
Bauhaus-Universität Weimar
Faculty of Media
Degree Programme Computer Science and Media

Implementation and Parallelisation of
Cone-Beam Computed Tomography
Backprojection on CPU and GPU

Master’s Thesis

Bastian Weber Matriculation Number 90013
born

1. First Referee: Prof. Dr.-Ing. Volker Rodehorst
2. Second Referee: PD Dr. Andreas Jakoby

Submission date: August 29th, 2016

Abstract

Cone-beam computed tomography (CT) is gaining more and more popularity for many ap-
plications in engineering and science. The most common cone-beam CT reconstruction
algorithm is the Feldkamp-Davis-Kress (FDK) algorithm. However, most CT reconstruction
software is only available closed-source. The few known open-source implementations are
too slow and not suited well for practical use. In this thesis we present a parallelised, fast
and extensible open-source implementation of the FDK algorithm using C++ and CUDA,
able to run on the CPU as well as on one or multiple GPUs. We will describe the algorithm,
discuss questions that arose and challenges we were facing and evaluate the results with
regard to performance and quality.

Contents
1 Introduction 1

1.1 Motivation . 3
1.2 Goals . 3
1.3 Related Work . 4
1.4 Structure . 4

2 Fundamentals 6

3 Algorithm 12

3.1 Prerequisites . 13
3.1.1 Coordinate Systems and Geometry . 13
3.1.2 Input Data . 15
3.1.3 Units . 17

3.2 Reconstruction . 19
3.2.1 Image Preprocessing . 22
3.2.2 The Reconstructable Cylinder . 27
3.2.3 Backprojection . 29
3.2.4 Coordinate Transformations . 33

4 Implementation 37

4.1 Algorithm Core . 37
4.2 Pseudocode . 42
4.3 Interface . 43

II

4.4 Data Input: Configuration Files . 46
4.5 About the Program . 47

5 Parallelisation 49

5.1 CPU . 49
5.2 GPU . 53
5.3 Multi-GPU . 62

5.3.1 GPU Load Distribution . 64
6 Evaluation 68

6.1 Experiment Setup . 68
6.1.1 Hardware Configurations . 68
6.1.2 Data Sets . 70

6.2 Performance . 72
6.2.1 CPU Parallelisation . 72

Singlethreaded CPU Compared to Multithreaded CPU 72
6.2.2 Hyperthreading . 73

Parallelisation Overhead . 73
6.2.3 GPU Parallelisation . 75

GPU Compared to CPU . 75
6.2.4 Impact of VRAM Size . 78
6.2.5 Multi-GPU Parallelisation . 78

Multi-GPU Compared to Single-GPU 78
6.2.6 Scaling . 81
6.2.7 Single Precision Compared to Double Precision 84
6.2.8 Impact of Storage Data Throughput . 85
6.2.9 Comparison to OSCaR . 85

6.3 Memory . 86
6.3.1 CPU Processing . 86
6.3.2 GPU Processing . 87

III

6.4 Quality . 89
6.4.1 General Evaluation . 89
6.4.2 Comparison to OSCaR . 93

6.5 Measurement Inaccuracies . 95
7 Conclusion and Future Work 97

Bibliography 99

List of Figures 102

IV

1 Introduction
Computed tomography is a technique widely used today in medical and industrial applica-
tions. In [1] a very good explanation of its fundamentals can be found, which we will use as
a basis here. Computed tomography is based on x-radiation (short: x-ray), which was dis-
covered by Wilhelm Konrad Röntgen in 1895 as “a new kind of rays” [2]. This is also where
the German term for x-radiation, Röntgenstrahlung (Röntgen-radiation), originates from.
Thanks to his discovery Röntgen received the first Nobel prize in Physics in 1901. X-rays
are able to penetrate solid materials, being attenuated in the process. This attenuation can
then be captured by a sensor, giving an image of the attenuation properties of an object,
which correlate to the density of its material. On the resulting images high-density objects
appear darker and low-density objects brighter [3]. This way it is possible to “look inside” of
objects using x-rays. In 1917, Johann Radon was the first to describe the reconstruction of
a function from its projections, laying the basis for CT-reconstruction [4].
The origins of the term tomography are the Greek words τoµoς (slice) and γραφειν (to
write). The first CT scanner was developed in 1972 by Godfrey N. Hounsfield, and the first
whole-body CT scanner in 1974 by Robert S. Ledley. During the CT-scanning process an
x-ray tube and an x-ray detector capture images of an object from many different angles.
These images cover the entire field of view and consist of small pixels, each representing
one thin x-ray beam. Figure 1.1 [1] shows a fan-beam geometry and a parallel-beam geom-
etry. As a result, the line attenuation measurements for all possible angles and all possible
distances from the centre are obtained. From this the x-ray attenuation properties of every
point can then be reconstructed. Consequently, using computed tomography, it is possi-
ble to produce cross-sections of the scanned object. Using more advanced techniques
the object can also be rendered as a three-dimensional model. Recent CT scanners use
scintillator crystals in combination with photodiodes for producing images. The scintilla-

1

Parallel-beam
geometry (2D) Fan-beam geometry (2D) Cone-beam geometry (3D)

Figure 1.1: The basic geometry of a parallel-beam, a fan-beam, and a cone-beam CT

tor crystals convert x-radiation to visible light, enabling the photodiodes to sense it and
produce a response in the form of an electric current.
Cone-beam CT, which uses an x-ray point source and a two-dimensional detector, is gaining
popularity for several reasons. In comparison to parallel-beam or fan-beam CT it provides
higher image resolution, better radiation utilisation and easier hardware implementation.
Furthermore, the time necessary for obtaining the projections is shorter than with the con-
ventional techniques. Apart from biomedical science, material engineering and industrial
non-destructive evaluation it is used for non-destructive inspection systems and explosive
detection systems in airports. [5; 3]
The most popular approximate cone-beam reconstruction algorithm is the Feldkamp algo-
rithm. It is limited by circular scanning, spherical specimen reconstruction and longitudinal
image blurring [5]. Mathematically, the reconstruction can be seen as an inverse Radon
transform, while the projection is a forward Radon transform. The inverse Radon trans-
form is approximated by backprojection, which means that the projections are basically
“smeared” back through the volume from the angle at which they were taken. For obtaining
a sharp reconstruction a prefiltering of the images is necessary. [3]

2

1.1 Motivation
In the year 2014 the Bauhaus-Universität Weimar acquired a General Electrics Phoenix Nan-
otom M cone-beam CT scanning system, driven by the efforts of the chairs of Polymere
Werkstoffe (polymeric materials), Baustatik und Baufestigkeit (architectural statistics and struc-
tural strength),Werktstoffe des Bauens (materials of construction), Simulation und Experiment
(simulation and experiment) and Computer Vision in Engineering. The new system was in-
tended to be used to analyse materials without having to destroy samples, as is necessary
for microscopic examination. This allows researchers to capture and analyse the decay of
building structures and its temporal progress with high accuracy. [6]
For this purpose, a commercial closed-source CT reconstruction solution is currently used.
This makes it impossible to alter or extend the used algorithms and techniques, and causes
scientists to be dependent on an external party. The Computer Vision chair of the study
programme Computer Science and Media has, however, a scientific interest in researching
CT reconstruction techniques and related algorithms. The results of this research could
also prove beneficial for the other chairs using the CT scanner and reconstruction for their
purposes.
Therefore, the aim of this work is to create a basis for an open-source CT cone-beam re-
construction application that can be used not only by the Bauhaus Universität Weimar
but also by the whole scientific community to conduct practical research in the field of CT
reconstruction. Consequently, the resulting solution could one day render the need for
third-party products unnecessary.

1.2 Goals
Our vision was to create a program that implements the Feldkamp-David-Kress cone-beam
backprojection algorithm. It was our aim to maximise performance as much as we could
and be able to keep up with the competition in this regard, while offering correct recon-
struction results. The focus was put on speed rather than on quality optimisation for now.
Memory optimisation, however, was not one of the primary goals. The application should
be able to run parallelised on CPUs as well as on one or multiple GPUs, thus being usable

3

with a wide range of different hardware configurations. At the same time the multi-GPU
support should make it possible to accelerate execution to virtually any level desired by
adding and utilising as many graphics processing units as available hardware allows. Fur-
thermore, the resulting application should be suited for actual practical use and be able
to process the scan results of the Bauhaus-Universität Weimar’s CT-scanner. Thus, there
should be provided a method to view the output, and, if possible, compatibility to other
third-party rendering applications.

1.3 Related Work
The FDK-algorithm was originally introduced in [7]. The books [8] and [9] give a detailed
explanation of this algorithm, as well as many other CT techniques and related mathemat-
ical concepts. In [1] there is an overview on the computed tomography topic in general.
The authors of [5] describe their attempts to achieve a fast implementation of the Feld-
kamp algorithm using a curved-voxel-approach and precomputed mapping tables. In [3]
the implementation of the Feldkamp algorithm on a CELL Broadband Engine microproces-
sor architecture is described.
There are several commercial closed-source CT reconstruction applications available that
implement the FDK algorithm. However, there is only one open-source application known
to us that does so, which is OSCaR (Open Source Cone-beam Reconstructor), an open-
source Matlab implementation of the FDK algorithm, that was developed by the University
of Toronto, supported by the American Association for Physicists in Medicine (AAPM), the Nat-
ural Sciences and Engineering Research Council (NSERC) of Canada and by the Mathematics of
Information Technology and Complex Systems (MITACS) Canadian research network. [10; 11]

1.4 Structure
The explanation of the underlying algorithm will be performed in chapter 3. Then, chapter
4 discusses the basic realisation of the implementation of the algorithm on the CPU, the
tools which were used, and some practical concerns about the usage of the program and

4

its public availability as an open source application. In chapter 5, the actual parallelisation
of the algorithm is explained. This comprises the parallelisation on the CPU as well as the
GPU implementation, which is inevitably parallelised. Chapter 6 then discusses the results
and the success with regard to our goals.

5

2 Fundamentals
In this chapter, a few field specific terms used in this work are explained. Readers with prior
knowledge of computer science may want to skip ahead.
Bi-linear interpolation Bi-linear interpolation is an interpolation technique used with two-
dimensional data structures such as images. Interpolation is necessary in order to obtain
values for points that lie between the discrete data elements of a two-dimensional data
structure forming a regular grid, such as an image. Bi-linear interpolation is the combina-
tion of linear interpolations on two dimensions. When performing bi-linear interpolation,
two linear interpolations are performed on the first dimension and then one linear interpo-
lation between the two resulting values is performed on the second dimension. Figure 2.1
illustrates bi-linear interpolation between the colours of four pixels. Alternatives to bi-linear
interpolation include nearest-neighbour interpolation (less complex) or bi-cubic interpola-
tion (more complex).

(0,0) (1,0)

(0,1) (1,1)

(u,v)

u 1-u

1-uu

v

1-v

Figure 2.1: Visualisation of bi-linear interpolation. First, the two pixels in each row are interpo-lated linearly. Then the two resulting values are again interpolated linearly to obtain the finalresult.

CUDA Blocks and threads When processing data on the GPU using CUDA, there is usu-
ally one thread for each data element processed. These threads are not all active at the

6

warp
block

grid

threads

block 0,0

block 1,0

block 0,1 block 1,1 block size

grid size

Figure 2.2: Visualisation of CUDA blocks and threads. The grid can have up to three dimensionsand is subdivided into blocks. A warp then is formed out of 32 sequential threads from one block.Inside each of the blocks, threads are ordered in an x-fastest manner.

same time. Instead, a unit of threads is organised into what is known as a block. The
blocks together from what is called the grid. The amount of resulting blocks depends on
how many threads or data elements there are in total and on the size of the blocks. This
block size can be chosen by the programmer within certain bounds. Different block sizes
result in different levels of performance. Each thread has a thread-ID within its block and
each block has a block-ID within the grid. Inside of a kernel, both of these IDs as well as
the block size are available and can be used to calculate the index of the data element
currently being processed (see Equation 2.1). Block sizes can be one-dimensional, two-
dimensional, or three-dimensional. Consequently, the thread-IDs can be one-dimensional,
two-dimensional, or three-dimensional vectors. The same goes for the grid. The threads
from each block are ordered in an x-fastest manner [12, section 2.2].

globalIndex = blockID × blockSize + threadID (2.1)

The threads belonging to one block are always executed on the same streaming multipro-
cessor. For this reason, each of the threads from a block accesses the same L1 cache, which
is important regarding memory coalescing. Furthermore, the threads from one block have
access to a shared memory and their execution can be synchronised. Shared memory was
not utilised in our application.
Even though the threads from within one block are executed on the same streaming multi-
processor, they are not all active at the same time. Only 32 threads can execute instructions

7

on one streaming multiprocessor at a time. Such a group threads is called a warp. Because
of this warp size, the block size should always be divisible by 32. This is important, because
only then it can be evenly divided into warps. Otherwise warps with less than 32 threads
would occur, in which case the capabilities of the streaming multiprocessors could not be
fully utilised. Figure 2.2 shows the relation between the grid, blocks, warps and threads.
[13]
CUDA streams CUDA streams are used to asynchronously compute concurrent tasks ex-
ecuted on the same device. Kernel launches on the GPU generally are asynchronous, i.e.
the CPU thread they are launched from does not block until the kernel execution is finished.
However, kernels are executed in the order in which they are launched. Sometimes it is de-
sirable to let kernels run on the GPU asynchronously. This is the purpose that streams
serve. All the kernels launched on one stream, Stream A, will be executed in the order they
have been added to that stream. However, kernels launched on a second stream, Stream
B, are not in any way synchronised to Stream A and may be executed at an arbitrary point
in time with regard to the kernels on Stream A. Basically, streams serve the same function
as threads do on the CPU: They allow the independent, detached execution of multiple
functions. [12, section 3.2.5.5; 14]
We, for example, use streams to upload images to the GPU and to simultaneously prepro-
cess them to a running reconstruction kernel.
Coordinate system orientation A three-dimensional Cartesian coordinate system can ei-
ther have right-handed (positive) orientation or left-handed (negative) orientation [15]. A
coordinate system is called right-handed if rotating the x-axis towards the y-axis results in
a counter-clockwise (positive) rotation when looking from positive z-direction to the origin;
otherwise it is called left-handed.
Fourier Transform The Discrete Fourier Transform (DFT) is a fundamental transform in
digital signal processing. It enables the decomposition of a discrete signal into its frequency
components, that can then be evaluated or manipulated. One common application of the
DFT is creating frequency filters such as high-pass or low-pass filters. The Fast Fourier
Transform (FFT) is a fast algorithm for computing a DFT. Assuming a symmetric signal, an
even-length DFT is fully described by its first N2 + 1 values; an odd-length DFT is fully de-

8

scribed by its first N+1
2 values. For both, even- and odd-length DFTs, the output length can

be calculated as bN2 + 1c. [16]
FFT Plan The data structures required for the intermediate results of an FFT are called
an FFT plan. Once this plan has been created, multiple FFTs can be executed using it.
The advantage is that these data structures do not have to be allocated and deallocated
multiple times, saving execution time.
Overhead We refer to computational overhead as computational effort that has system-
based causes and is necessary only for the management of the program itself rather than
for the actual task that is to be completed. For example, creating a new thread on the
CPU takes a certain computational effort that has to be taken into account, but does not
contribute anything to the completion of the actual task. The same is the case for memory
allocations, deallocations, or copy operations to the video memory. This additional work-
load is called overhead.
We also use the term thread scheduling overhead. By this we mean the overhead that oc-
curs when assigning tasks to threads. For example, let’s assume we want to perform an
operation on 100 elements in four parallel threads. One possibility would be to launch
one thread for each element, resulting in 100 threads that are launched at once. Another
option would be to statically divide the elements into four subsets, launch just four threads
and let each thread process the subset it was assigned. The second option has a much
smaller computational overhead than the first one.
Page-locked memory Modern operating systems use virtual memory (also called page
file), i.e. memory that can be used like RAM but is actually stored somewhere else, e.g. on
the hard disk drive. This technique is used to handle cases where the amount of physical
RAM is insufficient. Moving content from the physical to the virtual memory is called paging.
Page-locked memory, or pinned host memory, is memory allocated in the RAM that cannot
be moved to virtual memory.
The GPU driver cannot access data from pageable host memory directly. When copying
such data to the VRAM it has to copy it to a temporary page-locked portion of main memory
first, and can then transfer it from there to the GPU memory. The copy operation can
bypass the CPU if the data in the RAM is already page-locked. First, this makes the copy
operation faster under certain conditions. Second—and that is most important for us—

9

the copy operation can happen asynchronously. This means that the CPU thread from
which the copy operation is executed does not block until the operation terminates, but
continues execution. [17; 12, section 3.2.4]
Region of interest A region of interest is a boundary that limits a data range to a certain
extent. It is essentially a crop. In our case the term is used to describe a cuboid-shaped
area that can be defined by the user. The reconstruction is then confined to this area.
RAM and VRAM We refer to RAM or main memory as the random access memory of the
computer. This is the memory that the CPU can access directly. We refer to VRAM as the
video-RAM, i.e. the memory that the GPU can access directly. It is also called global device
memory or just global memory in the context of GPUs.
Rounding There are different rounding notations that have been used in the equations in
this work. The notation used in equation 2.2 means that a is rounded to the next smallest
integer, while the notation from equation 2.3 means that a is rounded to the next larger
integer. Rounding to the nearest integer was written as can be seen in equation 2.4.

bac (2.2)
dae (2.3)
bae (2.4)

Single and double precision Computer systems use floating point data types to repre-
sent real numbers, i.e. decimal fractions. Like all data types these can have different sizes.
Most common are the types float, or single precision, and double, or double precision. The
length of these data types depends on the processor architecture and the compiler. We,
however, refer in this thesis to 32-bit-float as single precision and to 64-bit-double as double
precision. While double requires twice as much memory as float, it also provides higher ac-
curacy. On the CPU the differences in computational effort between double and float are
rather small; however, on the GPU these are usually bigger. This also depends on the GPU
model used.
Volume and voxels A volume is basically a three-dimensional grid structure. It consists of
discrete individual elements that are ordered along three orthogonal axes. Each of these

10

elements has one particular value and is called a voxel. This value can, for example, be an
intensity or a colour.

