsallis mutual information, x? mutual information (squared-loss mutual information, mean square
contingency), Lo mutual information, copula-based kernel dependency, kernel canonical correlation analysis
(KCCA), kernel generalized variance (KGV), multivariate version of Hoeffding’s ®, Hilbert-Schmidt indepen-
dence criterion (HSIC), distance covariance, distance correlation, Lancaster three-variable interaction.

divergence: Kullback-Leibler divergence (relative entropy, I directed divergence), Rényi divergence, Tsallis
divergence, Sharma-Mittal divergence, Pearson x? divergence (x? distance), Hellinger distance, Ly divergence,
f-divergence (Csiszar-Morimoto divergence, Ali-Silvey distance), maximum mean discrepancy (MMD; kernel
distance, current distance), energy distance (N-distance; specifically the Cramer-Von Mises distance), Bhat-
tacharyya distance, non-symmetric Bregman distance (Bregman divergence), symmetric Bregman distance, J-
distance (symmetrised Kullback-Leibler divergence, J divergence), K divergence, L divergence, Jensen-Shannon
divergence, Jensen-Rényi divergence, Jensen-Tsallis divergence.

association measures: multivariate extensions of Spearman’s p (Spearman’s rank correlation coefficient, grade
correlation coefficient), multivariate conditional version of Spearman’s p, lower and upper tail dependence via
conditional Spearman’s p.

cross quantities: cross-entropy.

kernels on distributions: expected kernel (summation kernel, mean map kernel, set kernel, multi-instance
kernel, ensemble kernel; specific convolution kernel), probability product kernel, Bhattacharyya kernel (Bhat-
tacharyya coefficient, Hellinger affinity), Jensen-Shannon kernel, Jensen-Tsallis kernel, exponentiated Jensen-
Shannon kernel, exponentiated Jensen-Rényi kernels, exponentiated Jensen-Tsallis kernels.

conditional entropy: conditional Shannon entropy.

conditional mutual information: conditional Shannon mutual information.

Web: https://bitbucket.org/szzoli/ite-in-python/. Comments, feedbacks are welcome.

Follow ITE: on

Bitbucket (https://bitbucket.org/szzoli/ite-in-python/follow),
Twitter (https://twitter.com/ITEtoolbox).

Mailing list: https://groups.google.com/d/forum/itetoolbox

Publications/applications: Papers using ITE are collected at https://bitbucket.org/szzoli/ite/wiki. Feel
free to add yours.

e Author: Zoltan Szab6 (http://www.cmap.polytechnique.fr/~zoltan.szabo/).

LA few nice examples focusing on discrete variables or specialized applications and methods are http://www.cs.man.ac.uk/
“pococka4/MIToolbox.html, http://www.cs.tut.fi/ timhome/tim/tim.htm, http://cran.r-project.org/web/packages/infotheo, http://
cran.r-project.org/web/packages/entropy/, https://github.com/dit/dit, https://pypi.python.org/pypi/universal-divergence/0.2.0,
https://github.com/baccuslab/shannon, or http://fr.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox.

2See https://bitbucket.org/szzoli/ite/. In the sequel we will use 'Matlab ITE’ instead of Matlab/Octave ITE’.
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e Citing: If you use the ITE toolbox in your work, please cite it [6].> The source code also contains references for the
individual methods and the quantities estimated.

e License: GPLv3(>=).
e Requirements:

1. Python 3, SciPy [>(typically) NumPy, Matplotlib].* You can get these tools by pip® (€ Python 3 > 3.4).

— The system-wide installation is as follows:

# python3 -m pip install scipy # ’#° denotes bash prompt (with root rights)
# python3 -m pip install numpy # if you do not get it by SciPy
# python3 -m pip install matplotlib # -||- (:=same comment)

— The user-specific installation is

> python3 -m pip install --user scipy # ’>’ stands for the bash prompt (with normal user
> python3 -m pip install --user numpy # rights)
> python3 -m pip install --user matplotlib

2. Nose, IPython: optional.®

Note: Installing Anaconda gives all these tools, with Intel MKL (Math Kernel Library).”

The rest of the documentation is structured as follows:

e Section 2 is about the installation of ITE, how to import it and run its built-in demos, and a few usage examples.
Section 3 enlists the definitions of the estimated quantities.

e Section A is for developers with details on (i) the directory structure of the toolbox, (ii) how to add new estimators
and run doctests, (iii) parameter passing in (certain) meta estimators. Python ITE - Matlab ITE ’correspondence’
is the topic of Section B. Section C contains the axiomatic formulation of concordance and dependence.

2 Getting Started: Installation, Built-in Demos, Examples

This section is about the installation and importing of the ITE toolbox, running its built-in demos, followed by a few
usage examples.

e Installation: download the ITE archive (https://bitbucket.org/szzoli/ite_in_python/downloads), extract its
contents. We will denote the resulting main folder (containing demos, doc, ite, LICENSE.txt, ...) as ite.

e Start a working session:

> ipython3 # see the first bullet point of the note below
>>> import ite  # change first to the ite directory, if it is not on your Python path;
# ’>>>’ denotes the prompt in the (I)Python console

Note:

— Throughout this documentation for simplicity/efficiency I assume that you use IPython; you might want to do
this implicitly via an IDE such as PyCharm?®.

— You can add the ITE package to the Python path by

3.bib: http://www.cmap.polytechnique.fr/~zoltan.szabo/ITE.bib.

4See https://www.python.org/ and http://uww.scipy.org/.

5See https://pypi.python.org/pypi/pip.

6See http://nose.readthedocs.io/en/latest/ and https://ipython.org/.
7See https://www.continuum.io/downloads.

8See https://www.jetbrains.com/pycharm/.
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>>> import sys
>>> gys.path.insert(1l,’/path/to/directory/containing/ite’)

e Running the built-in demos (see Table 9): Change to the ite/demos/analytical_values directory and run the
demos. Example:

>>> run demo_h_shannon # run € IPython; notice that the ’.py’ extension could be discarded

e Examples: In the first example we estimate H(y), the Shannon entropy [Eq. (1)] of a random variable y using the
k-nearest neighbor method; the estimator is called BHShannonKnnK in ITE. y will be uniformly distributed on the
3-dimensional unit cube (€ [0,1]3; d = 3) from which we have 7' = 1000 samples. The first estimator (col below)
relies on the default parameter setting, the second one (co2) is based on user-specified parameters. Particularly, in
the second case we specify the kNN computation method, the number of neighbors (k) and allow approximation in
the kNN phase (eps; to speed up computation). For alternative entropy estimators, see Table 1.

Example 1 (Entropy estimation)

import the ITE toolbox (1x)

we will use ’rand’ to create the observations
initialize the entropy (2nd character = ’H’) estimator
print estimator-1

size: number of samples X dimension, {yt %2010, Yt € R3
entropy estimation

>>> import ite

>>> from numpy.random import rand

>>> col = ite.cost.BHShannon_KnnK()

>>> print(col)

>>> y = rand (1000, 3)

>>> h = col.estimation(y)

>>>

>>> co2 = ite.cost.BHShannon_KnnK(knn_method=’cKDTree’, k=2, eps=0.1) # with other estimator
# parameters

H OH H O HH

>>> print(co2) # print estimator-2
>>> h2 = co2.estimation(y) # entropy estimation

In our second example we consider the estimation of the classical Shannon mutual information [Eq. (6)]. The random
variable (y) of interest is partitioned into 3 blocks: y = [yl; yvZ; y3] (y! € R?, y? € R3, y3 € R?*) and we want to get
I(y',y?%,y?), the mutual information of y™-s. T = 2000 samples are used for estimation. We estimate the mutual
information of y™-s from Kullback-Leibler divergence [see Eq. (6) and Eq. (24)]. These type of derived estimators
are called meta estimators in ITE (MIShannon DKL; 1st character = "M’). 'Base’ estimators refer to non-derived
ones, as it was the case in Example 1 (BHShannon KnnK: 1st character = 'B’).

Example 2 (Mutual information estimation (association measure: similarly))

>>> from numpy.random import randn # we will use ’randn’ to create the observations

>>> from numpy import array # an ’array’ will contain the subspace dimensions: [di;ds;ds]
>>> co = ite.cost.MIShannon_DKL() # initialize the mutual information estimator

# (MIShannon_DKL: 2nd character = ’I°)
>>> ds = array([2, 3, 4]) #ylc R? y2ec R?, y3c R, d=di+dy+d3=2+3+4=9
>>> t = 2000 # number of samples
>>> y = randn(t, sum(ds)) # size: number of samples X dimension
>>> i = co.estimation(y, ds) # estimate mutual information

Alternative mutual information measures/techniques are listed in Table 2. Estimation of association measures is
analogous, the available methods are covered in Table 4.

