
Lucce: Lazy and Unintrusive
Calling Context Encoding for Java

Nikita Salnikov-Tarnovski and Vesal Vojdani

Department of Computer Science, University of Tartu,
J. Liivi 2, EE-50409 Tartu, Estonia
nikem@plumbr.eu,vesal@ut.ee

Abstract. A stack trace provides detailed information about an event’s
location during the execution of a program. Many activities in software
engineering, such as debugging, troubleshooting, and performance opti-
mization, benefit from accurate location information, but keeping track of
the entire call stack can be too expensive. There has been much progress
recently on efficient calling context encoding schemes that work well de-
spite the dynamic nature of the call graph of JVM-based applications.
However, existing tools for collecting such information either do not guar-
antee accurate reconstruction of the entire stack trace or are hard to inte-
grate into unintrusive monitoring tools. Our proposed encoding scheme,
Lucce, computes accurate calling context information and can recon-
struct the entire trace from essentially a single integer per event, even
in the presence of dynamic class loading and recursion. As we do not
rely on static analysis or any advance processing of the application code,
Lucce can be be easily integrated into any monitoring tool and used by
application developers without much hassle.

1 Introduction

When an application fails on the JVM, the run-time system produces a stack
trace with the entire sequence of calls leading up to the offending program loca-
tion. Knowing the full calling context is critical when debugging object-oriented
applications due to their high level of indirection and reuse. Producing a single
stack trace upon program failure is easy enough, but many monitoring tools run
alongside an application within the same JVM and continuously watch for par-
ticular events of interest in the host program. Whenever such events occur, the
tool records or processes those events. Eventually, it may have identified that an
event was, e.g., the root cause of a memory leak and wishes to report this to the
user.

In this setting, generating the whole stack trace and storing it with every
event is no longer a realistic option. Unwinding the stack is quite an expensive
operation on the JVM, as it linearly depends on the depth of the current execu-
tion stack. When events of interest are very frequent and/or short-lived, such as
new object creation or lock contention events, this additional work can lead to
about a tenfold overhead during program execution. Instead, we would like the

location-specific information to be readily available for monitoring tools to use
without requiring extra work during event recording. As many tools separate the
process of recording events from their analysis and eventual presentation to end
users, we would like to store as little location-specific information as required to
faithfully restore the full stack trace leading to any particular recorded event.

In this paper, we present Lucce (rhymes with “ducky”), a calling context
encoding scheme that represents every call stack encountered during program
execution as a single number, which can later be fully decoded to the original.
In our implementation, this pre-computed number is available as the value of a
local variable for any method in the running program, making it convenient for
clients of our framework to grab and record along with their own event-related
information. Decoding it to the actual stack trace may happen later, either off-
site, after the program has already terminated, or in parallel with the program’s
execution, in a separate thread outside critical execution paths.

Our solution, Lucce, extends the precise calling context encoding (PCCE)
of Sumner et al. [15] to deal with the dynamic nature of JVM call graphs. We
lazily build the annotated call graph required by PCCE as we discover new
edges during program execution. Thus, whenever the call graph changes, rather
than recomputing annotations for the entire graph, we only recompute values
for nodes that are subsequently visited. We do not necessarily have a correctly
annotated call graph in memory at all times; nevertheless, we can guarantee
that any call context visited during program execution and encoded by Lucce
can be correctly decoded to recover the actual stack trace. This decoding is
possible because we log graph changing events. In summary, this paper makes
the following contributions:

– We provide an extension to the PCCE scheme [15] that can correctly and
uniformly deal with the dynamic class loading, virtual method dispatch, and
callbacks from native code.

– We show that this modification leads to a natural treatment of recursive calls
without additional run-time storage requirements, as the burden is offloaded
to a write-only event log. We prove that all generated encodings can be
decoded back to the original call context.

– We have implemented this approach in a proof-of-concept software package
and evaluated its runtime characteristics using the Dacapo benchmarking
suite.

There are naturally other approaches to call context encoding. DeltaPath [19],
DACCE [13], and Breadcrumbs [9] also address the issue of changing call graphs.
We try to do them justice in Section 7, but as far as we can tell, parallel con-
struction of calling context trees [3, 6] is the only alternative that produces an
accurate stack trace in the presence of dynamic class loading and callbacks from
native code without requiring modifications to the JVM itself. Compared to
Lucce, this method maintains the CCT in memory, which can grow much larger
than than the call graph maintained by our algorithm. The more recent work
on calling context uptrees [12], though, requires extensive modifications to the
runtime environment.

The target application for our method is within deployable monitoring tools,
i.e., tools that track an enterprise Java application in a production setting for a
significant amount of time. The application we have primarily in mind is mem-
ory leak detection based on statistical analysis [11, 18]; however, the general
characteristics for which our approach is suitable are as follows:

1. Monitoring is transparent to the user: our instrumentation should not signif-
icantly influence the behaviour of the application under scrutiny. It should
not incur high performance overhead, and when looking for memory leaks,
we cannot let the context encoding itself consume unbounded amounts of
runtime memory.