11

3 Algorithm
During the scanning procedure, the detector of the x-ray scanner captures x-ray images of
the object in small angular steps [1]. For this purpose, either the object is rotated, or the
x-ray source and the x-ray detector revolve around the object. Either method results in the
same relative movement. Figure 3.1 schematically illustrates this procedure. The goal of
the algorithm is then to create a three dimensional density volume from these images via
backprojection.

top view

object
x-ray
source

x-ray
detector

Figure 3.1: The scanning procedure. The object rotates, allowing the x-ray source and the x-raydetector to capture images in small angular steps.

12

3.1 Prerequisites
3.1.1 Coordinate Systems and Geometry
There are two coordinate system representations that have to be understood in order to
understand the reconstruction process. The transformation between these coordinate
systems is one of the essential aspects of the algorithm.

v

u

z

yx

image coordinate system volume coordinate system

Figure 3.2: The coordinate systems of the image and the volume

The first one is the image coordinate system, which is of two-dimensional Cartesian type. It
is used with the input images. Its horizontal axis, the columns of the image, is denoted u,
the vertical axis, the image rows, v. The second coordinate system is the coordinate system
of the volume. It is a right-handed three-dimensional Cartesian coordinate system. Its axes
are denoted x, y and z. Both coordinate systems are illustrated in figure 3.2.
Regarding the capturing geometry, the x-ray source and the x-ray detector basically can
be seen as a normal photographic camera. Like visible light, the rays intersect in a projec-
tion centre and produce an image on the image plane. Figure 3.3 shows this geometric
model [8, p. 373]. The rays originate from the projection centre and are projected onto the
physical detector behind the object. The distance the x-ray source has from this detector
is denoted SD , the source-detector-distance. This distance together with the size of the
detector defines the opening angle of the fan or, in other words, the field of view. The
virtual detector is an image of the physical detector at the distance FCD , the focus-centre-
distance, from the projection centre. The focus-centre-distance can be chosen arbitrarily
as long as the pixel size is calculated accordingly (compare section 3.1.3).

13

u

v

z

x

y

physical detector
virtual detector

principal ray

θ

FCD

SD

volume coordinate
system

image
coordinate system

projection centre

Figure 3.3: The geometry of the reconstruction

The volume-coordinate-system is shown in green. Its origin is at the distance FCD from
the projection centre, being the pivot point of the rotation. The virtual detector is our
image plane. It is perpendicular to the principal ray and intersects the origin of the volume
coordinate system. The origin of the volume-coordinate-system and the image-coordinate
system are at an identical point in 3D-space.
The angle θ is the angle at which an image was captured. It is defined as the angle between
the principal ray and the x-axis of the volume-coordinate-system. The orientation of the
image coordinate system relative to the image plane and the projection centre stays the
same for all values of θ. However, the orientation towards the volume-coordinate-system
changes as the angle θ changes. Projecting points from the volume-coordinate-system into
the image-coordinate-system is one necessary step of the backprojection algorithm.

14

3.1.2 Input Data
First and foremost, the x-ray images form the input data of our algorithm. Along with these,
a couple of capturing parameters have to be provided:

Angles The angle θ at which the individual image has been taken in degrees. This
parameter is required for each image.
Z-offset The offset of the individual image in the vertical direction in units of length.
This parameter is required for each image.
FCD The focus centre distance, which is the distance of the x-ray source to the virtual
detector in units of length. This distance can theoretically be chosen arbitrarily as
long as the pixel size is calculated correspondingly as explained in section 3.1.1.
Pixel size The size of one pixel on the virtual detector in units of length. Square
pixels are assumed.
U-offset The offset of the rotation axis from the image centre in the horizontal di-
rection in units of length.
Base intensity The intensity that is measured when no object is between the x-ray
source and the detector. This value must be provided relative to the maximal possi-
ble pixel value (which would be 255 for an 8bit or 65535 for a 16bit image). Thus, it
must be in the interval [0 − 1]. This has the advantage that images with different bit
depth can be used without requiring different values.

The z-offset or height offset can be used as a technique to prevent artifacts in the reconstruc-
tion. If there is a defect that is consistent amongst all images, this will result in artifacts in
the reconstruction. For example, a dead pixel at a certain position in the image could cause
ring-like artifacts in the reconstruction. To counter this, a z-jitter can be used when perform-
ing the scan. This means that the vertical position of the object that is being scanned will
be varied slightly for each image. As a result, defects on the image plane will, seen relatively
to the volume, always be in different locations and will, in the end, average out in the recon-
struction and thus be invisible. If this technique is not used, the z-offset values can just be
zero or any arbitrary constant for each images.

15

u

v

z

x

y

θ

image width

image height
FCD

pixel size
u-offset

z-offset

Figure 3.4: Visualisation of the input parameters

These parameters are provided through a configuration file, a detailed description of which
can be found in 4.4. There are several further parameters which do not need to be supplied
manually, but are automatically deduced from the images:

Image width The width of the images in pixels
Image height The height of the images in pixels
Volume size X The resolution of the volume in X-direction. This is proportional to
the image width.
Volume size Y The resolution of the volume in Y-direction. This is proportional to
the image width.
Volume size Z The resolution of the volume in Z-direction. This is proportional to
the image height.

16

This implies that the size of the volume is always relative to the size of the images. Although
this is currently the case in our implementation, it would also be possible to choose the res-
olution of the volume independently from the image resolution. However, what is already
possible is to constrain the reconstruction to a region of interest. The exact volume dimen-
sions can be calculated according to equation 3.36 in section 3.2.4. Figure 3.4 visualises
these parameters.
The unit of length can be any arbitrary measure, e.g. millimeters. For the algorithm it does
not make a difference which unit is used in particular, as long as all parameters use the
same one. Our implementation internally uses pixels as a unit of measurement. Therefore,
after reading the input parameters, all their values are converted to pixels using the pixel
size parameter provided. This makes it particularly easy to transform coordinates between
image and volume because all components use the same unit of measurement.
Along with these essential parameters there are some additional parameters which can be
specified to control the behaviour of the reconstruction process:

Filter type For the preprocessing of the images there are three different types of
frequency filters available:
• Ram-Lak
• Shepp-Logan
• Hann

These filters are explained in more detail in section 3.2.1.
Volume bounds These are six parameters, two for each dimension (minimum and
maximum), that define a region of interest. Only this region of interest will be recon-
structed.

3.1.3 Units
As a unit we use pixel in both coordinate systems, which is defined as the distance be-
tween one pixel and its direct neighbour along one of the image coordinate system’s axes.

17

Per definition, the two coordinate systems are isotropic, which means that this distance
is the same as the distance of one voxel to its direct neighbour along one of the volume
coordinate system’s axes. This makes the transformation of a coordinate between the two
coordinate systems as simple as possible. Furthermore, all integer coordinates can be used
without scaling as indices to access the corresponding voxel or pixel in the actual physical
representation of the volume or image in memory, where they are stored in the form of an
array-like data type.
All parameters which might be provided in “real-world measures” such asmillimetres will be
converted to the unit pixels. This conversion has only to be done once when the param-
eters are read, which makes the computational effort minimal. Otherwise such a conver-
sion would be necessary each time a voxel is accessed, requiring additional computational
operations to be performed during the reconstruction and likely impairing reconstruction
performance. Please note that there are still some coordinate transformations necessary
when converting between coordinates and indices, due to the fact that the origin of the
coordinate systems is in the centre of the volume or in the centre of the image respec-
tively, while the indexing of array-like data structures always starts at zero and does not
know negative values. Thus, the coordinates have to be shifted when transforming them
to indices. Taking into account the possibility that only a certain region of interest will be
reconstructed, instead of the whole volume, the transformation involves some additional
calculations, which will be explained in section 3.2.4.
The conversion itself is quite simple. It should be noted that we work with square pixels.
Assuming the pixel size p is known in an arbitrary unit, a constant c measured in said unit
can be transformed to the measure pixel by

cconverted = c

p
, (3.1)

resulting in the converted constant cconverted.
The pixel size p is the size of one pixel on the virtual detector, i.e. the projection of the real
detector to the distance FCD . The pixel size of one pixel on the real detector, preal, can be
calculated from the physical detector’s size (su, sv) and its resolution (ru, rv) as shown in
equations 3.2 and 3.3.

preal = su
ru

(3.2)

18

preal = sv
rv

(3.3)
Knowing the distance of the x-ray detector to the x-ray source, SD , and given a focus centre
distanceFCD , it is possible to calculate the pixel size p on the virtual detector bymultiplying
preal by the ratio of FCD to SD as in equation 3.4.

p = prealFCD
SD

(3.4)

Taking equations 3.2, 3.3 and 3.4 into account, equation 3.1 can also be written as one of
the following:

cconverted = c
SD ru
FCD su

(3.5)
cconverted = c

SD rv
FCD sv

(3.6)

The pixel size p and the focus centre distance FCD have to be known for the reconstruc-
tion. They are usually obtained in the calibration stage, using a calibration object consisting
of two ruby spheres.

3.2 Reconstruction
In [8, pp. 384–368] the Feldkamp, Davis and Kress reconstruction is described as in equa-
tions 3.7 to 3.11. Note that the formulas have been adapted to match our coordinate
system. The operand in the term (x cos(θ) + y sin(θ)) seems to be given wrong in [8], or at
least does not match the given axis orientation. It has been changed according to [5] and
[9, p. 105].

f(x, y, z) =

∫ 2π

0︸︷︷︸integral overall angles

FCD2

U(x, y, θ)2︸ ︷︷ ︸weight
hθ
(
projection from volume coordinatesto image coordinates︷ ︸︸ ︷
u(x, y, θ), v(x, y, z, θ)

)
︸ ︷︷ ︸sample from filtered image atprojection point of voxel

dθ (3.7)

U(x, y, θ) = FCD − (x cos(θ) + y sin(θ)) (3.8)

19

4 projections 8 projections

16 projections 32 projections

64 projections 1199 projections

Figure 3.5: Cross sections of backprojection results with varying amounts of projections

20

u(x, y, θ) =
(−x sin(θ) + y cos(θ))FCD

FCD − (x cos(θ) + y sin(θ))
(3.9)

v(x, y, z, θ) =
zFCD

FCD − (x cos(θ) + y sin(θ))
(3.10)

hθ(u, v) =
1

2

(
φθ(u, v)︸ ︷︷ ︸pixel atcoordinate (u,v)

FCD√
FCD2 + u2 + v2︸ ︷︷ ︸cosine weight

)
? g(a)︸︷︷︸frequency filtering

(3.11)

Equation 3.11 shows the preprocessing of the image, consisting of the Feldkamp or cosine
weight and the highpass filtering in the frequency domain, which is the first step in the
algorithm. Equations 3.9 and 3.10 show the projection of a voxel from the volumes x-y-
z-coordinate system to the u-v-coordinate system of the image plane. Equation 3.7 com-
bines these parts to one algorithm that integrates the filtered pixel values over all angles,
weighted by a per-voxel weight, to reconstruct the value of one voxel.
To give a general idea of the discretised version of the algorithm, it can be broken down to
the essential steps shown in Algorithm 1. Figure 3.5 shows how the backprojection result
gradually becomes clearer as the number of projections used increases.
Data: The images and the capturing parameters
Result: Reconstructed CT volume

1 allocate volume and initialise it with 0;
2 foreach image do
3 preprocess image;
4 foreach voxel do
5 project voxel coordinate to image coordinate system;
6 sample density value from image at projected voxel coordinate;
7 calculate weight;
8 add weighted density value to current value of voxel;

Algorithm 1: Essential steps of the discretised FDK-algorithm

21

3.2.1 Image Preprocessing
Before backprojection can be performed on an image, the image has to be preprocessed.
We assume our images to have one channel. If this is not the case, the channels will be
reduced upon reading of the image. Preprocessing then comprises the following steps:
1. Conversion to 32bit float representation and scaling to identical data range
2. Normalisation with regard to the x-ray source’s base intensity and logarithmic scaling
of the image values

3. Application of the Feldkamp cosine weights
4. Application of a high-pass filter in the frequency domain

Figure 3.6 shows the intermediate results of the the preprocessing pipeline on an exem-
plary image.

Original Log scaled Highpass filteredCosine weighted

Figure 3.6: The progression of one projection through the preprocessing pipeline (images nor-malised for better visibility)

Conversion The volume that is to be reconstructed contains density values. These are
represented by floating point numbers with 32bit precision in our case. Thus the images
are converted to a 32bit float representation, as well. The data range of the pixels’ values
depends on the image’s data type. If the image is in 8 bit unsigned integer representation,
the values will be in the interval [0, 255], if it is in 16bit unsigned integer representation,
they will be in-between [0, 65535] and given 32bit float representation their range will be

22

[0, 1]. As it is possible that images of different bit depths are used, the image data of all
images will be scaled to the interval [0, 1] after the conversion to 32bit float representation.
Equation 3.12 shows the scaling for images of arbitrary bit depth.

Iu,v0 =
Iu,v

2b − 1
, (3.12)

Here I is the image represented as a pixel matrix and Iu,v denotes the pixel at the coordi-
nate (u, v) of I . The value b is the bit depth of the image, which would be 8 in the 8-bit case
and 16 in the 16-bit case.
Often, the bit depth of the image file is higher than the bit depth of the actual contained
data. For example, acquisition may happen with only 12bit accuracy, but the data is still
stored in a 16bit format. In any case, this operation is only dependent on the bit depth of
the image.

Logarithmic Scaling In the next step the projections are normalised with regard to the
x-ray source’s base intensity and a logarithmic scaling is applied to the pixel values.

Iu,v1 = − ln

(
Iu,v0

ι

)
, (3.13)

Here ln denotes the natural logarithm and ι denotes the base intensity of the x-ray source.
This amplifies differences in the shadows and compresses the highlights. Furthermore, the
negation causes the image to become inverted, which means the high-density areas of the
x-ray scan become white and the low-density areas become black. [1; 18; 19; 20]

Cosine Weighting Afterwards the Feldkamp or cosine weighting is applied to the image
as shown in equation 3.14.

Iu,v3 = Iu,v2

FCD√
FCD2 + u2 + v2

(3.14)

The denominator√FCD2 + u2 + v2 is the distance of the pixel (u, v) on the image plane
from the projection centre [8, p. 373]. Consequently, the weight is the ratio of this distance
by the focus centre distance. As a result, the values of pixels which are further away from

23

-500 -400 -300 -200 -100 0 100 200 300 400 500 -400
-200

0
200

400
0
0.2
0.4
0.6
0.8

u
v

wei
ght

Figure 3.7: Three-dimensional plot of the cosine weights for an image of size 1000 × 875 pixelsat a focal center distance of 75 pixels (scaled for better visibility)

the image centre are attenuated. Figure 3.7 shows a 3-dimensional plot of the cosine
weights for an exemplary image. [8, pp. 384, 386; 5; 3; 18]

Frequency Filtering Lastly, a highpass filtering of the image will be performed in the
horizontal direction. Since this happens in the frequency domain, first a one-dimensional
Fourier transform of each individual row of the image is undertaken. This results in a
complex-valued frequency spectrum of size (w2 + 1,h

), where w is the width and h the
height of the original image. The change in width happens because all values above the
Nyquist-Frequency threshold, which is N2 +1, are merely the complex conjugates of the val-
ues below this threshold, according to the Nyquist-Shannon sampling theorem [16]. There-
fore a packed format called CCS (complex-conjugate-symmetrical) is used [21]. After the
transformation to the frequency domain a weighting filter is applied, which attenuates cer-
tain frequencies, and the image is then transformed back into spatial domain. Equation
3.15 shows the transformation process.

I2 = F−1 (F (I1) ◦W) (3.15)

24

Without highpass filtering With highpass filtering

Figure 3.8: Comparison of the reconstruction result with and without the highpass filtering step.Without this step, no correct reconstruction is obtained.

Here F is the one-dimensional row-wise Fourier transform and F−1 the inverse one-di-
mensional row-wise Fourier transform. W denotes the weight matrix, which is multiplied
with the frequency spectrum in an element-wise fashion.
There are three options for the weight filter in our implementation. The default one is the
Ram-Lak filter, which is a simple ramp filter:

W u,v
RamLak =

u

n
, (3.16)

where n is the amount of columns in the spectrum or in other words the Nyquist frequency.
The Ram-Lak filter yields the sharpest result of all the prefilters. However, sometimes this is
not desirable because of the resulting noise. For reducing the noise in the volume, several
frequency filters exist that attenuate the high frequencies. The first one is the Shepp-Logan
filter, which is a sinc (sinus cardinalis) window filter multiplied with the Ram-Lak filter:

W u,v
SheppLogan =W u,v

RamLak

sin
(
πu
2n

)
πu
2n

, (3.17)
The second one is the so called Hann filter, being a Hann window filter multiplied with the
Ram-Lak filter:

W u,v
Hann =W u,v

RamLak

1 + cos
(
πu
n

)
2

, (3.18)

25

-N/2 0 N/20

0.2

0.4

0.6

0.8

1

Frequency

We
ight

Window Functions
Ram-LakShepp-LoganHann

Figure 3.9: Comparison of the different window functions used for frequency filtering

-N/2 0 N/20

0.2

0.4

0.6

0.8

1

Frequency

We
ight

Apodisation Components

Ram-LakShepp-LoganHann

Figure 3.10: Comparison of the apodisation components of the window functions used

26

Ram-Lak Shepp-Logan Hann

Figure 3.11: Comparison of the different frequency filters

Figure 3.9 shows a visual comparison of the three window filters described. As can be
seen, the Shepp-Logan filter attenuates the high frequencies stronger than the Ram-Lak
filter, and the Hann filter does so even more than the Shepp-Logan filter. The apodisation
components of the different filters alone are plotted in Figure 3.10. Figure 3.11 shows a
comparison of the results of the different frequency filters. The more of the high frequen-
cies are removed, the softer the result becomes, yielding less noise but also less sharply
defined edges in the resulting reconstruction. Please note that in our case only the part of
the window function for positive values of x is used, accordingly, taking the absolute value
of x has been omitted in equations 3.16, 3.17, and 3.18. Figure 3.8 shows the effect the
highpass filter has on the reconstruction result.
This is only a selection of window functions. There are a variety of other possible filters that
could be tried, for example the Blackman, Butterworth, or Hamming filters. After this final
step the image is ready to be used for the actual backprojection stage. [8, pp. 244–247; 1;
22; 19; 5; 18]

3.2.2 The Reconstructable Cylinder
Before proceeding to the actual backprojection stage we should think about which part of
the volume actually is reconstructable. The filtered backprojection algorithm is an integral
over all angles, which in our discretised version means a sum over all angles. Only voxels
that are visible on every single image can be correctly reconstructed. The volume itself has
the shape of a cuboid, but not every point inside the cuboid is also visible on all of the
images. The portion of the volume that is actually reconstructable can be seen in figure
3.12, marked in blue. We, however, approximate it as a cylinder, which means we include

27

z

side view top view

x

y

Figure 3.12: The shape of the reconstructable cylinder viewed from the side and from the top. Theblue areas show the exact shape of the reconstructable cylinder. The blue areas together with thegreen areas represent our approximation of the reconstructable cylinder. The red areas show thepart of the volume that is not allocated.

the parts marked in green. This way it is easier to compute if a voxel is inside or outside this
portion. Using the exact shape would require too much computational effort compared to
the effort saved by not having to include the outside voxels in the backprojection.

b

FCD

r
q

p
c

Figure 3.13: Geometry of thereconstructable cylinder. Thelengths of the green line seg-ments are known; the blackand red parts are unknown.The goal is to find the ra-dius r.