In our third example we estimate D(y!,y?), the Kullback-Leibler divergence between two random quantities y! and
y? [see Eq. (24)%], via k-nearest neighbors (BDKL KnnK). We have T; = 2000 samples from y! and T = 3000
samples from y?2.

9We identify random variables with their distributions or their pdf-s (probability density functions; meant w.r.t. the Lebesgue measure).
Many of the information theoretical quantities can be formulated more generally, but to keep the presentation simple we will avoid going into
measure theoretical details/technicalities.



Example 3 (Divergence estimation (cross quantity, kernel on distributions: analogously))

>>> from numpy.random import randn # ’randn’ is used to generate our observations

>>> co = ite.cost.BDKL_KnnK() # initialize the divergence (2nd character = ’D’) estimator
>>> dim = 3 yl €R3 y?2eR?

>>> t1, t2 = 2000, 3000 number of samples from y' and y?

>>> y1 = randn(tl, dim) size: number of samplesl X dimension, {y;}

>>> y2 = randn(t2, dim) size: number of samples2 X dimension, {y?}

>>> d = co.estimation(yl, y2) estimate KL divergence

H H H HH

For other divergence measures or estimators see Table 3. The estimation of cross quantities and kernels on distribu-
tions (Table 5, Table 6) can be carried out in the same way.

In our fourth example, we focus on the estimation of the conditional Shannon entropy of y! given y? [see Eq. (68)].
We have T' = 5000 samples from the joint distribution of y = [y!,y?]; it is assumed to be Gaussian below.

Example 4 (Conditional entropy estimation)

>>> from numpy import dot # create observations
>>> from numpy.random import rand, multivariate_normal # -||-

>>> diml, dim2 = 1, 2 # yl e R, y? e R?
>>> dim = diml + dim2 #y=[yl,y? e RI+2=3
>>> t = 5000 # number of samples

>>> co = ite.cost.BcondHShannon_HShannon() # initialize the conditional entropy (’condH’)
# estimator

>>> m, 1 = rand(dim), rand(dim, dim) # mean (m)

>>> ¢ = dot(1, 1.T) # covariance (X), y=N(m,X)

>>> y = multivariate_normal(m, c, t) # {y: 3229, y. = [y,},ytz} € R?

>>> cond_h = co.estimation(y, diml) # estimate conditional entropy

In our fifth example, the task is to estimate the conditional Shannon mutual information of y! and y? given y? [see
Eq. (69)]. We are given T = 3000 samples from the joint distribution of y = [yl; y2: y3]; in the example below it is
Gaussian.

Example 5 (Conditional mutual information estimation)

create observations

-1 -

yle R, y?cR?, y? ¢ R3

d=dy+dy+dz3=1+2+3=6,

y = [yl,yQ,yg] c RS

>>> t = 3000 number of samples

>>> co = ite.cost.BcondIShannon_HShannon() # initialize the conditional mutual information
# (PcondI’) estimator

>>> from numpy import dot, array

>>> from numpy.random import rand, multivariate_normal
>>> ds = array([1, 2, 3])

>>> dim = sum(ds)

H OH H H HH

>>> m, 1 = rand(dim), rand(dim, dim) # mean (m)

>>> ¢ = dot(1, 1.T) # covariance (X), y = N(m,X)

>>> y = multivariate_normal(m, c, t) # {y: 13290, y, = [ytl,yt?,yﬂ

>>> cond_i = co.estimation(y, ds) # estimate conditional mutual information

3 Estimated Quantities and Estimators

This section provides the definitions of the available information theoretical quantities in ITE: Section 3.1 focuses on
unconditional quantities, Section 3.2 contains the conditional ones. Section 3.3 is about the estimators of these quantities.

3.1 Unconditional Quantities

This part is structured as follows: entropy (Section 3.1.1), mutual information (Section 3.1.2), divergence (Section 3.1.3),
association measure (Section 3.1.4) cross quantity (Section 3.1.5), kernel on distributions (Section 3.1.6).



3.1.1 Entropy
e Notation: R? 3y ~ f, in other words the d-dimensional random variable y has density f.

e Goal: We want to estimate the entropy of y € R? from which we have i.i.d. (independent identically distributed)
samples, {y;}1_; (yt €R% t=1,...7).

e Definition: The Shannon entropy (H), Rényi entropy (Hg, ), Tsallis entropy (Hr o; also called Havrda and Charvat
entropy), Sharma-Mittal entropy (Hsm,a,3), ®-entropy (Hg,.; f-entropy'®) are defined as'!

= _/]R'i f(u)log f(u)du, (1)
o) = = log | f(widu, (o #1) lm Hoo = H,  (2)

1 e(l=)Hr,a(y) _ 1
Hra) = 7 1= [ ] = SR @y i Hr = B ()
HsMa,p(y) = 1-3 ( 9 fo‘(U)du> — 11 , (a>0,a#1,8#1), (4)
Ha(y) = / F)®(f (w)w(u)du, Ry~ f). (5)

e Note:

— Hsm,a,p0 limgy1 Hsma,8(Y) = Hr,o(Y), HsM,a,a(y) = Hro(y), lim, gy 1,1) HsM,a,8(y) = H(y).

3.1.2 Mutual Information
e Notation: R? 5y = [y';...;9M] ~ f, R 5 y™ ~ f, (d = M dn). s (S C {1,...,M}) stands for the

m=1

associated marginals; for example fr; 7y is the density function of [y 'y ] y™ denotes an 1dentically distributed
copy of y™. ‘1’ means independence, ‘V’ denotes the logical or’. is for expectation, cov is covariance, var denotes
variance, i = v/—1, (-, ), is the Euclidean inner product, I'(¢ fo ~le~®dx is the Gamma function. Let us define
1 2720(1-%)
e(dr.e(da,o)[[lut 1] 7 [u2]],]™ a20T(52)
Y12 (u17u2) = Ey1y2 [ei<“l’yl>+i<“2’y2>}, ©; (uj) =Ey; [ei<“'7’y]>], (j = 1,2) are the characteristic functions of
[yl; yQ] y! and y?2. Given a reproducing kernel k, H(k) is the associated RKHS (reproducing kernel Hilbert space).
@2 H(k;) denotes the tensor product of H(k;)-s. pq = [ k(, u)du = Ey~q [k(-,u)] is the mean embedding of g
to H(k); g is often a pdf [see Eq. (20), (21) where g is not a pdf 1t can be negative|. F: cdf (cumulative density
function) of y = [yl; .. .;yd], F;: cdf of y'. C: copula of y, i.e. F(y) =C (F1 (yl) ooy Fy (yd)), in other words
C(u) =P(U < u) where U = [Fy (y');...; Fq (y?)] € [0,1]% H(uy,...,uq) = H?Zl u; is the product copula. fy:
uniform density on [0, 1]

the weight function w (u',u?) = = with @ € (0,2), where ¢(d, o) =

e Goal: We consider the estimation of the mutual information of the d,,-dimensional components (y™) of the random
variable y using an i.i.d. sample set {y;}._; from y.

e Definition: The Shannon mutual information (I; also known as total correlation or multi-information), Rényi mutual
information (Ig,q), Tsallis mutual information (It ), x* mutual information (I,2; for M = 2 also called squared-
loss mutual information; mean square contingency = /I,2), Ly mutual information (I,), copula-based kernel
dependency (I..), kernel canonical correlation analysis (Ixcca; KCCA), kernel generalized variance (Ixgy; KGV),
multivariate version of Hoeffding’s ® (Ig ), Hilbert-Schmidt independence criterion (Igsic; HSIC), distance covariance
(Iacov), distance correlation (Iqcor), Lancaster 3-variable interaction (I3 panc), three-variable joint independence
measure (I3 joint) are defined as

1 M
I(yl,...,yM) :/ f(ul,...,uM)log [Jw
Rd Hm:l fm (um)

10Since f also denotes the density in Eq. (5), we refer to the quantity as the ®-entropy.
11Here and in the sequel log denotes natural logarithm, i.e., the unit of the information theoretical measures is nat.