2. Tracked events are numerous: the client analysis records many context-
sensitive events online, such as object allocation, but only a subsequent
analysis of the logs may reveal which events are relevant. This is the main
motivation for wanting as compact an encoding as possible.

3. Reconstruction of calling context information can occur offline and off-site:
having identified the few relevant events, it is acceptable if reconstruction of
stack traces is more time consuming. It is far more important that logs are
not bloated since we may need to store and transfer them.

4. Imprecision is not acceptable: we would be sorely disappointed if after a
lengthy monitoring process and statistical analysis, we cannot reconstruct
the stack trace for the particular events that are deemed relevant. We need
a valid stack trace, as good a trace as produced by the JVM itself, also in
the presence of dynamically loaded classes or callbacks from native code.

5. Call contexts can be added unintrusively: developers of profiling tools can
add support for call contexts without too much effort and, more importantly,
without impacting the usability and portability of their monitoring tool.
Thus, we must be able to run the tool on commercial JVMs and require as
few changes to the client application as possible.

The first three are general properties of deployable bug detectors, as described
by Bond et al. [9], but when considering all requirements together, we see our
proposal as the best fit.

The rest of the paper is organized as follows: In Section 2, we briefly describe
the standard PCCE encoding algorithm and introduce the necessary notation.
In Section 3, we consider an example of a dynamic call graph and give an in-
tuitive description of our solution. In Section 4, we describe how programs are
instrumented in order to track method invocations, and in Section 5, we present
our encoding algorithm and prove its correctness. We present the experimental
results in Section 6 and related work in Section 7.

2 Preliminaries

The ultimate goal of a call context encoding algorithm is to provide monitoring
tools with the encoding of any calling context active during the execution of
a program as a single number, called henceforth the calling context identifier

or callId, which can be used to uniquely identify that call context. As we are
interested in displaying the stack trace to the user, it should be possible to
decode any given callId and regain the stack trace that generated it.

A call graph (CG) is a pair 〈N,E〉 where N is a set of nodes with each node
representing a method and E is a set of directed edges. Each edge e ∈ E is a
triple 〈p, n, l〉, in which p, n ∈ N , represent a caller and callee, respectively, and
l represents the call site where p calls n. Here, call edges are modeled as a triple
instead of a caller-callee pair because we want to model cases in which a caller
may have multiple invocations of the same callee. We introduce the following
operators to move around in the call graph:

〈p, n, l〉� = p (source of an edge)

〈p, n, l〉� = n (target of an edge)

n− = {e ∈ E | e� = n} (incoming edges of a node)

p+ = {e ∈ E | e� = p} (outgoing edges of a node)

For a given invocation of a method n, the calling context is a path, i.e.,
a sequence of edges in the CG, leading from the root node root to the node
representing n. We use the notation π : p → q to denote a path from p to q.
Let CC be the set of all possible calling contexts, and let CCn denote those
contexts ending with invocations of n. A valid calling context encoding scheme
is a one-to-one function En : CC → N that maps given path in the call graph to
a single natural number.

To arrive at the PCCE algorithm [15], upon which Lucce is built, we first
define the function numCC : N → N, such that numCC (n) = |CCn|; i.e., we
count the total number of contexts for a fixed destination node n. This can easily
be computed by traversing the static call graph:

numCC (n) =

1 if n is a root node of CG∑
e∈n−

numCC (e�) otherwise

We impose a fixed ordering on the elements of n− = {e1, e2, . . . , e|n−|}, so each
edge ei can be annotated with an addition value:

av(ei) =
∑
j<i

numCC (ej
�).

These are used to effectively partition CCn based on the incoming edges. While
making calls during program execution, the value of the current callId is in-
creased by av(e) when traversing an edge e from caller to callee. On returning
from the callee back to the caller, the value of the current callId is decreased
by av(e). For any active call context encountered during execution, we have
computed the following encoding:

En([]) = 0
En(e : π) = av(e) + En(π)

where [] denotes the empty path, and e : π describes a path starting with e
followed by the path π.

A1

B1 J1

D2E1

G3

F4H4 I8

+1

+2

+4

+7

+2

Context callId
AB 0
AJ 0
ABD 0
AJD 1
ABE 0
ABD1F 0
AJD1F 1
ABD2F 2
AJD2F 3
. . .

Fig. 1: Example of graph encoding [15].

Example 1. Figure 1 demonstrates the encoding process. Each node is sub-
scripted with its numCC value, while edges are annotated with addition values
where they differ from 0. The table provides a few examples of encodings for var-
ious call contexts in the call graph. In this example, D calls F at two different
call sites; these a distinguished by their superscripts, D1 and D2.