Figure 3.13 shows the geometry of the reconstructable
cylinder. The lengths of the line segments marked in green
are known to us. The variable b is half of the virtual detec-
tor’s width.

b =
ru
2

(3.19)
To calculate the radius r of the reconstructable cylinder,
marked in red, we first calculate the length of c.

c =
√
FCD2 + b2 (3.20)

Then, using the cathetus theorem, the lengths of p and q
can be obtained.

p =
b2

c

q =
FCD2

c

(3.21)

28

Using c, p and q and the altitude theorem we can now calculate the radius r of the recon-
structable cylinder.

r =
√
pq =

√
b2FCD2

c2
(3.22)

After replacing b and c we obtain the final formula for calculating the radius r of the recon-
structable cylinder, which is only dependent on FCD and ru.

r =

√√√√ FCD2
(
ru
2

)2
FCD2 +

(
ru
2

)2 (3.23)

Only voxels within this radius from the z-axis will be reconstructed. Furthermore, the vol-
ume’s size in x- and y-direction will only be as much as this radius and not as much as the
full width of the images. This means that the parts which are marked in red in figure 3.12
will not be allocated at all, saving some memory.

3.2.3 Backprojection
At the beginning of the backprojection, the volume V is initialised to zero. Here r denotes
the radius of the reconstructable cylinder, as explained in section 3.2.2.

V x,y,z = 0 ∀ (x, y, z) ∈ {0, . . . , r − 1} × {0, . . . , r − 1} × {0, . . . , rv − 1} (3.24)
Once an image has been preprocessed, the actual backprojection can be performed with
this image. For this the algorithm loops over each voxel and lets each voxel undergo the fol-
lowing procedure. First, the voxel’s x-, y- and z-indices have to be transformed to x-, y- and
z-coordinates in our volume’s coordinate system representation. These transformations
will be explained in detail in section 3.2.4.
Secondly, we check if the voxel is inside the reconstructable cylinder. Section 3.2.2 gives a
detailed explanation how this formula was obtained.

x2 + y2 <
FCD2

(
ru
2

)2
FCD2 +

(
ru
2

)2 (3.25)

29

Squaring the right side instead of taking the square root of the left side of the equation
spares the expensive execution of the square-root operation for each voxel. The right side
of the equation has only to be computed once and will stay constant during the execution
of the backprojection.

θx coordinate

y coordinate

s coordinate
t coordinate

u coordinate

projection centre

image plane
ts

y

x
z

top view

voxel

Figure 3.14: The s-t-z-coordinate system relative to the x-y-z coordinate system. The s-t-z-coordinate system is relative to the “camera”. The s-axis points towards the projection centre;the t-axis lies inside the image plane and is perpendicular to the s-axis and the z-axis.
Next, the voxel’s coordinates are transformed into another, temporary, coordinate system.
This coordinate system has the same axis layout as the volume’s coordinate system, but
is rotated around the z-axis so that what formerly was the x-axis is now pointing towards
the camera. This axis is then called s. The former y-axis rotates equivalently and stays
perpendicular to the other axes. After the rotation it is denoted the t-axis. The z-axis
stays in its original position. After the rotation, the coordinate system is still Cartesian and
right-handed. Figure 3.14 shows the relation between the two coordinate systems. The
advantage here is that the s-axis is parallel to the principal ray of the camera. It is pointing
directly towards the image centre. Thus the s-axis is perpendicular to the image plane and
the t- and z-axes are parallel to the image plane. Furthermore, the t-axis is parallel to the
u-axis and the z-axis parallel to the v-axis of the image plane. This is the first step of our

30

transformation from volume coordinates to image coordinates. Given a voxel’s coordinates
x and y and the angle θ at which the image was taken, they can be transformed to s and t
in the following way [3; 8, p. 386; 5]:

s = x cos (θ) + y sin (θ)

t = −x sin (θ) + y cos (θ)
(3.26)

Afterwards the u-offset, which is the offset of the rotation axis from the image centre, is
added to the t-coordinate, and the z-offset, which is unique to each projection, is added to
the z-coordinate.

t = t+ uoffset
z = z + zoffset

(3.27)

projection centre

image plane

t
s

y

x
z

top view

voxel

s

FCD t

u

Figure 3.15: Calculation of the u-coordinate from the s-coordinate, the t-coordinate and thefocus-centre-distance using the intercept theorem
The next step is to transform s, t and z to the image plane’s coordinates u and v. If the s-
coordinate were zero, meaning the voxel lay directly inside the t-z-plane, or if the projection
type were not perspective but parallel instead, the u-coordinate would be equal to the t-
coordinate and the v-coordinate equal to the negated z-coordinate. However, since we are
dealing with a perspective projection, voxels that lie not on the s-t-plane but in front of it or
behind it are projected onto the image plane along the rays originating from the projection

31

centre. This can be calculated by using the s-coordinate and the focus centre distanceFCD
along with the intercept theorem, as shown in equations 3.28 and 3.29 [3; 5; 8, p. 386]. The
orange triangle in figure 3.15 illustrates this for the calculation of the u-coordinate.

u =
tFCD

FCD − s (3.28)
v =

zFCD

FCD − s (3.29)
This gives us the exact u and v coordinates at which we have to take a sample from the
image. This is a floating point coordinate, so it probably is situated somewhere in-between
the discrete pixels of the image. One option here is to just take a nearest-neighbour sample.
We choose, however, to perform a bi-linear interpolation. This means the surrounding
pixels’ values are linearly averaged on both axes.
Before this is done, we check if the calculated coordinate is actually inside the image. Not
all portions of the volume are actually captured on every image. If the coordinate is outside
the image, then the algorithm needs to stop for this voxel and can proceed with the next
one. In programming logic, not stopping at this point and trying to access non-existent
values in memory may even cause unrecoverable errors.
After confirming that the calculated coordinate is located inside the image, we can pro-
ceed with the bi-linear interpolation. Therefore we calculate the coordinates of the four
surrounding pixels by rounding the u and v coordinates up or down.

u0 = buc
u1 = due
v0 = bvc
v1 = dve

(3.30)

Here u0 is the u coordinate of the closest pixel to the left and u1 the u coordinate of the
closest pixel to the top of the calculated point in the image. The values v0 and v1 have the
same meaning with respect to the v axis. The ratios between the pixels on the u and the v,
denoted fu and fv , dimensions are then obtained by:

fu = u− u0
fv = v − v0

(3.31)

32

Now, before accessing the pixels in the image, these coordinates have to be transformed
to indices. These transformations are described in section 3.2.4. Next, an intensity value a
can be interpolated, and a weight w can be calculated [9, p. 105; 8, pp. 384, 386; 5].

w =
FCD2

(FCD − s)2

a = (1− fv) ((1− fu) Iu0,v03 + fuI
u1,v0
3) + fv ((1− fu) Iu0,v13 + fuI

u1,v1
3)

(3.32)

The term FCD − s is the distance from the projection centre to the point that is the projec-
tion of the current voxel onto the principal ray [8, p. 384]. Thus, the weightw is the squared
ratio of the focus centre distance by the distance between the projection centre and the
plane perpendicular to the detector, in which the voxel is located. As a result, the weight
w is relative to the reciprocal distance of the voxel to the source [8, p. 386]. Therefore, this
weight is one for all voxels that lie inside the virtual detector plane, smaller than one for all
voxels that lie in front of the virtual detector plane, i.e. between the projection centre and
the detector plane, and greater than one for all voxels that lie behind the virtual detector
plane.
In the end, the value a is added to the corresponding voxel, weighted by the weightw. Here
V denotes the volume.

V x,y,z = V x,y,z + wa (3.33)

3.2.4 Coordinate Transformations
In the algorithm, several transformations of voxel coordinates to voxel indices and of pixel
coordinates to pixel indices are necessary. These transformations will be explained in this
section.

Volume First, let’s assume there is no region of interest and the whole volume will be
reconstructed. In this case, the volume bounds are defined as given in equation 3.34,
where r is the radius of the reconstructable cylinder (compare section 3.2.2) and rv is the

33

height of the images.
x ∈ {0, . . . , r − 1}
y ∈ {0, . . . , r − 1}
z ∈ {0, . . . , rv − 1}

(3.34)

However, it is possible to define a region of interest. This region of interest is defined in a rel-
ative manner by the six floating point values xfromf

,xtof , yfromf
, ytof , zfromf

, ztof ∈ R which
are all in the interval [0, 1]. Furthermore xfromf

< xtof , yfromf
< ytof and zfromf

< ztof is
required. Here 0 denotes the minimum value and 1 the maximum value of the correspond-
ing dimension. Since these bounds are relative, they are interchangeable among instances
of the same data set with different resolutions. These relative bounds are then converted
to absolute, integer bounds:

xfrom = bxfromf
re

xto = bxtof re
yfrom = byfromf

re
yto = bytof re

zfrom = bzfromf
rve

zto = bztof rve

(3.35)

Taking the region of interest into account, the actual dimensions of the volume are:
xmax = xto − xfrom
ymax = yto − yfrom
zmax = zto − zfrom

(3.36)

Given these bounds a volume index (xi, yi, zi) can be converted to a volume coordinate
(xc, yc, zc) in the following way:

xc = xi −
xmax
2

+ xfrom
yc = yi −

ymax
2

+ yfrom
zc = zi −

zmax
2

+ zfrom
(3.37)

34

The same transformation can be reversed:
xi = xc +

xmax
2
− xfrom

yi = yc +
ymax
2
− yfrom

zi = zc +
zmax
2
− zfrom

(3.38)

Image These transformation are similar for image coordinates and image indices. An
image index (ui, vi) is transformed into an image coordinate (uc, vc) by:

uc = ui +
ru
2

vc = −vi +
rv
2

(3.39)

Note that the v-coordinate is inverted. This is necessary because the v axis has opposite
direction in the two coordinate systems. Also this transformation can be inverted easily:

ui = uc −
ru
2

vi = −vc −
rv
2

(3.40)

Precomputation Some of the calculations in these equations can be precomputed. This
is beneficial because they have to be performed for every voxel and thus have a consider-
able impact on execution times. The following precomputations are made:

xpre = xmax
2
− xfrom

ypre = ymax
2
− yfrom

zpre = zmax
2
− zfrom

upre = ru
2

vpre = rv
2

(3.41)

35

Then the formulas of equation 3.37 can be simplified as:
xc = xi − xpre
yc = yi − ypre
zc = zi − zpre

(3.42)

The formulas of equation 3.38 turn into:
xi = xc + xpre
yi = yc + ypre
zi = zc + zpre

(3.43)

Equivalently, equation 3.39 can be simplified as:
uc = ui + upre
vc = −vi + vpre

(3.44)

As can equation 3.40:
ui = uc − upre
vi = −vc − vpre

(3.45)

These simplifications spare a fair amount of execution cycles, reducing each transformation
to only additions and subtractions.

36

4 Implementation
We started with a basic implementation of the algorithm on the CPU. At first, some deci-
sions had to be made about the structure of the implementation, dependent on which
goals should be met. These included:

• Should all images be loaded at once and kept in the main memory?
• How should the volume be stored in memory?
• Should the entire volume be kept in the main memory the whole time?
• Should the algorithm loop for each image over all voxels or for each voxel over all im-
ages?

Furthermore, some questions concerning practical use had to be answered:
• How should the user interact with the program, i.e. which form of interface should
be provided?

• How should the input of the data work, i.e. how should the data necessary for the
reconstruction be supplied to the program by the user?

4.1 Algorithm Core
When handling large amounts of data it is always necessary to decide which constraints
are acceptable and which are not. The assumption that we made is that main memory
is somewhat limited but extensible quite easily. This means that no memory should be
wasted, but that there is also no reason to compromise on performance in order to reduce

37

memory demand. Furthermore, the memory demand for the reconstruction volume is, in
most typical scenarios, within the realm of what can be handled with a reasonable financial
expenditure.

Loop Order Before we have a closer look at memory utilisation, we should think about
the structure of the reconstruction loop, i.e. the loop order. We do know that there are
basically two loops necessary: the one which loops over all voxels (being actually three
encapsulated loops, see lines 12, 13 and 22 in Algorithm 3) and the loop over all images
(see line 3 in Algorithm 3). This results in two options, both with different constraints:
1. Iterate over all images and then per image over all voxels

• Subsequent memory requests always happen within the same image, i.e. the
memory addresses are in close proximity. This takes advantage of the process-
ing unit’s caching capabilities. Especially when memory access does not happen
byte-wise, as is the case with most modern architectures, but in batches of one
or multiple words that are fetched in one access and then remain in one of the
much faster caches, this is very important for performance.

• Also the voxels are accessed sequentially, offering good performance in this
regard as well, due to the aforementioned reasons.

• It is sufficient to store only one image in the memory at a time.
• The algorithm could theoretically act as an online-algorithm, meaning while the
scanning process is still in action, the reconstruction can already begin. As soon
as the next image arrives, it is used for reconstruction. This way the reconstruc-
tion could more or less run in parallel to the scanning itself.

2. Iterate over all voxels and then per voxel over all images

• Because the algorithm constantly accesses data from different images, memory
access happens in an erratic, non-sequential manner. This completely counters
the established caching mechanisms previously described.

38

• Only one voxel is accessed at a time; in total each voxel is finished before the
next voxel is dealt with. From a memory access point of view this is even faster
than the sequential but repeated voxel access.

• All images have to be kept in memory at all times.
• The algorithm cannot work in an online fashion. All images have to be present
from the start.

Judging from the aspects listed above, it is quite apparent that the first option is the better
choice since its advantages clearly outweigh its disadvantages. The only thing that could
theoretically be slightly faster with option two is the voxel access. However, the difference
is probably neglectable, especially considering the other drawbacks.

Image Loading As a result of choosing option one, every image is only required once.
Therefore, a new question arises: Should the images be loaded into the main memory prior
to the reconstruction procedure, meaning that all of them are present in the memory at the
same time, or should they be loaded one by one as they are needed for the reconstruction,
meaning that only one image is kept in the main memory at a time? In this case, the
advantages and disadvantages are less numerous, yet that does not mean the decision is
a simpler one:
1. Load all images into memory

• This consumes more main memory.
• No delays due to file operations can happen during the reconstruction.

2. Load only one image at a time

• Memory for a maximum of two images at one time is required, assuming that
one image is used for reconstruction while another one is being prefetched in
the background.

• Delays due to file operations and preprocessing during the reconstruction are
possible.

39

First of all, what we can say is that the total amount of work stays the same, given either
one of the two options. In both cases each image has to be read from disk once and
has to be preprocessed once. The difference mainly exists in when this happens, and as
a result of this, in the amount of memory required. Having tried both possibilities, we
came to the conclusion that reading only the image currently needed is the better option.
We implemented this in a way that while one image is used for the reconstruction, the
next one is simultaneously read from disk and preprocessed in another thread, as can be
seen in Figure 4.1. This successfully hides latencies occurring due to disk operations, and

Thread A
Thread B

backprojectload image

load image

backproject

load image

backproject

load image

Figure 4.1: Visualisation of the multi-thread approach that hides the latencies for loading theprojections on the CPU
prevents them from having an impact on the reconstruction performance. This way, the
reconstruction takes essentially the same amount of time as with the preloading. If we
take the time that option one needs for loading the images prior to the reconstruction
process into consideration, option two is, in total, even faster. This is illustrated in Figure
4.2. Consequently, we decided to not preload the images. This also has the advantage

0 50 100 150 200 250 300 350 400 450 500 550 600
Preloaded

Not preloaded
572
564

6

Execution Time [s]

Dataset: toy figure scan 1000 pixels, CPU: 2× Xeon E5-4640
PreloadingReconstruction

Figure 4.2: Comparison of the execution times with and without preloading of the images to themain memory prior to the reconstruction
of sparing a lot of main memory. Considering that they are converted to a 32bit floating
point representation, the size of all images together can easily surpass the size of the 3D-
volume. As an example, in the case of a dataset with 1199 images and a resolution of 875

40

× 1000 pixels each, the amount of memory required for storage would be 3.9GB. The
volume itself only requires 2.9GB. Particularly on systems with less memory, this enables
the reconstruction of far bigger volumes than would be possible when keeping all images
inside the memory.

Volume The way we designed our implementation, the volume itself is kept inside the
main memory during the whole reconstruction process. This is the most straightforward
way of implementation and ensures optimal reconstruction performance. However, it
would be quite simple to modify the algorithm later on, in a way that the volume is re-
constructed part-wise, without requiring substantial changes to the code. We are already
providing the functionality for reconstructing only a region of interest of the volume. Using
the same approach, it could automatically be split into multiple parts that then are recon-
structed on their own and saved to non-volatile memory. This way the reconstruction of
volumes of nearly arbitrary size would be possible independent of main memory capac-
ity. We use a similar approach for the reconstruction on the GPU, which will be explained
in chapter 5. However, this would come with some limitations. It would, for example, no
longer be possible to view the volume. In this case, there are other applications that also
allow out-of-core rendering of volumes which do not entirely fit into main memory.