] du' - duM, (6)




<f, H fm> [see (24) for the definition of D], (7)

M
[Ra(y ) Y )_DRa<f7Hfm> for DRavsee (25) (8)
m=1
M
It (v ,y™) = D1, <f, H fm> , for Dr 4, see (26), (9)
m=1
M
I (yl, ,yM) =D, (f, H fm> , for D2, see (28), (10)
m=1
M
Iy, (yl, e ,yM) =Dy, (f7 H fm> , for Dy, see (30), (11)
m=1
I (y',....y™) = Dmmp (fa, fu), for Dyup see (32), z=[F (y');...;Fu (y™)] e RM, (12)
cov b, 2
IKCCA(ylaYQ) — sup [.Zl<y ) 92(}’ )] - , ("i > 0), (13)
g1€M(k1).g2€M (k2)  Jvar [g1(y1)] + £ (|91 [[34xy) \/Var [92(¥*)] + £ 1192134 (15)
1 det(C) i M
Ixav (y' . yM) = =5 log , C=[CY], o(y) = lem (y"™ ) mer » 14
cov ( )= 5108 | T gy |+ © = €71, )= lom ™1 (1)
C™ = cov [wi (¥) 5 (v7)] (15)
1
2
Is (y*,...,yY) = 1s(C) = (hg(d)/[ ]d[C(u) —H(u)]2du> : (16)
0,1
-1
L (d) 2 1 d! n 1
2 = T ad od )
d+D(d+2) 29[ (i+1) 3
2
IHSIC (y17y2) = ||Cy1y2||HS7 Cy1y2 = IEyly2 (I:kl ('7y1) - IJJI] ® [kQ ('73’2) - IJ’Q]) ) (17)
Lacov (¥', %) = llp12 — P12 = \//d » P12 (1l u2) — o1 (ul) o (u2)* w (ul, u2) duldu?, (18)
R%1 2
Licov (y"y?) . 1 1 2 2
fI ar ) I ar b 0’
Lacor (yl,yZ) = \/IdVar(yl7yl)IdVar(y27y2), 1Ay (y Y ) v (y Y ) ~ ) (19)
otherwise,
Tavar (¥7,¥7) = llis — 254l 12 »
2
I3 Lane (y' Y7, ¥%) = ||ML(¢')H®§:1H(M) ; L(f) = f — fizfs — fazf1 — fizfo + 2f1f2 f3. (20)
2
I3—joint (ylay2ay3) = ||'u‘](f)H®?:1’H(k7) ) J(f) = f - f1f2f3a (21)
where Cyi1y2 is the so-called cross-covariance operator, ||-||yg is the Hilbert-Schmidt norm, L(f) is the Lancaster

1nteract10n measure, y is the mean embedding to either H(k;) [for Insic| or to @3_,H(k;) [in case of I3 pan. and
I3 joint], m 1s the canonical feature map associated to kernel k.

e Note:

1. 1 (yl, e ,yM) >0,1 (yl, e 7yM) = 0 < y™-s are jointly independent.
2. Ira, Ityot ima—1 IR o (y) = lima—1 I1a(y) = I(y)-

3. Ixcca: KCCA captures the maximal correlation in the H(k;) feature spaces. It can be generalized to M > 2
components to measure pairwise independence; this extension is available in ITE.

4. Ixgv: KGV is the extension of the analytical expression of mutual information holding for Gaussian variables
).

5. Ip: It is a multivariate (M > 2) extension of Hoeffding’s ® capturing the deviation from the product copula in
L2([0,1]%) sense. ho(d) is a normalizing constant ensuring that I (C) € [0,1] for any copula C.



6. Igsic: It can also be extended to the M > 2 case to measure pairwise independence; it is in ITE.

7. Icov:

— It measures independence by the difference of the joint characteristic function and the product of the
marginals, in L2 sense.

— For a =1 the distance covariance can be rewritten in terms of pairwise distances
2 _ g2 U | T v2 — 2
I =570, ] + By [y =5 ) By [ -7

v’ _;EHQ} ' (22)

Tacor ('5%) = Byl [y =7

— %Eyye [Ey

1_ 1| -
y -y H2 Bz
This form has a natural extension to semimetric spaces [y' € (V1,p1), ¥2 € (a2, p2)| of negative type:

Licow (y,3%) = EyigEpics |1 (v'37) o2 (v2.52) | + By o1 (32 9) | By |2 (v297)]

ke (5 [ (2 9] B 5257

which is proportional to HSIC (determined by kernel k):

Ticov (¥, ¥?) = 2Iusic (y', %) . k((ui,v1), (uz,v2)) = ki (ug, uz)ke(vi, va), (23)
pi(u,v) = k;j(u,u) + ki(v,v) — 2k;(a, v).

8. Iycor: is the normalized variant of Iycov; Lacor (yl, y2) € [0,1]. Tt is zero iff y! and y? are independent.

9. Ispanc: guaranteed to be zero, if f can be factorised as a product of its (possible) multidimensional marginals,
ie. ([yl;yQ] A1 y3) \Y, ([yl;y3] A1 y2) \Y ([yQ;y?’] A1 yl) = L(f) = 0. For example, ‘[y1;y2] 1 y? stands for
= hafs.

10. I3 joint: measures joint independence in @3 H(k;).

3.1.3 Divergence

e Notation: R? 3 y; ~ f1,R? 3y, ~ fo. 7r13’/\1/+7r2y2 is the mixture distribution obtained from y' and y? with 7y, my
weights (71,7 > 0, m +m2 = 1). y! and y? are identically distributed copies of y! and y2. supp(f;) is the support
of the pdf f;.

e Goal: Given independent, i.i.d. samples from f; and fs, {ytl}tT;1 and {y? }21, we want to estimate the divergence
of the two underlying random variables (y; and y2).

e Definition: The Kullback-Leibler divergence (D; also called relative entropy or I directed divergence), Rényi di-
vergence (Dg,q), Tsallis divergence (Dr ), Sharma-Mittal divergence (Dgm,q,5), Pearson x? divergence (D,z2; also
called x? distance), Hellinger distance (Dy), Lo divergence (Dy,), (Csiszar) f-divergence (Dy; also called Csiszér-
Morimoto divergence or Ali-Silvey distance), maximum mean discrepancy (Dyvvp; MMD, also called kernel distance,
current distance), energy distance (Dgnpist; also called N-distance), Bhattacharyya distance (Dg), non-symmetric
Bregman distance (Dnp q; also called Bregman divergence), symmetric Bregman distance (Dgp o), J-distance (Dj;
symmetrised Kullback-Leibler divergence, J divergence), K divergence (Dx), L divergence (Dy,) Jensen-Shannon
divergence (DJs), Jensen-Rényi divergence (DJg ,), Jensen-Tsallis divergence (Djt,q) are defined as

D(f1, f2) = /Rd f1(u)log [223] du, (24)
Dralfinfo) = 1o [ S (wdu, (o €R\ (1)) (25)
Dra(hiofe) = ([ s e@an-1), @er\), (26)

Dsm,a,6(f1, f2) = L [(/Rd[f1(U)]°‘[f2(u)]1_°‘du>12 -1



[f1(w) = fo(w)]’ [f1(w))”
Dya(fu, fo) = Uiw — il g, du—1, 28
el f2) /supp(h)USuzm(fz) fa(u) " /supp(h)USupp(fz) fa(u) ! 2%)
Du(fr, ) = ¢ 5 [ VA - VAW au- \/ 1= [ VAV A, (29)
Dy, (f1, f2) = \// [f1(w) = f2(u)]? du, (30)
]Rd
B fi(u) . _

D¢ (fr, f2) = /]Rdf [fg(u)} fa(u)du, f: convex, f(1) =0, (31)

Dymp (15 f2) = [l — w2l » (32)
Dinpist (f1, f2) = g1y [P (ylva)} . Eyl;vl [ﬂ ( 17;1)] _ Ey2;§ [p (ygv;gﬂ specifically: p(u,v) = [lu — v||¥ (33)
= 2Byrye [y =¥y — Eygr [y = 31|~ Byags [v2 - 57| s @ € (0,2),

Dt f2) = oz ( | VATV Au). (59
Danalfiofo) = [ [0+ e - 2 as ] au @), (35)
Dsp.a(f1, f2) = é [DNB,a(f1, f2) + DnB,a(f2, f1)],  (a#1) (36)

= [ ) - A ) - R @7

Dy(f1, f2) = D(f1, f2) + D(f2, fr), (38)

D)= 0 (1 52, (39)

Dy (f1, f2) = Dx(f1, f2) + Dx(f2, f1), (40)

Dis(f1, f2) = H (my' 4+ my?) — [mH (y') + mH (y?)] . (41)
Dig o(f1, f2) = Hr,a (my' + my?) — [m1Hro (y') + m2Hro (y?)], (0<a#1), (42)

1, o2 1 2
DJT,(x(flny) _ HT,a <y -gy ) _ HT,a (y ) ;HT,a (y ), (a 4 1), (43)
where pi, = Ey, ~¢,. [k(-,¥m)] is the mean embedding of f,, to the 7 (k) RKHS.
e Note:
— D: D(f1,f2) > 0. D(f1, f2) =0« f1 = fa. It is a specific f-divergence [see (31)] with f(t) = tlog(¢).
- DR,aa DT,Oz:

* lima—1 DR, (f1, f2) = lima—1 D1o(f1, f2) = D(f1, f2).