Given an encoded callId c leading to a method n, we can reproduce the stack
trace one step at a time by considering the addition values of the method’s
incoming edges n−. The previous edge in the stack trace is the incoming edge
with the greatest addition value not exceeding c:

prev(n, c) = e ⇐⇒ av(e) = max{av(e) | e ∈ n−, av(e) ≤ c}

Thus, we define the decoding function:

De(n, c) =

{
[] if n = root

De(e�, c− av(e)) : e otherwise; where e = prev(n, c)

We have overloaded the list operator and write π : e to place the edge at the end
of the list. The path is decoded backwards, retracing the steps of the execution.

This is a valid encoding scheme and the decoding is precise; that is, for any
path π in the call graph leading to a method n, we can successfully decode its
encoding:

De(n,En(π)) = π

3 Dealing with dynamic call graphs

The PCCE approach, which assumes that the whole call graph is known in
advance, cannot be transfered verbatim to the situation of a typical Java appli-
cation. The JVM uses a dynamic class loading mechanism to load parts of the
application into memory only when they are executed for the first time. As a re-
sult, the call graph of an application can change at any moment of the program’s
execution.

Example 2 (The Problem). Let us consider the example in Figure 2. Given this
call graph, the execution path A→ B → D → E will be encoded as the integer
1. At some point later in the program’s execution, a new edge appears, X → B.
If we were to decode the calling context value, 1, starting from method E, we
would get the erroneous trace X → B → C → E.

A1

B1

C1 D1

E2

+1

A1

X1

B2

C2 D2

E4

+1

+2

Fig. 2: Call graph before and after discovering a new edge.

Our decoding can go wrong because for any given node n ∈ N , the value of
numCC (n) may change when new edges emerge in the graph. This in turn leads
to changes in the addition values and thus to different results for the encoding
and decoding algorithms. We will describe our solution to the general problem
in Section 5; here, we aim to illustrate how our encoding algorithm deals with
Example 2.

As our algorithm is dynamic, we must consider a slightly longer execution to
build an equivalent call graph. The three intermediate states worth considering
are depicted in Figure 3. We first assume the program calls the following sequence
of methods: A → B → C → E. Our algorithm updates the numCC counters
and the addition values on the fly, and for this first singleton path, the encoding

A1

B1

C1

E1

A1

B1

C1 D1

E2

+1

A1

X1

B2

C1 D2

E3

+1

+1

Fig. 3: Lucce’s dynamically generated call graphs.

is obviously zero. Whenever an edge is added to our graph, we log this as an edge
adding event and increment our version counter. The encoding for this particular
path, then, is not just zero, but the pair 〈0, v1〉.

Then, with E and D returning and being popped off the call stack, execution
resumes at B which immediately calls D. When D in turn calls E, we have the
path A→ B → D → E. As our algorithm now enters E again and computes the
addition value for the new edge, we obtain the second graph in Figure 3 where
this context is encoded as 〈1, v2〉.

Finally, assume all methods return all the way to the main method, or al-
ternatively, assume another thread takes the path X → B → D → E. As
we now enter each node, the values are updated, and we end up encoding this
path as 〈2, v3〉. The instrumentations for the final graph are not identical to
what we had in Figure 2; in particular, the new graph does not count the path
X → B → C → E. However, the paths that we actually did visit can be decoded
in the recorded versions of the call graph.

4 Instrumentation of bytecode

Before looking at the encoding algorithm, it helps to see the context in which the
encoding takes place. We have implemented the algorithm as a JVM Tool Inter-
face agent [14] that instruments the bytecode of an arbitrary Java application
using the ASM bytecode manipulation library [10]. The following modifications
are made to the bytecode of all loaded classes:

– Two new local variables are added to every method of every class. One
of these variables is used to store the current value of the callId during a
method’s execution, while the other stores the current version of the call

graph. As we saw in the previous section, this pair together constitutes our
calling context encoding.

– As the first instruction of every method, the call to the algorithm’s Entered
function is inserted. This call passes the unique identifier of the entered
method. The method will return the new value of callId and the graph ver-
sion, which will be stored in the local variables mentioned above.

– Before every method call bytecode instruction, a call to the algorithm’s Call-
ing function is inserted. This call passes the unique identifier of the call site,
where this method call originates, and the current value of the callId.

Example 3. For illustration, we show a source-to-source transformation that
achieves the intended effect of our instrumentation. Consider the following re-
cursive method: int f(){. . . f l() . . . }, where we have annotated the call site with
its location l. The method is transformed into the following pseudo-code:

int f(){callId 〈c, v〉 = Entered(f); . . .Calling(l, 〈c, v〉); f l(); . . . }

For this example, our abstract callId type includes the version as well.