Index Order What also has to be considered is the order in which we iterate through
the different dimensions, i.e. the individual voxels. By this we mean the order of the loops
in the lines 12, 13 and 22 of Algorithm 3. Theoretically, since there are three loops, there
were 3! or 6 possible ways to order these loops. However, either the orderings x-y-z (called
z-fastest) or z-y-x (called x-fastest) are commonly used. For example, assuming z-fastest
ordering the voxels would be accessed in the order (0, 0, 0), (0, 0, 1), (0, 0, 2) . . . , and as-
suming x-fastest ordering the order would be (0, 0, 0), (1, 0, 0), (2, 0, 0)
Now the question is why that would make a difference. There is one small detail that does
matter, which is the condition in line 14. All voxels with the same z-coordinate share the
result of this condition. In other words: Solely the x- and y-coordinates of a voxel determine
if it is inside the reconstructable cylinder or not. So all voxels inside one row along the z-
dimension have either to be computed or not to be computed. Now, if the z-loop is the
innermost loop, then, given that the condition is false, the whole inner part, including the z-

41

loop, can be skipped. If the z-loop was one of the outer loops, the condition would have to
be moved to the very inside of the three loops. As a result, it would have to be evaluated for
each individual voxel, causing muchmore computational overhead. Therefore, the z-fastest
index ordering is optimal in this case.
Another thing that must be considered is that the index order of the voxels in the memory
should be identical to the order they are accessed in, due to the caching mechanisms that
have been previously described. For the CPU implementation a z-fastest index ordering
was used, while x-fastest ordering is optimal for the GPU implementation. Therefore, we
created our own volume class that can switch between either x-fastest or z-fastest order-
ing. It internally holds a contiguous C-style array and allows per-element access similar
to the vector class coming with the C++ standard libraries. The projection from a three-
dimensional to a one-dimensional index is handled by this class. Switching from x-fastest
to z-fastest mode will change how the contained array is interpreted. All member functions
of the class will treat it according to the index ordering that is currently set. Such member
functions, for example, provide the functionality for obtaining a cross section of the vol-
ume or for writing the volume to disk. However, if the index order is not known at compile
time, the code cannot be optimised to the same degree as otherwise. To counteract this,
we also provide the functionality for obtaining a pointer to a single element, element row,
or element plane of the volume. These pointers can then be used to iterate through the
volume in a very efficient way. However, the user has to take responsibility for preventing
memory access violations and other possible problems themselves. The volume class also
is templated, allowing the loading of volumes of different data types.

4.2 Pseudocode
Algorithm 2 shows the preprocessing and Algorithm 3 the backprojection in a simplified
form as pseudocode. Although these are capable of giving a general idea of how the imple-
mentation of the algorithm works, they lack the in-depth descriptions of all the subroutines
and do not have the complexity of the actual implementation. Describing everything in
pseudocode in detail is not feasible and shall not be done at this point. However, the ac-
tual C++ code comes attached to this work and will allow interested readers to examine it
as extensively as desired.

42

Data: image
Result: Preprocessed image

1 convert image to 32bit float;
2 scale image’s data range to [0, 1];
3 normalise image with regard to x-ray source’s base intensity;
4 apply logarithmic scaling to image;
5 apply the Feldkamp weights to image;
6 convert image to frequency domain as spectrum;
7 apply window filter to spectrum;
8 convert spectrum back to spatial domain as image;

Algorithm 2: Preprocessing

4.3 Interface

Ct Ct Viewer

Figure 4.3: Screenshots of the graphical user interface of the CT reconstruction software (left) andthe viewer (right)
We decided to add a graphical user interface because it simplifies the setup process of the
reconstruction significantly for the user. Moreover, errors that the user might have under-
gone can be diagnosed more easily and feedback is provided during the reconstruction
process. There are, however, some situations when a command line interface is more use-
ful. It enables potential users to still use the program, even if there is only a command line
available, or if they want to execute reconstructions from a batch script. It thus was de-
cided to provide a hybrid solution: If launched without any command line parameters, the
program would bring up a graphical interface. If, however, command line parameters are

43

Data: The images and the capturing parameters
Result: Reconstructed CT volume

1 allocate volume and initialise it with 0;
2 radiusSquared = (FCD2 ∗ (imageWidth/2)2)/(FCD2 + (imageWidth/2)2);
3 foreach projection do
4 if is first projection then
5 load and preprocess projection;
6 else

7 get preprocessed projection from prefetching thread;
8 if is not last projection then
9 launch thread that loads and preprocesses next projection (asynchronously);
10 calculate sine and cosine of projection’s angle;
11 obtain pointer to volume as volumePtr;
12 foreach x in volume coordinates do
13 foreach y in volume coordinates do
14 if x2 + y2 > radiusSquared then
15 advance volumePtr by zSize and continue with next iteration;
16 t = (−x ∗ sine + y ∗ cosine) + uOffset;
17 s = x ∗ cosine + y ∗ sine;
18 u = (t ∗ FCD)/(FCD− s);
19 if u is outside image bounds then
20 advance volumePtr by zSize and continue with next iteration;
21 w = (FCD/(FCD− s))2;
22 foreach z in volume coordinates do
23 v = ((z + heightOffset) ∗ FCD)/(FCD− s);
24 if v is inside image bounds then
25 convert u and v to indices;
26 get intensity values of four nearest neighbours of (u, v);
27 interpolate the four intensity values bi-linearly;
28 weight resulting value with w;
29 add weighted value to voxel at volumePtr;
30 advance volumePtr by 1;

Algorithm 3: Backprojection

44

passed when launching the program, it solely runs as a console application. Also transition-
ing between the two interface types was made possible. A user can setup a reconstruction
via the graphical user interface and then have the program automatically generate a batch
script containing a call that executes that exact reconstruction with the settings they speci-
fied. Figure 4.3 shows a screenshot of the interfaces of the CT reconstruction software and
the viewer application that is also provided.
The following settings can be made via both the graphical and the command line interface:

• Path to the configuration file
• Filter type for the reconstruction

– Ram-Lak
– Shepp-Logan
– Hann

• Region of interest for the reconstruction
– One upper and one lower bound per dimension, in between [0, 1]

• Choice between CPU and GPU reconstruction
• Choice between CPU and GPU preprocessing when reconstructing on the GPU
• GPUs to be utilised for the reconstruction
• GPU weights α and β as explained in section 5.3.1
• Amount of VRAM to be kept free for other applications
• Byte order and index order of saved files

– Little endian or big endian
– Z fastest or x fastest

45

Listing 4.1: Layout of the Configuration Files
1 .2 0.065546963 ccw4 05 74.99966 0.0274978 Test00001.tif 0 09 Test00002.tif 0.300250209 010 Test00003.tif 0.600500417 011 (. . .)

4.4 Data Input: Configuration Files
Each reconstruction may require up to about 1000 image files or more. These must be
provided to the program in some capacity. When providing a graphical interface, it might
be possible to include a file selection dialog for that purpose. However, this is not possible
on the command line. Furthermore, although this is sufficient for providing the files, it is
not possible to include the parameters (angle, height offset) for them. For these reasons,
we decided to make use of configuration files. These contain the parameters and the paths
of the image files. This comprises only the fixed parameters of the scan geometry and
not the settings that influence the result of the reconstruction and might be subjected to
change. This way it is possible to provide a scan as a folder of files that can be distributed
easily. Anyone can then do a reconstruction of this scan by simply loading the included
configuration file without having to worry about its parameters. Such a configuration file
could, for example, also be automatically generated by the scanner software.
Listing 4.1 shows the layout of such a configuration file. Line 1 contains the path to the
folder where the images are located. This path can be absolute or relative to the location
of the configuration file. In the example, the point character means that the images are
located in the same directory as the configuration file. Line 2 contains the pixel size, being
the width or height of one pixel, with the assumption of square pixels. Line 3 then contains
the rotation direction which must be either of the strings cw or ccw for clockwise or counter-
clockwise respectively. This describes the rotation of the camera relatively to the scanned
object. In line 4 the u-offset is specified, meaning how far the rotation axis is off of the
horizontal centre of the image. Line 5 contains the focus-centre-distance, and line 6 the x-

46

ray source’s base intensity. Then there follows an empty line. Afterwards a list begins that
contains all of the images and the per-image parameters. This is the name of the file, the
angle at which it was captured in degrees and its z-offset separated by tab characters.

4.5 About the Program
Our implementation was realised in C++ and CUDA. This implementation enables the user
to display the sinogram and to scroll through the images one by one, as well as displaying
cross-sections of the final reconstruction. The volume can be saved as a raw binary file
with different encodings. Along with the binary file, two sidecar files with identical name are
saved, one TXT file and one VGI file. The TXT file contains information about the reconstruc-
tion and the volume in a human readable format. The VGI file makes it possible to load the
volume in other applications as well, such as VGStudio.
Furthermore, a viewer application was also created that can load raw volume files of many
different data types and encodings, display them in the form of cross sections and print the
absolute and relative data values of the voxels. This viewer uses the aforementioned TXT file
to automatically obtain the volume parameters, as to require no further user input. How-
ever, it is possible to load virtually any raw volume with said viewer. If no meta-information
about the volume is found, a dialog is displayed that makes it possible for the user to enter
it manually. Here a wide variety of data types and encodings is supported.
The application can also be used in command line mode. The graphic interface also allows
the generation of a batch file which will execute the reconstruction in command line mode
using the settings currently selected in the graphic user interface.
For the image handling theOpenCV library was utilised. Qt was used for creating the graphic
user interface. For the parallelisation, as described in chapter 5, OpenMP (CPU) and CUDA
(GPU), including CUFFT, were used.
The software is open source, and the code repository as well as precompiled binaries for
Windows and Linux are publicly available at https://bitbucket.org/bastian_weber/ct.
It is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national Public License. For licensing details see http://creativecommons.org/licenses/

47

https://bitbucket.org/bastian_weber/ct
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

by-nc-sa/4.0/legalcode. A current revision of the code and the program is provided to-
gether with this work. However, the online repository should always be preferred for the
most recent state. Releases, i.e. revisions that are supposed to be stable, are marked in
the revision tree.

48

http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

5 Parallelisation
One of our goals was to make the algorithm as fast as we possibly could. Consequently, we
tried to use all the parallelisation capabilities of modern hardware. On the one hand this
was traditional multi-threading onmulti-core CPUs. On the other hand, it was parallelisation
on the GPU, referred to as general purpose computation on graphics processing units
(GPGPU), or just GPU processing.
GPUs are specialised for compute-intensive, highly parallel computation. They are espe-
cially good at problems which can be expressed as data-parallel computations, meaning
problems where the same procedure is executed for many data elements in parallel, as is
the case with CT reconstruction. Graphics processors devote more transistors to data pro-
cessing than to data caching and flow control as is the case with traditional CPUs, putting
them at an advantage for said applications. [12]

5.1 CPU
For the parallelisation on the CPU we used the OpenMP library. It allows parallelisation
of loop-like program structures in a very straightforward manner, which makes it perfect
for our application, and provides different options for scheduling iterations over the differ-
ent cores/threads. Furthermore, it is already included in some of the most popular C++
compilers, for example the Microsoft Visual C++ or the GNU C++ compiler, which makes
integration relatively simple.
When trying to parallelise the algorithm, we were again confronted with some choices or
decisions that had to be made. The first one was how to distribute the workload across
multiple threads. There were two options:

49

1. Distribute the images across multiple threads and let each thread simultane-

ously do the reconstruction of one image

• Data races could become a problem if multiple threads try to modify the value
of the same voxel. To produce a correct result, it needs to be ensured that only
one thread at a time tries to modify one voxel, or potential imprecisions had to
be accepted. It is a difficult question to answer whether these were neglectable
or not.

• The order of the additions of the values from different images to one voxel might
vary. Floating point addition is not associative [23], thus the results could be
different each time the reconstruction is performed.

• Multiple images are read and kept in memory at the same time. This consumes
more memory.

• Scheduling overhead is very low because the amount of processing done by
each thread is rather large before a new task has to be assigned to it.

• Work balance between threads is even.
2. For each image, split the volume into parts and let each thread reconstruct one

of these parts

• No concurrent access of the data of one voxel happens. Thread safety requires
no further measures.

• The additions to one voxel are always performed in the same order, hence no
associativity is required.

• Only one image has to be kept in memory at a time.
• Scheduling overhead is larger than with option one. For each individual image
multiple task assignments happen to each thread.

• Work balance is not necessarily even. It depends on how the volume is split, and
how the parts are spread across threads.

50

Although option one appears to have a few more advantages, especially when it comes to
work balance and thread scheduling, we decided to go with option two mostly because of
the fact that thread safety and data races are not a problem here. Trying to synchronise
thread’s data accesses would result in a greatly degenerated performance. Since there is no
reasonable way of doing this, the only option would be to accept the potential inaccuracies.
However, it is very hard to assess how much of an impact these might have in practical use,
considering that they are greatly dependent on chance. Furthermore, this would mean that
our result would no longer be deterministic.
Apart from that, option two is generally not much worse than option one. To ensure equal
workloads, we essentially split the volume into slices of height one along the x-dimension,
as shown in Figure 5.1, which are then dynamically scheduled across threads. As soon

z

yx

Figure 5.1: Illustration of how the volume is split into slices, which are then reconstructed byindividual CPU threads. Each slice has a depth of exactly one voxel along the x-axis. These slicesare then assigned to the CPU threads alternatingly.
as one thread finishes working on one slice, it is assigned a new one. The different slices
require different computational effort, depending on the amount of voxels contained that
actually have to be computed (i.e. that are inside the reconstructable cylinder). The dy-
namic scheduling, however, ensures that the workload is still balanced across threads.
Now the question may arise of why we do not split the volume along the z-dimension.
Using this dimension, the workload would be equal for each slice because the amount
of voxels that have to be computed is the same for each x-y-plane, regardless of the z-
coordinate. Still, this would not be a good choice, because the z-loop is the innermost
loop. Parallelising this loop would yield the maximum scheduling overhead. Only one voxel
would be assigned to each thread at a time. However, it should always be the goal to assign
tasks, as comprehensive as possible, to each thread at a time. Therefore, we parallelised

51

the outermost loop, i.e. the x-loop, thus minimising the scheduling overhead as much as
possible.
This way the scheduling overhead is slightly bigger than with option one, because for each
image multiple tasks have to be assigned to the different threads. However, we believe that
the practical impact of this is neglectable. We also ran some prototypic tests, the result of

0 100 200 300 400 500 600 700 800
Voxel parallelisation
Image parallelisation

568
746

Execution Time [s]

Dataset: toy figure scan 1000 pixels, CPU: 2× Xeon E5-4640

Figure 5.2: Comparison between the execution times resulting from parallelising the image versusthe voxel loop
which can be seen in Figure 5.2. As it turned out, the parallelisation across multiple images
is significantly slower than parallelisation on the voxel side. Trying to find an explanation for
this behaviour turns out to be mere guesswork. One reason could be that when processing
multiple images in parallel, 32 in this case, the storage unit must handle many simultaneous
requests. Caching issues could also be a reason that causes this decrease in performance.
However, since they all have their individual caches, the cores of a CPU are supposedly quite
independent when it comes to memory access. So having them access different locations
in memory (the different images) should not be too much of a problem. Whatever the
explanation might be, this confirms that our choice to parallelise the processing per image
was the right one. Another positive side-effect is that we save the memory that would
otherwise be required for the additional images.
Preprocessing was not parallelised because it caused the performance to be worse in some
situations and did not yield any improvement. See section 6.2.2 for test results.
This concludes the CPU parallelisation. Due to the generally simple structure of main mem-
ory and main processor there were no principal changes to the structure of the algorithm
necessary. Evaluation results regarding the achieved speedups can be found in section 6.

52

5.2 GPU
In contrast to the main memory and the CPU, the GPU is much more limited when it comes
to memory. Current mainstream GPUs usually offer about four gigabytes of VRAM. Older
models, mobile or low-budget ones might even come with merely two or one gigabyte, and
the maximum that can be expected on a current GPU is about eight or twelve gigabytes.
Furthermore, the VRAM on a GPU cannot be expanded, as is possible with the main mem-
ory of a computer system. This shows the difficulties when trying to implement a largely
memory-dependent algorithm on the GPU.
The GPU can only access data that is stored inside the VRAM. It essentially acts like a second
memory layer. Everything that should be put in the VRAM has to be in the RAM first. From
there it can be uploaded to the VRAM and used for processing by the GPU. The result, i.e.
the processed data, must then be downloaded to the RAM again to be used further. This
up- and downloading can cause significant overhead, and it should be minimised as much
as possible.
It becomes quite obvious that an approach is necessary that can adapt to the amount of
video memory available and can perform the reconstruction part-by-part. This raises the
following questions:

• How should the volume be stored on the GPU?
• How should the images be stored on the GPU?
• How should the whole algorithm be structured?

If we think about the volume, it must be quite clear that it can only be present in GPU mem-
ory one part at a time. These parts then must be reconstructed individually. Concerning
the images, it would be desirable to have them all permanently stored in the video memory.
However, this is not possible, due to their size. Taking a dataset comprising 1199 images
of a resolution of 845 × 1000 pixels as an example, the memory required for storing these
images in 32bit floating point representation would be 3.9GB. For most GPUs this is too
much data, and it will be even more for larger datasets. Thus, storing all images in the
VRAM at once is not feasible. Consequently, the volume parts must be reconstructed one
at a time and the images must be uploaded and used for reconstruction one at a time.