* a < 0= DR,a(fth) < O;DT,a(flva) <0.

* a=0= Dra(f1,f2) = Dr,al(fi,f2) =0.

* a>0= DR’a(fhfz) > O,DT’a(fl,fg) > 0.

- DSM,a,ﬁ(fla fg): DSM,a,ﬂ(flv fg) = O, if and Only if f1 = f2.
Dssta (i ) = 55 (Pommn @1 = 1), Duoma(e) = [ [ o] du.  (44)

Diemp1 () is the a-divergence, or for o = % the Bhattacharyya coefficient (also called Bhattacharyya kernel, or
Hellinger affinity; a specific case of probability product kernels, see (59)): BC' = [,. 1/ f1(u)+/ f2(u)du € [0, 1].
Dtempr is a specific case of Diemp2(a,b) = [pa [f1(u)]” [f2(w)]” f1(u)du, (a,b € R); several divergences can be
expressed by these quantities.

— D%: is an f-divergence [(31)] with f(t) = $(v/t — 1)%



— Dy, (f1, f2) is non-negative, and is zero iff f; = fo.
— Dy¢: Dy(f1, f2) > 0 with equality iff fi = fo.
— Dyvp:
* MMD is a specific case of integral probability  metrics: Dy (f1, f2) =
sup,ep (BEyiy, [9 ()] = Ey2np,lg (v?)]) with B:={g: 191l3¢(xy < 1} being the unit ball in H (k).
x MMD can be defined on topological spaces.

x It also acts as a ‘divergence’ on the joint and the product of the marginals in HSIC (similarly to the
well-known Kullback-Leibler divergence and its extensions, see Egs. (7) - (11)):

Insic (y'.¥?) = Dan(f, f1f2), [yhy?] ~ f

— DEnpist:

* For p(u,v) = |u — v|, DEnpist is twice the Cramer-Von Mises distance.

* The construction holds for (Z, p) semimetric spaces of negative type.

% Dgupist (f1, f2) > 0. Dgupist(f1, f2) = 0 < f1 = fo for strictly negative spaces (such as R%).
— Dsp,a: For a =2, [DL(f1, f2)]° = Dxp2(f1, f2) = Dspa(f1, f2).
— Dk, Dr: They are

* non-negative, and are zero iff f; = f.

* closely related to the Jensen-Shannon divergence in case of uniform weighting, see Eq. (45).
— Dig:

* 0 < Dig(f1, f2) <1og(2), Dis(f1, f2) =0 f1 = f.

* Specifically, for m = w9 = % we obtain

11

Djs(f1, f2) =D§s§’§)(f1af2)
:H(y1+y2> _HEY+H(Y?) :% [D (fhfﬂrfz) +D<f2’f1+fz>]. (45)

2 2 2 2

— Dj7 o0 lima—1 Dyt (f1, f2) = Dis(fi, f2)-

3.1.4 Association Measure
e Notation: y = [y%...;yM] € R (y™ € R, d = Z%Zl dp). F: cdf (cumulative density function) of y =
[y's.. .5y, Fi: cdf of y'. C: copula of y, ie. F(y) = C (Fy (y'),...,Fs(y?)), in other words C(u) = P(U < u)
where U = [Fl (yl) s By (yd)] € [0,1]¢. Bar stands for the survival function of its argument (it is not a copula

in general): C(u) := P(U > u). Cy;: bivariate marginal copula of yg;, II(uq,...,uq) = Hle u; (product copula),
M(u) = min;—;__4u; (comonotonicity copula)!?. The name of M originates from the fact that for any C' copula

W(u) := max(u; + ... +ug —d+1,0) < C(u) < M(u), VYuce|0,1]% (46)
The well-known Spearman’s p (also called Spearman’s rank correlation coefficient or grade correlation coefficient) is

A, (y',y?) = corr (F1 (y') . F» (v?))
uuzdC(u) - (4)° , C(w)du — [, I(u)du
_ A,,(C’) _ «[‘[0,1]2 dlc( ) (2) — 19 C(u)du 3 f[O,l] C( )d f[O,l] H( )d

1 [0,1]2 f[0,1]2 M(u)du — .[[0’1]2 r[(u)du7

where f[o 12 M(a)du = % f[oa]? II(u)du = §. A, can be viewed as the normalized average difference of the copula
of y (C) and the independence copula (II).

e Goal: Our aim is to estimate the association of the d,,-dimensional components (y™) of the random variable
y = [y%...;¥yM] € R? from which we have i.i.d. samples {y;}{_; (d = Zﬁzl Ay, y™ € RIm).

12Notice that in this section M’ stands for the comonitinicity copula with argument u [see M (u)] and also for the number of subspaces in
y = [y%...;¥yM] as a subscript.
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e Definition: The Spearman’s p multivariate-1 (A,, ), Spearman’s p multivariate-2 (A4,,), Spearman’s p multivariate-3
(A,,; average of A, and A,,), Spearman’s p multivariate-4 (A4,,; average pairwise Spearman’s p), multivariate
extension of Blomqvist’s 5 (Ag; medial correlation coefficient), multivariate conditional version of Spearman’s p
(lower tail: A, , upper tail: A, ), lower and upper tail dependencies via conditional Spearman’s p (A, , A,,) are
defined as

Jio,y0 C(w)du — [ 11, T(u)du
1 Y= - ’ ’ = d u)du —
Ay (¥ yh) = A,,(0) = oo M) Jry Ti(wydn h,(d) |2 [0,1][10( Ydu— 1], (47)
d+1
hod) = a1y (49)

Jio, e THW)AC (1) = [y 110 T(w)du
f[O,l]d M (u)du — f[O,l]d [I(u)du
Ap, (yl, ... ,yd) + A, (yl7 ... ,yd)

APz (ylv“‘vyd) = AP2(C) =

= h,(d) [Qd /[0 . M(w)dC(u) — 1] : (49)

APS (y17 R 7yd) = APS (C) = 2 ’ (50)
d —1 d d -1 d
Ay (vt y?) = A,,(C) = hy(2) |22 Ci(u,v)dudv — 1| = A, (v, 4,
09 = 40 = 1y 2) | 2(5) X[ cute (5) 3 Al
(51)
1 _ _ C(1/2)-1(1/2)+C(1/2) -1(1/2) _ - -
d—1
ho(d) = g
Jope Cwdu — fo 1, Mwdu g e Clu)du— (5)°
C(u)du II(u)du . C(u)du — (&
A 17”.’ dy _ A C) = [0,p]¢ [0,p]¢ [0,p] 2 , 53
Pl (y Yy ) Plt( ) f[o p]d M(u)du f[o,p]d H(u)du Z;J:ll _ <%)d ( )
Sy Cla)du— [, TI(u)du
A 1 dy — g _ Jl=-p]] (1—p.1]
Put (y ) Y ) put(c) f[l_p)l]d M(u)du _ f[l ) 1]d H(u)du’ (54)
1 _ . L d+1
Ay (v oyt = A, (0) = pJé{g>0 A, (C)= pj6{2>0 ey /[pr]d C(u)du, (55)
APU (y17 . 7yd) - APU (C) - p*>%{2>0 Aput (C)’ (56)

where 1/2 = [%, ce %} € R4
e Note:
— Ay, Ay, Apy, Ay, They are generalizations of Spearman’s p, in other words A, = A, = A,, = A,, for d = 2.
— A,,, A,,: These quantities are multivariate measures of concordance (see Def. 3 in Section C).

— A, A,,, Ag: They satisfy all the axioms of multivariate measure of concordance except for Duality.

— Ap., Ap,.: They belong to the following class of association measures parameterized by a function g

Jio.a C(w)g(u)du — [io 10 T(w)g(u)du
f[o,ud M(u)g(u)du — f[o,l]d I(u)g(u)du’

Apg (y17' . 7yd) = Al)g(c) =

- APlc:

* Here g(u) = I}y pje(u), where 0 < p < 1 and I is the indicator function. This g choice refers to the weighting
of the lower part of the copula, i.e., we measure the amount of depedence in the lower tail of the multivariate
distributions. For p=1, 4,, = A,,.