We update the callId only from within the called method, not before an actual
invocation, because at the time of method invocation, it is generally impossible
to determine which method will be called. This information is available only
after JVM has performed method resolution. Trying to hook into this process is
error prone, and with the introduction of MethodHandlers in JDK7, the JVM
now has a whole new way to perform method resolution. It would require much
extra work to adapt to this new mechanism. Even worse, when native code call
Java methods through the Java native interface, we cannot instrument the call
site at all. Therefore, it is much more convenient to notify the algorithm about
a new method when it has already appeared on the call stack.

However, this necessitates passing information about the caller into called
method. This is exactly the job of the Calling method mentioned above. It
must precede each method invocation in order to store the caller information
to be consumed when we enter the new method. For native code, we associate
the location with the invocation of the native method, producing stack traces
such as: main(File.java : 13); f(native method); h(File.java : 42), which is
the best we can do for native code calling Java methods.

5 Dynamic calling context encoding

Having instrumented the program, the encoding algorithm receives sequences
of calls to the internal functions signaling method entry and exit; meanwhile,
critical information is stored in the local variables of instrumented methods. In
this way, we do not actually subtract the addition value when returning from a
method call because execution resumes with the previous values of the locals.
Further, as we will prove in this section, despite the seeming complexity of the
run-time behavior, our encoding is directly invertible due to the logging of graph

versions. We can therefore model the execution of an instrumented program as
again generating a sequence of edges.

Whenever we detect that calling graph has changed, we record the corre-
sponding event (of adding or changing a node or an edge in the graph). The
encoding part of the algorithm then can always operate on the currently actual
graph as if no changes have occurred. With every recorded value of callId, we
store the version of the graph that was valid at the time of this encoding. Then,
when we will be decoding this value, we will be able to “replay” all prior graph
changing events. As we decode, we further ensure that each node is rewound to
the graph version in which its addition values were computed.

For the presentation, we model our even history by assuming that we have
persistent versions of the dynamic call graph for all versions at hand. The chang-
ing data structure is then a triple G = 〈E,numCC , lv〉, where E is the set of
edges between methods, as before. Although the set of nodes N can also change
dynamically as new classes are loaded at runtime, we may simplify the model.
In reality, we assign methods unique identifiers, and since this mapping is global
and valid for all graph versions, we can for clarity of presentation, assume we
have a fixed set of methods. The numCC mapping serves the same role as in the
standard PCCE encoding, while lv is a mapping from nodes to graph versions. It
maps a node p to the graph that was valid when we last called a method from p.
This mapping is useful for optimization because we can cache the computation
of addition values and avoid recomputing if we can ensure that the graph has
not changed since last visiting a node. Here, we are concerned about correctness,
and this mapping plays a critical role in ensuring correct decoding.

Given a call path π, we compute the encoding edge by edge starting from
the encoding pair 〈0, 0〉:

En(π) = En ′(π, 〈0, 0〉) where
En ′([], cv) = cv
En ′(e : π, cv) = En ′(π,Update(e, cv))

Upon traversing an edge e we update the call graph, recording graph changing
event if necessary, and we encode the current call path by adding the addition
value of e to the current value c. Algorithm 1 returns the new callId while
updating the call graph.

In this high-level presentation of the algorithm, we have abstracted the details
of graph versioning under the carpet. The notation x ← y should therefore
be interpreted as doing all the important work for us; i.e., it evaluates y in
the current version of the shared structure, checks if x changes, and if it does,
increments the graph version and logs the update. Note that the current version
of the graph when entering this method is not necessarily v. This is the graph
version that was valid when entering the parent method p, but that method may
have called many other methods and only then proceeded to take the call edge
we are currently encoding. There is no simple relationship between v and v′,
which is why we store v in lv(p).

Algorithm 1 Updating the call graph

Input: call edge e, current callId c, and graph version v. The algorithm accesses the
graph G as a global data structure.

Output: The new callId and graph version for the callee. Additionally, G is potentially
updated and its version number incremented.
function Update(e, cv)

let 〈p, n, l〉 = e and 〈c, v〉 = cv . Decompose the arguments.
lv(p)← v . Backup the graph version of the caller.
E ← E ∪ {e} . Add the new edge if needed.
numCC(n)←

∑
e∈n− numCC (e�) . Recompute the callee’s numCC .

let v′ ← current version of G . Get version from the global structure.
return 〈c+ av(e), v′〉 . av(e) is computed in the updated graph.

end function

This takes us to one further implementation detail we must point out: it
is critical for correctness in a multi-threaded setting that the updates and the
query to obtain the graph version all happen within the same atomic block;
we need lv(p) and the computed addition value to have the same values in the
graph v′ as they had during this update to the graph. As we now turn to the
decoding, we see that this relationship is effectively the correctness invariant of
the algorithm, so we cannot allow the graph to be changed in-between.