53

Therefore, we split the volume into parts along the z-axis, as shown in Figure 5.3. Each
z

yx

Figure 5.3: Illustration of how the volume is split into smaller chunks, which can then be recon-structed on the GPU individually
of these parts is reconstructed on the GPU individually. Afterwards, it is downloaded and
added to the whole volume that lies inside main memory. Algorithm 4 illustrates this pro-
cedure.
This defines the general structure of the algorithm on the GPU. The reconstruction itself
can still be performed the same way as on the CPU. The calculation for multiple voxels will
be executed in parallel GPU threads, while the different images will be used one by one. For
each image there is one reconstruction pass. As a result, after each reconstruction pass a
new image must be uploaded to the GPU and preprocessed. This causes a latency, and in
the meantime the reconstruction pauses. However, we wanted to utilise the GPU as best
as possible. Therefore, we came up with a two-stream approach that runs reconstruction
kernels alternatingly on two different GPU streams. While one stream is running the re-
construction for one image, the other stream asynchronously uploads the next image and
preprocesses it. Then the roles of the two streams are switched (compare lines 8, 9 and
10 of Algorithm 4). This way we are able to hide the latencies between the reconstruction
kernels to a certain degree. Figure 5.4 illustrates this approach.
Stream A
Stream B

backprojectload image

backprojectload image

backprojectload image

sync

sync

load image sync

Figure 5.4: Visualisation of the multi-stream approach that hides the latencies for loading theprojections on the GPU
To be able to perform a host-to-device memcopy operation asynchronously, the host mem-
ory must be page locked [24; 12, section 3.2.4] (compare line 13 of Algorithm 4). Then the

54

copying can happen directly without involving the CPU. For this we used the HostMem class
that is included in the CUDA module of OpenCV.

Image Preprocessing As mentioned, we perform the image preprocessing on the GPU
as well. Another option would have been to keep it on the CPU side and perform it be-
fore the image is uploaded to the GPU. Practical testing showed that the performance is
more or less identical for single-GPU execution and small images. However, performing the
preprocessing on the GPU takes some of the workload off of the CPU in case of multiple
GPUs involved. In this case the CPU would have to preprocess the images for each GPU;
consequently, the CPU load would increase proportionally to the amount of GPUs involved.
Figure 5.5 illustrates the difference in multi-GPU execution time between CPU and GPU
preprocessing for a larger dataset. Multi-GPU parallelisation is explained in more detail in

0 100 200 300 400 500 600 700 800 900

CPU preprocessing
GPU preprocessing

899
591

Execution Time [s]

Dataset: toy figure scan 2000 pixels, GPU: Nvidia Tesla K20c + Quadro K5200

Figure 5.5: Comparison between the execution times resulting from CPU preprocessing versusGPU preprocessing
section 5.3. These results may vary for datasets of different sizes and other hardware con-
figurations. For instance, on a system with a slow GPU but a fast CPU, CPU preprocessing
may be advantageous. Therefore we provide the functionality to choose between GPU and
CPU preprocessing in our application.
Algorithm 4 shows the structure of the GPU reconstruction algorithm in a much simplified
form as pseudocode.

Index Order andMemory Coalescing Index ordering also plays a role on the GPU, prob-
ably evenmore than on the CPU. Memory coalescing means that larger portions of memory
(e.g. multiple words) can be fetched from the global device memory in one access and are
then present in a much faster cache. One warp, consisting of 32 threads on every current

55

Data: The images and the capturing parameters
Result: Reconstructed CT volume

1 allocate the volume in RAM;
2 allocate required data structures on the GPU side (e.g. images, FFT plan, etc.);
3 estimate maximal volume chunk size according to free video RAM;
4 iteratively try to allocate as large a chunk as possible;
5 foreach volume part do
6 set chunk to zero;
7 foreach projection do
8 swap stream with backgroundStream;
9 swap gpuImage with backgroundGpuImage;
10 swap plMemory with backgroundPlMemory;
11 precalculate sine and cosine of projection angle;
12 load projection from disk;
13 copy projection to page-locked memory plMemory;
14 upload plMemory to gpuImage in VRAM; preprocess gpuImage on the GPU;
15 synchronise backgroundStream;
16 run the reconstruction with gpuImage, sine, cosine and other capturingparameters on the GPU;
17 download chunk and add it to volume;
18 delete chunk from VRAM;
19 delete all allocated data structures on the GPU side;

Algorithm 4: Reconstruction on the GPU

56

memory segment

• Four bytes requested
• One segment read

Aligned access

• Four bytes requested
• Two segments read

Misaligned access

• Four bytes requested
• Four segments read

Strided access

Figure 5.6: Visualisation of memory alignment and its effects (from best to worst)

Nvidia GPU, can then access the data from this cache without requiring additional accesses
to global memory. Even more than that: Any block that runs on the same streaming multi-
processor has access to the very same L1 cache and can access this data from there as long
as it is present. Data should therefore be stored in memory contiguously and aligned to
assure that the amount of accesses to global memory is kept at a minimum. Memory align-
ment and memory coalescing are explained schematically in Figure 5.6 and Figure 5.7 [14],
respectively. To ensure sequential access and to prevent strided access the index ordering
of the volume’s voxels in VRAM should match the index ordering of the threads, which is
x-fastest [12, section 2.2]. We thus use x-fastest index ordering. [25, section 9.2.1; 26; 14]
Since accesses to the images happen more or less unpredictably during the reconstruc-
tion, these cannot be optimised with respect to memory coalescing. However, during the
preprocessing, when all pixels of an image are accessed sequentially, memory coalescing is
of importance as well.
In CUDA, both L1 cache and shared memory use the same hardware memory. Thus, it is
possible to prioritise either L1 cache or shared memory by software. We use the command
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1) to prefer L1 cache, which is more impor-
tant for us, as we do not use shared memory. As a result, there will be 48Kb of L1 cache

57

cache line
0 128 256 384

Warp requests 32 aligned,
consecutive 4-byte words.

One cache line has to be read.

Bus utilisation: 100%

0 128 256 384

Warp requests 32 aligned,
permuted 4-byte words.

One cache line has to be read.

Bus utilisation: 100 %

0 128 256 384

Warp requests 32 unaligned,
consecutive 4-byte words.

Two cache lines have to be read.

Bus utilisation: 50 %

0 128 256 384

Warp requests 32 scattered,
4-byte words.

32 cache lines have to be read.

Bus utilisation: 1/128 %

Figure 5.7: Visualisation of memory coalescing and its effects, from best to worst

58

and 16Kb of shared memory, instead of 16Kb L1 cache and 48Kb shared memory, which
is the default. [12, section G.3.1; 14]
Even though an x-fastest index ordering was used for the volume on the GPU side, contrary
to the z-fastest index ordering used for the CPU implementation, this is not a problem due
to the flexible volume class explained in section 4.1, that can switch between both ordering
types. Without this, the volume would first have to be downloaded to a temporary location
in the RAM, and afterwards the elements would need to be reordered to match the index
ordering on the CPU side. This would require extra RAM and extra computation time. For
allocation of the array structure holding the volume on the GPU the CUDA API function
cudaMalloc3D was used, which takes care of memory alignment automatically [12, section
3.2.2].

GPU Memory Allocation For the volume, we require one contiguous piece of VRAM.
The CUDA API provides functions for querying the amount of free memory. However, this
doesn’t necessarily mean that this memory also is contiguous. Therefore, just trying to al-
locate as much memory as is free will fail a majority of the time. Thus, we came up with
an approach that tries to allocate memory for the volume iteratively. If the allocation fails,
the amount of memory is reduced and allocation is tried again. This is repeated until it
succeeds (see Algorithm 5).
Once memory for the volume has been allocated, it is kept until the whole reconstruction
finishes. For the next volume part, the contents of the allocated VRAM chunk are down-
loaded to the main memory, it is reset to zero and then reused. The downloading can be
performed as a one to one copy from VRAM to RAM that can be realised in one single cud-
aMemcpy3D invocation, since the memory layout of our volume is identical in main memory
and videomemory. Only the last volume part may be smaller than than the allocated chunk.
However, this is not a problem. Since our memory alignment in main memory and video
memory match, we can simply download a portion of the allocated chunk. This way, mem-
ory on the GPU has only to be allocated once in the beginning and to be freed once at the
very end, providing maximal efficiency.

59

Data: sliceCnt, decreaseSliceStep
Result: Pointer to allocated volume

1 repeat
2 try to allocate memory for sliceCnt amount of volume slices;
3 if not successful then
4 if decreaseSliceStep < sliceCnt AND decreaseSliceStep > 0 then
5 sliceCnt = sliceCnt− decreaseSliceStep;
6 cudaGetLastError(); // recover from non-sticky cuda errors

7 else

8 break;
9 until allocation succeeded or sticky cuda errors occurred;
10 if allocation did not succeed then
11 terminate algorithm;

Algorithm 5: Allocation of the memory on the GPU

Blocks and Threads The block size that was chosen for the execution of the reconstruc-
tion kernel is 16 × 16 × 1. Through systematic testing we could identify this as the con-
figuration that delivered the best performance on the available hardware. However, this
might differ for other devices. The optimal block size is hard to predict, and finding it is
not a simple task. It is also dependent on the hardware used [25, section 10.5]. Never-
theless there are some comprehensible reasons why one block size might be faster than
another, especially concerning the “shape” of the blocks, meaning their extensions in x-, y-,
and z-dimension.
One of these reasons is memory coalescing. The x-, y-, and z-coordinates of a voxel are
calculated from its position in the grid. The position in the grid is calculated from the block
coordinate and the thread coordinate as shown in equation 5.1.

x = xthread + xblockxdim
y = ythread + yblockydim
z = zthread + zblockzdim

(5.1)

Here x, y and z are the resulting coordinates, while xthread, ythread and zthread are the coordi-
nates of the thread in the block and xblock, yblock and zblock are the coordinates of the block

60

in the grid. The variables xdim, ydim and zdim are the dimensions of one block. Inside mem-
ory, the volume is stored with an x-fastest ordering. Consequently, the threads grouped in
one block ought to access voxels that lie next to each other on the x-dimension, since all
threads of one block are executed on the same streaming multiprocessor, having access
to the same L1 cache. Usually one cache line is 128 bits long, or 16 bytes [25, section 9.2.1;
14]. One voxel has the size of four bytes (32 bits). Thus, the amount of contiguous voxels
on the x-dimension being worked on by the threads of one block should be at least four
and should be divisible by four. In our case this is 16, which is four times four and will
require four memory accesses.
Having two-dimensional blocks with equal size on the x- and y-dimensions resulted in bet-
ter performance than having just one-dimensional blocks. It is difficult to say why this is the
case. It is probably unrelated to the volume accesses, but it could be related to the image
accesses. Two voxels which lie next to each other on the x-axis are likely to be projected
next to each other in an image where the camera is looking along the y-axis, while two vox-
els lying next to each other on the y-axis are likely to be projected next to each other in an
image where the camera is looking along the x-axis. This means these voxels are likely to be
in the same image row and quite close to each other. From a caching point of view, this is
advantageous. The images are saved in a row-fastest manner. This means the image rows
are contiguous in memory. Reading multiple pixels that lie next to each other in one row
has a certain chance of being performed in one memory transaction, whereas accessing
multiple pixels that lie next to each other in one column always requires strided memory
access, which is slow [25, section 9.2.1]. This is the reason why it is advisable to choose the
z-size of the blocks to be one.
Now an objection may arise, saying that having one-dimensional blocks where all threads
lie along the x-dimension would also fulfill this criteria. If viewed along the x-axis, these
voxels would probably be projected onto the same point on the image. However, what
has to be taken into account is that we are not working with parallel but with perspective
projection. This means voxels that lie apart further in depth will be projected onto different
image rows, as shown in Figure 5.8. The further they lie apart, the more rows they will span
in the image. From a memory access point of view this is not optimal and will result in more
strided accesses.

61

V

z
s

Voxel A

Voxel B

projection centre

projection of Voxel A
projection of Voxel B

image row

image plane

Figure 5.8: The illustration demonstrates how voxels lying in the same x-y-plane may be projectedonto different image rows.

Another guideline for the choice of block size is that the total number of threads per block
should always be a multiple of 32 because one warp consists of 32 blocks [25, section
9.2.1.2]. Otherwise, at the end of each block, there would be warps which are comprised of
less than 32 threads. As a result, a part of the computational unit would be idle and device
occupancy would not be optimal. With the block size we chose there are 256 threads in
total, which is a multiple of 32. [27]

5.3 Multi-GPU
Parallelising the GPU implementation across multiple GPUs adds another layer of complex-
ity. The total work will now have to be split into parts, which are then distributed across the
GPUs. These GPUs might be different models, they might have different computing power
and different amounts of memory, and thus they might require different amounts of time
for the same amount of work.

Assigning Work The question we have to ask ourselves is: How do the GPUs obtain their
piece of work? One option would be to let them “grasp” as much as they can handle, which
would be bound by the size of their memory. It turns out that this is not a very good idea. In
case of a small volume, one GPU would take everything for itself while there would nothing
be left for the other ones. This is not suitable for achieving a balanced distribution, since the

62

amount of memory a GPU has available does not signify anything about its computational
power.
Another idea would be to divide the volume into smaller pieces (like a cake) and let each
GPU grab one at a time and then process it. This way work would be distributed more
equally, and in the end it would be more likely that the GPUs finish more or less simultane-
ously. However, processing small pieces of the volume creates much more overhead than
processing larger chunks, because for each reconstructed piece all images must be loaded
and preprocessed.
In the end, it turns out that some a priori knowledge is necessary. Each GPU must have a
weight that specifies the percentage of the workload it should execute and must be propor-
tional to its performance. How this weight is obtained or calculated is not of importance
for the algorithm itself. More about this is explained in section 5.3.1. Now the volume can
be divided into parts that are then assigned to the different GPUs. This division happens
along the same dimension along which the volume is split in the single-GPU case due to
the limitations of VRAM, which is the z-axis.

Addressing Multiple GPUs The next question we have to answer is how we address the
different GPUs programmatically. It is possible to execute commands on different GPUs
from one CPU thread by switching the active device using the CUDA API function cudaSet-
Device. In this case all actions normally performed on one GPU must now be performed on
every GPU, requiring a lot of switching for each call. For example, the reconstruction kernel
would first be launched on GPU one, then on GPU two and so on. Since kernel launches
are asynchronous, this is possible. When the kernels have been launched, a cudaDeviceSyn-
chronize call would be necessary to wait for all GPUs to finish their kernels. Then it can
be continued with the next iteration. Although theoretically possible, this approach would
introduce a lot of overhead. First of all, some actions cannot be performed asynchronously,
others only under certain conditions. This would mean, as soon as such a function is called
on one GPU, the CPU thread blocks until it terminates, afterwards it is called on the next
GPU and so on. Furthermore, switching the device and synchronising the devices has a cer-
tain overhead, which would occur every time cudaSetDevice or cudaDeviceSynchronize are
called. On top of that, this would basically tie the different GPUs together. They would have

63

to wait for each other to finish at the end of every iteration, making this a very rigid and in-
flexible system. Consequently, it becomes apparent that this is not a very good approach.
Instead, it is better to run the reconstruction for each GPU in a separate CPU thread. Each
GPU can then process its assigned part in the same way it would do in the single-GPU
case. For the GPU itself, only that portion exists. It does not know that it takes part in
achieving a higher goal, and it cannot determine whether it is performing the task alone or
together with other GPUs. The only thing that has to be ensured is that the workloads for
the different GPUs are adequate. Algorithm 6 illustrates how the parent thread launches
the different parts of the reconstruction in individual CPU threads for the different GPUs.
Data: List of devices to be used
Result: Reconstructed volume

1 calculate or obtain weights for GPUs;
2 foreach GPU do
3 calculate start and end slice index based on GPU weight;
4 launch reconstruction on that GPU in a new thread;
5 foreach thread do
6 wait for thread to finish;

Algorithm 6: Launching of the reconstruction on multiple GPUs in individual threads

5.3.1 GPU Load Distribution
When using two identical GPUs, load distribution is pretty simple. An optimal workload
distribution will be achieved if both GPUs do 50% of the work. In this case they both
require the same amount of time to process their parts, and the time consumed will be
exactly 50% of the time one GPU would need on its own.
When two different GPUs work together, this is no longer the case. The work will have
to be distributed in a way that each GPU does the portion of the work that matches its
power. Therefore, weights are introduced that specify how much of the total workload a
GPU will have to perform. Then the following question arises: Assuming we know how long

64

each GPU needs for performing the whole task on its own, what is the theoretically optimal
execution time that could be achieved when both GPUs work together?
First of all, it is necessary to acknowledge that the amount of time needed for execution
will be smallest when both GPUs finish exactly at the same point in time. The factors that
distribute the work between the GPUs shall be called fa for the first and fb for the second
GPU. Their sum must be one. Furthermore, let da be the duration that the first GPU needs
to process the whole task on its own, and db the duration that the second GPU needs to
do so. From these assumptions follow equations 5.2 and 5.3.

fada = fbdb (5.2)
fa + fb = 1 (5.3)

Thus, the total duration required to complete the task using both GPUs will then be d as
shown in equation 5.4.

d = fada = fbdb (5.4)
Combining equation 5.2 and 5.3 yields the equations 5.5 and 5.6 for calculating the weights
fa and fb.

fa =
db

da + db
(5.5)

fb = 1− fa = 1− db
da + db

=
da

da + db
(5.6)

Thus, we can conclude that the best case duration for parallel execution can be obtained
as shown in equation 5.7.

d =
dadb
da + db

(5.7)

However, this is only a theoretical measure. In reality, the performance of the parallelised
execution could still be slightly better, since the formulas don’t take the steps of device
memory allocation, deallocation and device to host memory copying into consideration. In
the single-GPU case these steps have to be performed by each GPU alone. In the case
of two GPUs, each GPU will only have to allocate a fraction of the device memory it would
otherwise need to allocate when performing the whole work on its own and will just have
to download that portion, as well. Since the algorithm runs in an independent thread for
each GPU, these operations will be performed in parallel, resulting in a performance gain.

65

What has been shown here for the case of two GPUs can be applied to cases with more
than two GPUs equivalently.