It preserves the concordance ordering [see Eq. (78)], i.e., C1 < Cy = A,,(C1) < A, (Cy), for ¥p € (0,1].

Thus, from C' < M [see Eq. (46)] one obtains that 4,, < 1.

— Ap,.: In this case g(u) = I};;_,, 1j¢(u), where 0 < p < 1; in other words the weighting is put on the upper tail.
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3.1.5 Cross Quantity
e Notation: R? 3 y! ~ f1, R 3 y? ~ fo.

e Goal: We want to estimate cross quantities from independent, i.i.d. samples {yt } +q and {yf} ,—, distributed
according to f; and fy, respectively.

e Definition: The cross-entropy (Ccg) is

Con(fus fa) = / f1 (w)log [f2 (w)] du (57)

3.1.6 Kernel on Distributions
e Notation: R? > y! ~ f1, RT > y2 ~ fo.

e Goal: Our aim is to estimate the value of a kernel [K(f1, f2)] given independent, i.i.d. samples from y! and y?,
{Ytl}£1 and {y7 ;[31

e Definition: the expected kernel (Keyp; also called summation kernel, mean map kernel, set kernel, multi-instance
kernel, ensemble kernel; a specific convolution kernel), probability product kernel (Kppw) Jensen-Shannon kernel
(Kjs), Jensen-Tsallis kernel (Kjr,q), exponentiated Jensen-Shannon kernel (Kgjs ), exponentiated Jensen-Rényi
kernels (KgiR1,u,0, KEIR2,u,0), €xponentiated Jensen-Tsallis kernels (KgjT1,u.0; KEIT2,u,a) are defined as

Kexp (f1, f2) = (b1, 2) gy = Eyry2 [k (v1,57)] pi =Eyiny, [k(¥")] . (58)

Koy (i f2) = [ (@) (@) du (o> 0), (59)

Kos (f1, f2) = log(2) — Dus(fu. fo). (60)

Kir (i f2) = loga(2) ~ Tolfinfo). (o€ (0.2\{1}) oz, (0) = S
oo, fo) = Hro <y1 —gy2> _ Hra (yl);HT,a (yz)’

Kissa (fi, f2) = e P00 (> 0), (62)
Kosnnua (1, f2) = e 0 CF7) (w0, a e (0,1)), (63)
Kisrza (fi f2) = ¢ *Pmna ol (450, a€ (0,1)) Dine(f1. 1) = DSE2 (1. 12). (69)
Kestiaa (f1f2) = ¢ "= CF7) (0> 0, a e 0,2\{1}), (65)
Kertaua (i, f2) = e "Prme Ui (w0, a e (0,2\{1}). (66)

e Note:
— Kexp: it

% generates MMD, [Dyinn (f1, f2)]° = Kexp (f1, f1) = 2Kexp (f1, f2) + Kexp (f1. f2).
x can be defined slightly more generally, on topological spaces.

— Kpp,p: For p = % we get back the Bhattacharyya kernel (Kp; also known as Bhattacharyya coefficient, or
Hellinger affinity) Kp is intimately related to, induces the Hellinger distance [see Eq. (29)]:

1[Q—QKB(J'"17JC2)]21—K13(fl,fz)- (67)

5 1K (1, 1) = 2K (fi fo) + K (fo, £2)] = 5

2
— Kjyr,o: lima1 Kyo (f1, f2) = Kis (f1, f2)-

— Krjr2,u,0t liMa—1 Kejr2,u,a (f1, f2) = Kris,u (f1, f2)-
— Kgjr2,uet ima—1 Kgyro,ue (f1, f2) = Keis.u (f1, f2)-

[Du(fi, f2)]” =
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Estimated quantity Principle d Cost name

Shannon entropy (H) k-nearest neighbors (S = {k}) >1 BHShannon KnnK
Shannon entropy (H) approximate slope of the inverse distribution function =1 BHShannon SpacingV
Shannon entropy (H) maximum entropy distribution, function setl, plug-in =1 BHShannon MaxEntl
Shannon entropy (H) maximum entropy distribution, function set2, plug-in =1 BHShannon MaxEnt2
Rényi entropy (Hr,qo) k-nearest neighbors (S = {k}) >1 BHRenyi KnnK
Rényi entropy (Hg,qa) generalized nearest neighbors (S C {1,...,k}) >1 BHRenyi KnnS
Tsallis entropy (Hr,a) k-nearest neighbors (S = {k}) >1 BHTsallis KnnK
Sharma-Mittal entropy (Hsm,«,3) k-nearest neighbors (S = {k}) >1 BHSharmaMittal KnnK
®-entropy (Hao,w) sample spacing =1 BHPhi_ Spacing
Shannon entropy (H) -KL divergence from the normal distribution: (70) >1 MHShannon DKLN
Shannon entropy (H) -KL divergence from the uniform distribution: (71) >1 MHShannon DKLU
Tsallis entropy (Hrt,a) function of the Rényi entropy: (3) >1 MHTsallis. HR

Table 1: Entropy estimators. Third column: dimension (d) constraint. Top: base methods, bottom: meta estimators.

3.2 Conditional Quantities

The toolbox supports the estimation of conditional quantities defined in Section 3.2.1 (entropy) and Section 3.2.2 (mutual
information).

3.2.1 Entropy
e Notation: y = [yl; yQ], y™ € Rdm,
e Goal: Assume we have {(y,}, yf)}thl samples; we want to estimate the conditional entropy of y' given y?2.

e Definition: The conditional Shannon entropy [H(:|-)] is defined as
H(y'ly?) =By [H (y'ly*)] = H ([y"sy?]) = H (v*) - (68)
3.2.2 Mutual Information
e Notation: y = [y';...;y™;yM*!] € R, where y™ € R4 and d = Ef‘fill -

T . . . .
e Goal: Assume we have access to the samples { (y%, oy M, yiw 'H) } ,—1» Our aim is to estimate the mutual information

of y',...,y™ given yM+1,

e Definition: The conditional Shannon mutual information [I(-|-)] is
I (yl, . ,yM|yM+1) =Eym [I (yl, e ,yM|yM+1)]

=—H([y'...;yM]) + Z H([y™yM™]) — (M - 1)H (yM*). (69)

3.3 Estimators

The available estimators in ITE are listed in

1. unconditional quantities: Table 1 (entropy), Table 2 (mutual information), Table 3 (divergence), Table 4 (asso-
ciation measures), Table 5 (cross quantity), Table 6 (kernel on distributions).

2. conditional quantities: Table 7 (entropy), Table 8 (mutual information).
Demos of the estimators are enlisted in Table 9.
e Certain association measures and mutual information estimators require one-dimensional subspaces (Vd,, = 1). For

these estimators the toolbox provides a simplified calling syntax (without specifying {d,, }*_,):
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Estimated quantity Principle dm M Cost name

kernel canonical correlation (Ixcca) sup correlation over RKHSs >1 >2 BIKGV

kernel generalized variance (Ixcv) Gaussian mutual information of the features >1 >2 BIKCCA
Hoeffding’s @ (Is), multivariate L? distance of the joint- and the product copula =1 > 2 BlHoeffding
Hilbert-Schmidt indep. criterion (Iusic) HS norm of the cross-covariance operator >1 >2 BIHSIC_ IChol
distance covariance (Iacov) pairwise distances >1 =2 BIDistCov
distance correlation (Zacor) pairwise distances >1 =2 BIDistCorr
Lancaster 3-variable interaction (Is-ranc) embedding of the Lancaster interaction measure >1 =3 BI3WayJoint
3-variable joint independence (I3-joint) embedding of the ’joint - product of marginals’ > 1 =3 BI3WayLancaster
(Shannon) mutual information (I) KL-divergence of joint & product of marginals: (7) >1 >2 MIShannon DKL
(Shannon) mutual information (7) entropy sum of components minus joint entropy: (72) >1 > 2 MIShannon HS
Rényi mutual information (Ir,q) Rényi divergence of joint & product of marginals: (8) >1 >2 MIRenyi DR
Rényi mutual information (Ir,qa) minus the Rényi entropy of the joint copula: (73) =1 >2 MIRenyi HR
Tsallis mutual information (I ) Tsallis divergence of joint & product of marginals: (9) >1 >2 MITsallis DT

x? mutual information (I2) x? divergence of joint & product of marginals: (10) >1 >2 MIChi2 DChi2
L mutual information (Ir,) Ls-divergence of joint & product of marginals: (11) >1 >2 MIL2 DL2
copula-based kernel dependency (I.) MMD div. of the joint copula & uniform distr.: (12) =1 >2 MIMMD CopulaDMMD
distance covariance (Iacov) pairwise distances, equivalence to HSIC: (23) >1 =2 MIDistCov_HSIC

Table 2: Mutual information estimators. Third column: dimension constraint (d,,,; y™ € R%). Fourth column: constraint

for the number of components (M;y = [y';...