In order to obtain the whole chain of call sites that have led to an event of
interest, we have to decode the recorded value of callId. For this, we need to com-
pute addition values in a given version of the call graph Gv = 〈Ev,numCC v, lvv〉.
The definitions of av(e, v) and prev(e, c, v) are essentially the same as in Sec-
tion 2, but take an extra parameter referring to the version of the graph in which
they are evaluated. With this in mind, we can define the decoding:

De(n, 〈c, v〉) =

{
[] if n = root

De(e�, 〈c− av(e, v), lvv(e
�)〉) : e otherwise

where e = prev(n, c, v)

As we step back from n, we hopefully obtain the previous callId by c− av(e, v)
and from lvv(e

�) we should have the version of the call graph that was valid
when the caller was entered. We now prove that this in fact is the inverse of the
encoding step.

Theorem 1. If execution reaches a method n with the call stack π : root → n,
the call identifier produced by our algorithm can be decoded to recover π, i.e.,
De(n,En(π)) = π.

Proof. We prove this by showing that decodability is a preserved invariant during
each step of the encoding process. Initially, we have an empty call stack starting
and ending at the root node, which is trivial to decode: De(root ,En([])) = [].

To prove that decodability is preserved, we decompose π = π′ : e, and assume
that for π′ : root → p, we generated the encoding 〈c, v〉 which correctly decodes

A

A′

B

C

D

A1

A′
1

B4

C4

D4

+1

+2

A1

A′
1

B6

C6

D6

+1

+2

Fig. 4: Treatment of recursion

back to π′. As we then traverse an edge e, we update the graph and produce
the encoding 〈c+ av(e, v′), v′〉. This too will be correctly decoded because the
decoding algorithm computes prev(n, c, v′) to obtain e and subtracts av(e, v′)
to recover c. However, this callId was valid in the graph v, so our decoding
algorithm rewinds the graph to lvv′(e�).

Thus, for any two consecutive stack frames, say method p entered with 〈c, v〉
and method n entered with 〈c′, v′〉, our encoding algorithm must preserve v =
lvv′(n). This is first enforced by the function Update upon entering n, and since
v and v′ are persistent graph versions, this relationship is invariant. ut

This proves that everything is in order, and recursion should simply work;
still, it may be interesting to see what the algorithm actually does when there are
recursive calls in the program. Previous work on extending PCCE retained the
original approach of limiting the basic algorithm to acyclic call graphs only. For
call graphs with cycles, which corresponds to the recursive calls in the original
application, the recursive call is pushed onto a local stack, resulting in a stack
of encodings of acyclic subpaths. In contrast, we happily apply the original idea
to cyclic subgraphs as well.

Example 4 (Recursion). Consider the leftmost call graph in Figure 4. Here, D →
B is a recursive back edge. Now, if we try to encode calling context A′ → B →
C → D → B → C, disregarding the fact that D → B is recursive, we obtain
the addition values that are annotated in the second graph of the figure. When
we reached B for the second time, we simply applied the above definitions, and
computed av(DB) = numCC(A)+numCC(A′) = 2. Thus we return callId = 3
for calling context A′ → B → C → D → B → C and this can safely be decoded
back into the correct calling context.

If the recursion continues, we too continue to follow the Algorithm 1, and
whenever the value of numCC for some caller has changed, we update the value
of numCC for the callee as well. And we continue doing so as we follow the
call sequence. This results in the numCC values of nodes B,C,D changing
with each level of recursion, which unfortunately leads to many “nodeUpdated”
logging events, but we have learned to live with this trade-off.

6 Experimental results

We have evaluated our implementation on the DaCapo benchmark suite [7] con-
sists of a set of open source real world applications with non-trivial workload,
object allocation rates, and memory consumption. For analysis of the current
paper’s algorithm DaCapo version 9.12, released in 2009, was used. In our test
runs we had to exclude two benchmarks, tradebeans and tradesoap, as they often
failed with runtime errors. We have run all benchmark using default settings and
default load size. The overhead factor reported is obtained as follows:

– Run benchmark 31 times in row, using “-n 31” command line option for
DaCapo

– Discard first run, as its results always deviates from others by large margin,
due to initial JVM optimizations cost and startup overhead

– Collect resulting 30 reported running time and calculate average running
time.

 0

 2

 4

 6

 8

 10

 12

avrora
batik

eclipse

fop h2 jython
luindex

lusearch

pmd
sunflow

tomcat

xalan

O
ve

rh
ea

d
fa

ct
or

Fig. 5: Experimental evaluation of overhead.

Each benchmark was run first without our agent attached and then together
with it. The average running time of the latter was divided by the former and
the resulting ratio was reported in Figure 5. The first bar is simply the reference
run — its value is always one; the second bar shows the overhead factor of
computing the callId. The overall overhead is high, much higher than we would
like. However, it is not clear if we could be much faster while still being able to
produce stack traces in all cases.