Practical realisation of GPU weight distribution In the implementation we decided to
make the GPU weights dependent on GPU features that are related to processing perfor-
mance, in particular the amount of streaming multiprocessors and the theoretical memory
bandwidth. We hoped that this would produce a sufficient load distribution without the
need for substantial manual interference. First we calculate a weight wiSM for each GPU i
based on its amount of streaming multiprocessors si.

wiSM =
si

N−1∑
i=0

si

(5.8)

Next, we calculate a second weight wiBW based on each GPU’s theoretical peak memory
bandwidth bi.

wiBW =
bi

N−1∑
i=0

bi

(5.9)

These two weights are then combined and weighted by the constants α and β, yielding a
final weight wi for each GPU.

wi =
wαiSMw

β
iBW

N−1∑
i=0

wαiSMw
β
iBW

(5.10)

The constants α and β can be chosen by the user to influence the weights.
This weight calculation, which is based on physical properties of the GPUs, was thought
to make it possible for the user to find two coefficients α and β that would produce an
optimal weight distribution for an arbitrary number of GPUs independent of the dataset.
However, the practical application showed that this doesn’t work as well as desired. A
majority of the time, it is necessary to readjust the coefficients for each dataset of different
size. Furthermore, it is difficult for the user to anticipate what result their changes to the
coefficients will have. It would most likely be of more practical utility to allow the direct
designation of the weights for each individual GPU. However, this would make the setup
more tedious, because as many coefficients as there are GPUs would need to be defined
while still having to ensure that their sum yields one.

66

Another conceivable approach would be to have a test run with the processing and recon-
struction for just one image on every GPU. From the measured execution times the relative
weights of the GPUs could then be calculated. However, we do not know how precise and
robust this method would be. Nevertheless, this is an approach that could be put to the
test in the future.
For the measurements included in section 6 that were taken of multi-GPU execution the
coefficients α and β are always mentioned in the text.

67

6 Evaluation
After the Algorithm was implemented and parallelised, it was tested with regard to perfor-
mance and quality of the reconstruction. The results shall be discussed in this chapter.

6.1 Experiment Setup
6.1.1 Hardware Configurations
There were three different hardware configurations that we used for evaluating the perfor-
mance of our implementation. The first one was a consumer configuration with one CPU
and one GPU, and had the following specifications:

• Intel Core i7 4770K CPU, 4 physical/8 logical cores at 3.5GHz
• Nvidia Geforce GTX 970 GPU at 1253MHz with 4GB VRAM at 224GB/s, providing 13
streaming multiprocessors

The second one was a server configuration with two CPUs and two GPUs. The specifications
of this configuration were:

• 2× Intel Xeon E5-4640 CPU, 16 physical/16 logical cores each at 2.4GHz (32 cores
total)

• Nvidia Tesla K20c GPU at 706MHz with 4.8GB VRAM at 208GB/s, providing 13 stream-
ing multiprocessors

• Nvidia Quadro K5200 GPU at 771MHz with 8GB VRAM at 192GB/s, providing 12
streaming multiprocessors

68

The third system was a laptop configuration with the following specifications:
• Intel Core i7 3630QM, 4 physical/8 logical cores at 2.4GHz
• 2x Nvidia Geforce GT 650M at 835MHz with 4GB VRAM (each) at 80GB/s, providing
2 streaming multiprocessors each

The first hardware configuration mentioned represents a typical consumer PC system. The
CPU has a quite good per-core performance, but can only offer 4 physical cores. Addi-
tionally, hyperthreading is supported, which maybe will provide some extra speedup. The
graphics card is a higher-range consumer card of a very recent generation. Here we expect
a significant speedup from using GPU computing versus CPU computing.
Hardware configuration two is a server configuration, which already offers massive paral-
lelisation on the CPU, featuring two Xeon processors with 16 cores each. This results in
32 cores total. However, the individual cores are rather slow, and hyperthreading was not
available on our system. Furthermore, it has two graphics cards to offer. One of them, the
Tesla K20c, is dedicated to GPU computing. However, we don’t know if this means that the
card will yield better performance. From what the manufacturer suggests, it should be es-
pecially advantageous when performing double precision computations. The Quadro card
is also a card dedicated to professional users, but cannot offer any special GPU computing
features. It is expected to work more or less like a consumer-grade card. Both cards are of
an earlier design cycle, thus their performance is not expected to be absolutely top-notch.
The third system was a portable PC, otherwise known as “laptop”, and all of the contained
hardware was particularly designed for such. The CPU is still a quite recent release. When
it comes to CPUs, the performance of the mobile versions is usually not much worse than
that of their stationary counterparts. However, regarding the GPU we expect a higher per-
formance hit compared to the desktop variants. What is the most interesting about this
configuration, is that it features a dual-SLI setup with two identical graphics cards. As this
is the only available configuration providing this setup, it was very useful for us for the
evaluation of the multi-GPU parallelisation.
The amount of RAM is not mentioned in the configurations because it is not of importance
for the tests we conducted. We always assume that there is enough RAM available to
hold the whole volume. If this is not the case, the program cannot run. However, the

69

operating system might handle this case by providing virtual memory, but this will degrade
performance. In our case there was always enough RAM available.

6.1.2 Data Sets
For the evaluation of the implementation we mainly used one dataset, which is a CT scan of
a toy figure. This dataset comprises 1199 images. We created versions of different size in
order to evaluate the performance of the algorithm at different cardinalities and simulate
different scenarios. The sizes referred to in this chapter are:

256 pixels set Images of size 224 × 256
• This dataset is very small, thus the time consumed per reconstruction iteration
(i.e. per image) is very short. Overhead and latencies originating from file han-
dling, etc., will have a bigger impact in this scenario.

• The resulting volume will have a size of 46Mb.
• Approx. 15 billion voxel operations are necessary for the reconstruction.

700 pixels set Images of size 613 × 700
• This dataset was solely used for the tests run on the GTX 650M GPU because
the amount of VRAM required for the reconstruction matches the 2GB of VRAM
this GPU has to offer, thus utilising amajority of it while still allowing the graphics
card to reconstruct the whole volume in one pass.

• The resulting volume will have a size of 0.98GB.
• Approx. 315 billion voxel operations are necessary for the reconstruction.

1000 pixels set Images of size 875 × 1000
• This is the biggest dataset that can still be reconstructed in one pass by a GPU
with 4GB of VRAM. Thus, execution times should scale best with this dataset
when comparing CPU vs. GPU and GPU vs. multi-GPU executions. Overhead

70

will presumably not have a major impact. This dataset represents a typical sce-
nario of practical use.

• The resulting volume will have a size of 2.85GB.
• Approx. 917 billion voxel operations are necessary for the reconstruction.

2000 pixels set Images of size 1750 × 2000
• This dataset is the largest one used. Even on the GPUs with the most VRAM
(8GB) multiple passes will be required for reconstruction. Therefore some over-
head will be introduced by the division of the reconstruction process into mul-
tiple passes. This also represents a typical scenario of practical use, being the
reconstruction of large datasets.

• The resulting volume will have a size of 22.82GB.
• Approx. 7 trillion voxel operations are necessary for the reconstruction.

One voxel operation is referred to as the operation of taking one sample out of one image
and adding it to the value of one voxel. The size of the reconstructable cylinder was not
taken into account for the calculation of this measure.
There was also a second dataset that was used for evaluation, being a scan of a sneaker.
However, this dataset is only referred to twice in the sections 6.2.3 and 6.2.5. It comprises
a set of 501 images, each at a resolution of 1000 × 571 pixels. Being 2.13GB in size, it
is nearly as large as the 1000 pixels toy figure set. However, with only less than half as
many images, only approx. 286 billion voxel operations are required for the reconstruction.
Figure 6.1 shows one x-ray image from each of the three datasets.
For the comparison of our implementation to OSCaR the skull phantom data set that comes
with OSCaR was used. It comprises 641 images with a resolution of 256 × 192 pixels.

71

Sneaker dataset Toy figure dataset Skull phantom dataset

Figure 6.1: One x-ray image from each of the datasets used
6.2 Performance
6.2.1 CPU Parallelisation
Singlethreaded CPU Compared to Multithreaded CPU

Figure 6.2 shows a comparison between singlethreaded and multithreaded CPU perfor-
mance. The two Xeon processors with at total of 32 cores achieve a speedup of factor 27.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·104

i7 4770K

2× Xeon E5-4640
1,596

560
15,416

7,585

Execution Time [s]

Dataset: toy figure scan 1000 pixels
MultithreadedSinglethreaded

Figure 6.2: Comparison of the execution times of singlethreaded and multithreaded CPU execu-tion
for the 1000 pixel dataset, remaining slightly behind what would be the theoretical opti-
mum. The amount of concurrent threads probably introduces a fair amount of scheduling
overhead here. The four-core i7 CPU with hyperthreading achieves a 4.7-times speedup,
which is quite remarkable. A more elaborated discussion about the benefit of hyperthread-
ing can be found in section 6.2.2.

72

6.2.2 Hyperthreading

0 5 10 15 20 25 30 35
HT On
HT Off

25.2
33.8

Execution Time [s]

Dataset: toy figure scan 256 pixels, CPU: i7 4770K

0 200 400 600 800 1,0001,2001,4001,6001,8002,0002,2002,4002,600
HT On
HT Off

1,596
2,428

Execution Time [s]

Dataset: toy figure scan 1000 pixels, CPU: i7 4770K

Figure 6.3: Comparison of the execution times of hyperthreaded and non-hyperthreaded CPUexecution
Figure 6.3 shows the benefit gained through the use of hyperthreading on a four-core CPU.
With the small 256 pixels data set, a reduction in execution time of 26% is obtained, while
in case of the 1000 pixel data set, the execution time is even reduced by 34%. This is
remarkable for such a feature.

Parallelisation Overhead

As we came to realise when designing our program, parallelisation is not always beneficial.
The results in Figure 6.4 show that parallelising the image preprocessing does actually result
in a drastically longer execution time on the Xeon CPUs and a slightly worse execution time
on the i7 CPU in the case of the smaller volume. In case of the bigger one the difference is
not so pronounced, but the performance of the parallelised version is still worse than that
of the non-parallelised one. The reason for this can only be the scheduling overhead that
is being introduced by the new threads. The preprocessing runs simultaneous to the back-

73

0 10 20 30 40 50 60 70 80 90
2× Xeon E5-4640

i7 4770K

85.1

26.9
15.5

25.3

Execution Time [s]

Dataset: toy figure scan 256 pixels
Multithreaded preprocessingSinglethreaded preprocessing

0 200 400 600 800 1,000 1,200 1,400 1,600
2× Xeon E5-4640

i7 4770K

628

1,619
560

1,596

Execution Time [s]

Dataset: toy figure scan 1000 pixels

Multithreaded preprocessingSinglethreaded preprocessing

Figure 6.4: Comparison of the execution times using parallelised and non-parallelised prepro-cessing on the CPU

74

projection. This means that on the Xeon CPU there already are 32 active threads working
on the reconstruction. Introducing another 32 threads for the preprocessing apparently
rather hurts the multithreading performance. Additionally, the data processed in the pre-
processing is very small; thus, the real time benefit in parallelisation would still probably
be neglectable. In combination, these two factors lead to a generally worse overall perfor-
mance if the preprocessing is multithreaded. On the i7 processor the effect is not as big,
certainly due to the significantly lower total amount of threads that need to be scheduled.
If the data set becomes larger, the effects are also much less pronounced, most likely be-
cause the execution time of each reconstruction kernel is higher in this case, and the intro-
duced overhead is relatively small.
This reminds us that parallelisation is not automatically beneficial in every case.

6.2.3 GPU Parallelisation
GPU Compared to CPU

GPU parallelisation is one of the core aspects of our implementation. Figure 6.5 shows a
comparison of the speedup gained by using the GPU over the CPU on single-GPU configu-
rations. First, let us have a look at the 1000 pixel data set. On the consumer grade system,
a speedup of factor 21 can be reached in comparison with multithreaded CPU execution.
If we take singlethreaded CPU execution as a reference, the speedup is as much as 101
times. Theoretically, a similar CPU with 129 cores would be necessary to achieve the GPU
result, not taking the thread scheduling overhead into account.
If we examine the results of the server-grade system, CPU and GPU are noticeably closer
together, since with 32 individual cores the parallelism is already quite high on the CPU, and
the installed GPUs are rather slow. The Tesla card can reach a speedup of factor five and
the Quadro card a factor of four. However, in practical application this is still a significant
advantage. Furthermore, the two GPUs can be used for reconstruction together. The multi-
GPU performance will be discussed in section 6.2.5.
If we have a look at the very small 256 pixel dataset the differences are not as big as in
the medium size case. The speedups are 17 times on the consumer-grade and seven/four

75

0 2 4 6 8 10 12 14 16 18 20 22 24 26
GTX 970

Tesla K20c
Quadro K5200

2× Xeon E5-4640
i7 4770K

1.5
2.3

4
15.5

25.3

Execution Time [s]

Dataset: toy figure scan 256 pixels

0 200 400 600 800 1,000 1,200 1,400 1,600
GTX 970

Tesla K20c
Quadro K5200

2× Xeon E5-4640
i7 4770K

75
120
148

560
1,596

Execution Time [s]

Dataset: toy figure scan 1000 pixels

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
Tesla K20c

Quadro K5200
2× Xeon E5-4640

1,032
1,373

4,699

Execution Time [s]

Dataset: toy figure scan 2000 pixels

Figure 6.5: Comparison of the execution times of different GPUs and (multithreaded) CPUs

76

times on the server-grade configuration. Naturally, the overhead is big in this scenario
compared to the short time spent on the actual reconstruction. The Tesla card is the only
one that delivers a better result in this scenario. However, such a small volume is a quite
unrealistic use case.
For the 2000 pixels dataset the GPUs have to run multiple passes because the whole vol-
ume does not fit into the video memory. For this data set we do not have measurements of
the consumer system, as it does not have enough RAM to run this reconstruction. On the
server configuration the speedup is factor six on the Tesla and factor three on the Quadro
card. What is interesting is that the performance of the Tesla card improves compared to
its performance with the 1000 pixel data set, while that of the Quadro card becomes worse.
Yet, seen in total, the speedup is comparable to that of the medium sized data set.
In conclusion we can say that the GPU implementation provides a big improvement in
performance, which has a tremendous impact on practical use. As an example: A recon-
struction taking 10 minutes on the GPU would take three hours and 33 minutes on the
CPU, assuming the i7/GTX970 configuration.

0 50 100 150 200 250 300 350 400 450 500 550
GTX 970

Tesla K20c
Quadro K5200

2× Xeon E5-4640
i7 4770K

24
34
48

163
515

Execution Time [s]

Dataset: sneaker scan 1000 pixels

Figure 6.6: Comparison of the execution times of different GPUs and (multithreaded) CPUs
To confirm our results we ran the test again with the sneaker data set. This data set is
similar in size but comprises much fewer images. The outcome is shown in Figure 6.6. As
can be seen, the numbers essentially confirm the measurements taken with the toy figure
dataset.

77

6.2.4 Impact of VRAM Size

0 20 40 60 80 100 120
One Pass

Two Passes
Four Passes

121
123
126

Execution Time [s]

Dataset: toy figure scan 1000 pixels, Card: Nvidia Tesla K20c

Figure 6.7: Comparison of the execution times with different VRAM sizes.
Another interesting aspect is how big of an impact the video memory size has on recon-
struction time. To evaluate this we ran the reconstruction multiple times on the GPU but
artificially restricted the amount of VRAM in a way that the volume had to be split into two
or four parts respectively. Figure 6.7 illustrates the results of this experiment. There is a
decrease in performance, but it is much less than was expected, considering that for every
pass all images have to be loaded and preprocessed again. This means that GPUs with
small memory can unleash their potential, as well.

6.2.5 Multi-GPU Parallelisation
Multi-GPU Compared to Single-GPU

Figure 6.8 shows a comparison of the execution times of single-GPU and multi-GPU execu-
tion for three datasets of different sizes. Table 6.1 lists the results along with the theoreti-
cally possible optimums. These were calculated from the individual execution times of the
GPUs as explained in section 5.3.1. Column three shows the percentage of the obtained
execution times relative to the theoretical optimums, and columns four and five list the
speedups of the multi-GPU execution relative to each individual GPU.
For the 1000 pixel volume, letting the Tesla and Quadro cards work together results in
a duration of 68 s instead of 148 s for only the Quadro or 120 s for only the Tesla card,

78

0 0.5 1 1.5 2 2.5 3 3.5 4
Tesla K20c + Quadro K5200

Tesla K20c
Quadro K5200

2.2
2.3

4

Execution Time [s]

Dataset: toy figure scan 256 pixels (α = 1,β = 25)

0 20 40 60 80 100 120 140 160
Tesla K20c + Quadro K5200

Tesla K20c
Quadro K5200

68
120

148

Execution Time [s]

Dataset: toy figure scan 1000 pixels (α = 2.14,β = 1)

0 200 400 600 800 1,000 1,200 1,400
Tesla K20c + Quadro K5200

Tesla K20c
Quadro K5200

590
1,032

1,373

Execution Time [s]

Dataset: toy figure scan 2000 pixels (α = 1,β = 2.145)

Figure 6.8: Comparison of the execution times of single-GPU and multi-GPU execution

79

Dataset Theoretical

Optimum

Actually

Achieved

Relative to

Optimum

Speedup

over Quadro

Speedup

over Tesla

256 pixels 1.46 s 2.2 s 151% ×1.82 ×1.05
1000 pixels 66.3 s 68 s 103% ×2.18 ×1.76
2000 pixels 589 s 590 s 100% ×2.33 ×1.75

Table 6.1: Comparison of the achieved speedups using multi-GPU execution

respectively. Being 103% of the theoretical optimum of 66.3 s, this result surpasses our
expectations and shows that the parallelism across multiple GPUs works very well.
In case of the very small 256 pixel data set the speedups are, as expected, slightly worse
with 151% of the theoretical optimum. Considering how short the execution times are in
this case, it is easy to see that the overhead must have a very big impact, proportionally to
them.
The best results were actually obtained in the case of the 2000 pixel volume, which needs
to be reconstructed in multiple passes, due to its size. Given the execution times of the
individual GPUs, which are 1373 s and 1032 s, the achieved 590 s almost perfectly match
the theoretical optimal combined execution time of 589.16 s. However, the measurements
were quite erratic in this scenario. Therefore, we averaged the results of multiple runs.
For confirmation we wanted to test the multi-GPU execution on a system with two identical
GPUs. The only available configuration meeting this criterion was a laptop that was set
up with two Nvidia GT 650M graphics cards. The results we obtained from these devices
are shown in Figure 6.9. As a result of the utilisation of both GPUs the execution time is

0 50 100 150 200 250 300 350
2× GTX 650M
GTX 650M

170
336

Execution Time [s]

Dataset: toy figure scan 700 pixels (α = 1,β = 1)

Figure 6.9: Comparison of the execution times of single-GPU and multi-GPU execution with twoidentical GPUs

80

reduced by 49.4%, which confirms the results of our previous experiments.
If we now revisit the CPU results, we can say that the Tesla and Quadro GPUs together
achieve a speedup of approximately factor eight over the Xeon CPUs. Considering that
CPU parallelisation with two processors and a total of 32 cores is already quite extensive,
this shows that there is still useful potential in GPU computing, even in this case.
All in all, we can say that the multi-GPU parallelisation is very successful, as far as we can
see, reduces execution times linearly proportional to the amount of graphics units used.
Unfortunately, lacking the required hardware, we were not yet able to test the implementa-
tion with more than two GPUs.