;yM]). Top: base methods, bottom: meta estimators.

Estimated quantity Principle d Cost name
Kullback-Leibler divergence (D) k-nearest neighbors (S = {k}) >1 BDKL_ KnnK
Kullback-Leibler divergence (D) k-nearest neighbors (S; = {k:(T3)}) >1 BDKL KnnKiTi

Rényi divergence (Dr,a) k-nearest neighbors (S = {k}) >1 BDRenyi KnnK

Tsallis divergence (D, ) k-nearest neighbors (S = {k}) >1 BDTsallis KnnK
Sharma-Mittal divergence (Dsm,q,3)  k-nearest neighbors (S = {k}) >1 BDSharmaMittal KnnK
Pearson x” divergence (D, z) k-nearest neighbors (S = {k}) >1 BDChi2 KnnK
Hellinger distance (Dy) k-nearest neighbors (S = {k}) >1 BDHellinger KnnK

L, divergence (Dr,) k-nearest neighbors (S = {k}) >1 BDL2 KnnK
maximum mean discrepancy (Dvwup) — U-statistic, unbiased >1 BDMMD _ UStat
maximum mean discrepancy (DMMD) V-statistic, biased >1 BDMMD _VStat
maximum mean discrepancy (Dvwvp) — U-statistic, incomplete Cholesky decomposition >1 BDMMD UsStat IChol
maximum mean discrepancy (Dvwvp) — V-statistic, incomplete Cholesky decomposition >1 BDMMD _ VStat IChol
maximum mean discrepancy (DMMD) online >1 BDMMD Online
energy distance (Dgnpist) pairwise distances >1 BDEnergyDist
Bhattacharyya distance (Dg) k-nearest neighbors (S = {k}) >1 BDBhattacharyya KnnK
Bregman distance (Dxg,a) k-nearest neighbors (S = {k}) >1 BDBregman KnnK
symmetric Bregman distance (Dsp,») k-nearest neighbors (S = {k}) >1 BDSymBregman KnnK
Kullback-Leibler divergence (D) difference of cross-entropy and entropy: (74) >1 MDKL_ HSCE
f-divergence (D) second-order Taylor expansion, x? divergence: (75) >1 MDf DChi2

maximum mean discrepancy (Dvwvp) — block-average of U-statistic based MMDs >1 MDBlockMMD

energy distance (Dgnpist) pairwise distances, equivalence to MMD: (76) >1 MDEnergyDist  DMMD
symmetric Bregman distance (Dsp,») symmetrised Bregman distance: (36) >1 MDSymBregman DB
J-distance (Djy) symmetrised Kullback-Leibler divergence: (38) >1 MDJDist DKL

K divergence (Dxk) smoothed Kullback-Leibler divergence: (39) >1 MDK_ DKL

L divergence (D) symmetrised K divergence: (40) >1 MDL DKL
Jensen-Shannon divergence (DJs) smoothed (7), defined via the Shannon entropy: (41) >1 MDJS HS
Jensen-Rényi divergence (Djg ) smoothed (7), defined via the Rényi entropy: (42) >1 MDJR_HR
Jensen-Tsallis divergence (Djr,q) smoothed, defined via the Tsallis entropy: (43) >1 MDJT HT

Table 3: Divergence estimators. Third column: dimension (d) constraint. Top: base methods, bottom: meta estimators.
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Estimated quantity Principle dm M  Cost name

Spearman’s p: multivariatel (A,,) empirical copula, explicit formula =1 >2 BASpearmanl
Spearman’s p: multivariate2 (A,,) empirical copula, explicit formula =1 >2 BASpearman2
Spearman’s p: multivariate3 (A,,) average of p1 and p2 =1 >2 BASpearman3
Spearman’s p: multivariated (A,,) average pairwise Spearman’s p =1 >2 BASpearman4
Blomgqvist’s 8 (A43) empirical copula, explicit formula =1 > 2 BABlomqvist
conditional Spearman’s p, lower tail (A, ) empirical copula, explicit formula =1 > 2 BASpearmanCondLT
conditional Spearman’s p, upper tail (4,,,) empirical copula, explicit formula =1 > 2 BASpearmanCondUT
lower tail dep. via conditional Spearman’s p (A, ) limit of A, : (55) =1 >2 MASpearmanLT
upper tail dep. via conditional Spearman’s p (A,;) limit of A, : (56) =1 >2 MASpearmanUT

Table 4: Association measure estimators. Third column: dimension constraint (d,,; y™ € R%). Fourth column: con-
straint for the number of components (M; y = [y';...;y™]). Top: base methods, bottom: meta estimators.

Estimated quantity  Principle d Cost name

cross-entropy (Ccg) k-nearest neighbors (S ={k}) >1 BCCE KnnK

Table 5: Cross quantity estimators. Third column: dimension (d) constraint.

Estimated quantity Principle d Cost name

expected kernel (Kexp) mean of pairwise kernel values >1 BKExpected
probability product kernel (Kpp,,) k-nearest neighbors (S = {k}) >1 BKProbProd KnnK
Jensen-Shannon kernel (Kjs) function of the Jensen-Shannon divergence: (60) >1 MKJS DJS
Jensen-Tsallis kernel (Kjyr.q) function of the Tsallis entropy: (61) >1 MKJT HT
exponentiated Jensen-Shannon kernel (Kgjs,qv) function of the Jensen-Shannon divergence: (62) >1 MKExpJS DJS
exponentiated Jensen-Rényi kernel-1 (Kgjri,u,o) function of the Rényi entropy: (63) >1 MKExpJR1 HR
exponentiated Jensen-Rényi kernel-2 (Kgjr2,u,o)  function of the Jensen-Rényi divergence: (64) >1 MKExpJR2 DJR
exponentiated Jensen-Tsallis kernel-1 (Kgjr1,4,o) function of the Tsallis entropy: (65) >1 MKExpJT1 HT
exponentiated Jensen-Tsallis kernel-2 (KEJTQ,M,Q) function of the Jensen-Tsallis divergence: (66) >1 MKExpJT2 DJT

Table 6: Estimators of kernels on distributions. Third column: dimension (d) constraint. Top: base methods, bottom:
meta estimators.

Estimated quantity Principle dm  Cost name

conditional Shannon entropy [H(:|-)] reduction to Shannon entropy >1 BcondHShannon HShannon

Table 7: Conditional entropy estimators. Third column: dimension (d,,) constraint.

Estimated quantity Principle dm M Cost name

conditional Shannon mutual information [/(-|-)] reduction to Shannon entropy >1 >2 BcondIShannon HShannon

Table 8: Conditional mutual information estimators. Third column: dimension constraint (d,,; y™ € R?=). Fourth

column: constraint for the number of components (M; y = [yl; oy M. yMH] ).
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>>> a_or_i = co.estimation(y,ds) # long (traditional) syntax
>>> a_or_i_v2 = co.estimation(y) # short syntax; gives the same result as the previous line

e We use the TypeXName naming convention.

— For example, BHShannon KnnK = B + H + Shannon KnnK. B means base estimator, H is for entropy,
Shannon KnnK is about the estimated quantity/technique (Shannon entropy, with k-nearest neighbors).

— Generally, Type € {B,M}, X € {H, I, D, A, C, K, condH, condl}, where B-base, M-meta; H-entropy, I-
mutual information, D-divergence, A-association measure, C-cross quantity, K-kernel on distributions, condH-
conditional entropy, condI-conditional mutual information.

e Meta estimators: The rules not yet covered for the meta estimators are as follows.

— Notation: y ~ f; fy: uniform density on [0, 1]%; N(m,X): normal distribution with mean m and covariance
matrix 3. cov(y) denotes the covariance of y.