7 Related work

The original idea of encoding a path as a single number based on the different
ways to arrive at a given location was introduced for the intra-procedural case
by Ball and Larus [5]. This was not directly transferable to the inter-procedural
case. The necessary modifications were made by Sumner et al. [15]. The key
observation of the authors was that in order to provide context sensitivity, there
is no need to have an unique context identifier for every calling context in the
application. As we are interested in the calling context for some event, which
has happened in some point in the application, it will be sufficient if “all unique
paths leading from the root to a specific node have unique encodings, because
we only need to distinguish the different contexts with respect to that node”.

However, this method analyze the source code of the whole program in ad-
vance to construct the complete call graph that enables the encoding of inter-
procedural paths. The performance characteristics of this approach is very im-
pressive: an average overhead of about 2− 4% is reported, with worst case over-
head reaching 10%. As this approach does not use any runtime data structure,
memory overhead, although not reported by the authors, can be assumed to be
non-existing. Unfortunately, these numbers cannot be compared directly with
the ones reported in this article as benchmark applications differ significantly.
The major drawback of their approach is the inability to efficiently cope with vir-
tual functions and dynamic class loading, which are very common characteristics
of Java applications.

DeltaPath, presented in [19], tried to address these issues. In the case of
dynamic class loading, the authors detect in the runtime that execution has ar-
rived to some node from an unexpected (not seen during static program analysis)
caller. Then current call context value is then pushed onto the stack together
with a flag marking the specific reason the value was pushed (dynamic class
loading in this case), and encoding resumes with the value 0. This allows the
construction of a valid partial trace, leaving out the dynamically loaded portion.

The implementation of DeltaPath consists of static bytecode instrumenta-
tion, which has to happen before profiling session, and dynamic java agent for
monitoring and instrumenting dynamically loaded classes using the information
obtained by static part. Implementation is compatible with stock JVM compati-
ble with Java 5 or later. The extensive usage of stack data structures for holding
intermediate calling context values can make reporting the current call context
too expensive, as on each profiling event recording we have to pass the whole

stack as part of the event metadata. The average reported depth of those stacks
is between 1 and 4.4, with maximum value of 26. So on each profiling event
recording we have to copy up to tens of values. For 11 out of 15 benchmarks
in SpecJVM suite, the authors report average slowdown of 6.5%. But due to a
huge impact in other benchmarks, the overall average slowdown is reported to
be 32%. There is no memory overhead reported.

One of the drawbacks of DeltaPath is the necessity to analyze and instrument
the source code of the application before it runs, thus incurring extra burden
on DeltaPath users. A more pressing concern is that the traces for dynamically
loaded code, although correct for the previously seen portions of code, never-
theless do not contain calls to newly loaded methods. This issue is addressed
by DACCE (Dynamic and Adaptive Calling Context Encoding) [13]. DACCE
dynamically constructs actual call graph of the program execution during run
time, by adding each node and edge when they are first encountered. Edges are
not encoded nor instrumented at once. Instead, periodically, when some inner
thresholds are reached, DACCE stops the execution of the whole application,
analyses the entire graph known to this moment, and encodes all known edges
based on the current graph. During this encoding process some optimizations are
applied as well; e.g., encoding the hottest edges with zero, thus effectively remov-
ing any instrumentation along this edge. All calling context ids collected before
the re-encoding process either should be re-encoded and updated or augmented
with versions of the graph, when they were encoded.

As call graph is re-encoded on each graph update there are some edges in the
call graph may not yet be instrumented. DACCE handles them in the similar
way as DeltaPath by pushing current encoding values to a stack. From the point
of view of the user of the calling context information, DACCE is identical to the
DeltaPath. The authors measured the runtime overhead of their implementation
using SPEC CPU2006 benchmark [1]. The reported average runtime overhead
is about 2% with maximum being below 8%. There is no memory overhead
reported.

Another approach to encoding calling contexts is the probabilistic calling
contexts (PCC) due to Bond and McKinley [8]. The idea is to compute an
evenly distributed random value to provide a probabilistically unique identifier
for each calling context. In the original article, the PCC value is an accumulated
hash value of the entire stack trace that the analyzer can use to distinguish
between different calling contexts. The main drawback of this approach is the
lack of decoding capabilities. PCC does provide a way to distinguish between
two calling contexts and to identify an already known calling context, but it does
not allow us to reconstruct the exact calling context.

This ability was provided by Bond et al. [9] as the Breadcrumbs tool. They
use PCCs to record calling context and then store additional information that
allows them to decode a PCC back to a sequence of function calls. In order to
enable the The additional information facilitates an iterative backward search
among all possible candidate call sites. Breadcrumbs is implemented on the Jikes
RVM [2] by instrumenting every call site of the application with PCC calcula-

tion and, possibly, with recording all PCC values generated at this callsite. In
addition to that, partial call graph is constructed by augmenting the just-in-time
compiler. Decoding is performed offline, after the application runtime, during a
separate reporting phase. The authors use the Dacapo benchmark suite [7] for
evaluation of the runtime overhead. For a configuration that only computes PCC
values, without collecting any additional information, an overhead of around 5%
is reported. Recording every generated PCC value on every call site, which is
required for precise PCC decoding, results in the overhead raising to 100% on
average, ranging from around 20% up to more than 160% (the authors do not
provide exact numbers) depending on the test application.