6.2.6 Scaling
The next aspect that shall be examined is how the execution times scale with the size of the
volume. In Figure 6.10 the light grey bars represent the size of six volumes with different
resolutions relative to the size of the 1000 pixel volume. The medium and dark grey bars
represent the CPU and GPU execution times relative to those required for reconstructing
the 1000 pixel dataset. Figure 6.11 is based on the data from Figure 6.10 and shows the
relative deviation of the CPU and GPU execution times from the values that were expected
based on the proportions in size. The GPU execution times expose a deviation of up to
+15% from what was expected. The 1000 pixel volume apparently needs the least time
per voxel. For the 256 pixel volume the deviation is the biggest, which is not much of a
surprise since overhead that occurs apart from the actual reconstruction has the biggest
impact here. The relative values also make the difference appear larger than it actually is,
which is absolutely only about 0.3 s. The biggest volume comes with a deviation of +8%.
The overhead introduced by it needing to be reconstructed in multiple passes is most likely
one of the reasons for this.
If we have a look at the CPU numbers, we can say that the variance here is generally about
+12% (from −7% to +5%) except for the 256 pixel volume where it is +65% or about 6 s.
There is apparently a larger overhead in the CPU- than in the GPU-reconstruction. Gener-
ally, the CPU implementation is most effective with the 800 pixel data set.

81

0 100 200 300 400 500 600 700 800 900

256

700

800

1000

1400

2000

1.92%

36.67%

51.67%

100%

277.5%

860%

2.78%

32.5%

47.86%

100%

273.39%

839.11%

1.68%

34.36%

51.2%

100%

274.4%

800%

Execution Time [%]

Dat
ase

tsiz
e

CPU: 2× Xeon E5-4640, GPU: Nvidia Tesla K20c
GPU execution timeCPU execution timeVolume size

Figure 6.10: Scaling of the execution time in correlation to data set size on CPU and GPU relativeto the 1000 pixel data set

82

256 700 800 1000 1400 2000

-10%

0%

10%

20%

30%

40%

50%

60%

Data set size

Rel
ativ
ed
evia
tion

from
exp
ect
ed
exe
cut
ion
tim
e[%

]

CPU: 2× Xeon E5-4640, GPU: Nvidia Tesla K20c
CPUGPU

Figure 6.11: Relative deviation of the execution times from the expected ones relative to the 1000pixel data set on CPU and GPU

83

6.2.7 Single Precision Compared to Double Precision
In our implementation we used 32bit floating point precision for in- and output as well as
all intermediate results, as this provides absolutely sufficient accuracy. However, it would
also be conceivable to use double precision for either the intermediate results alone, to
minimise rounding errors, or also for input and output data. The latter would come at
the cost of doubling all memory requirements, whereas the former only would affect com-
putation time. Using double over single precision on the CPU does not usually lead to a
significant decrease in performance. However, on the GPU this is slightly different, as Figure
6.12 displays. On the Tesla card the increase in computation time is still acceptable, which

0 100 200 300 400 500 600 700 800 900 1,000
GTX 970

Quadro K5200

Tesla K20c

958

581

161

75

148

120

Execution Time [s]

Dataset: toy figure scan 1000 pixels
Double PrecisionSingle Precision

Figure 6.12: Comparison of the execution times for single and double precision GPU computing
is due to the fact that these cards are designed for GPU computing and double precision
computing in particular. On the Quadro card, the execution time increases by factor 3.9
over the single precision case. However, on the consumer-grade GTX 970 card the penalty
is even higher, with an increase of 12.7 times.
This shows the reasons for the price difference between these cards. While when using
floating point precision the GTX 970 surpasses the two much more expensive, professional
cards and thus offers a much better price to value ratio. The Tesla and Quadro cards gain
ground when it comes to using double precision, making the GTX 970 card last.
Fortunately, double precision is unnecessary for our application thus far, but this highlights
the importance of this aspect is. Using only floating point precision it is possible to gain a

84

decent speedup by using GPU computing over the CPU on any GPU. Otherwise, expensive
professional-grade Tesla cards were necessary to achieve this goal. To give a slight impres-
sion of the price difference: At the time when this thesis was composed, the Tesla K20c
cost about 3211€, the Quadro K5200 about 1721€ and the GTX 970 about 309€.

6.2.8 Impact of Storage Data Throughput
Since we are reading data directly from non-volatile memory during the reconstruction, we
were interested in whether the data throughput of the storagemedia used had an influence
on the performance. Therefore, we conducted a test where the images were stored once
on a conventional hard disk and once on a solid state drive. Solid state drives usually have
much smaller access times and higher data rates. As Figure 6.13 shows, no substantial
difference could be measured, which leads us to the conclusion that our implementation
successfully hides potential delays introduced by disk operation.

0 20 40 60 80 100 120 140 160 180

256

700
8.6

171

8.6

171

Execution Time [s]

Dat
ase

tsiz
e

GPU: 2× GTX 650M
HDDSSD

Figure 6.13: Comparison between the execution times of using an SSD versus an HDD for datastorage

6.2.9 Comparison to OSCaR
OSCaR is one of the few open-source reconstruction tools in existence. Therefore we want
to compare its results to that of our implementation. However, it has to be pointed out that
OSCaR was written in MATLAB, which does not facilitate good performance. According to
[11] it was also not the goal of the authors to produce the fastest implementation. However,

85

we conducted a few tests with the skull phantom data set that comes along with the OSCaR
application. The results are shown in Figure 6.14. Unsurprisingly, our implementation is
much faster, using CPU processing as well as using GPU processing.

0 200 400 600 800 1,000 1,200

OSCaR on i7 CPU
Custom on i7 CPU

Custom on GTX 970 GPU

1,174
13.8
0.8

Execution Time [s]

Dataset: skull phantom 256 pixels

Figure 6.14: Execution times of OSCaR in comparison to our custom implementation

6.3 Memory
6.3.1 CPU Processing
Assuming an image resolution of w × h pixels, an upper bound for the RAM required in
bytes can be calculated as in equation 6.1.

bytes per element︷︸︸︷
4

(
2wh︸︷︷︸images

+w2h︸︷︷︸volume
+

FFT result (frequency spectrum)︷ ︸︸ ︷
2h
(w
2
+ 1
))

+ D︸︷︷︸FFT plan
(6.1)

The memory for the FFT result and the FFT plan are necessary for the preprocessing. The
FFT result of the row-wise FFT only has a width of w2 + 1 due to its symmetry and has two
channels, one for the real and one for the imaginary component. The variable D is an
upper bound of memory required for the FFT plan. This depends on the library used for
the FFT; therefore, we can not give a more exact approximation. The formula does not
take into account the memory that the program itself occupies. However, this ought to be
neglectable.

86

What is noticeable here is that the memory required is independent of the amount of
images, as only two at a time are stored in memory. The biggest change to the memory
demand happens if the image resolution, and thus the volume size, is changed.
Equation 6.1 assumes a complete reconstruction of the volume and does not take a poten-
tial region of interest into account. Assuming a region of interest of size x × y × z gives a
slightly different result for the second summand:

bytes per element︷︸︸︷
4

(
2wh︸︷︷︸images

+ xyz︸︷︷︸volume
+

FFT result (frequency spectrum)︷ ︸︸ ︷
2h
(w
2
+ 1
))

+ D︸︷︷︸FFT plan
(6.2)

6.3.2 GPU Processing
Equation 6.3 shows an upper bound for the RAM required for the GPU reconstruction in
bytes, and equation 6.4 does the same while taking a region of interest into account.

bytes per element︷︸︸︷
4 (wh︸︷︷︸image

+w2h︸︷︷︸volume
+

page-locked memory︷︸︸︷
2wh) (6.3)

bytes per element︷︸︸︷
4 (wh︸︷︷︸image

+ xyz︸︷︷︸volume
+

page-locked memory︷︸︸︷
2wh) (6.4)

The amount of RAM required for the GPU reconstruction is only slightly less than that for
the CPU reconstruction. Only the memory for the FFT is no longer necessary. Since the
index ordering on the CPU and the GPU is identical, no memory overhead occurs and the
copying can happen directly to the target volume in RAM. Otherwise the GPU volume would
first have to be copied over and then to be projected to the target index ordering, requiring
extra memory for the temporary storage.

87

An upper bound for the VRAM required is given in equation 6.5. Once more, the equation
changes slightly when a region of interest is taken into account (6.6).

max

(imagebit depth︷︸︸︷
d 2wh︸︷︷︸input images

+

bytes perelement︷︸︸︷
4

(
2wh︸︷︷︸temporaryimages

+

volume︷︸︸︷
w2h+

FFT results︷ ︸︸ ︷
4h
(w
2
+ 1
))

+ D︸︷︷︸FFT plan

,

VRAM size︷︸︸︷
V

)
(6.5)

max

(imagebit depth︷︸︸︷
d 2wh︸︷︷︸input images

+

bytes perelement︷︸︸︷
4

(
2wh︸︷︷︸temporaryimages

+

volume︷︸︸︷
xyz +

FFT results︷ ︸︸ ︷
4h
(w
2
+ 1
))

+ D︸︷︷︸FFT plan

,

VRAM size︷︸︸︷
V

)
(6.6)

There are four images that are stored in memory, two for each stream. One of these is the
initial image of depth d, which can be one, two or four bytes. The other one is the result
of the preprocessing, which is also used for intermediate results and has a depth of four
bytes. The memory for the FFT result is now required in the GPU memory, but the amount
stays the same as in the CPU case. Again, the FFT also plan requires a certain, unknown
amount of memory. It is possible to query this amount via the CUFFT API, once a plan has
been set up.
The main difference to the CPU implementation is that the algorithm is adaptive, i.e. it
can also work with less VRAM. In this case, the upper bound for the memory is the size of
the VRAM itself, denoted V . However, there is a minimum that is necessary to enable the
algorithm to execute. This minimum is described in equations 6.7 and 6.8 with and without
region of interest, respectively.

imagebit depth︷︸︸︷
d 2wh︸︷︷︸input images

+

bytes perelement︷︸︸︷
4

(
2wh︸︷︷︸temporaryimages

+

volume slice︷︸︸︷
w2 +

FFT results︷ ︸︸ ︷
4h
(w
2
+ 1
))

+ D︸︷︷︸FFT plan
(6.7)

88

imagebit depth︷︸︸︷
d 2wh︸︷︷︸input images

+

bytes perelement︷︸︸︷
4

(
2wh︸︷︷︸temporaryimages

+

volume slice︷︸︸︷
xy +

FFT results︷ ︸︸ ︷
4h
(w
2
+ 1
))

+ D︸︷︷︸FFT plan
(6.8)

The only change here is the termw2 instead ofw2h, which is just one x-y-slice instead of the
whole volume. This is a theoretical minimum. In the current implementation the iterative
memory allocation is not designed to work as precisely, instead the adjustment steps are
coarser. The size of these steps is defined by a constant in the code and cannot bemodified
from outside the program. However, if desired, this could be adjusted according to need.

6.4 Quality
Now that the performance has been thoroughly evaluated, the quality of the reconstruc-
tion result shall be examined, as well. What makes this difficult, is that there is no exact
reference to which we could objectively compare our results. We will, however, evaluate
the quality subjectively and compare it to that of the commercial solution Phoenix datos|x 2
as well as to that of the open-source implementation OSCaR.

6.4.1 General Evaluation

Figure 6.15: Photoof the scanned toyfigure

Subjectively, the reconstruction result looks like an accurate repre-
sentation of the scanned object, which can be seen in the photo
shown in Figure 6.15. Enclosed cavities are clearly outlined and the
different materials can be easily distinguished. The scan exhibits,
however, a number of severely visible beam hardening artifacts. This
is due to the omission of physical filters that absorb the soft x-rays
during the scanning procedure. Our application does time not pro-
vide any mechanisms for reducing such artifacts at the current.
Figure 6.16 shows our result in comparison to that of the commer-
cial CT reconstruction software. As it turns out, the result of the

89

Commercial software Custom implementation

Figure 6.16: The result of our custom implementation in comparison to that of a commercialreconstruction software (cross section)

commercial software is slightly sharper than that of our implementation. It could be that
the third-party software, which works hand in hand with the CT scanner, had access to the
exact individual angles at which each of the projections was captured, which was unfortu-
nately not the case for us. If we had had access to this information, our reconstruction
would possibly be equally sharp. Instead, an equidistant division of the interval [0 − 360]

was used. The beam hardening artifacts appear to be slightly reduced in the result of the
commercial application. It might be that some postprocessing technique has been used
here to reduce such artifacts. The noise levels of both versions appear to be quite similar.
If rendered as an isosurface model, as can be seen in Figure 6.17, the differences are hardly
noticeable. However, the edges of the toy figure’s legs appear much softer in the model
of the third-party application. The cross sections reveal some artifacts at the edges of the
legs (Figure 6.18) that are not present in our reconstruction. In both reconstructions at
the bottom of the feet some parts which should be opaque are partially transparent, the
reason for this most likely being the beam hardening artifacts. Those are also presumably
responsible for the holes that show in the bottom plate.
Comparing the histograms of the reconstructions, as seen in Figure 6.20, it can be ob-
served that the peaks are more salient in the third-party result. This coincides with the
higher sharpness being found there. However, seen as a whole, the histograms look quite

90

Commercial software Custom implementation

Figure 6.17: The result of our custom implementation in comparison to that of a commercialreconstruction software (isosurface rendering rendered with VGStudio)

Commercial software Custom implementation

Figure 6.18: The reconstruction produced by the commercial application shows artifacts at thecorners of the legs, which are not visible in our custom implementation. The effects of theseartifacts can also be seen in Figure 6.17

91

(a) (b)

Figure 6.19: In a closer view the printed face of the toy figure can be recognised (a). The intersec-tion through the reconstructed model shows enclosed cavities (b).

Density

Commercial software
Custom implementation

Figure 6.20: Comparison between the histograms of the results of our custom implementationand a commercial reconstruction software (histogram cropped at the top)

92

similar. What must also be taken into account is that the regions of interest in the two
reconstructions were not perfectly identical.

6.4.2 Comparison to OSCaR
Figure 6.21 shows a comparison of our results to those of the open-source FDK recon-
struction software OSCaR, using the skull phantom dataset that is included in the OSCaR
package. Please note that there might be slight differences in the cross section because the

OSCaR Custom implementation

Figure 6.21: Comparison of a cross section of the results of our custom implementation and theOSCaR open-source reconstruction software
way the reconstruction bounds are designated in OSCaR makes it difficult to produce an
identical output volume. Thus, the cross section shown in the figure might be at a slightly
different coordinate. The edge of the reconstructable cylinder is sharper in our reconstruc-
tion because we do not reconstruct parts that lie outside of this cylinder.
Our reconstruction appears to be notably sharper and less noisy. This is probably due
to the fact that OSCaR only uses nearest neighbour interpolation [11], which introduces
aliasing and chessboard-like noise. From the general appearance, however, the two re-
constructions look very similar. Figures 6.22 and 6.23 show the two results rendered as
isosurface models using two different thresholds, and Figure 6.24 shows a rendering of
our reconstruction using volume ray casting.

93

OSCaR Custom implementation

Figure 6.22: The result of our custom implementation in comparison to that of OSCaR (isosurfacerendering of the skin rendered with VGStudio)

OSCaR Custom implementation

Figure 6.23: The result of our custom implementation in comparison to that of OSCaR (isosurfacerendering of the bones rendered with VGStudio)

94

Figure 6.24: Volume rendering of our reconstruction of the skull phantom. Low density materialsare shown in green, high density materials in red (rendered using VGStudio).

6.5 Measurement Inaccuracies
As usual, the measurements we took showed a certain variance. Most of the time these
were only minor differences. At one point the results of multiple tests were averaged; in
this case it is noted in the text. Generally, the values represent best case results.
We could make out some factors that had a deterministic influence on performance. For
example, on the consumer-grade system the GPU execution was fastest when it was freshly
booted. After some uptime, when multiple other applications were running, the measured
execution times became longer. This might be due to the fact that today general programs,
such as web browsers, utilise the GPU as well. Consequently, our general advice is to avoid
running unnecessary applications when the aim is achieving top-level performance.
The server-grade machine was a multi-user system, which is another circumstance that
could have had an influence on measurement fidelity. Unfortunately, it was not possible
to have the system at hand exclusively for our purposes. Thus, measurements taken at
different points in time might expose slight differences.

95

At a few points, the results of the same tests on the same hardware show slightly different
values. This inconsistency is due to the fact that we always ran test instances which were
meant to be compared directly to each other in one batch, for better comparability and to
ensure equal preconditions. The same test might therefore have been run multiple times,
yielding slightly different outcomes each time.
After the composition of this written work further optimisations have been made to the
program. Therefore, the performance might be different in the current revision. Generally,
we can say that it has improved. The performance measurements included in this chapter
are based on revision 539, except for the comparison to OSCaR, which is based on revision
585.