— Rules:

H(y) = H(yc) — D(f, fc) ya ~ fa = N(E(y), cov(y)), (70)
H(y) = —D(f, fv) y €10,1)7 (if y € [a,b] = x{;[a;, bi], 71)
it is linearly transformed to [0,1]%),

M
I(y17...7yM)=ZH(ym)—H([yl;...;yM]), (72)
IR o (yl,...,yM) = —Hp.o(2), z = [Fl (yl);...;FM (yM)] e RM, (73)
D(f1, f2) = Ccg(f1, f2) — H(f1), (74)
Ds(fi )~ T £, (75)
DEnDiSt(flu fg) =2 [DMMD(fh f2)}2 y p(u7 V) = k(u, ll) + k‘(V, V) — 2k(u,v), (76)

where Dgppigt is determined by p, Dyvvp by k.

e Base estimators: Their equations can be looked up by using Section B.
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Estimated quantity

ite/demos/

Shannon entropy (H)

Rényi entropy (Hr,a)

Tsallis entropy (Hr,q)

Sharma-Mittal entropy (Hswm,a,3)

®-entropy (Ho,w)

(Shannon) mutual information (I)

Rényi mutual information (Igr,q)
Kullback-Leibler divergence (D)

Rényi divergence (Dr,a)

Tsallis divergence (Dr,q)

Sharma-Mittal divergence (Dswm,a,3)

Pearson x* divergence (D, 2)

Hellinger distance (D)

L, divergence (D1, )

Maximum mean discrepancy (Dyvp)

Bregman distance (DnB,a)

Jensen-Rényi divergence (DJg )

cross-entropy (Ccr)

expected kernel (Kexp)

probability product kernel (Kpp,,)
exponentiated Jensen-Rényi kernel-1 (Kgjr1,u,a)
exponentiated Jensen-Rényi kernel-2 (Kgjr2,u,q)
exponentiated Jensen-Tsallis kernel-1 (K EJT1,u,a)
exponentiated Jensen-Tsallis kernel-2 (Kgjr2,u,q)

demo _h_shannon.py
demo_h_renyi.py
demo_h_tsallis.py

demo_h sharma mittal.py
demo_h_phi.py
demo i shannon.py
demo i renyi.py

demo d_kullback leibler.py
demo_d_renyi.py
demo_d_tsallis.py
demo_d_sharma_mittal.py
demo d_chi square.py
demo_d _hellinger.py
demo_d_12.py

demo d_mmd.py
demo_d_bregman.py
demo_d_jensen renyi.py
demo_c_cross_entropy.py
demo_k_expected.py
demo_k prob_product.py
demo k_ejrl.py

demo k_ejr2.py
demo_k_ejtl.py

demo k_ejt2.py

conditional Shannon entropy [H(:|-)]
conditional Shannon mutual information [/(-|-)]

demo_h shannon cond.py
demo i shannon cond.py

approximation quality of incomplete Cholesky decomposition

independence of y™-s LA (yl7 .. ,yM) =0
independence of y™-s Ny (y',... ,yM) =0
fi=1f22 D(f1,f)=0

demo__incomplete cholesky.py
demo_a_independence.py
demo i independence.py

demo d_equality.py

fi,ooo fm L G= [Gi;] = [K(fi, £;)]¥=1: positive semi-definite ~demo_k_positive _semidefinite.py

Table 9: Top-middle: demos for analytical formula vs. estimated value (analytical_values subfolder); unconditional
quantities (top), conditional ones (middle). 1st column: estimated quantity. 2nd column: .py. Bottom: independence
demos, equality test, quality demo of incomplete Cholesky decomposition, positive semi-definiteness test for kernels on
distributions (other subfolder). 1st column: task. 2nd column: .py.
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A For Developers

Section A.1 is about the directory structure of the package. Section A.2 focuses on doctests. Adding new estimators is
the topic of Section A.3. Passing parameters in certain meta-estimators is detailed in Section A.4.

A.1 Directory Structure

The ite package is organized as follows:
e demos: demos of the estimators.

— analytical_values: analytical expressions (for a few distributions) vs. estimated values.

— other: incomplete Cholesky decomposition, positive semi-definiteness of the Gram matrix defined by a kernel
on distributions.

e doc: link to this manual.
e ite: contains the estimators themselves.

— Directory cost:

* In case of the

1. unconditional quantities: the base estimators can be found in base a.py (association measures),
base c.py (cross quantities), base d.py (divergence measures), base h.py (entropy), base i.py (mu-
tual information), base k.py (kernels on distributions). The meta ones are in meta_a.py, meta_c.py,
meta_d.py, meta_ h.py, meta i.py, meta k.py.

2. conditional ones: the meta estimators are in meta_h cond.py (entropy), meta i cond.py (mutual
information).

*

X _initialization.py, x _verification.py: classes to code up new estimators rapidly (initialization and verifi-
cation routines).

x_factory.py: general module to invoke estimators.
x__analytical values.py: analytical values for a few information theoretical quantities.

* X *

x_kernel.py: Kernel class.
x_python to matlab.py: Python ITE <+ Matlab ITE transitions (see Section B).
* init  .py: it makes the estimators available upon ’import ite’.

*

— __init__ .py: it loads the cost module upon 'import ite’.

— shared.py: code shared by the estimators.

A.2 Running Doctests

Assumption: you have Nose installed.® Change to the main ite folder (containing the .txt-s, doc, ite, ...), and issue the
command
> nosetests --with-doctest -w ite # run only doctests of ite/ite; ’nose’ provides ’nosetests’

> nosetests --with-doctest base_a.py # after cd-ing to ite/ite/cost, run the doctests of a single
# file (base_a.py)
> nosetests --with-doctest base_a.py:BASpearmanl # doctest of a specific class/function in base_a.py
> nosetests --with-doctest base_a # the .py extension can be discarded
> nosetests --with-doctest base_a:BASpearmanl #-11-

18



A.3 Adding New Estimators
Upon creating a new estimator (H/I/D/A/C/K/condH/condl):
1. Recall the TypeXName naming convention (see Section 3.3).

2. The classes in Table 10 and Table 11 can be used for initialization and verification of the estimators.

Notes:

e 'InitX’ is the default base class providing printing functionality (see below), and sets mult. Currently, multi-

plicative constants are considered to be relevant; in other words the default value of ‘mult’ is "True’.'?

>>> import ite # load the ite package
>>> co = ite.cost.BHShannon KnnK() # initialize an entropy estimator
>>> print(co) # print it(s parameters)

This printing capability is what we used in Example 1.

e "VerCompSubspaceDims’ is used for A/I estimators: an exception is raised if the subspace dimensions
({dm}M_,) and the dimension of the samples (dim(y;)) are not compatible.

e 'VerEqualDSubspaces’ guarantees in C/D/K estimators that an exception occurs if the dimensions of the
samples from y! and y? are different.

e ’InitBagGram’ is the base class for kernels on distributions (empirically on bags of points), giving Gram matrix
computation capability.

e Notice the two different meanings of 'kernel’ in Table 10:

— By ’InitKernel’ one can build a kernel-based information theoretical estimator; it does not have to be a
kernel on distributions. The currently implemented kernels are

_lla—bl3 _lla=blp 1
ka(a,b) = e~ 5@, ke(a,b) =™ 27, kola,b) = —
14+ %
1 lla = b]l3
ki(a,b) = ——, kp(avb) = (<a7b> +9)p7 kp(a,b) =1 - T a2,
L+ fla—bls lla —Bll3 +6

— V3lla—blly
ki(a,b) = — s(a,b) = <1+‘/§”a b2> R

) kM,
lla—blf% + 62 b

2
g 3 (a,0) = (1 L5 ||a9— blly | Bla— b”2) e

362

— The two meanings/capabilites can be used independently. For example, MKJS DJS uses ’InitBagGram’
but not 'InitKernel’; BKExpected relies on 'InitBagGram’ and 'InitKernel’; BDMMD UStat comes from
"InitKernel’ but not from ’InitBagGram’.

3. A simplified calling syntax is provided for an A/I estimator with 'Vd,, = 1’ constraint (see Section 3.3).

4. Forcing 'mult=True’ in the children [see e.g., (60), (62), (74)] and passing parameters to them (such as in Table 12)
are implemented where it is necessary.

5. If the name of the estimator is added to ite/ite/cost/ __init _ .py, it is loaded automatically upon ’import ite’.

A.4 Parameter Passing for (Certain) Meta Estimators

Certain meta estimators set others’ parameters during the estimation; see Table 12 for a summary.