A completely different approach for providing the calling context information
is to construct a Calling Context Tree (or CCT for short). This data structure
was first presented by Ammons et al. [3] as an efficient middle ground between
a dynamic call tree (DCT for short) and a dynamic call graph. CCT is defined
by the following equivalence relation on a pair of vertices in a DCT. Vertices u
and w in a DCT are equivalent if:

– v and w represent the same procedure, and
– the tree parent of v is equivalent to the tree parent of w, or v = w, or there

is a vertex u, such that u represents the same procedure as v and w and u
is an ancestor of both v and w.

The equivalence classes of vertices in a DCT define the vertex set of a CCT. Let
Eq(x) denote the equivalent class of vertex x. There is an edge Eq(u)→ Eq(w)
in the CCT iff there is an edge u→ w in the DCT. A CCT compactly represents
all calling contexts encountered during a particular program execution. The au-
thors showed that both the breadth and the depth of the CCT in a program
without recursion are bounded by the number of functions in a program and
each individual vertex requires constant amount of memory.

As a performance improvement over the original idea of CCT, the parallel
approach of CCT creation was proposed by Binder et al. [6]. The idea is to use
a thread-local shadow stack [4, 16] of the current call context and the sequence
(called packet) of functions calls and returns that resulted in the current call
context. When that sequence reaches the predetermined length, it is pushed to
the shared queue for further processing, then reset to the current call context as
determined by the shadow stack. A separate working pool of multiple threads
managed by CCT manager handles the queue and constructs the complete CCT
asynchronously. Using a thread-local shadow stacks and asynchronous CCT con-
structing greatly reduced the impact on program runtime by reducing thread
contention on the shared CCT representation and by maximising the utilisation
of multiple cores of modern CPUs. The authors report the runtime overhead
factors of 3.49 in the Dacapo benchmark suite (dacapo-2006-10-MR2).

Another technique for speeding up CCT creation was proposed by Huang
and Bond [12]. The authors claim that previous CCT implementations have two
major sources of overhead: the need to lookup child nodes while recording the
transfer of control from caller to callee, and the creation of many CCT nodes that
will not be used in a profiling session as no events of interest will ever happen in

Intrusiveness Precise Works on HotSpot Overhead ratio Memory

CCT low + can be transferred 1.7* / 2-50 < 10MB

Parallel CCT low + + 3.49 hundreds MBs

CCU high + - 1.3 3-50MBs

PCC high/low - can be transferred - 0

Breadcrumbs high +/- - 2 tens GBs

PCCE high + - < 1.1* 0

DeltaPath high + + 1.32 -

DACCE low + - < 1.08* -

Table 1: Overview of different methods for obtaining calling context

functions represented by those nodes. To eliminate these problems, the authors
propose using another data structure, calling context uptree (CCU for short),
where each node, representing a function call in the program, points up to its
parent in the current call context. This eliminates the child lookup overhead
entirely, but it leads to the creation of new nodes on every function call as already
existing nodes cannot be found and reused. The overhead of unneeded CCT
nodes is solved by creating a CCU node representing the current call context
as part of the recording of the profiling event metadata and recursively filling
the CCU’s reference to its parent by walking the stack until the function with
an existing CCU is found. Then the newly created CCU is stored as part of the
recorded event metadata.

Before presenting the summarized comparison of the above approaches, we
would like to explain one of the criteria used, intrusiveness. Intrusiveness was de-
scribed by Šor and Srirama [17] as “a special criterion, which describes how much
effort is required in order to use the implementation of the proposed method”.
When some technique requires separate training runs of the application, the re-
sults of which have to be fed back to the tool before actual profiling execution,
we consider this technique to be more intrusive. In large companies with long
deployment cycles, this can be quite a prohibitive requirement. On the other end
of the spectrum, there are tools implemented by simple Java agent using JVM
TI standard API and bytecode instrumentation. In addition, every technique or
tool, which requires using Jikes VM, as opposed to the standard HotSpot JVM,
is considered being very intrusive.

The majority of the evaluated approaches for obtaining calling context turned
out to be too intrusive. Only CCT [3], Parallel CCT [6] and DACCE [13] do not
require neither modified JVM nor separate preprocessing step. PCC [8], although
originally implemented on Jikes VM, seems to be quite easily transferable to
HotSpot, thus lowering intrusiveness significantly.

Table 1 summarizes different approaches for providing calling context infor-
mation to the applications’ runtime profiling. As it turned out, there is only one
tool which is not intrusive, works on HotSpot JVM and gives precise answers —
Parallel CCT [6]. In comparison, our approach is admittedly somewhat slower,
but it has the following advantages:

– Space overhead. In the case of the application without recursive calls Parallel
CCT memory consumption is proportional to the square of the number of the
functions in the application. If the application has deep recursive calls then
memory overhead grows even more. Our approach stores only calling graph
and thus requires memory proportional to the number of the functions.