96

7 Conclusion and Future Work
Considering the results, we are quite content with how well we succeeded in reaching our
goals. The parallelisation options we implemented have proven to be quite effective. The
CPU parallelisation provides a significant speedup compared to singlethreaded CPU exe-
cution, GPU processing gives an additional increase in performance over parallelised CPU
execution, and multi-GPU execution can further reduce these execution times proportion-
ally to the amount of utilised GPUs. Ultimately, we are able to reach execution times of
approximately 10 minutes for large volumes on potent systems.
While the performance is high, the quality level of the reconstructions produced by com-
mercial solutions is still slightly ahead of our results. However, rendered as an isosurface
model or through volume raycasting, the difference in the results is scarcely noticeable.
What is most important to us is that we created an openly available solution that is capable
of reconstructing virtually any cone-beam CT-scan, given that the parameters are known.
Basic viewing capabilities are also provided, not only for the volumes saved by our applica-
tion but also for any raw volume, as long as information about the volume’s data type and
dimensions are known. The support for VGI sidecar files also enables potential users to
view and analyse our reconstructions in third-party applications like VGStudio.
Furthermore, the results of this thesis create a foundation for further research; a founda-
tion that can be extended to improve on old or meet further new requirements. This could,
for example, be quality enhancements to the reconstruction algorithm or postprocessing
techniques like artifact reduction. Completely different reconstruction approaches could
be put to the test, as well. The GPU implementation could be extended to support not
only the CUDA but also the OpenCL API, resulting in support for AMD graphics cards as
well. The builds and build configuration scripts that are currently available for Microsoft
Windows and Linux could be extended to add out-of-the-box support for Apple Macintosh.

97

It might also be desirable to convert the resulting volumes to other data types for the sake
of saving memory or to provide compatibility with other applications. An important point
that should be investigated in the future is the intelligent weight distribution between mul-
tiple different GPUs when running a multi-GPU reconstruction. The performance could
also be optimised further. Approaches using curved voxels, as proposed in [5], could pos-
sibly be investigated. Precomputed mapping tables for the s- and t-coordinates might also
help to improve performance, although it is questionable whether this will provide any ad-
vantage on the GPU, where accesses to global memory are very expensive and should be
minimised. Apart from these internal optimisations, options that favour speed over quality,
such as nearest-neighbour interpolation instead of bi-linear interpolation, could be pro-
vided as well. Hybrid parallelisation is not a good option for this algorithm, as the majority
of the computational effort is required for the backprojection. The only conceivable possi-
bility is letting the CPU do the image preprocessing, which has not proven beneficial thus
far. Lastly, the evaluation of the quality of the obtained results should be extended to
data sets where all information, including the exact angles of the individual projections, are
available.

98

Bibliography
[1] P. Suetens. “X-ray computed tomography”. In: Fundamentals of Medical Imaging. Cam-

bridge University Press, Aug. 2009. Chap. 3.
[2] W. C. Röntgen. Über eine neue Art von Strahlen. 1896. URL: http://www.xtal.iqfr.

csic.es/Cristalografia/archivos_10/Uber_eine_neue_art_von_strahlen_ocr.

pdf (visited on 08/21/2016).
[3] M. Sakamoto et al. An Implementation of the Feldkamp Algorithm for Medical Imag-

ing on Cell. Tech. rep. IBM Corporation, 2005. URL: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.90.9210&rep=rep1&type=pdf (visited on
08/23/2016).

[4] J. Radon. “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser
Mannigfaltigkeiten”. In: Akad. Wiss. Vol. 69. 1917, pp. 262–277. URL: http://people.
csail.mit.edu/bkph/courses/papers/Exact_Conebeam/Radon_Deutsch_1917.pdf

(visited on 08/21/2016).
[5] A. Shih, G. Wang, and P.-C. Cheng. “Fast Algorithm for X-ray Cone-beam Microtomog-

raphy”. In: Microscopy and Microanalysis 7 (01 Jan. 2001), pp. 13–23. ISSN: 1435-8115.
URL: http://journals.cambridge.org/article_S1431927601010005 (visited on
08/23/2016).

[6] Bauhaus-Universität Weimar. Fakultät Bauingenieurwesen weiht Nano-CT-System ein.
Oct. 2014. URL: https://www.uni- weimar.de/en/civil- engineering/news/
news/titel/fakultaet-bauingenieurwesen-weiht-nano-ct-system-ein/ (visited
on 07/18/2016).

[7] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam algorithm. June 1984.
DOI: 10.1364/JOSAA.1.000612. URL: http://josaa.osa.org/abstract.cfm?URI=
josaa-1-6-612 (visited on 08/23/2016).

99

http://www.xtal.iqfr.csic.es/Cristalografia/archivos_10/Uber_eine_neue_art_von_strahlen_ocr.pdf
http://www.xtal.iqfr.csic.es/Cristalografia/archivos_10/Uber_eine_neue_art_von_strahlen_ocr.pdf
http://www.xtal.iqfr.csic.es/Cristalografia/archivos_10/Uber_eine_neue_art_von_strahlen_ocr.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.9210&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.9210&rep=rep1&type=pdf
http://people.csail.mit.edu/bkph/courses/papers/Exact_Conebeam/Radon_Deutsch_1917.pdf
http://people.csail.mit.edu/bkph/courses/papers/Exact_Conebeam/Radon_Deutsch_1917.pdf
http://journals.cambridge.org/article_S1431927601010005
https://www.uni-weimar.de/en/civil-engineering/news/news/titel/fakultaet-bauingenieurwesen-weiht-nano-ct-system-ein/
https://www.uni-weimar.de/en/civil-engineering/news/news/titel/fakultaet-bauingenieurwesen-weiht-nano-ct-system-ein/
http://dx.doi.org/10.1364/JOSAA.1.000612
http://josaa.osa.org/abstract.cfm?URI=josaa-1-6-612
http://josaa.osa.org/abstract.cfm?URI=josaa-1-6-612

[8] T. M. Buzug. Computed Tomography - From Photon Statistics to Modern Cone-Beam CT.
Springer, 2008.

[9] A. Kak and M. Slaney. Principles of Computerized Tomographic Imaging. Society for In-
dustrial and Applied Mathematics, 2001. DOI: 10.1137/1.9780898719277.

[10] University of Toronto. OSCaR - An Open-Source Cone-Beam CT Reconstruction Tool for
Imaging Research. URL: http : / / www . cs . toronto . edu / ~nrezvani / OSCaR . html
(visited on 07/18/2016).

[11] N. Rezvani et al. OSCaR: Open Source Cone-beam Reconstructor. URL: http://www.cs.
toronto.edu/~nrezvani/OSCaR-02.zip (visited on 07/27/2016).

[12] Nvidia. CUDA C Programming Guide. Sept. 2015. URL: http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html (visited on 07/13/2016).

[13] M.Wolfe.Understanding the CUDA Data Parallel Threading Model. Feb. 2010. URL: https:
//www.pgroup.com/lit/articles/insider/v2n1a5.htm (visited on 07/07/2016).

[14] P. Micikevicius. Fundamental Optimizations. Nov. 2010. URL: http://www.nvidia.com/
content/PDF/sc_2010/CUDA_Tutorial/SC10_Fundamental_Optimizations.pdf

(visited on 07/07/2016).
[15] M. Kitagawa. Coordinate Systems. URL: www.utdallas.edu/atec/midori/Handouts/

coordinate_systems.pptx (visited on 07/13/2016).
[16] K. R. Rao and P. C. Yip. “The Discrete Fourier Transform”. In: The Transform and Data

Compression Handbook. CRC Press, 2001. Chap. 2.
[17] M. Harris. How to Optimize Data Transfers in CUDA/C++. Dec. 2012. URL: https://

devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-

cc/ (visited on 07/13/2016).
[18] J. Siewerdsen. 3D Filtered Backprojection - Fundamentals, Practicalities, and Applications.

URL: http://www.aapm.org/meetings/amos2/pdf/59- 17243- 37526- 878.pdf
(visited on 07/07/2016).

[19] O. Képalkotás. Medical Imaging - Reconstruction. URL: http://oftankonyv.reak.bme.
hu/tiki-index.php?page=Reconstruction (visited on 07/07/2016).

[20] A. Malecki and J. Herzen. X-Ray Computed Tomography. Oct. 2015. URL: https://www.
ph.tum.de/academics/org/labs/fopra/docs/userguide-79.en.pdf (visited on
07/07/2016).

100

http://dx.doi.org/10.1137/1.9780898719277
http://www.cs.toronto.edu/~nrezvani/OSCaR.html
http://www.cs.toronto.edu/~nrezvani/OSCaR-02.zip
http://www.cs.toronto.edu/~nrezvani/OSCaR-02.zip
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.pgroup.com/lit/articles/insider/v2n1a5.htm
https://www.pgroup.com/lit/articles/insider/v2n1a5.htm
http://www.nvidia.com/content/PDF/sc_2010/CUDA_Tutorial/SC10_Fundamental_Optimizations.pdf
http://www.nvidia.com/content/PDF/sc_2010/CUDA_Tutorial/SC10_Fundamental_Optimizations.pdf
www.utdallas.edu/atec/midori/Handouts/coordinate_systems.pptx
www.utdallas.edu/atec/midori/Handouts/coordinate_systems.pptx
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
http://www.aapm.org/meetings/amos2/pdf/59-17243-37526-878.pdf
http://oftankonyv.reak.bme.hu/tiki-index.php?page=Reconstruction
http://oftankonyv.reak.bme.hu/tiki-index.php?page=Reconstruction
https://www.ph.tum.de/academics/org/labs/fopra/docs/userguide-79.en.pdf
https://www.ph.tum.de/academics/org/labs/fopra/docs/userguide-79.en.pdf

[21] Itseez. OpenCV 3.1.0. URL: http://docs.opencv.org/3.1.0/d2/de8/group__core_
_array.html#gadd6cf9baf2b8b704a11b5f04aaf4f39d (visited on 08/11/2016).

[22] O. Képalkotás. Medical Imaging - Realization of the filtered backprojection. URL: http:
//oftankonyv.reak.bme.hu/tiki-index.php?page=Relaization%20of%20the%

20filtered%20backprojection (visited on 07/07/2016).
[23] N. Whitehead and A. Fit-Florea. Precision & Performance: Floating Point and IEEE 754

Compliance for NVIDIA GPUs. Tech. rep. Nvidia Corporation. URL: http://developer.
download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

(visited on 08/23/2016).
[24] Nvidia. NVIDIA CUDA Library Documentation. URL: http : / / horacio9573 . no - ip .

org/cuda/group__CUDART__MEMORY_g6ee90dad01ae562e08405ce8131bbdc5.html#

g6ee90dad01ae562e08405ce8131bbdc5 (visited on 07/13/2016).
[25] Nvidia. CUDA C Best Practices Guide. Sept. 2015. URL: http://docs.nvidia.com/cuda/

cuda-c-best-practices-guide/index.html (visited on 08/23/2016).
[26] P. Nee. Introduction to GPGPU and CUDA Programming. July 2013. URL: https : / /

cvw.cac.cornell.edu/(X(1)S(3js5tgj2xjetmelgkggkpt01))/gpu/coalesced?

AspxAutoDetectCookieSupport=1 (visited on 07/07/2016).
[27] Rennich S. Luitjens J. CUDA Warps and Occupancy. Dec. 2011. URL: http : / / on -

demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_

WarpsAndOccupancy.pdf (visited on 07/07/2016).

101

http://docs.opencv.org/3.1.0/d2/de8/group__core__array.html#gadd6cf9baf2b8b704a11b5f04aaf4f39d
http://docs.opencv.org/3.1.0/d2/de8/group__core__array.html#gadd6cf9baf2b8b704a11b5f04aaf4f39d
http://oftankonyv.reak.bme.hu/tiki-index.php?page=Relaization%20of%20the%20filtered%20backprojection
http://oftankonyv.reak.bme.hu/tiki-index.php?page=Relaization%20of%20the%20filtered%20backprojection
http://oftankonyv.reak.bme.hu/tiki-index.php?page=Relaization%20of%20the%20filtered%20backprojection
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://horacio9573.no-ip.org/cuda/group__CUDART__MEMORY_g6ee90dad01ae562e08405ce8131bbdc5.html#g6ee90dad01ae562e08405ce8131bbdc5
http://horacio9573.no-ip.org/cuda/group__CUDART__MEMORY_g6ee90dad01ae562e08405ce8131bbdc5.html#g6ee90dad01ae562e08405ce8131bbdc5
http://horacio9573.no-ip.org/cuda/group__CUDART__MEMORY_g6ee90dad01ae562e08405ce8131bbdc5.html#g6ee90dad01ae562e08405ce8131bbdc5
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://cvw.cac.cornell.edu/(X(1)S(3js5tgj2xjetmelgkggkpt01))/gpu/coalesced?AspxAutoDetectCookieSupport=1
https://cvw.cac.cornell.edu/(X(1)S(3js5tgj2xjetmelgkggkpt01))/gpu/coalesced?AspxAutoDetectCookieSupport=1
https://cvw.cac.cornell.edu/(X(1)S(3js5tgj2xjetmelgkggkpt01))/gpu/coalesced?AspxAutoDetectCookieSupport=1
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf

List of Figures

1.1 The basic geometry of a parallel-beam, a fan-beam, and a cone-beam CT . . 2
2.1 Visualisation of bi-linear interpolation . 6
2.2 Visualisation of CUDA blocks and threads . 7
3.1 The scanning procedure . 12
3.2 The coordinate systems of the image and the volume 13
3.3 The geometry of the reconstruction . 14
3.4 Visualisation of the input parameters . 16
3.5 Cross sections of backprojection results with varying amounts of projections 20
3.6 Preprocessing pipeline . 22
3.7 3d plot of the cosine weights . 24
3.8 Reconstruction results with and without the highpass filtering step 25
3.9 Comparison of the different window functions used for frequency filtering . 26
3.10 Comparison of the apodisation components of the window functions used . 26
3.11 Frequency filter comparison . 27
3.12 The shape of the reconstructable cylinder . 28
3.13 Geometry of the reconstructable cylinder . 28
3.14 The s-t-z-coordinate system relative to the x-y-z coordinate system 30
3.15 Calculation of the u-coordinate using the intercept theorem 31

102

4.1 Visualisation of the multi-thread approach that hides the latencies for load-
ing the projections on the CPU . 40

4.2 Comparison of the execution times with and without preloading of the im-
ages to the main memory prior to the reconstruction 40

4.3 Screenshots of the graphics user interface . 43
5.1 Volume subdivision for parallel CPU execution 51
5.2 Comparison between the execution times resulting from parallelising the im-

age versus the voxel loop . 52
5.3 Splitting of the volume for GPU reconstruction 54
5.4 Visualisation of the GPU multi-stream approach 54
5.5 Comparison between the execution times resulting from CPU preprocessing

versus GPU preprocessing . 55
5.6 Memory alignment and its effects . 57
5.7 Memory coalescing and its effects . 58
5.8 Illustration of voxel projection from identical x-y-plane to different image rows 62
6.1 The evaluation data sets . 72
6.2 Comparison of the execution times of singlethreaded and multithreaded

CPU execution . 72
6.3 Comparison of the execution times of hyperthreaded and non-hyperthread-

ed CPU execution . 73
6.4 Comparison of the execution times using parallelised and non-parallelised

preprocessing on the CPU . 74
6.5 Comparison of the execution times of different GPUs and (multithreaded)

CPUs . 76
6.6 Comparison of the execution times of different GPUs and (multithreaded)

CPUs . 77

103

6.7 Comparison of the execution times with different VRAM sizes. 78
6.8 Comparison of the execution times of single-GPU and multi-GPU execution . 79
6.9 Comparison of the execution times of single-GPU and multi-GPU execution

with two identical GPUs . 80
6.10 Scaling of the execution time in correlation to data set size on CPU and GPU

relative to the 1000 pixel data set . 82
6.11 Relative deviation of the execution times from the expected ones relative to

the 1000 pixel data set on CPU and GPU . 83
6.12 Comparison of the execution times for single and double precision GPU

computing . 84
6.13 Comparison between the execution times of using an SSD versus an HDD

for data storage . 85
6.14 Execution times of OSCaR in comparison to our custom implementation . . 86
6.15 Photo of the scanned toy figure . 89
6.16 The result of our custom implementation in comparison to that of a com-

mercial reconstruction software (cross section) 90
6.17 The result of our custom implementation in comparison to that of a com-

mercial reconstruction software (isosurface model) 91
6.18 Artifacts produced by commercial reconstruction software 91
6.19 Images of the reconstruction as isosurface rendering 92
6.20 Histogram comparison of the toy figure scan 92
6.21 The result of our custom implementation in comparison to that of OSCaR

(cross section) . 93
6.22 The result of our custom implementation in comparison to that of OSCaR

(isosurface model of the skin) . 94
6.23 The result of our custom implementation in comparison to that of OSCaR

(isosurface model of the bones) . 94

104

6.24 Volume rendering of skull phantom . 95

105

Statement of Authorship

I hereby certify that this master’s thesis has been composed by myself and describes my
own work, unless otherwise acknowledged in the text.

Place, date Signature

	Introduction
	Motivation
	Goals
	Related Work
	Structure

	Fundamentals
	Algorithm
	Prerequisites
	Coordinate Systems and Geometry
	Input Data
	Units

	Reconstruction
	Image Preprocessing
	The Reconstructable Cylinder
	Backprojection
	Coordinate Transformations

	Implementation
	Algorithm Core
	Pseudocode
	Interface
	Data Input: Configuration Files
	About the Program

	Parallelisation
	CPU
	GPU
	Multi-GPU
	GPU Load Distribution

	Evaluation
	Experiment Setup
	Hardware Configurations
	Data Sets

	Performance
	CPU Parallelisation
	Singlethreaded CPU Compared to Multithreaded CPU

	Hyperthreading
	Parallelisation Overhead

	GPU Parallelisation
	GPU Compared to CPU

	Impact of VRAM Size
	Multi-GPU Parallelisation
	Multi-GPU Compared to Single-GPU

	Scaling
	Single Precision Compared to Double Precision
	Impact of Storage Data Throughput
	Comparison to OSCaR

	Memory
	CPU Processing
	GPU Processing

	Quality
	General Evaluation
	Comparison to OSCaR

	Measurement Inaccuracies

	Conclusion and Future Work
	Bibliography
	List of Figures