13Qccasionally significant computation can be saved if these multiplicative factors do not matter.
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Class(Parent) Feature

InitX(object) string representation, initialization: mult

InitKnnK(InitX) string representation, initialization: mult, kNN (S = {k})

InitKnnKiTi(InitX) string representation, initialization: mult, k-NN (S = {k;(T})})

InitAlpha(InitX) string representation, initialization: mult, o # 1

InitUAlpha(InitAlpha) string representation, initialization: mult, a # 1, u > 0

InitKnnKAlpha(InitAlpha) string representation, initialization: mult, kNN (S = {k}), a # 1

InitKnnKAlphaBeta(InitKnnKAlpha)  string representation, initialization: mult, kNN (S ={k}), a # 1,8 #1

InitKnnSAlpha(InitAlpha) string representation, initialization: mult, generalized kNN (S C {1,...,k}), a # 1

InitKernel(InitX) string representation, initialization: mult, kernel

InitEtaKernel(InitKernel) string representation, initialization: mult, kernel, n > 0 (incomplete Cholesky decomposition)

InitBagGram(object) Gram matrix computation for kernels on distributions (empirically on bags of points)
InitKnnK

S {k (T)}

string repr., mult

InitKnnKiTi InitKnnK Alpha —— 7+ > InitKnnK AlphaBeta

S={k}

object —————— = nitX e InitAlpha - w0 InitUAlpha

\
Gram matrix on bags >0
InitKernel ——————— InitEtaKernel

InitBagGram

}ﬁ

InitKnnSAlpha

n

Table 10: Classes for initialization of the estimators (see x_initialization.py). 1st column: name of the class and its parent.
2nd column: its feature. The dependence of the classes and the additional features are schematically summarized in the

diagram above.

Class Feature

VerOneDSignal Y,.r € RTX!

VerOneDSubspaces di=do=...=duy =17

VerCompSubspaceDims [di;...;dnm), Yo € RT*4 Ad= fozl d
?

VerSubspaceNumberIsK [di;...;dy] € RE

VerEqualDSubspaces Y1y, e RN y? e R A ody = do

VerEqualSampleNumbers

VerEvenSampleNumbers

Yip € RTX4 Y2, c R A7 =T,
Yl e RT*N y2, e RT*% L 9T

Table 11: Classes for verification of the estimators (see x_verification.py). 1st column: name of the class. 2nd column:

its feature.
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Inherited parameter Eq.  Cost name

Hro = Hgreo (3)  MHTsallis HR
IRe = Dra (8  MIRenyi DR
IRe = Hra (73) MIRenyi HR
It =  Dro (8  MITsallis DT
DsB,a 2 Dxpa (36) MDSymBregman DB
Digo — Hra (42) MDJR_HR
Dyra —  Hra  (43) MDJT HT
(1.1
Kjs '[—W’L D7 (60) MKJS DJS
Kita —  Hra (61) MKJT HT
_[1.1
Kossa 220 pr (62) MKExpIS DIS
KeiRiua —  Hro  (63) MKExpJR1 HR
_[1.1
KEJRZ,u,aM Tra (64) MKExpJR2 DJR
Kestiua —  Hra (65) MKExpJT1_ HT
Krjtoue —  Dire (66) MKExpJT2 DJT

Table 12: Parameter passing in meta estimators. Notation X = Y: the X meta method sets the z parameter(s) of the Y’
estimator. 2nd column: the equation describing this action. 3rd column: cost name.

B Python ITE < Matlab ITE

Python cost names with Matlab equivalents (when it exists) are summarized in ite/ite/cost/x_python to matlab.py:

e Python — Matlab cost name transition: see dictionary dict_X_PythonToMatlab, where X €
{A,C,D,H,I,K,condH,condl}.

e Matlab — Python conversion, given a cost type X: see dict_X_MatlabToPython.

The equations of the estimators can be looked up by this correspondence and the Matlab ITE documentation.'4

C For Mathy People: Axioms of Concordance and Dependence

This section summarizes the axiomatic formulations of concordance (Def. 1, 2, 3) and dependence (Def. 4, 5).

Definition 1 (concordance ordering) In two dimensions (d = 2) a Cy copula is said to be smaller than the Cy
copula (Cy < C3) [4], if

Ci(u) < Cy(u), (Vue[0,1]?). (77)

This pointwise partial ordering on the set of copulas is called concordance ordering. In the general (d > 2) case, a Cy
copula is said to be smaller than the Cy copula (Cy < Cq) [2], if

Ci(u) < Co(u) and C1(u) < Cy(u) (Vu e [0, 14 . (78)
Note:
e ‘<’ 14s called concordance ordering; it again defines a partial ordering.

e The rationale behind requiring C; < Cy and C; < Cy is that we want to capture ‘simultaneously large’ and
‘simultaneously small’ tendencies.

o The two definitions [(T7), (78)] coincide only in the two-dimensional (d =2) case.

Definition 2 (measure of concordance [5, 3, 4]) A x numeric measure of association on pairs of random vari-
ables (y*, y? whose joint copula is C) is called a measure of concordance, if it satisfies the following properties:

14 Available at https://bitbucket.org/szzoli/ite/downloads; see Section E (Estimation Formulas).
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Al
A2.
A3.
A4
A5.
A6.
A7,

Domain: it is defined for every (y',y?) pair of continuous random variables.
Range: r (y',y?) € [-1,1], [s (y',y') =1, and s (y*, —y*) = —1].
Symmetry: s (y',y?) =k (v%,y").

Independence: if y* and y? are independent, then k (yl, y2) = x(II) = 0.
Change of sign: r (—y',y?) = —x (y*.¥?) [= & (y', —¥?)].

Coherence: if Cy < Oy, then k(C1) < k(Cy).1?

Continuity: if (ytl,y?) s a sequence of continuous random variables with copula Ct, and if Cy converges to C'
pointwise, then lim;_, o k(Ct) = k(C).

Note: the properties in brackets can be derived from the others.

Definition 3 (multivariate measure of concordance [1, 7]) A multivariate measure of concordance is a k func-
tion that assigns to every continuous random variable y a real number and satisfies the following requirements:

B1.

B2.
B3.

BjJ.
B5.
B6.

B7.

Normalization:

Bla : k(y',...,y%) = 1 if each y is an increasing function of every other y? (or in terms of copulas k(M) = 1),
and

Bi1b : k (yl, . ,yd) =0 if y*-s are independent (or in terms of copulas r(I) = 1).
Monotonicity: C, < Cy = k(C1) < k(Cy).

Continuity: If the cdf of the random variable sequence y; (F;) converges to F, the cdf of y (limy_o F; = F),
then limy_, o k(y¢) = k(y). [In terms of copulas: lim;_,o, Cy = C (uniformly) = lim;_, o, 5(Cy) = k(C)./

Permutation invariance: if {iy,...,iq} is permutation of {1,...,d}, then x (y",... y') = (y',...,y?).
Duality: « (—y*,...,—y?) =r (v*, ..., y?).

Reflection symmetry property: Zel _____ J—— (elyl7 RN edyd) =0, where the sum is over all the 2¢ possibil-
ities.

Transition property: there exists a sequence of rq numbers such that for all y rq_1k (y2, . ,yd) =

k(Y y) e (=Yt

Definition 4 (measure of dependence) [// defined a numeric measure r between two random variables y' and y?
whose copula is C' as a measure of dependence if it satisfies the following properties:

C1.
C2.

Cs.
Cy.
C5.

Cé6.

C7.

Domain: k is defined for every (yl, y2) DaiT.

Symmetry: s (y',y?) =k (v%,y").

Range: r (y',y*) € [0,1].

Independence: (yl, y2) =0 if and only if y* and y? are independent.

Strictly monotone functional dependence: r (y',y?) = 1 if and only each of y* and y? is a strictly monotone
function of the other.

Invariance to strictly monotone functions: if fi and fo are strictly monotone functions, then k (yl,yg) =

k& (filyh), f2(47)).

Continuity: if (ytl,yf) is a sequence of random variables with copula C,,, and if limy_o, C; = C (pointwise),
then lim;_,o0 (Cy) = k(C).

Definition 5 (multivariate measure of dependence) [8] defined the notion of measure of dependence in case of
d dimension as follows. A k real-valued function is called a measure of dependence if it satisfies the properties:

15Hence the name concordance ordering.
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D1. Domain: k is defined for any continuously distributed y.

D2. Permutation invariance: if {i1,...,iq} is permutation of {1,...,d}, then k (yil, . ,yid) =K (yl, . ,yd),

D3. Normalization: 0 < r (y*,...,y?) < 1.

D4. Independence: r (y',...,y*) =0 if and only if y'-s are independent.

D5. Strictly monotone functional dependence: r (y',...,y%) =1 if and only if each y* is an increasing function
of each of the others.

D6. Invariance to strictly monotone functions: If fi,...,fq are all strictly increasing functions, then
K’(ylw"?yd) = K:(fl (yl) 7"'7fd (yd))

D7. Normal case: Let'y be normally distributed and p;; = cov (yi,yj). If r;j-s are either all non-negative, or all
non-positive then k is a strictly increasing function of each of the |r;;|-s.

D8. Continuity: If the random variable sequence y; converges in distribution to'y, then lim;_, o k(y:) = k(¥).
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