– In order to use Parallel CCT for augmenting profiling metadata with location
information, a client has to send profiling events to the CCT manager and
to record all profiling data their. In our approach the identification of the
calling context is available right at the place, where profiling event occurs,
making it very easy for the clients to use.

8 Conclusions and future work

We have presented an encoding scheme for calling context encoding in object-
oriented multi-threaded Java applications. This scheme is particularly suitable
for recording extremely frequent events. The algorithm handles dynamic call
graph changes due to JVM class loading and polymorphism in a natural and
straightforward way. We provide the full and exact call context in which an event
took place; that is, we produce a similar trace to the JVM itself would produce
also when the call sites are impenetrable, such as calls to Java from native
code. Unlike the previously proposed algorithms, we can deal with recursive
calls without any special care. No prior knowledge of the application or source
code preprocessing is required and the algorithm can be used as a plugin or in
cooperation with other monitoring and troubleshooting tools.

The current implementation has fairly high overhead. In this form, we cannot
apply it in a production setting. While there is room for optimization, we have
tried most obvious ideas, such as caching of addition values and offloading work
into parallel threads. Our performance is competitive with other approaches
that can similarly handle the full spectrum of method calls available on the
JVM without tweaking the runtime system itself, but the question is if one
could apply the ideas from the faster approaches to speed up plain and simple
function calls, while still maintaining the capacity to deal with more complicated
cases.

Bibliography

[1] SPEC cpu2006, 2006. URL http://www.spec.org/cpu2006/.
[2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,

J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B.
Moss, T. Ngo, and V. Sarkar. The jikes research virtual machine project:
Building an open-source research community. IBM Syst. J., 44(2):399–417,
Jan. 2005. ISSN 0018-8670.

[3] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance
counters with flow and context sensitive profiling. In PLDI ’97, pages 85–96.
ACM, 1997.

[4] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making software failures repro-
ducible by preserving object states. In Proceedings of the 22Nd European
Conference on Object-Oriented Programming, ECOOP ’08, pages 542–565,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-70591-8.

[5] T. Ball and J. R. Larus. Efficient path profiling. In MICRO 29, pages
46–57. IEEE Computer Society, 1996.

[6] W. Binder, D. Ansaloni, A. Villazn, and P. Moret. Parallelizing calling
context profiling in virtual machines on multicores. In PPPJ ’09, pages
111–120. ACM, 2009.

[7] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking de-
velopment and analysis. In OOPSLA ’06, pages 169–190. ACM, 2006.

[8] M. D. Bond and K. S. McKinley. Probabilistic calling context. In OOPSLA
’07, pages 97–112. ACM, 2007.

[9] M. D. Bond, G. Z. Baker, and S. Z. Guyer. Breadcrumbs: Efficient context
sensitivity for dynamic bug detection analyses. In PLDI ’10, pages 13–24.
ACM, 2010.

[10] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code manipulation tool to
implement adaptable systems. Adaptable and extensible component systems,
30, 2002.

[11] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection us-
ing adaptive statistical profiling. SIGOPS Oper. Syst. Rev., 38(5):156–164,
Oct. 2004.

[12] J. Huang and M. D. Bond. Efficient context sensitivity for dynamic anal-
yses via calling context uptrees and customized memory management. In
OOPSLA ’13, pages 53–72. ACM, 2013.

[13] J. Li, Z. Wang, C. Wu, W.-C. Hsu, and D. Xu. Dynamic and adaptive
calling context encoding. In CGO ’14, pages 120–131. ACM, 2014.

[14] Oracle. JVM Tool Interface, 2013. URL http://docs.oracle.com/

javase/8/docs/platform/jvmti/jvmti.html.
[15] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise calling

context encoding. In ICSE ’10, pages 525–534. ACM, 2010.
[16] A. Villazon, W. Binder, and P. Moret. Flexible calling context reification

for aspect-oriented programming. In Proceedings of the 8th ACM Inter-
national Conference on Aspect-oriented Software Development, AOSD ’09,
pages 63–74, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-442-3.

[17] V. Šor and S. N. Srirama. Memory leak detection in java: Taxonomy
and classification of approaches. Journal of Systems and Software, DOI:
10.1016/j.jss.2014.06.005:139–151, 2014.

[18] V. Šor and S. N. Srirama. Memory leak detection in Plumbr. Software:
Practice and Experience, 2014.

[19] Q. Zeng, J. Rhee, H. Zhang, N. Arora, G. Jiang, and P. Liu. DeltaPath:
precise and scalable calling context encoding. In CGO ’14, pages 109–119.
ACM, 2014.

